[go: up one dir, main page]

JP3599957B2 - Method for manufacturing multilayer wiring board - Google Patents

Method for manufacturing multilayer wiring board Download PDF

Info

Publication number
JP3599957B2
JP3599957B2 JP15946597A JP15946597A JP3599957B2 JP 3599957 B2 JP3599957 B2 JP 3599957B2 JP 15946597 A JP15946597 A JP 15946597A JP 15946597 A JP15946597 A JP 15946597A JP 3599957 B2 JP3599957 B2 JP 3599957B2
Authority
JP
Japan
Prior art keywords
insulating layer
resin insulating
wiring pattern
resin
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15946597A
Other languages
Japanese (ja)
Other versions
JPH1167900A (en
Inventor
達也 伊藤
剛 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP15946597A priority Critical patent/JP3599957B2/en
Publication of JPH1167900A publication Critical patent/JPH1167900A/en
Application granted granted Critical
Publication of JP3599957B2 publication Critical patent/JP3599957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂絶縁層を介して形成される配線パターンと樹脂絶縁層を貫通し配線パターン間を導通するビアとを有する多層配線基板の製造方法に関する。
【0002】
【従来の技術】
一般に、配線パターン間に樹脂絶縁層を介在させた多層配線基板70は、図6(A)に示すように、コア基板71の上面に形成した下層配線パターン72の上方に所定厚さの感光性樹脂ペーストを塗布し乾燥させ樹脂絶縁層74を形成する。
この樹脂絶縁層74に対し、図6(B)に示すように、露光と現像、又はレーザ加工を行って下層配線パターン72の上面を露出させるビアホール76を形成した後、樹脂絶縁層74の上面に無電解銅メッキ及び電解銅メッキと露光・現像等により上層配線パターン82を形成する。同時に、上記ビアホール76内には上・下層配線パターン82,72間を導通するビア78が形成される。
【0003】
ところで、上記ビアホール76を形成する際の加工のばら付きによって、図6(C)に示すように、ビアホール76の孔明け不足によりビア78の底面と下層配線パターン72の上面との間に樹脂片75が残る場合がある。
また、図6(D)に示すように、過剰現像により略円柱状で下部が斜めに広がる形状のビアホール76が形成されると、上記銅メッキの付き周り不良が生じ、ビア78の底部に狭隘部80を形成する場合がある。
これらの樹脂片75が残ったり狭隘部80があると、ビア78による上・下層配線パターン82,72間の導通が不安定になり、立体回路が形成されない場合を生じることがある。
【0004】
係る導通不良を防ぐため、上記ビアホール76を形成した樹脂絶縁層74の上面を厚さ約5μm程研磨・除去して平坦化した後、該樹脂絶縁層74の表面にアルカリ・過マンガン酸カリウム等のエッチング液を接触して、樹脂絶縁層74の表面を粗化していた。その後、この表面粗化された樹脂絶縁層74の表面にSn/Pdコロイドタイプのメッキ触媒核(図示せず)を吸着させ、前記無電解銅メッキ等により上層配線パターン82を形成していた。
この方法では、前記ビアホール76を形成する際の加工のばら付きによるビア78の前記不良を若干低減できるが、未だ不十分で安定性を欠いている。
【0005】
また、前記エッチング液による樹脂絶縁層74の表面粗化を強く行うと、該樹脂絶縁層74の上面が過剰に粗化され、そこに形成される上層配線パターン82と樹脂絶縁層74との密着強度が低下するという問題もあった。
更に、レーザを強く照射してビアホール76内に樹脂片75が残らないようにする方法も考えられるが、レーザ照射が過剰になると前記図6(D)に示した狭隘部80が不用意にビア78に形成されてしまうという問題があった。
【0006】
【発明が解決すべき課題】
本発明は、以上の従来の技術における問題点を解決し、ビア底部における樹脂残りや形状不良をなくし、ビアの形状を正確にして上・下層配線パターン間の導通を確実にすると共に、樹脂絶縁層と上層配線パターンとの密着強度を維持させた多層配線基板の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するため、樹脂絶縁層に対する表面粗化を複数回行い、その間に樹脂絶縁層の上面を研磨することにより、ビアホール内の表面と樹脂絶縁層の上面との粗度を相違させることに着目して成されたものである。
即ち、本発明の多層配線基板の製造方法は、下層配線パターンの上方に形成され、該下層配線パターンの上面に少なくとも1つ以上のビアホールが形成された樹脂絶縁層の表面を粗化する表面粗化工程と、該表面粗化された樹脂絶縁層の上面を所定の厚さ研磨して除去する研磨工程と、その後、該研磨された樹脂絶縁層の表面を粗化する表面粗化工程と、を含むことを特徴とする。
【0008】
係る方法によれば、ビアホール内の表面が適度に粗化され、下層配線パターン上の樹脂残りを無くし、形状不良のビアホールの場合でも樹脂残りを低減し、且つ該ビアホールの形状不良を緩和することができる。従って、追って形成されるビアと下層配線パターンとの導通を確保すると共に、樹脂絶縁層とその上面に追って形成される上層配線パターンとの密着強度を維持することが可能となる。
尚、上記樹脂絶縁層の表面とはその上面とビアホール内の表面の双方を含む。
また、上記表面粗化工程を複数回に渉って行い、その間において少なくとも1回上記研磨工程を行う多層配線基板の製造方法も含まれる。
この場合、表面粗化工程と研磨工程を交互に繰り返しても良いが、最後の表面粗化工程の直前に研磨工程を1回行うと、ビアホール内の表面と樹脂絶縁層の上面との粗度を、容易にそれぞれに適したレベルにすることが可能となる。
【0009】
更に、前記表面粗化工程が、過マンガン酸、濃硫酸、又はクロム酸により前記樹脂絶縁層の表面をエッチングするものである多層配線基板の製造方法も含む。
上記には具体的には過マンガン酸カリウムやクロム酸カリウム等が含まれる。
これによれば、樹脂絶縁層の材質に応じて上記何れかのエッチング液を用い、その濃度とエッチング時間を調整することにより、ビアホール内の樹脂残り等を減らし、樹脂絶縁層の上面の粗度を適度にすることが可能となる。
【0010】
また、研磨工程の前と後で濃度や種類の異なるエッチング液を用いて各表面粗化工程を行うこともできる。即ち、研磨工程の前に行う表面粗化工程ではビアホールの底部に残存する樹脂片を完全に除去することを主目的とするので、エッチング液の濃度を濃くしたりエッチング時間を長くすると良い。或いは、研磨工程の後の表面粗化工程に用いるエッチング液と異なる種類のものを用いても良い。
この場合、樹脂絶縁層の上面が過剰に粗化されても、その後の研磨工程により樹脂絶縁層の表層における粗化部分が除去される。従って、研磨工程の後の表面粗化工程では、上層配線パターンと樹脂絶縁層との密着強度が最適となるエッチング液を用いると良い。
【0011】
また、本発明は前記後の又は最後の表面粗化工程の後に、前記樹脂絶縁層の上面に上層配線パターンを形成し、且つ前記ビアホール内に上・下層配線パターン間を導通するビアを形成する工程を、含む多層配線基板の製造方法も提案する。
この方法により、樹脂残りや形状不良が無いか、少ないビアを形成できるので、上・下層配線パターン間の導通を確実にし得る。また、樹脂絶縁層の上面と上層配線パターンとの密着強度を低下させず維持することもできる。
【0012】
また、上記上層配線パターンを形成する工程を、上記樹脂絶縁層の上面に導体薄膜を形成し、該薄膜の上面にドライフィルムの樹脂パターンを形成し、この樹脂パターン間に上層配線パターンを形成した後、上記樹脂パターンと該樹脂パターンの底面に位置する導体薄膜を除去するものともできる。
更に、前記上層配線パターンを形成する工程を、前記樹脂絶縁層の上面に導体層を形成し、該導体層の上面に樹脂パターンを形成した後、エッチングすることにより上記導体層を上記樹脂パターンに倣った上層配線パターンとすることもできる。
これらによれば、樹脂絶縁層の上面に上層配線パターンをその特性等に応じて強固に形成でき、複数層の配線パターンを確実に形成することが可能になる。
【0013】
【実施の形態】
以下において本発明の実施に好適な形態を図面と共に説明する。
図1は本多層配線基板の製造方法の概略を示す各工程の断面図に関する。
図1(A)に示すように、先ずコア基板1の両面に下層配線パターン4が形成される。係る下層配線パターン4は、予めその上面に形成された図示しない感光性樹脂を露光・現像した後、エッチングすることにより所定のパターンに形成されている。また、この配線パターン4は、厚さ18μmの銅からなる。この場合、両面の配線パターン4同士を導通するため、コア基板1に明けた貫通孔2内に、円筒形の導通部3が配線パターン4と同時に形成される。該導通部3の内側には図示しない熱硬化性樹脂がマスク印刷により充填される。尚、上記コア基板1は厚さ0.8mmのBT(ビスマレイミド・トリジアン)樹脂とガラス繊維布の複合材からなる。
【0014】
次に、図1(B)に示すように、下層配線パターン4の上方に厚さ55μmの感光性を有するエポキシ系の樹脂絶縁層6が全面に形成される。この樹脂絶縁層6の所定の位置に露光と現像を行い、略円錐形のビアホール7が形成される。このビアホール7の底部には、下層配線パターン4の上面が露出する。
係るビアホール7を形成する上記現像の方法によっては、前述した樹脂残りが生じたり、ビアホール7自体に形状不良が生じ得る。このため、ビアホール7を含む樹脂絶縁層6の表面に対し、複数回の表面粗化とその間における上面研磨が施される。これについては、追って図2にもとづき詳しく説明する。
【0015】
次いで、図1(C)に示すように、ビアホール7を含む樹脂絶縁層6の表面全体に渉り、無電解銅メッキを施して厚さ1μmの銅薄膜8を形成する。この銅薄膜8は、ビアホール7内においてこれに倣った円錐状のビアの基部9を形成する。
更に、係る銅薄膜8の上面全体に水溶性ドライフィルムの感光性樹脂を貼着して、露光と現像を行うと、図1(D)に示すように、所定のパターンのメッキレジスト(樹脂パターン)10が形成される。
次に、係るメッキレジスト10が形成された銅薄膜8に対し硫酸銅メッキを施すと、図1(E)に示すように、上記メッキレジスト10で覆われていない銅薄膜8の上面に厚さ15μmの上層配線パターン14が形成される。同時に、ビアホール7内の上記銅薄膜の基部9上には同様の厚さのビア12が形成される。
【0016】
その後、上記メッキレジスト10をNaOH水溶液に接触させることにより剥離し、これにより露出した銅薄膜8を除去するため、上層配線パターン14やビア12も含めてそれらの上面をエッチングし、約2μmの厚さ除去する。この除去後の状態を図1(F)に示す。これにより、上・下層配線パターン14,4がビア12によって導通された立体回路が形成される。
更に、図1(G)に示すように、前記樹脂絶縁層6の上面全体に厚さ55μmの樹脂絶縁層16が形成され、該絶縁層16の所定の位置に露光と現像を行って、略円錐形のビアホール17が形成される。このビアホール17を含む樹脂絶縁層16にも、複数回の表面粗化とその間における上面研磨が施される。
【0017】
上記樹脂絶縁層16の上面に前記同様の図示しない銅薄膜とメッキレジストが形成され、これらに対し硫酸銅メッキを施すと、上記メッキレジストのない銅薄膜の上面に厚さ15μmの最上層配線パターン20が形成され、同時にビアホール17内には上記同様のビア18が形成される。これにより、図1(G)のように、下層・上層・最上層配線パターン4,14,20とこれらを導通するビア12,18からなる立体回路が形成される。
そして、図1(H)に示すように、上記樹脂絶縁層16及び最上層配線パターン20の上面全体に感光性のエポキシ変性樹脂からなるソルダーレジスト22を形成し、露光と現像を行って最上層配線パターン20の上面に開口部24を形成する。この開口部内24に露出する最上層配線パターン20の上面に、無電解メッキによりNi(Ni−P)メッキ層及びAuメッキ層からなるパッド26を形成して、多層配線基板28を得た。
【0018】
この多層配線基板28は、上層・最上層配線パターン14,20及びビア12,18を形成する直前の工程において、樹脂絶縁層6,16とビアホール7,17の表面に2回以上の表面粗化が施されているので、ビアホール7,17の底部に樹脂残りや形状不良が少ない。且つ、その間に樹脂絶縁層6,16の上面に研磨が施されるので、樹脂絶縁層6,16の上面が過剰に粗化されることもない。
従って、樹脂絶縁層6,16と上層・最上層配線パターン14,20との密着強度も強固に維持されるので、3層の配線パターン4,14,20間をビア12,18により確実に導通した安定性のある立体回路を提供することができる。
尚、最上層配線パターン20は上下方向における相対的な名称で、仮に上層配線パターン14を下層配線パターンとした場合、その上層配線パターンとなる。
【0019】
次に図2により本発明の特徴的な製造工程について説明する。
図2(A)は、前記図1(B)のビアホール7付近の模式的な拡大端面図で、下層配線パターン4の上方に樹脂絶縁層6とビアホール7が形成された状態である。
先ず、ビアホール7を含む樹脂絶縁層6の表面にエッチング液を接触させて表面粗化する工程を行う。上記エッチング液には、アルカリ・過マンガン酸タイプのエッチング液(過マンガン酸カリウム45g/リットル、奥野製薬製 商品名OPC−1200エポエッチ200mリットル/リットル)を用いた。
このエッチング液の温度を80℃にして、樹脂絶縁層6の表面を4分間浸漬すると、図2(B)に示すように、樹脂絶縁層6の上面はランダムな凹凸面6aになり、ビアホール7の表面も凹凸面7aになる。
【0020】
次に、係る樹脂絶縁層6の表面を中和する。中和液には奥野製薬製の商品名OPC−1300ニュートライザー(200mリットル/リットル)を用い、液温45℃で4分間浸漬することで樹脂絶縁層6の表面(凹凸面6a,7a)が中和される。
次いで、樹脂絶縁層6の上面を研磨する工程を行う。この研磨は、ロール状の研磨材(#320、商品名IHバフ・日本特殊研砥製)を用い、樹脂絶縁層6の上面を約5μm除去した。
その結果、図2(C)に示すように、樹脂絶縁層6の上面から上記凹凸面6aを含む表層が除去され、平坦面6bが形成される。この平坦面6bを形成した際の樹脂絶縁層6の厚さは略50μmであった。
【0021】
更に、樹脂絶縁層6の表面(6b,7a)を再度粗化する工程を行う。これは前記と同じエッチング液を同じ条件で用いて、樹脂絶縁層6の表面を粗化する。
その結果、図2(D)に示すように、ビアホール7の表面は更に粗化された凹凸面7bとなると共に、樹脂絶縁層6の上面は前記と同様の凹凸面6aとなる。
この樹脂絶縁層6の表面(6a,7b)に対しても、前記と同じ中和液を用いて中和する。この後、前記図1(C)以下に示す各工程が行われる。
そして、上記2回の表面粗化を受けたビアホール7の底部においては、下層配線パターン4の上に樹脂片が残らず除去される。また、ビアホール7の表面は粗い凹凸面7bとなり、角部が緩くなるため追って無電解銅メッキ等される際、ビア12を形成する銅メッキの付き回りが確実になる。
【0022】
従って、ビアホール7が適度の現像により略円錐形に形成されている場合、そこに形成されるビア12は図3(A)に示すように、前記樹脂残りのない略円錐形に形成され、下・上層配線パターン4,14間の導通を確実に行う。
また、過剰現像によってビアホール7が略円柱状で下部が斜めに広がる形状不良に形成された場合でも、表面粗化により該ビアホール7の下部の傾斜した角部分が曲面化され、銅メッキの付き回り性が向上する。このため、図3(B)に示すように底部に狭隘な部分のないビア12′が形成でき、下・上層配線パターン4,14間の導通を確保できる。
一方、後の表面粗化工程のみにより凹凸面6aとされた樹脂絶縁層6の上面には、上層配線パターン14を形成する銅メッキが上記凹凸面6aに強固に密着する。このため、該配線パターン14と樹脂絶縁層6との密着強度を従来同様に維持することができる。
【0023】
ここで上記表面粗化、上面研磨、及び表面粗化の工程順に行った本発明の実施例の効果を、従来の技術による従来例、及び比較例と共に具体的に説明する。
前記表面粗化、中和、上面研磨、表面粗化、及び中和工程の順に施した実施例の多層配線基板28を20個用意した。各配線基板28内には、直径100μmのビア12,18が1000個が形成されている。
これらの配線基板28の前記パッド26にプローブ(図示せず)を接触させ、外部電源から電流を各基板28内部の1000個のビア12,18を含む立体回路に流し、該立体回路の抵抗値を測定して、導通しているか否か判断した。
また、上層・最上層配線パターン14,20の樹脂絶縁層6,16に対する密着強度を、銅箔引き剥がし強さ(JIS:C6481)にもとづくピール強度を測定して判定した。
【0024】
一方、上記実施例について施した工程のうち上面研磨工程のみを外して、表面粗化、中和、表面粗化、及び中和を施した実施例と同様の多層配線基板28を比較例として20個用意した。この比較例の各配線基板28内にも直径100μmのビア12,18が1000個が形成されている。更に、前記従来の技術の例として、樹脂絶縁層6,16に前記エッチング液による表面粗化と中和液による中和のみを施した同じ構造の配線基板28を20個用意した。
これら比較例及び従来例も、上記と同じ方法でビア12,18を含む立体回路の導通の有無と、上層・最上層配線パターン14,20の密着強度を測定した。
上記プローブによる抵抗値測定から、1000個のビア12,18のうち1個でも不導通個所のある立体回路を有する配線基板28を不良として、各例の20個の配線基板全体における導通不良の配線基板28の発生率を算出した。また、上層・最上配線パターン14,20のピール強度の測定値についても、各例のレベルを把握した。これら実施例、比較例、従来例の各測定結果を表1に示す。
【0025】
【表1】

Figure 0003599957
【0026】
表1から、実施例はビア12,18が不導通の配線基板28の比率が低く、且つ上層・最上層配線パターン14,20のピール強度も全ての配線基板28が一応強固な密着強度とされる1kg/cm以上であった。この結果から、実施例では樹脂残りや形状不良の少ないビア12等が得られ、上層配線パターン14等の密着強度も強固に維持されたことが理解される。
一方、比較例は同様にビア12等による導通不良の基板の発生率が低くなった反面、上層配線パターン14等の密着強度が従来例よりも低いレベルなった。これは比較例では2つの表面粗化工程間における研磨工程を省いたため、樹脂絶縁層6,16の上面が過度にエッチングされ、大きく脆い凹凸面6aが形成されたことによると思われる。
更に、従来例は上層配線パターン14等の密着強度が高い反面、ビア12等による不良の発生率が50%以上と高く、生産性が低くなることも確認された。
【0027】
係る結果から、本発明による実施例では樹脂絶縁層6,16の表面のうち、ビアホール7,17の表面に2回の粗化を行ってビア12,18の底部に樹脂残りや形状不良が生じるのを防ぎ、且つ樹脂絶縁層6等の上面は中間に研磨を施して実質1回の表面粗化のみとして上層配線パターン14等の密着強度の低下を防いだことが容易に理解される。
尚、本発明は、表面粗化、上面研磨、及び表面粗化の工程順だけでなく、表面粗化の工程を3回以上としその間において上面研磨を行う形態や、同じく表面粗化の工程を3回以上として最後の表面粗化の直前のみに上面研磨を行う形態も含まれる。要するに、ビアホール7内等の表面には複数回の表面粗化を行う一方、樹脂絶縁層6等の上面には実質的に1回のみ表面粗化を行う方法であれば良い。
【0028】
図4は本発明による異なる形態のビアに関する。
同図(A)は上下2層の樹脂絶縁層を貫通するビアを示す。先ず、前記同様のコア基板30の上面に下層配線パターン32が形成され、その上方に感光性エポキシからなる樹脂絶縁層34,36が形成される。この樹脂絶縁層34の上面の図示しない位置には上層配線パターンが形成されている。次に、下層配線パターン32の上面における樹脂絶縁層34,36には、露光と現像により緩い円錐状のビアホール35が形成される。更に、樹脂絶縁層36(34)の表面、即ちその上面とビアホール35の表面には複数回の前記表面粗化が行われ、且つその間において樹脂絶縁層36の上面に前記研磨が行われる。そして、樹脂絶縁層36上に無電解銅メッキ等を行い、且つ図示しない感光性樹脂層を形成した後、露光、現像、及びエッチングを行って最上層配線パターン39が形成される。同時に、ビアホール35内に下・最上層配線パターン32,39間を導通する略円錐形状のビア38を得ることができる。
【0029】
また、図4(B)ではコア基板40の上面に下層配線パターン42が形成され、その上方に上記と同様の樹脂絶縁層44,46が形成されている。この樹脂絶縁層44の上面の図示しない位置には上層配線パターンが形成されている。次に、上方からレーザを樹脂絶縁層44,46に対し下向きに照射し、下層配線パターン42の上面が露出する円柱状のビアホール45を形成する。更に、樹脂絶縁層46の上面とビアホール45の表面に複数回の前記表面粗化を行い、且つその間で樹脂絶縁層46の上面を研磨する。そして、無電解メッキ等を行って最上層配線パターン49と円柱状のビア48が形成される。
【0030】
更に、図4(C)は異なる方法により形成されるビアに関する。先ず、コア基板50の上面に下層配線パターン52が形成され、その上方に樹脂絶縁層54が形成される。この樹脂絶縁層54に露光と現像を行い、下層配線パターン52の上に緩い円錐形状のビアホール55を形成する。次に、樹脂絶縁層54の上面とビアホール55の表面に複数回の表面粗化を行い、その間に樹脂絶縁層54の上面を研磨して図示しない位置に上層配線パターンを形成する。この際、ビアホール55内にはメッキレジストが形成されているので、ビアは形成されない。
次いで、樹脂絶縁層54の上面に樹脂絶縁層56が形成され、露光と現像により上記ビアホール55があった位置とも重なるビアホール57が形成される。該ビアホール57は、現像処理を強めとすることで底部側が略垂直に形成される。
【0031】
このビアホール57の表面と樹脂絶縁層56の上面に複数回の表面粗化を行い、且つその間で樹脂絶縁層56の上面を研磨する。そして、無電解メッキ等を行って最上層配線パターン59を形成すると共に、断面形状が2段階のテーパを有するビア58が形成される。
これらのビア38,48,58は各ビアホール35,45,57に倣った断面形状になると共に、それらの底部において前記樹脂残りや狭隘な形状不良を形成することが少ない。従って、上下に離隔した下層配線パターン32等と最上層配線パターン39等の間を直かに導通させることが可能となる。
【0032】
本発明は、以上において説明した各形態に限定されるものではない。
例えば、図5(A)及び(B)に示すように、図1と同じくコア基板1の両面に下層配線パターン4を形成し、その上方に樹脂絶縁層6を形成し且つビアホール7を形成した後、前記複数回の表面粗化とその間に研磨を施したものを用意する。
次に、図5(C)に示すように、この樹脂絶縁層6の表面全体に無電解銅メッキ等を施して数10μmの厚さの銅膜(導体層)60を形成し、更に、図5(D)に示すように、上記銅膜60の上面に感光性の樹脂からなる絶縁層62を形成する。
次いで、係る樹脂絶縁層62に露光と現像を行い、図5(E)に示すように、所定の樹脂パターン63とする。そして、係る樹脂パターン63と上記銅膜60とをエッチング液に浸漬することにより、図5(F)に示すように、上記樹脂パターン63によって保護された位置に上層配線パターン64及びビア66が形成される。同様の方法により、図示しない樹脂絶縁層や最上層配線パターン等を形成して、前記配線基板28と同様な多層配線基板68を形成することができる。
【0033】
また、前記多層配線基板28のコア基板1には、BT樹脂とガラス繊維布との複合材(ガラス−BTレジン材)の他、ガラス−エポキシ材、ガラス−PPE材や、紙−エポキシ材等の複合材、或いはエポキシ、BTレジン、ポリイミド、PPE等の樹脂を用いても良い。
更に、コア基板1を上記樹脂に限らず、セラミック製としても良い。係る剛性の高いセラミックのコア基板1を用いる場合、その両面に同数の樹脂絶縁層6,16と下層・上層・最上層配線パターン4,14,20を形成せず、互いに異なる層数としたり、或いはコア基板1の片面にのみ樹脂絶縁層6等や下層・上層配線パターン4,14等を形成しても良い。後者の場合、前記貫通孔2等を省略することができる。
更にまた、上記コア基板1は必須の要素ではなく、例えば既設の樹脂絶縁層の上面に下層配線パターン4を形成して順次前記の各工程を行って、樹脂製多層配線基板を製造しても良い。或いは、既設のセラミック層又はセラミック多層配線基板の上面に下層配線パターン4を形成して順次前記の各工程を行い、セラミックと樹脂の複合多層配線基板を製造することも可能である。
【0034】
また、前記表面粗化に用いるエッチング液には、過マンガン酸、濃硫酸、又はクロム酸を含むものを用いることもでき、樹脂絶縁層の表面等に形成すべき凹凸面に応じて適宜調整して使用される。
更に、前記多層配線基板28の外部との導通用端子にパッド26を用いたが、これに替えて半田バンプ、リード、又はピン等を使用することもできる。
尚、配線パターン4等を銅で形成したが、Ni及びその合金(Ni−P,Ni−B,Ni−Cu−P)、Co及びその合金(Co−P,Co−B,Co−Ni−P)、Snとその合金(Sn−Pb,Sn−Pb−Pd)、Au,Ag,Pd,Pt,Rh,又はRu等とそれらの合金の何れかを用いることもできる。
【0035】
【発明の効果】
以上において説明した本発明の製造方法によれば、下層配線パターンの上方に形成された樹脂絶縁層のビアホール内を含む表面に複数回の表面粗化と、その間において樹脂絶縁層の上面を研磨する工程を行うため、追って形成されるビア底部の樹脂残りやビアの形状不良を確実に低減でき、ビアにおける導通不良を減らすことができる。同時に、樹脂絶縁層の上面に追って形成される上層配線パターンの密着強度を強固な状態で維持できる。
また、請求項4の発明によれば、樹脂絶縁層の上面に形成される上層配線パターンが強固に密着されるので、前記下層配線パターン及びビアと共に所定の立体回路を確実に形成することが可能となる。
【図面の簡単な説明】
【図1】(A)乃至(H)は本発明の多層配線基板の製造工程の概略を示す部分断面図。
【図2】(A)乃至(D)は本発明方法の各工程を示す部分端面図。
【図3】(A)及び(B)は本発明により得られる各ビアを示す部分断面図。
【図4】(A)乃至(C)は本発明により得られる異なるビアを示す部分断面図。
【図5】(A)乃至(F)は本発明の異なる製造工程の概略を示す部分断面図。
【図6】(A)及び(B)は従来の配線基板の製造工程を示す部分断面図、(C)及び(D)はこれにより形成されたビアを示す部分断面図。
【符号の説明】
4,32,42,52……………………………下層配線パターン
6,16,34,36,44,46,54,56…樹脂絶縁層
7,17,35,45,55,57………………ビアホール
8………………………………………………導体薄膜
10,63………………………………………樹脂パターン
12,12′,18,38,48,58,66……ビア
14,64………………………………………上層配線パターン
20,39,49,59…………………最上層配線パターン(上層配線パターン)
28,68……………………………………多層配線基板
60……………………………………………導体層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer wiring board having a wiring pattern formed via a resin insulating layer and a via penetrating through the resin insulating layer and conducting between the wiring patterns.
[0002]
[Prior art]
Generally, as shown in FIG. 6A, a multilayer wiring board 70 having a resin insulating layer interposed between wiring patterns has a photosensitive thickness of a predetermined thickness above a lower wiring pattern 72 formed on the upper surface of a core substrate 71. A resin paste is applied and dried to form a resin insulating layer 74.
As shown in FIG. 6B, a via hole 76 for exposing the upper surface of the lower wiring pattern 72 is formed by exposing and developing or laser processing the resin insulating layer 74, and then the upper surface of the resin insulating layer 74 is formed. An upper wiring pattern 82 is formed by electroless copper plating, electrolytic copper plating, exposure and development. At the same time, a via 78 that conducts between the upper and lower wiring patterns 82 and 72 is formed in the via hole 76.
[0003]
By the way, as shown in FIG. 6C, due to the variation in the processing when the via hole 76 is formed, a resin chip is formed between the bottom surface of the via 78 and the upper surface of the lower wiring pattern 72 due to insufficient opening of the via hole 76. 75 may remain.
Further, as shown in FIG. 6 (D), when a via hole 76 having a substantially cylindrical shape and a lower portion spreading obliquely is formed due to excessive development, the above-described poor surrounding with copper plating occurs, and a narrow portion is formed at the bottom of the via 78. The part 80 may be formed.
If the resin pieces 75 remain or the narrow portion 80 exists, conduction between the upper and lower wiring patterns 82 and 72 due to the via 78 becomes unstable, and a case where a three-dimensional circuit is not formed may occur.
[0004]
In order to prevent such a conduction failure, the upper surface of the resin insulating layer 74 in which the via hole 76 is formed is polished and removed to a thickness of about 5 μm to flatten the surface. , The surface of the resin insulating layer 74 was roughened. Thereafter, Sn / Pd colloid-type plating catalyst nuclei (not shown) were adsorbed on the surface of the resin insulating layer 74 whose surface was roughened, and the upper wiring pattern 82 was formed by the electroless copper plating or the like.
According to this method, the defect of the via 78 due to variation in processing when forming the via hole 76 can be slightly reduced, but it is still insufficient and lacks stability.
[0005]
When the surface of the resin insulating layer 74 is strongly roughened by the etching solution, the upper surface of the resin insulating layer 74 is excessively roughened, and the adhesion between the upper wiring pattern 82 formed thereon and the resin insulating layer 74 is increased. There was also a problem that the strength was reduced.
Further, a method of irradiating the laser strongly so as not to leave the resin piece 75 in the via hole 76 is conceivable. However, if the laser irradiation becomes excessive, the narrow portion 80 shown in FIG. 78 was formed.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems in the prior art, eliminates resin residue and shape defects at the bottom portion of the via, corrects the shape of the via to ensure conduction between the upper and lower wiring patterns, and reduces the resin insulation. It is an object of the present invention to provide a method for manufacturing a multilayer wiring board in which the adhesion strength between a layer and an upper wiring pattern is maintained.
[0007]
[Means for Solving the Problems]
The present invention solves the above problem by performing surface roughening on a resin insulating layer a plurality of times and polishing the upper surface of the resin insulating layer during the roughening process, thereby obtaining the roughness between the surface in the via hole and the upper surface of the resin insulating layer. Are made with a focus on making the differences.
That is, the method for manufacturing a multilayer wiring board according to the present invention includes a method for forming a surface of a resin insulating layer formed above a lower wiring pattern and having at least one via hole formed on an upper surface of the lower wiring pattern. Polishing step, a polishing step of polishing and removing the upper surface of the surface-roughened resin insulating layer by a predetermined thickness, and thereafter, a surface roughening step of roughening the polished surface of the resin insulating layer, It is characterized by including.
[0008]
According to this method, the surface in the via hole is appropriately roughened, the resin residue on the lower wiring pattern is eliminated, the resin residue is reduced even in the case of a defective via hole, and the shape defect of the via hole is reduced. Can be. Therefore, it is possible to ensure conduction between the via formed later and the lower wiring pattern, and to maintain the adhesion strength between the resin insulating layer and the upper wiring pattern formed following the upper surface thereof.
The surface of the resin insulating layer includes both the upper surface and the surface in the via hole.
Further, the present invention also includes a method for manufacturing a multilayer wiring board in which the surface roughening step is performed a plurality of times, and the polishing step is performed at least once during the step.
In this case, the surface roughening step and the polishing step may be alternately repeated. However, if the polishing step is performed once immediately before the final surface roughening step, the roughness between the surface in the via hole and the upper surface of the resin insulating layer is reduced. Can be easily adjusted to a level suitable for each.
[0009]
Furthermore, the surface roughening step includes a method of manufacturing a multilayer wiring board in which the surface of the resin insulating layer is etched with permanganic acid, concentrated sulfuric acid, or chromic acid.
The above specifically includes potassium permanganate, potassium chromate and the like.
According to this, by using any one of the above-mentioned etching solutions according to the material of the resin insulating layer and adjusting the concentration and the etching time, the residual resin in the via hole is reduced, and the roughness of the upper surface of the resin insulating layer is reduced. Can be moderated.
[0010]
Further, before and after the polishing step, each surface roughening step can be performed using an etching solution having a different concentration or type. That is, since the main purpose of the surface roughening step performed before the polishing step is to completely remove the resin pieces remaining at the bottom of the via hole, the concentration of the etchant may be increased or the etching time may be increased. Alternatively, a different type of etchant from the one used in the surface roughening step after the polishing step may be used.
In this case, even if the upper surface of the resin insulating layer is excessively roughened, a roughened portion in the surface layer of the resin insulating layer is removed by a subsequent polishing step. Therefore, in the surface roughening step after the polishing step, it is preferable to use an etching solution that optimizes the adhesion strength between the upper wiring pattern and the resin insulating layer.
[0011]
Further, according to the present invention, after the subsequent or final surface roughening step, an upper wiring pattern is formed on the upper surface of the resin insulating layer, and a via that connects between the upper and lower wiring patterns is formed in the via hole. A method for manufacturing a multilayer wiring board including a step is also proposed.
According to this method, there is no resin residue or shape defect, or a small via can be formed, so that conduction between the upper and lower wiring patterns can be ensured. Further, the adhesion strength between the upper surface of the resin insulating layer and the upper wiring pattern can be maintained without lowering.
[0012]
Further, the step of forming the upper wiring pattern includes forming a conductive thin film on the upper surface of the resin insulating layer, forming a resin pattern of a dry film on the upper surface of the thin film, and forming an upper wiring pattern between the resin patterns. Thereafter, the resin pattern and the conductive thin film located on the bottom surface of the resin pattern may be removed.
Further, the step of forming the upper wiring pattern includes forming a conductive layer on the upper surface of the resin insulating layer, forming a resin pattern on the upper surface of the conductive layer, and etching the conductive layer to form the resin pattern. An upper layer wiring pattern that follows the pattern can also be used.
According to these, the upper wiring pattern can be firmly formed on the upper surface of the resin insulating layer according to its characteristics and the like, and the wiring pattern of a plurality of layers can be reliably formed.
[0013]
Embodiment
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of each step schematically showing the method for manufacturing the multilayer wiring board.
As shown in FIG. 1A, first, a lower wiring pattern 4 is formed on both surfaces of a core substrate 1. The lower wiring pattern 4 is formed in a predetermined pattern by exposing and developing a photosensitive resin (not shown) formed on the upper surface thereof in advance and then etching. The wiring pattern 4 is made of copper having a thickness of 18 μm. In this case, in order to electrically connect the wiring patterns 4 on both surfaces, a cylindrical conductive portion 3 is formed simultaneously with the wiring pattern 4 in the through hole 2 opened in the core substrate 1. The inside of the conductive portion 3 is filled with a thermosetting resin (not shown) by mask printing. The core substrate 1 is made of a composite material of 0.8 mm thick BT (bismaleimide / trizian) resin and glass fiber cloth.
[0014]
Next, as shown in FIG. 1B, a photosensitive epoxy resin insulating layer 6 having a thickness of 55 μm is formed on the entire surface above the lower wiring pattern 4. Exposure and development are performed on a predetermined position of the resin insulating layer 6 to form a substantially conical via hole 7. At the bottom of the via hole 7, the upper surface of the lower wiring pattern 4 is exposed.
Depending on the above-described developing method for forming the via hole 7, the above-described resin residue may occur, or the via hole 7 itself may have a defective shape. Therefore, the surface of the resin insulating layer 6 including the via holes 7 is subjected to a plurality of times of surface roughening and upper surface polishing during the roughening. This will be described later in detail with reference to FIG.
[0015]
Next, as shown in FIG. 1C, the entire surface of the resin insulating layer 6 including the via hole 7 is covered with electroless copper plating to form a copper thin film 8 having a thickness of 1 μm. The copper thin film 8 forms a base 9 of a conical via in the via hole 7.
Further, when a photosensitive resin of a water-soluble dry film is adhered to the entire upper surface of the copper thin film 8 and exposed and developed, a plating resist (resin pattern) having a predetermined pattern is obtained as shown in FIG. ) 10 is formed.
Next, when the copper thin film 8 on which the plating resist 10 is formed is subjected to copper sulfate plating, the thickness of the copper thin film 8 not covered with the plating resist 10 is increased as shown in FIG. An upper wiring pattern 14 of 15 μm is formed. At the same time, a via 12 of the same thickness is formed on the base 9 of the copper thin film in the via hole 7.
[0016]
Thereafter, the plating resist 10 is peeled off by contact with an aqueous solution of NaOH, and in order to remove the exposed copper thin film 8, the upper surfaces thereof, including the upper wiring pattern 14 and the via 12, are etched to a thickness of about 2 μm. To remove. The state after the removal is shown in FIG. Thus, a three-dimensional circuit in which the upper and lower wiring patterns 14 and 4 are conducted by the via 12 is formed.
Further, as shown in FIG. 1 (G), a resin insulating layer 16 having a thickness of 55 μm is formed on the entire upper surface of the resin insulating layer 6, and a predetermined position of the insulating layer 16 is exposed and developed to substantially A conical via hole 17 is formed. The resin insulating layer 16 including the via hole 17 is also subjected to a plurality of times of surface roughening and upper surface polishing during the surface roughening.
[0017]
When a copper thin film and a plating resist (not shown) are formed on the upper surface of the resin insulating layer 16 and copper sulfate plating is applied thereto, the uppermost wiring pattern having a thickness of 15 μm is formed on the upper surface of the copper thin film without the plating resist. 20 are formed, and at the same time, a via 18 similar to the above is formed in the via hole 17. Thus, as shown in FIG. 1 (G), a three-dimensional circuit including the lower, upper, and uppermost wiring patterns 4, 14, and 20, and the vias 12 and 18 connecting these wiring patterns is formed.
Then, as shown in FIG. 1H, a solder resist 22 made of a photosensitive epoxy-modified resin is formed on the entire upper surfaces of the resin insulating layer 16 and the uppermost wiring pattern 20, and is exposed and developed to form the uppermost layer. An opening 24 is formed on the upper surface of the wiring pattern 20. A pad 26 composed of a Ni (Ni-P) plating layer and an Au plating layer was formed on the upper surface of the uppermost wiring pattern 20 exposed in the opening 24 by electroless plating to obtain a multilayer wiring board 28.
[0018]
In the multilayer wiring board 28, the surface of the resin insulating layers 6 and 16 and the surfaces of the via holes 7 and 17 are roughened twice or more in a process immediately before forming the upper / uppermost wiring patterns 14 and 20 and the vias 12 and 18. Is performed, resin residue and shape defects are less at the bottoms of the via holes 7 and 17. In addition, since the upper surfaces of the resin insulating layers 6 and 16 are polished in the meantime, the upper surfaces of the resin insulating layers 6 and 16 are not excessively roughened.
Therefore, the adhesion strength between the resin insulating layers 6 and 16 and the upper / uppermost wiring patterns 14 and 20 is also firmly maintained, so that the vias 12 and 18 surely connect the three wiring patterns 4, 14 and 20 to each other. A stable three-dimensional circuit can be provided.
The uppermost wiring pattern 20 is a relative name in the vertical direction. If the upper wiring pattern 14 is a lower wiring pattern, the upper wiring pattern 20 becomes the upper wiring pattern.
[0019]
Next, a characteristic manufacturing process of the present invention will be described with reference to FIG.
FIG. 2A is a schematic enlarged end view of the vicinity of the via hole 7 in FIG. 1B, in which the resin insulating layer 6 and the via hole 7 are formed above the lower wiring pattern 4.
First, a step of bringing the surface of the resin insulating layer 6 including the via hole 7 into contact with an etching solution to roughen the surface is performed. As the etching solution, an alkali / permanganate type etching solution (potassium permanganate: 45 g / liter, manufactured by Okuno Pharmaceutical Co., Ltd., trade name: OPC-1200 epoch 200 ml / liter) was used.
When the temperature of the etching solution is set to 80 ° C. and the surface of the resin insulating layer 6 is immersed for 4 minutes, the upper surface of the resin insulating layer 6 becomes a random uneven surface 6a as shown in FIG. Also has an uneven surface 7a.
[0020]
Next, the surface of the resin insulating layer 6 is neutralized. The surface of the resin insulating layer 6 (uneven surface 6a, 7a) is immersed at a liquid temperature of 45 ° C. for 4 minutes using OPC-1300 Nutriser (trade name, manufactured by Okuno Pharmaceutical Co., Ltd.) for 4 hours. Neutralized.
Next, a step of polishing the upper surface of the resin insulating layer 6 is performed. In this polishing, the upper surface of the resin insulating layer 6 was removed by about 5 μm using a roll-shaped abrasive (# 320, trade name: IH Buff, manufactured by Nippon Tokushu Kenkyu).
As a result, as shown in FIG. 2C, the surface layer including the uneven surface 6a is removed from the upper surface of the resin insulating layer 6, and a flat surface 6b is formed. The thickness of the resin insulating layer 6 when the flat surface 6b was formed was approximately 50 μm.
[0021]
Further, a step of roughening the surface (6b, 7a) of the resin insulating layer 6 again is performed. This roughens the surface of the resin insulating layer 6 using the same etching solution as described above under the same conditions.
As a result, as shown in FIG. 2D, the surface of the via hole 7 becomes a roughened uneven surface 7b, and the upper surface of the resin insulating layer 6 becomes the same uneven surface 6a as described above.
The surface (6a, 7b) of the resin insulating layer 6 is also neutralized using the same neutralizing solution as described above. Thereafter, the respective steps shown in FIG. 1C and thereafter are performed.
Then, at the bottom of the via hole 7 which has been subjected to the surface roughening twice, all the resin pieces on the lower wiring pattern 4 are removed. In addition, the surface of the via hole 7 becomes a rough uneven surface 7b, and the corners become loose. Therefore, when electroless copper plating or the like is performed later, the turn of the copper plating forming the via 12 is ensured.
[0022]
Therefore, when the via hole 7 is formed in a substantially conical shape by appropriate development, the via 12 formed therein is formed in a substantially conical shape without the resin residue as shown in FIG. -Conductivity between the upper wiring patterns 4 and 14 is ensured.
Also, even if the via hole 7 is formed to have a substantially cylindrical shape and the lower portion is spread obliquely due to excessive development, the inclined corner portion of the lower portion of the via hole 7 is curved by surface roughening, and copper plating is applied. The performance is improved. Therefore, as shown in FIG. 3B, a via 12 'having no narrow portion at the bottom can be formed, and conduction between the lower and upper wiring patterns 4 and 14 can be secured.
On the other hand, on the upper surface of the resin insulating layer 6 which has been formed into the uneven surface 6a only by the subsequent surface roughening step, copper plating for forming the upper wiring pattern 14 is firmly adhered to the uneven surface 6a. Therefore, the adhesion strength between the wiring pattern 14 and the resin insulating layer 6 can be maintained as in the related art.
[0023]
Here, the effect of the embodiment of the present invention in which the steps of the surface roughening, the upper surface polishing, and the surface roughening are performed in the order of the steps will be specifically described together with a conventional example according to the related art and a comparative example.
Twenty multilayer wiring boards 28 of the example which were subjected to the steps of surface roughening, neutralization, upper surface polishing, surface roughening, and neutralization in this order were prepared. In each wiring board 28, 1000 vias 12 and 18 having a diameter of 100 μm are formed.
A probe (not shown) is brought into contact with the pads 26 of the wiring board 28, and a current is supplied from an external power supply to a three-dimensional circuit including 1000 vias 12 and 18 in each substrate 28, and the resistance value of the three-dimensional circuit is determined. Was measured to determine whether or not conduction was observed.
In addition, the adhesion strength of the upper and upper wiring patterns 14, 20 to the resin insulating layers 6, 16 was determined by measuring the peel strength based on the copper foil peeling strength (JIS: C6481).
[0024]
On the other hand, the same multilayer wiring board 28 as that of the embodiment in which the surface roughening, neutralization, surface roughening, and neutralization were performed, except that only the upper surface polishing step was removed from the steps performed in the above embodiment, was set as a comparative example. I prepared them. In each wiring board 28 of this comparative example, 1000 vias 12 and 18 having a diameter of 100 μm are formed. Further, as an example of the conventional technique, 20 wiring boards 28 having the same structure in which the resin insulating layers 6 and 16 were subjected to only surface roughening with the etching solution and neutralization with the neutralizing solution were prepared.
In these comparative examples and the conventional example, the presence / absence of conduction of the three-dimensional circuit including the vias 12 and 18 and the adhesion strength of the upper and uppermost wiring patterns 14 and 20 were measured in the same manner as described above.
From the measurement of the resistance value by the probe, it is determined that the wiring board 28 having the three-dimensional circuit having a non-conducting portion in at least one of the 1000 vias 12 and 18 is defective, and that the wiring of the conduction failure in the entire 20 wiring boards in each example is defective. The incidence of the substrate 28 was calculated. Further, the levels of the peel strengths of the upper and upper wiring patterns 14 and 20 were also determined for each example. Table 1 shows the measurement results of these examples, comparative examples, and conventional examples.
[0025]
[Table 1]
Figure 0003599957
[0026]
According to Table 1, in the embodiment, the ratio of the wiring boards 28 in which the vias 12 and 18 are non-conductive is low, and the peel strength of the upper and uppermost wiring patterns 14 and 20 is all set to a firm adhesion strength. 1kg / cm 2 That was all. From this result, it is understood that in the example, the vias 12 and the like with little resin residue and shape defects were obtained, and the adhesion strength of the upper wiring pattern 14 and the like was firmly maintained.
On the other hand, in the comparative example, the occurrence rate of the substrate having the conduction failure due to the vias 12 and the like was similarly low, but the adhesion strength of the upper wiring pattern 14 and the like was lower than the conventional example. This is presumably because in the comparative example, the polishing step between the two surface roughening steps was omitted, so that the upper surfaces of the resin insulating layers 6 and 16 were excessively etched, and the large brittle uneven surface 6a was formed.
Further, it has been confirmed that, in the conventional example, the adhesion strength of the upper wiring pattern 14 and the like is high, but the occurrence rate of defects due to the vias 12 and the like is as high as 50% or more, and the productivity is lowered.
[0027]
From these results, in the embodiment according to the present invention, of the surfaces of the resin insulating layers 6 and 16, the surfaces of the via holes 7 and 17 are roughened twice to cause resin residue and shape defects at the bottoms of the vias 12 and 18. It can be easily understood that the upper surface of the resin insulating layer 6 and the like are polished in the middle, and the surface of the upper layer wiring pattern 14 and the like are prevented from deteriorating by only one roughening.
In addition, the present invention is not limited to the order of the steps of surface roughening, upper surface polishing, and surface roughening, as well as a form in which the surface roughening step is performed three times or more and the upper surface is polished in the meantime, An embodiment in which the upper surface is polished only immediately before the final surface roughening as three or more times is also included. In short, any method may be used in which the surface of the via hole 7 or the like is roughened a plurality of times, while the upper surface of the resin insulating layer 6 or the like is roughened only substantially once.
[0028]
FIG. 4 relates to different forms of vias according to the invention.
FIG. 2A shows a via penetrating the upper and lower resin insulating layers. First, a lower wiring pattern 32 is formed on the upper surface of the same core substrate 30, and resin insulating layers 34 and 36 made of photosensitive epoxy are formed thereon. An upper wiring pattern is formed at a position (not shown) on the upper surface of the resin insulating layer 34. Next, in the resin insulating layers 34 and 36 on the upper surface of the lower wiring pattern 32, a loose conical via hole 35 is formed by exposure and development. Further, the surface of the resin insulating layer 36 (34), that is, the upper surface thereof and the surface of the via hole 35 are subjected to the surface roughening a plurality of times, and the polishing is performed on the upper surface of the resin insulating layer 36 therebetween. Then, after performing electroless copper plating or the like on the resin insulating layer 36 and forming a photosensitive resin layer (not shown), exposure, development, and etching are performed to form the uppermost wiring pattern 39. At the same time, a substantially conical via 38 that conducts between the lower and uppermost wiring patterns 32 and 39 can be obtained in the via hole 35.
[0029]
In FIG. 4B, a lower wiring pattern 42 is formed on the upper surface of the core substrate 40, and resin insulating layers 44 and 46 similar to the above are formed above the lower wiring pattern 42. An upper wiring pattern is formed at a position (not shown) on the upper surface of the resin insulating layer 44. Next, a laser is irradiated downward from above to the resin insulating layers 44 and 46 to form a cylindrical via hole 45 exposing the upper surface of the lower wiring pattern 42. Further, the surface roughening is performed a plurality of times on the upper surface of the resin insulating layer 46 and the surface of the via hole 45, and the upper surface of the resin insulating layer 46 is polished between them. Then, the uppermost wiring pattern 49 and the columnar via 48 are formed by performing electroless plating or the like.
[0030]
Further, FIG. 4C relates to vias formed by different methods. First, a lower wiring pattern 52 is formed on the upper surface of the core substrate 50, and a resin insulating layer 54 is formed above the lower wiring pattern 52. Exposure and development are performed on the resin insulating layer 54 to form a loose conical via hole 55 on the lower wiring pattern 52. Next, the upper surface of the resin insulating layer 54 and the surface of the via hole 55 are subjected to surface roughening a plurality of times, during which the upper surface of the resin insulating layer 54 is polished to form an upper wiring pattern at a position (not shown). At this time, no via is formed because the plating resist is formed in the via hole 55.
Next, a resin insulating layer 56 is formed on the upper surface of the resin insulating layer 54, and a via hole 57 that overlaps the position where the via hole 55 was located is formed by exposure and development. The via hole 57 is formed substantially vertically on the bottom side by strengthening the developing process.
[0031]
The surface of the via hole 57 and the upper surface of the resin insulating layer 56 are roughened a plurality of times, and the upper surface of the resin insulating layer 56 is polished between them. Then, the uppermost wiring pattern 59 is formed by performing electroless plating or the like, and a via 58 having a two-stage taper in cross section is formed.
These vias 38, 48, 58 have a cross-sectional shape following the via holes 35, 45, 57, and at the bottom thereof, the resin residue and narrow shape defects are rarely formed. Accordingly, it is possible to directly conduct between the upper and lower wiring patterns 39 and the like which are vertically separated from each other.
[0032]
The present invention is not limited to the embodiments described above.
For example, as shown in FIGS. 5A and 5B, a lower wiring pattern 4 is formed on both surfaces of a core substrate 1 as in FIG. 1, a resin insulating layer 6 is formed thereon, and a via hole 7 is formed. After that, a material that has been subjected to the surface roughening a plurality of times and polished in the meantime is prepared.
Next, as shown in FIG. 5C, the entire surface of the resin insulating layer 6 is subjected to electroless copper plating or the like to form a copper film (conductor layer) 60 having a thickness of several tens of μm. As shown in FIG. 5D, an insulating layer 62 made of a photosensitive resin is formed on the upper surface of the copper film 60.
Next, the resin insulating layer 62 is exposed and developed to form a predetermined resin pattern 63 as shown in FIG. Then, by immersing the resin pattern 63 and the copper film 60 in an etching solution, the upper wiring pattern 64 and the via 66 are formed at positions protected by the resin pattern 63 as shown in FIG. Is done. By a similar method, a multi-layer wiring board 68 similar to the wiring board 28 can be formed by forming a resin insulating layer, an uppermost wiring pattern, and the like (not shown).
[0033]
The core substrate 1 of the multilayer wiring board 28 includes a composite material (glass-BT resin material) of BT resin and glass fiber cloth, a glass-epoxy material, a glass-PPE material, a paper-epoxy material, and the like. Or a resin such as epoxy, BT resin, polyimide, or PPE.
Further, the core substrate 1 is not limited to the above resin, but may be made of ceramic. When such a rigid ceramic core substrate 1 is used, the same number of resin insulating layers 6, 16 and the lower, upper, and uppermost wiring patterns 4, 14, 20 are not formed on both surfaces thereof, and the number of layers is different from each other. Alternatively, the resin insulating layer 6 and the like and the lower and upper wiring patterns 4 and 14 may be formed only on one surface of the core substrate 1. In the latter case, the through holes 2 and the like can be omitted.
Furthermore, the core substrate 1 is not an essential element. For example, a resin multilayer wiring board may be manufactured by forming a lower wiring pattern 4 on the upper surface of an existing resin insulating layer and sequentially performing the above-described steps. good. Alternatively, it is also possible to form a lower multilayer wiring pattern 4 on the upper surface of an existing ceramic layer or ceramic multilayer wiring substrate and sequentially perform the above-described steps to manufacture a composite multilayer wiring substrate of ceramic and resin.
[0034]
Further, the etching solution used for the surface roughening may be a solution containing permanganic acid, concentrated sulfuric acid, or chromic acid, and may be appropriately adjusted according to the uneven surface to be formed on the surface of the resin insulating layer. Used.
Further, although the pad 26 is used as a terminal for conduction with the outside of the multilayer wiring board 28, a solder bump, a lead, a pin, or the like may be used instead.
Although the wiring pattern 4 and the like were formed of copper, Ni and its alloys (Ni-P, Ni-B, Ni-Cu-P), Co and its alloys (Co-P, Co-B, Co-Ni- P), Sn and its alloys (Sn-Pb, Sn-Pb-Pd), Au, Ag, Pd, Pt, Rh, Ru, or the like and any of these alloys can also be used.
[0035]
【The invention's effect】
According to the manufacturing method of the present invention described above, the surface of the resin insulating layer formed above the lower wiring pattern is roughened a plurality of times including the inside of the via hole, and the upper surface of the resin insulating layer is polished between them. Since the process is performed, resin residue at the bottom of the via formed later and defective shape of the via can be reliably reduced, and defective conduction in the via can be reduced. At the same time, the adhesion strength of the upper wiring pattern formed following the upper surface of the resin insulating layer can be maintained in a strong state.
According to the fourth aspect of the present invention, since the upper wiring pattern formed on the upper surface of the resin insulating layer is firmly adhered, a predetermined three-dimensional circuit can be reliably formed together with the lower wiring pattern and the via. It becomes.
[Brief description of the drawings]
FIGS. 1A to 1H are partial cross-sectional views schematically showing a manufacturing process of a multilayer wiring board according to the present invention.
FIGS. 2A to 2D are partial end views showing each step of the method of the present invention.
FIGS. 3A and 3B are partial cross-sectional views showing vias obtained by the present invention.
4A to 4C are partial sectional views showing different vias obtained by the present invention.
5 (A) to 5 (F) are partial cross-sectional views schematically showing different manufacturing steps of the present invention.
FIGS. 6A and 6B are partial cross-sectional views showing a conventional manufacturing process of a wiring board, and FIGS. 6C and 6D are partial cross-sectional views showing vias formed by the steps.
[Explanation of symbols]
4, 32, 42, 52 ... lower-layer wiring pattern
6, 16, 34, 36, 44, 46, 54, 56 ... resin insulating layer
7, 17, 35, 45, 55, 57 via holes
8 ………………………… Conductor thin film
10, 63 ............................................ Resin pattern
12, 12 ', 18, 38, 48, 58, 66 ... Via
14, 64 ……………………………… Upper layer wiring pattern
20, 39, 49, 59 ... Top layer wiring pattern (upper layer wiring pattern)
28, 68 ............ Multi-layer wiring board
60 …………………………… Conductor layer

Claims (4)

下層配線パターンの上方に形成され、該下層配線パターンの上面に少なくとも1つ以上のビアホールが形成された樹脂絶縁層の表面を粗化する表面粗化工程と、
該表面粗化された樹脂絶縁層の上面を所定の厚さ研磨して除去する研磨工程と、
その後、該研磨された樹脂絶縁層の表面を粗化する表面粗化工程と、を含むことを特徴とする多層配線基板の製造方法。
A surface roughening step of roughening the surface of a resin insulating layer formed above the lower wiring pattern and having at least one via hole formed on the upper surface of the lower wiring pattern;
A polishing step of polishing and removing the upper surface of the surface-roughened resin insulating layer by a predetermined thickness,
And thereafter, a surface roughening step of roughening the polished surface of the resin insulating layer.
前記表面粗化工程を複数回に渉って行い、その間において少なくとも1回前記研磨工程を行うことを特徴とする請求項1に記載の多層配線基板の製造方法。The method according to claim 1, wherein the surface roughening step is performed a plurality of times, and the polishing step is performed at least once during the plurality of times. 前記表面粗化工程が、過マンガン酸、濃硫酸、又はクロム酸により前記樹脂絶縁層の表面をエッチングすることを特徴とする請求項1又は2に記載の多層配線基板の製造方法。3. The method according to claim 1, wherein the surface roughening step etches a surface of the resin insulating layer with permanganic acid, concentrated sulfuric acid, or chromic acid. 4. 前記後の又は最後の表面粗化工程の後に、前記樹脂絶縁層の上面に上層配線パターンを形成し、且つ前記ビアホール内に上・下層配線パターン間を導通するビアを形成する工程を、含むことを特徴とする請求項1乃至3の何れかに記載の多層配線基板の製造方法。Forming the upper wiring pattern on the upper surface of the resin insulating layer after the subsequent or final surface roughening step, and forming a via in the via hole to conduct between the upper and lower wiring patterns. The method for manufacturing a multilayer wiring board according to claim 1, wherein:
JP15946597A 1997-06-12 1997-06-17 Method for manufacturing multilayer wiring board Expired - Fee Related JP3599957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15946597A JP3599957B2 (en) 1997-06-12 1997-06-17 Method for manufacturing multilayer wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-155393 1997-06-12
JP15539397 1997-06-12
JP15946597A JP3599957B2 (en) 1997-06-12 1997-06-17 Method for manufacturing multilayer wiring board

Publications (2)

Publication Number Publication Date
JPH1167900A JPH1167900A (en) 1999-03-09
JP3599957B2 true JP3599957B2 (en) 2004-12-08

Family

ID=26483407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15946597A Expired - Fee Related JP3599957B2 (en) 1997-06-12 1997-06-17 Method for manufacturing multilayer wiring board

Country Status (1)

Country Link
JP (1) JP3599957B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892972B2 (en) * 2006-02-03 2011-02-22 Micron Technology, Inc. Methods for fabricating and filling conductive vias and conductive vias so formed
JP2008135570A (en) * 2006-11-28 2008-06-12 Shinko Electric Ind Co Ltd Method of manufacturing wiring board
CN107946274A (en) * 2017-11-23 2018-04-20 成都海威华芯科技有限公司 A kind of mmic chip and its back side dicing lane manufacture craft
WO2024219282A1 (en) * 2023-04-20 2024-10-24 株式会社村田製作所 Circuit board and method for producing circuit board

Also Published As

Publication number Publication date
JPH1167900A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
TWI447874B (en) Wiring board, semiconductor apparatus and method of manufacturing them
KR101039547B1 (en) Printed wiring board and process for producing the same
JP4133560B2 (en) Printed wiring board manufacturing method and printed wiring board
JP2000244127A (en) Wiring board and its manufacture
JPH06318783A (en) Manufacturing method of multilayered circuit substrate
JPWO2007072875A1 (en) Method for manufacturing printed wiring board
JPH11238959A (en) Circuit board
JP3754217B2 (en) Method for manufacturing printed wiring board
JP3599957B2 (en) Method for manufacturing multilayer wiring board
JP4679588B2 (en) Method for manufacturing printed wiring board
JP3942535B2 (en) Manufacturing method of multilayer wiring board
JP3096233B2 (en) Probe structure
JP5341796B2 (en) Wiring board manufacturing method
JP4137279B2 (en) Printed wiring board and manufacturing method thereof
JP4464790B2 (en) Wiring board manufacturing method
JP4180331B2 (en) Printed wiring board, metal plate with relief pattern for printed wiring board, and method for manufacturing printed wiring board
JP3716613B2 (en) Printed wiring board and manufacturing method thereof
JP3304061B2 (en) Manufacturing method of printed wiring board
JP2002208779A (en) Method of forming columnar metal body and conductive structure
JP3054388B2 (en) Manufacturing method of wiring board
JPS6337515B2 (en)
JP2002314255A (en) Printed wiring board and method for manufacturing the same
JP2000294933A (en) Multilayer circuit board and method of manufacturing the same
JPH1064341A (en) Anisotropic conductive film and manufacture thereof
JP4180192B2 (en) Manufacturing method of multilayer printed wiring board

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040915

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees