[go: up one dir, main page]

JP3599613B2 - 電動式パワーステアリング装置とその制御方法 - Google Patents

電動式パワーステアリング装置とその制御方法 Download PDF

Info

Publication number
JP3599613B2
JP3599613B2 JP26114299A JP26114299A JP3599613B2 JP 3599613 B2 JP3599613 B2 JP 3599613B2 JP 26114299 A JP26114299 A JP 26114299A JP 26114299 A JP26114299 A JP 26114299A JP 3599613 B2 JP3599613 B2 JP 3599613B2
Authority
JP
Japan
Prior art keywords
torque
steering
motor
road surface
surface reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26114299A
Other languages
English (en)
Other versions
JP2001080536A (ja
Inventor
俊一 和田
勇 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26114299A priority Critical patent/JP3599613B2/ja
Publication of JP2001080536A publication Critical patent/JP2001080536A/ja
Application granted granted Critical
Publication of JP3599613B2 publication Critical patent/JP3599613B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、モータにより、運転者による操舵トルクを補助するトルクを発生させ、ステアリング系の操舵力を補助する自動車用の電動式パワーステアリング装置に関するものである。
【0002】
【従来の技術】
電動式パワーステアリング装置は、運転者がハンドルを回転させることによって生じる操舵トルクを操舵トルク検出手段によって検出し、この検出されたトルクの値に応じた電流を、ステアリング装置の機構に噛み合って配置された電動モータに印加することにより上記電動モータを回転駆動し、運転者による操舵トルクを補助するために必要なアシストトルクを発生させ、転舵を行うものである。また、一般にステアリング装置は、マニュアルステアリング装置,油圧パワーステアリング装置または電動式パワーステアリング装置のいずれにおいても、セルフアライニング機能を有しており、転舵後に直進状態に戻る過程で、運転者がハンドルを回転させる力を0にすれば(いわゆる手放し状態にすれば)、車輪は自動的に中立位置方向に戻ろうとする。この中立位置方向に戻ろうとするトルクは、車速が大きいほど大きい。このとき、車輪が例えば右に転舵しているものとすれば、セルフアライニング機能により車輪は中立位置方向つまり左方向に動く。手放し状態では、運転者がハンドルを回転させる力は0であるから、操舵トルクも本来は0のはずである。よって、操舵トルク検出手段により検出された値も0になり、電動モータは通電されず、アシストパワーは発生しないので、上記電動モータは、ステアリング装置の機構に噛み合ったまま左方向に回転する。もちろん、ハンドルも左へ回転する。
【0003】
しかしながら、従来の電動式パワーステアリング装置においては、電動モーターのローターや車両及びステアリング系のフリクションなどに相当する摩擦力(フリクション)などにより、低車速走行時には転舵後のハンドルの戻りが悪く、また高車速走行時には戻り感やフリクション感等のオンセンタ感が悪いという問題があった。すなわち、低車速では、運転者がハンドルを回転させ転舵した後に直進状態に戻る過程において、マニュアルステアリング装置や油圧パーワーステアリング装置に比べ戻りが悪く、甚だしい場合には運転者がハンドルを直進方向へ回転しなおす必要があった。また、高車速では、車線変更や方向修正の為に転舵した後に直進に戻る過程(特に、手放し状態で戻る過程)において、セルフアライニング機能により車輪が中立位置方向に戻ろうとする時にも真ん中迄戻りきらず、甚だしい場合には運転者がハンドルを直進方向へ回転し直す必要があった。
【0004】
これらを部分的に解消する方法として、例えば、特開平7−186994号公報において、低速のハンドル戻りを改善する方法が開示されている。これは、車速を検出する手段と、運転者がハンドルを回転させることによって生じる操舵トルクを検出する操舵トルク検出手段と、電動モータの回転速度を検出するモータ速度検出手段と、電動モータの回転加速度を検出するモータ加速度検出手段と、モータ速度検出手段からの信号と操舵トルク検出手段からの信号によりモータ回転方向と操舵トルクの方向とが同一方向か否かを判定する判定手段とを備え、判定が同一方向であれば車速と操舵トルクとに応じたアシストトルクを決定し、判定が異なる方向であれば車速と電動モータ回転速度または回転加速度とに応じ、低車速ではモータ回転方向と同一方向のアシストトルクを、高車速ではモータ回転方向と逆方向のアシストトルクを決定し、この決定されたアシストトルクに応じた電流を電動モータに印加し上記モータを回転駆動させてハンドル戻り性を向上させている。これにより、低車速では手放し時にハンドルの戻りを改善する効果は期待できる。
【0005】
【発明が解決しようとする課題】
しかしながら、従来例では 車両のフリクションの左右差や路面のカントの影響でハンドル戻り特性に左右差が生じてしまう問題点があった。特に、車両及びステアリング系のフリクションなどは、フリクションの値が大きいと、その操舵の回転方向による各々のステアリング機構や車両の回転ないしは運動方向でのフリクションの大きさの差も大きくなる傾向があった。したがって、補正を一定値で実施すると、補正値を引き算した後の補正されていない残りのフリクションの差は益々大きくなり、セルフアライニング機能により車輪が中立位置方向に戻ろうとする力が同じ場合、右と左の操舵からの戻りの戻しトルク感や速度や戻り角の特性に大きなアンバランスが生じる問題点があった。
また、路面のカントは、セルフアライニング機能による車輪が中立位置方向に戻ろうとする力そのものに左右のアンバランスを発生させるので、これによっても右と左の操舵からの戻りの戻しトルク感や速度や戻り角の特性に大きなアンバランスが生じるという問題点があった。カントは、車線の中央部から路肩へ傾斜しているため、一般的には車線の中央部への操舵からの戻りは良い(強い)が、反対の路肩への操舵からの戻りは悪い(弱い)傾向があった。
更に、従来例では、高速車速で走行時のハンドル戻りの改善に対しては有効ではなかった。
また、モータ回転信号に基づいてハンドル戻しトルクを定める場合にも、モータの回転が止まってしまった場合には、モータはハンドルを戻す方向のトルクを発生させることが難しいといった問題点があった。
【0006】
本発明は、上記問題点を解決するためになされたもので、ハンドル戻り特性のアンバランスをなくし、低車速から高速まで、ハンドルを確実に中心に戻すことができる電動式パワーステアリング装置とその制御方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の請求項1に記載の電動式パワーステアリング装置は、運転者による操舵トルクを補助するトルクを発生させるモータのトルクを制御し、ハンドルの戻りの方向による車両及びステアリング系の摩擦力を補償するためのハンドル戻し補正量を設定するハンドル戻し補正手段を設けるとともに、上記ハンドル戻し補正手段に、ハンドルあるいはモータの回転方向、ないしはステアリング系の運動方向に応じて、上記ハンドル戻し補正量を補正する手段を設けて、上記摩擦力のアンバランスによるハンドル戻り特性の左右差を解消するようにしたものである。
【0008】
請求項2に記載の電動式パワーステアリング装置は、上記ハンドル戻し補正手段を、上記ハンドル戻し補正量に対応する補正電流をモータ制御電流に加算し、ハンドルないしはモータの回転方向にトルクを付加する構成とし、ハンドル戻り特性の左右差を解消するようにしたものである。
【0009】
請求項3に記載の電動式パワーステアリング装置は、請求項1記載のハンドル戻し補正手段を、タイヤが路面から受ける路面反力トルクを検出する路面反力トルク検出手段と、上記路面反力トルク検出手段の出力に基づいてハンドル戻し補正量を求める手段とを備えた構成としたものである。
【0010】
請求項4に記載の電動式パワーステアリング装置は、路面反力トルク検出手段は、ハンドル角検出手段と、上記ハンドル角検出手段の出力に基づいて路面反力トルクを求める手段とを備えたものである。
【0011】
請求項5に記載の電動式パワーステアリング装置は、運転者による操舵トルクを検出する操舵トルク検出手段と、モータに流れる電流を検出するモータ電流検出手段とを設けるとともに、上記路面反力トルク検出手段を、上記操舵トルク検出手段の出力に、上記モータの電流検出手段の出力から演算されるステアリング軸換算のモータトルクを加算し、更に、ステアリング軸換算のモータ慣性トルクを減算した値をローパスフィルタないしは遅延フィルタを通し、路面反力トルク推定値を得る路面反力トルク推定手段と、上記路面反力トルク推定値に基づいて、ハンドル戻し補正量を求める手段とにより構成し、ハンドル戻り特性の左右差を解消するようにしたものである。
【0012】
請求項6に記載の電動式パワーステアリング装置は、操舵トルク検出手段を設けるとともに、上記路面反力トルク検出手段を、上記操舵トルク検出手段の出力に基づいて路面反力トルク推定値を得る路面反力トルク推定手段により構成したものである。
【0013】
請求項7に記載の電動式パワーステアリング装置は、操舵トルク検出手段を設けるとともに、上記路面反力トルク検出手段を、上記操舵トルク検出手段の出力にローパスないしは遅延フィルタを演算して路面反力トルク推定値を得る路面反力トルク推定手段により構成したものである。
【0014】
請求項8に記載の電動式パワーステアリング装置は、モータ電流検出手段を設けるとともに、上記路面反力トルク検出手段を、上記モータの電流検出手段の出力から演算されるステアリング軸換算のモータトルクに基づいて路面反力トルク推定値を得る路面反力トルク推定手段により構成したものである。
【0015】
請求項9に記載の電動式パワーステアリング装置は、モータ電流検出手段を設けるとともに、上記路面反力トルク検出手段を、上記モータの電流検出手段の出力から演算されるステアリング軸換算のモータトルクにローパスないしは遅延フィルタを演算して路面反力トルク推定値を得る路面反力トルク推定手段により構成したものである。
【0016】
請求項10に記載の電動式パワーステアリング装置の制御方法は、ステアリング系の操舵力を補助する電動式パワーステアリング装置において、運転者による操舵トルクを補助するトルクを発生させるモータのトルクを制御して、ハンドルの戻り時の車両及びステアリング系の摩擦力を補償するとともに、ハンドルあるいはモータの回転方向、ないしはステアリング系の運動方向に応じて上記補償量を設定するようにしたことを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づき説明する。
なお、本発明は、マイコンのソフトウエアのみで従来の技術の課題を解決可能であり、制御装置のハードウエアについては従来の技術のものと変更点はないので説明は省略する。
【0018】
実施の形態1.
図1は、本発明の実施の形態1に係わる電動式パワーステアリング装置の構成を示すブロック図で、同図において、1は操舵トルクを検出する操舵トルク検出器、2は操舵トルク検出器1の出力である操舵トルク信号に基づいて操舵補助トルク信号を演算する操舵トルク制御器、3はモータ速度検出器5で検出したモータ速度信号に基づいてダンピング補償信号を演算するダンピング補償器、4はモータ加速度検出器6で検出したモータ加速度信号に基づいて慣性補償信号を演算する慣性補償器である。
70Aはモータ速度検出器5で検出したモータ速度からモータ10の回転方向を判別するモータ回転方向判別器71と、ハンドルを回転させる方向に発生するモータのロータのフリクションや車両及びステアリング系のフリクション等を打ち消すようなトルクを、モータ10に発生させるためのハンドル戻し補助トルク信号を出力する戻しトルク補償器72と、上記ハンドル戻し補助トルク信号に対して、モータ回転方向判別器71の出力に基づき、左,右の回転方向により異なるモータのロータのフリクションや車両及びステアリング系のフリクション等の方向差を補正する方向係数補償器73とを備え、モータ10がハンドルを原点に復帰させる方向にトルクを発生させるための、方向によるアンバランスを補正したハンドル戻し補助トルク信号を出力するハンドル戻し補正手段である。
8は第1の加算器12で演算された操舵補助トルク信号,方向によるアンバランスを補正したハンドル戻し補助トルク信号,ダンピング補償信号,慣性補償信号の和である目標トルクから、目標電流信号を演算するモータ電流決定手段、9は第2の加算器13で得られた、目標電流信号とモータ電流検出器11で検出されたモータ電流信号との誤差に基づいてモータ10に印加する電圧を決定するとともに、モータ10に上記電圧を印加するモータ駆動器で、モータ10では印加された上記電圧に応じてモータ電流値が応答し、このモータ電流値に略比例関係にあるアシストトルクを発生してステアリング機構を駆動する。また、14は車速を検出するとともに、操舵トルク制御器2,戻しトルク補償器72,ダンピング補償器3及び慣性補償器4に車速信号を出力する車速検出器である。
【0019】
次に、上記構成の電動式パワーステアリング装置の動作について、図2のフローチャートに基づき説明する。本実施の形態1の従来技術と異なる点は、図1のブロック図中の一点鎖線で囲まれた、目標電流を演算するまでのアルゴリズムであり、モータ電流の制御に関しては、例えばPID式の電流F/B制御、あるいは目標電流とモータ速度信号とに基づくオープンループ制御等の一般的に行われる制御を行う。また、制御方式としては、ディジタル制御またはアナログ制御いずれの方式に基づいて実施してもよい。
以下では、目標電流を演算するまでのアルゴリズムに限定して説明を行う。
なお、図2のフローチャートでは、ハンドル戻し補正手段70A内で行う、方向によるアンバランスを補正されたハンドル戻し補助トルク信号を演算する演算ステップ(ステップS220,S221)を、ステップS207とステップS208間に挿入した構成とした。
まず、ステップS202で、操舵トルク検出器1で検出された操舵トルク信号を読み込みメモリに記憶し、ステップS203で、モータ速度検出器5で検出されたモータ速度信号を読み込みメモリに記憶する。次に、ステップS204で、モータ加速度検出器6により、モータ速度信号を微分演算してモータ加速度信号を得るとともに、これをメモリに記憶する。
次に、ステップS205,S206では、操舵トルク制御器2により、操舵トルク信号の周波数特性を改善するために、図示しない位相補償器に通す(ステップS205)とともに、位相補償器に通した操舵トルク信号に対して、マップ演算により、操舵補助トルク信号を求めてメモリに記憶する(ステップS206)。ステップS207では、ハンドル戻し補正手段70Aのモータ回転方向判別器71により、モータ速度検出器5の信号に対して連動して動作するハンドル,モータ,ステアリングメカの回転もしくは運動方向を判別してメモリに記憶する。
【0020】
次に、上述した演算ステップであるステップS220に進み、戻しトルク補償器72により、回転もしくは運動方向に応じて発生するフリクションを打ち消すべく、回転もしくは運動方向に作用させる戻し補償トルクを演算してメモリに記憶する。その後、ステップS221で、方向係数補償器73により、モータ10のロータのフリクションや車両やステアリングの機構部のフリクションの回転ないしは運動方向による違いを適切に補償するように、各々の回転方向に応じたハンドル戻し補助トルク信号の方向による補正係数を演算して上記戻し補償トルクを補正した方向差補正後の戻し補償トルクを求め、これをメモリに記憶する。例えば、ハンドル軸で、右回転時のフリクションの方が左操舵時より20%大きければ、右回転で戻す場合のハンドル戻し補助トルク信号を20%大きくなるように補正係数を設定する。
【0021】
演算ステップ(S220,S211)が終了すると、ステップS208に進み、ダンピング補償器3により、モータ速度信号に比例ゲインを乗じてダンピング補償信号を求めメモリに記憶し、次いで、ステップS209で、慣性補償器4により、モータ加速度信号に比例ゲインを乗じて慣性補償信号を求めメモリに記憶する。
その後、ステップS210において、第1の加算器12により、操舵補助トルク信号,方向差補正後のハンドル戻し補助トルク信号,ダンピング補償信号,慣性補償信号の和を求め、これを目標トルクとしてメモリに記憶する。ステップS211では、モータ電流決定手段8により、上記ステップS210で求められた目標トルクにゲインを乗じて目標電流を求めてメモリに記憶する。このときのゲインは、モータ10のハンドル軸換算でのトルク定数の逆数としておく。
【0022】
なお、上記実施の形態1において、操舵トルク制御器2,戻しトルク補償器72,ダンピング補償器3,慣性補償器4のゲイン等の各制御パラメータは、車速検出器14の出力に応じて変更する。このとき、ステアリング機構自身のダンピングが強い車両や、ハンドル軸換算の慣性モーメントが小さなモータを装着した車両については、ダンピング補償器3,慣性補償器4の各ゲインを0としてもよく、この場合は、モータ速度検出器5,モータ加速度検出器6,ダンピング補償器3,慣性補償器4は不要となる。また、操舵トルク制御器2を操舵トルク信号並びにその微分値に対して操舵補助トルク信号を求める構成としても良い。
【0023】
このように、本実施の形態1では、モータ速度からモータ10の回転方向を判別するモータ回転方向判別器71と、車両及びステアリング系の摩擦力を打ち消すようなトルクをモータ10に発生させるためのハンドル戻し補助トルク信号を出力する戻しトルク補償器72と、上記ハンドル戻し補助トルク信号に対して、モータ回転方向判別器71の出力に基づき、左,右の回転方向により異なる上記摩擦力の方向差を補正する方向係数補償器73とを有するハンドル戻し補正手段70Aを備え、ハンドルの回転ないしはステアリング系の運動方向に応じて、上記摩擦力のアンバランスによるハンドル戻り特性の左右差を解消するようにしたので、運転者がハンドルを保持して操舵している場合には、操舵をアシストする操舵補助トルク信号を操舵トルク信号に基づいて発生させるとともに、運転者がハンドルを戻そうとした場合には、ハンドルを原点に復帰させるのを妨げるフリクションを打ち消すハンドル戻し補助トルク信号を、ハンドルの左右別々の回転方向に合わせた最適値として発生させることができる。これにより、運転者がハンドルを保持している場合には従来の制御アルゴリズムをそのまま流用し、新たにハンドルを持つ手をゆるめて戻すときないしは手放し時にハンドルを原点に復帰させる制御アルゴリズムを付け加えるだけで、手放しを行った後にも、モータがハンドル戻し方向にトルクを出力することが可能となり、確実にハンドルを中心に左右差無く戻すことができる。
【0024】
なお、上記実施の形態1で用いるモータ速度検出器5は、例えばタコジェネレータ等のモータ速度検出器を用いてもよいし、ロータリエンコーダのパルス出力を差分して求めてもよいし、あるいは、モータに印加する電圧から、モータに通電される電流値とコイル抵抗値の積を減じるなどして得られる逆起電圧からモータ速度を検出しても良い。
【0025】
また、上記実施の形態1では、ステップS206とS207をマップ演算、ステップS208とS209をゲインを乗じる演算を行う構成としたが、各ステップともいずれもゲインを乗じる演算を行う構成としてもよいし、マップ演算を行う構成としても良い。
【0026】
また、上記例では、操舵トルク制御器2に設けられた、操舵トルク信号の周波数特性を改善するための位相補償器をマイコンのS/W上で構成したが、予めアナログの位相補償器で周波数特性を改善した後、A/D変換してマイコンに取り込む構成としても良い。その場合には、ステップS205が不要となる。
【0027】
実施の形態2.
図3は、本実施の形態2に係わる電動式パワーステアリング装置の構成を示すブロック図で、同図において、1は操舵トルク検出器、2は操舵トルク制御器、70Bは前輪の舵角、すなわちハンドルを原点に復帰させようとする車両のキングピン回りのトルク(タイヤ路面間に生ずる力)である路面反力トルクを検出あるいは推定する路面反力トルク検出器74と、上記路面反力トルクの方向を判別する路面反力トルク方向判別器71Bと、路面反力トルク検出器74で検出された路面反力トルク信号出力に基づき、ハンドルを原点に復帰させる方向にモータ10にトルクを発生させるためのハンドル戻し補助トルク信号を出力する戻しトルク補償器72Bと、上記ハンドル戻し補助トルク信号に対して、方向により所定の係数を演算して出力する方向補正係数補償器73Bとを備え、路面反力トルクの方向により補正したハンドル戻し補助トルク信号を出力するハンドル戻し補正手段である。
また、3はダンピング補償器、4は慣性補償器、8はモータ電流決定手段、9はモータ駆動器、10はモータ、11はモータ電流検出器、12は第1の加算器、13は第2の加算器、14は車速検出器で、検出された車速信号は、操舵トルク制御器2,路面反力トルク検出器74,戻しトルク補償器72B,ダンピング補償器3及び慣性補償器4に出力される。
【0028】
なお、上記路面反力トルク検出器74は、例えば図示しない非接触の磁歪式トルクセンサのような歪測定手段を配置することにより直接測定するか、舵角を測定する図示しない舵角センサを設けるとともに、測定された舵角を用い、車速等に基づいて演算する手段とにより構成することができる。あるいは、わざわざ特別に舵角センサを設けないで 後述するように、必要な路面反力信号を、測定可能な路面反力に釣り合う操舵力、アシストトルク等に基づいて演算する手段によって実現することができる。
【0029】
次に、上記構成の電動式パワーステアリング装置の動作について、図4のフローチャートに基づき説明する。本実施の形態2においても、従来の技術と異なる点は、図3のブロック図中の一点鎖線で囲まれた、目標電流を演算するまでのアルゴリズムであり、電流制御に関しては、PID式の電流F/B制御,あるいは、目標電流とモータ速度信号に基づくオープンループ制御等、一般的に行われる制御を、ディジタル制御、アナログ制御いずれの方式に基づいて実施してもよい。以下では目標電流を演算するまでのアルゴリズムに限定して説明を行う。
なお、図4のフローチャートにおいても、上記実施の形態1と同様に、ハンドル戻し補正手段70B内で行うハンドル戻し補助トルク信号を演算する演算ステップ(ステップS420〜S422)を、ステップS407とステップS408間に挿入した構成とした。
まずステップS402で、操舵トルク検出器1で検出された操舵トルク信号を読み込みメモリに記憶し、ステップS403で、モータ速度検出器5で検出されたモータ速度信号を読み込みメモリに記憶する。次に、ステップS404では、モータ加速度検出器6により、モータ速度信号を微分演算してモータ加速度信号を得るとともに、これをメモリに記憶する。ステップS405とステップS406では、操舵トルク制御器2により、操舵トルク信号の周波数特性を改善するために位相補償器に通す(ステップS405)とともに、位相補償器に通した操舵トルク信号に対してマップ演算で、操舵補助トルク信号を求めメモリに記憶する(ステップS406)。ステップS407では、ハンドル戻し補正手段70Bの路面反力トルク検出器74により、例えば前輪の操舵の舵角により発生するトルク、すなわちハンドルを原点に復帰させようとする車両のキングピン回りのトルク(タイヤ路面間に生ずる力)を、例えば図示しないが非接触の磁歪式トルクセンサのような歪測定手段を配置することにより直接測定するか、舵角そのものを測定して車速等をもとに、例えば(舵角)×(車速)をベースに、マップ演算により路面反力トルク信号を求め、これをメモリに記憶する。
【0030】
次に、上述した演算ステップであるステップS420に進み、戻しトルク補償器72Bにより、路面反力トルク信号に対してマップ演算で、ハンドル戻し補助トルク信号を求めてメモリに記憶する。ここでハンドル戻し補助トルク信号は、路面反力トルクがステアリング機構内の摩擦トルクより小さい時にハンドルが自動的に原点に復帰しない現象を避けるためのものであり、例えば、図6に示すように、ハンドル戻し補助トルク信号は、ステアリング機構内の概ね摩擦トルク程度の値を上限としてリミッタで制限し、リミッタの範囲内では路面反力トルク信号に比例ゲインを乗じて定める。更に、ステアリング機構内の例えばラック&ピニオンや車両のステアリングに連動して運動する機構部の摩擦トルクの値はハンドルの操舵方向によって異なり、フリクションの値が大きいと、その操舵の回転方向による各々の回転方向でのフリクションの大きさの差も大きくなる傾向がある。したがって、回転ないしは運動方向に応じてそれぞれの異なるフリクションを適切に補償する必要がある。
ステップS421では、路面反力トルク方向判別器71Bにより、路面反力トルク信号から、どちらの回転ないしは運動方向のフリクションを補正するかの方向判定を行い メモリに記憶する。ステップS422では、方向補正係数補償器73Bにより、補正すべきフリクションの方向に応じたハンドル戻し補助トルク信号の補正係数を掛けた方向補正後のハンドル戻し補助トルク信号を演算しメモリに記憶する。例えば、ハンドル軸で右操舵回転時のフリクションの方が左操舵回転時より20%大きければ、右回転で戻す場合のハンドル戻し補助トルク信号を20%大きくなるように補正係数を設定する。ハンドル戻し補助トルク信号の補正係数の例を図7に示す。
【0031】
演算ステップ(S420〜S422)が終了すると、ステップS408に進み、ダンピング補償器3により、モータ速度信号に比例ゲインを乗じてダンピング補償信号を求めメモリに記憶する。次に、ステップS409で、慣性補償器4により、モータ加速度信号に比例ゲインを乗じて慣性補償信号を求めメモリに記憶する。次に、ステップS410で、第1の加算器12により、操舵補助トルク信号,ハンドル戻し補助トルク信号,ダンピング補償信号,慣性補償信号の和を求め目標トルクとして、これをメモリに記憶する。ステップS411では、モータ電流決定手段8により、上記ステップS410で求められた目標トルクにゲインを乗じて目標電流を求めてメモリに記憶する。このときのゲインは、モータ10のハンドル軸換算でのトルク定数の逆数としておく。
【0032】
自動車の運転者は、ハンドルを切った後に手を放して、路面反力トルクによる自己復元力によりハンドルを中心に戻す場合が多く、これにより操舵の労力を低減している。また、電動式パワーステアリング装置は、モータ10及びギアの摩擦トルクによりハンドルの戻り性が悪い。操舵トルク信号のみを検出して目標トルクを定める場合には、ハンドルを切った後に手を放すと、操舵トルク信号が0となってしまうので、ハンドル戻しトルクを発生させることができない。更に、操舵トルク信号に加えて、モータ回転信号に基づいて目標トルクを定める場合にもモータ10の回転が止まってしまった場合には、モータ10はハンドルを戻す方向のトルクを発生させることが難しい。
これに対し、本実施の形態2では、路面反力トルク検出器74により、手放しを行っても、ハンドルの角度に略比例した路面反力トルクを検出し、この路面反力トルク信号に応じてハンドル戻し補助トルク信号を演算してモータ10の発生トルクを補正する構成としたので、手放しを行った後にも、モータ10がハンドル戻し方向にトルクを出力することが可能となり、確実にハンドルを中心にかつ左右差を改善して戻すことができるようになる。
【0033】
すなわち、本実施の形態2では、運転者がハンドルを保持して操舵している場合には、操舵をアシストする操舵補助トルク信号を操舵トルク信号に基づいて発生させるとともに、運転者がハンドルを戻そうとした場合には、ハンドルを原点に復帰させるのを妨げるフリクションを打ち消すハンドル戻し補助トルク信号をハンドルの左右別々の回転方向に対応したフリクションを打ち消すに必要な最適値として発生させることができるので、運転者がハンドルを保持している場合には従来の制御アルゴリズムをそのまま流用し、新たに手放し時にハンドルを原点に復帰させる制御アルゴリズムを付け加えるだけで、手放しを行った後にも、モータがハンドル戻し方向にトルクを出力することが可能となり、確実にハンドルを中心に左右差無く戻すことができる。
【0034】
なお、上記実施の形態2では、操舵トルク制御器2,路面反力トルク検出器74、戻しトルク補償器72B,ダンピング補償器3,慣性補償器4の各制御パラメータは、車速信号に応じて変更する。このとき、ステアリング機構自身のダンピングが強い車両や、ハンドル軸換算の慣性モーメントが小さなモータを装着した車両については、ダンピング補償器3,慣性補償器4の各ゲインを0としてもよく、この場合は、モータ速度検出器5,モータ加速度検出器6,ダンピング補償器3,慣性補償器4は不要となる。
【0035】
また、本実施の形態2で用いるモータ速度検出器5は、例えばタコジェネレータ等のモータ速度センサを用いてもよいし、ロータリエンコーダのパルス出力を差分して求めてもよいし、あるいは、モータに印加する電圧から、モータに通電される電流値とコイル抵抗値の積を減じるなどして得られる逆起電圧からモータ速度を検出しても良い。
【0036】
また、上記例では、ステップS406, S407,S420をマップ演算、ステップS421,S408,S409をゲインを乗じる演算を行う構成としたが、各ステップともいずれもゲインを乗じる演算を行う構成としても、あるいは、マップ演算を行う構成としてもよい。また、ステップS420とS421をまとめて、補正係数を掛けた方向補正後のハンドル戻し補助トルク信号を合成した1つのマップとしても良い。
【0037】
実施の形態3
本実施の形態3は、上記実施の形態2に示した、路面反力トルクを検出する路面反力トルク検出器74に関する発明であり、詳細には、上記路面反力トルク検出器74の出力である路面反力トルク信号を、測定可能な路面反力に釣り合う操舵力、アシストトルク等を基に演算する手段をS/Wにより構成したものである。なお、本実施の形態3に係わる電動式パワーステアリング装置の構成は、上記実施の形態2のブロック図(図3)と同じ構成である。
以下、図5のフローチャートに基づき、本実施の形態3の動作説明のみ行う。なお、本実施の形態3においても、従来の技術と異なる点は、目標電流を演算するまでのアルゴリズムであり、電流制御に関しては、PID式の電流F/B制御,あるいは、目標電流とモータ速度信号に基づくオープンループ制御等、一般的に行われる制御を、ディジタル制御、アナログ制御いずれの方式に基づいて実施してもよい。したがって、以下では目標電流を演算するまでのアルゴリズムに限定して説明を行う。
また、図5のフローチャートにおいても、上記実施の形態1,2と同様に、ハンドル戻し補正手段70B内で行うハンドル戻し補助トルク信号を演算する演算ステップ(ステップS520〜S522)を、ステップS511とステップS512間に挿入した構成とした。
まず、ステップS501で、操舵トルク検出器1で検出された操舵トルク信号を読み込みメモリに記憶し、ステップS502で、モータ速度検出器5で検出されたモータ速度信号を読み込みメモリに記憶する。次に、ステップS503で、モータ加速度検出器6により、モータ速度信号を微分演算してモータ加速度信号を得るとともにメモリに記憶し、ステップS504でモータ電流信号を読み込みメモリに記憶する。
ステップS505〜S508では、路面反力トルク検出器74により、操舵トルク信号の絶対値が閾値以上かどうか判断する(ステップS505)。このときの閾値は、直進時のハンドル保持に必要なトルクと操舵トルク検出器の測定オフセットの和付近になるように予め設定しROMに記憶させておく。
上記ステップS505において、操舵トルク信号の絶対値が閾値以上であると判断された場合には、ステップS507に進み、下記の演算を行い、路面反力トルク信号を得る。また、上記ステップS505で、操舵トルク信号の絶対値が閾値に満たないと判断された場合には、ステップS506に進み、路面反力トルク検出器74内での演算に用いる操舵トルク信号Tsensを0に置き換えた上でステップS507に進み、下記の演算を行い、路面反力トルク信号を得る。
【0038】
以下に、路面反力トルク信号Trea_estの演算方法について説明する。
ステップS507では、操舵トルク信号Tsensとモータ加速度信号dω(ハンドル軸回転加速度)とモータ電流信号Imtrとから、下記の式(1)の通り、定常反力信号T’rea_estを得る。
T’rea_est=Tsens + K・Imtr−J・dω‥‥‥‥(1)
:モータのトルク定数(ハンドル軸換算)
J:ステアリング機構の慣性モーメント
次に、ステップS508で、以下の式(2)の1次フィルタ演算を行い路面反力トルク信号Trea_estを得るとともに、これをメモリに記憶する。
dTrea_est/dt=−Trea_est/T+T’rea_est/T‥‥‥‥(2)
ここでTは、1次フィルタの時定数で、折点周波数f=1/(2π・T)がおよそ0.05〜1.0Hzの間になるように定めておく。
【0039】
次に、ステップS509,S510で、操舵トルク制御器2により、操舵トルク信号の周波数特性を改善するために位相補償器に通す(ステップS509)とともに、位相補償器に通した操舵トルク信号に対してマップ演算で、操舵補助トルク信号を求めメモリに記憶する(ステップS510)。ステップS511では、ハンドル戻し補正手段70Bの操舵反力トルク検出器74により、上記演算された路面反力トルク信号Trea_estの大きさと方向をメモリに記憶する。
次に、上述した演算ステップであるステップS520に進み、戻しトルク補償器72Bにより、路面反力トルク信号Trea_estに対してマップ演算で、ハンドル戻し補助トルク信号を求めメモリに記憶する。更に、ステアリング機構内の摩擦トルクの値はハンドルの操舵方向によって異なり、フリクションの値が大きいと、その操舵の回転方向による各々の回転方向でのフリクションの大きさの差も大きくなる傾向があるので、方向に応じてそれぞれのフリクションを適切に補償するハンドル戻し補助トルク信号を求める必要がある。そこで、ステップS521において、路面反力トルク方向判別器71Bにより、路面反力トルク信号Trea_estの大きさと方向から どちらの回転ないしは運動方向のフリクションを補正するかの方向判定を行い メモリに記憶する。ステップS522では、方向補正係数補償器73Bにより、補正すべきフリクションの方向に応じたハンドル戻し補助トルク信号の補正係数を掛けた方向補正後のハンドル戻し補助トルク信号を演算しメモリに記憶する。
【0040】
演算ステップ(S520〜S522)が終了すると、ステップS512に進み、ダンピング補償器3により、モータ速度信号に比例ゲインを乗じてダンピング補償信号を求めメモリに記憶し、ステップS513で、慣性補償器4により、モータ加速度信号に比例ゲインを乗じて慣性補償信号を求めメモリに記憶する。
次に、ステップS514で、第1の加算器12により、操舵補助トルク信号,ハンドル戻し補助トルク信号,ダンピング補償信号,慣性補償信号の和を求め目標トルクとしてメモリに記憶する。ステップS515は、モータ電流決定手段8により、上記ステップS514で求められた目標トルクにゲインを乗じて目標電流を求めて、これをメモリに記憶する。このときのゲインは、モータ10のハンドル軸換算でのトルク定数の逆数としておく。
以上のステップS501〜S515までの動作を繰り返す。
【0041】
上記実施の形態3においては、ステップS505で、操舵トルク信号の絶対値が閾値以上であると判断されると、そのままステップS507に進み、閾値未満であると判断されると、ステップS506に進み、路面反力トルク検出器15内での演算に用いる操舵トルク信号Tsensを0に置き換えた上でステップS507に進むように設定した。この場合、路面反力トルク検出器74への入力となる操舵トルク信号と、路面反力トルク検出器74内での演算に用いる操舵トルク信号との関係から演算されるハンドル戻しトルクは、図8のようになり不連続が発生するが、図6に示すように不連続点のないように設定しても良い。この場合、ステップS505で操舵トルク信号の絶対値が閾値以上であると判断されると、閾値の値を減算した上でステップS507に進む動作を行う。
【0042】
道路には、一般に雨水を路肩側に流すために、道路の中心付近が高く路肩付近が低くなるカントが設けられている。このため、道路を直進しようとする場合、ハンドルを僅かなトルクで保持する必要がある。また、操舵トルクを検出する操舵トルク検出器1は、電圧のドリフト等で僅かにオフセットする場合が多い。従って、操舵トルク検出信号をそのまま使うと、路面反力トルク検出器74は、直進時も路面反力トルク検出値が0とならないので、この路面反力トルク検出値に基づいてハンドル戻し補助トルク信号を演算すると、直進時も不必要なトルクを運転者が感じてしまう場合がある。このため 適切なハンドル戻し補助トルク信号の制御の不感帯を設けることが有効である。
本実施の形態3においては、操舵トルク信号の絶対値が閾値未満であると判断されると、路面反力トルク検出器74内での演算に用いる操舵トルク信号Tsensを0に置き換えた上で、(1)式の定常反力信号T’rea_estを演算する構成とするとともに、このときの閾値を、直進時のハンドル保持に必要なトルクと操舵トルク検出器の測定オフセットの和付近に設定するようにしたので、上述のような課題を解決できる。
【0043】
なお、本実施の形態3では、操舵トルク信号の絶対値が閾値未満であることを利用して制御の不感帯を設けるようにしたが、操舵トルク信号に不感帯を設けて演算するかわりに、演算された定常反力信号T’rea_estや演算された路面反力トルク信号Trea_estに不感帯を設けて、適切なハンドル戻し補助トルク信号の制御の不感帯を設けることも可能で有ることは言うまでもない。
【0044】
また、本実施の形態3においても、上記実施の形態2と同様に、操舵トルク制御器2,戻しトルク補償器72B,ダンピング補償器3,慣性補償器4の各制御パラメータは、車速検出器14の出力に応じて変更する。このとき、ステアリング機構自身のダンピングが強い車両や、ハンドル軸換算の慣性モーメントが小さなモータを装着した車両については、ダンピング補償器3,慣性補償器4の各ゲインを0としてもよく、この場合は、モータ速度検出器5,モータ加速度検出器6,ダンピング補償器3,慣性補償器4は不要となる。
【0045】
なお、(1)式の演算においてもJ(ステアリング機構の慣性モーメント)が小さい車両においては、Jの値を0としても良い。
また、(1)式の演算において、ハンドルを戻そうとする路面反力トルクは 操舵トルク信号Tsens、モータ加速度信号dω(ハンドル軸回転加速度)、モータ電流信号Imtrのうちの操舵トルク信号Tsensだけで演算しても効果が期待できるので、演算を簡略化でき、能力の低いマイクロコンピュータのS/Wでも実現できる効果がある。
更に、(1)式の演算において、ハンドルを戻そうとする路面反力トルクは、操舵トルク信号Tsens、モータ加速度信号dω(ハンドル軸回転加速度)、モータ電流信号Imtrのうちのモータ電流信号Imtrだけで演算しても、例えば油圧パワステの油圧反力機構のメカの機能と同じになり、その効果が期待できるので 演算を簡略化でき、能力の低いマイクロコンピュータのS/Wでも実現できる効果がある。
【0046】
また、上記例では、ステップS508で、(2)式の1次フィルタ演算を行い路面反力トルク信号Trea_estを得るとともに、これをメモリに記憶するようにしたが、これは完全にハンドルから手を放した場合にハンドル戻しトルクを所定の時間持続させてより確実にハンドルを戻す為のものであるので、ステップS508をスキップし、(2)式の1次フィルタ演算を実施しなくても、ハンドルから手をゆるめてから完全にハンドルから手を放す迄に既に作用しているハンドル戻しトルクだけでも十分効果が期待できるので、演算を簡略化でき、能力の低いマイクロコンピュータのS/Wでも実現できる効果がある。
【0047】
また、本実施の形態3においても、上記実施の形態1,2と同様に、モータ速度検出器5は、例えばタコジェネレータ等のモータ速度センサを用いてもよいし、ロータリエンコーダのパルス出力を差分して求めてもよいし、あるいは、モータに印加する電圧から、モータに通電される電流値とコイル抵抗値の積を減じるなどして得られる逆起電圧からモータ速度を推定しても良い。
【0048】
なお、本実施の形態3では、ステップS510とS511をマップ演算、ステップS512とS513をゲインを乗じる構成としたが、各ステップともいずれもゲインを乗じる構成としても、あるいは、マップ演算とする構成としてもよい。
【0049】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、運転者による操舵トルクを補助するトルクを発生させるモータのトルクを制御し、ハンドルの戻りの方向による車両及びステアリング系の摩擦力を補償するためのハンドル戻し補正量を設定するハンドル戻し補正手段を設けるとともに、上記ハンドル戻し補正手段に、ハンドルあるいはモータの回転方向、ないしはステアリング系の運動方向に応じて、上記ハンドル戻し補正量を補正する手段を設けて、上記摩擦力のアンバランスによるハンドル戻り特性の左右差を解消するようにしたので、運転者がハンドルを切った後、ハンドルを原点へ復帰させる際に、手放しを行っても、上記摩擦力の作用する方向の違いによるハンドル戻り特性のアンバランスをなくすことができ、ハンドルを確実に中心に戻すことができる。
【0050】
請求項2に記載の発明によれば、上記ハンドル戻し補正手段を、上記補正量に対応する補正電流をモータ制御電流に加算し、ハンドルないしはモータの回転方向にトルクを付加する構成としたので、運転者がハンドルを保持して操舵している場合には、操舵をアシストする操舵補助トルク信号を操舵トルク信号に基づいて発生させることができるとともに、運転者がハンドルを放した場合には、ハンドルを原点に復帰させるハンドル戻し補助トルク信号を運転者がハンドルを保持している場合には従来の制御アルゴリズムをそのまま流用し、新たに手放し時にハンドルを原点に復帰させる制御アルゴリズムとして、ハンドルないしは上記モータの回転方向に、上記モータ制御電流に補正量はハンドルの戻り(回転)の方向によるフリクションのアンバランスを調整するための補正電流を加算することを付け加えるだけで、手放しを行った後にも、モータがハンドル戻し方向にトルクを出力することができ、方向の違いによルハンドル戻り特性のアンバランスを確実になくすことができ、ハンドルを容易に中心に戻すことができる。
【0051】
請求項3に記載の発明によれば、請求項1記載のハンドル戻し補正手段は、タイヤが路面から受ける路面反力トルクを検出する路面反力トルク検出手段と、上記路面反力トルク検出手段の出力に基づいてハンドル戻し補正量を求める手段とを備え、ハンドルの戻り(回転)の方向によるフリクションのアンバランスを調整できるフリクションを補正あるいは打ち消してハンドル戻り特性の左右差を解消するようにしたので、手放しを行った後にも、モータがハンドル戻し方向にトルクを出力することができる。したがって、方向の違いによるハンドル戻り特性のアンバランスを確実になくすことができ、ハンドルを確実に中心に戻すことができる。
【0052】
請求項4に記載の発明によれば、タイヤが路面から受ける路面反力トルクを検出する路面反力トルク検出手段を、ハンドル角検出手段と、上記ハンドル角検出手段の出力に基づいて路面反力トルクを求める手段とから構成したので、路面反力トルクを正確に検出することができ、摩擦力のアンバランスを確実に調整することができる。
【0053】
請求項5に記載の発明によれば、上記路面反力トルク検出手段を、上記操舵トルク検出手段の出力に、モータ電流検出手段の出力から演算されるステアリング軸換算のモータトルクを加算し、更に、ステアリング軸換算のモータ慣性トルクを減算した値をローパスフィルタないしは遅延フィルタを通し、路面反力トルク推定値を得る路面反力トルク推定手段により構成したので、路面反力検出器及びそれに付随する配線が不要となり、電動式パワーステアリング装置のコストを低減することが可能となる。
【0054】
請求項6に記載の発明によれば、路面反力トルク検出手段を、操舵トルク検出手段の出力に基づいて路面反力トルク推定値を得る路面反力トルク推定手段により構成したので、演算を簡略化でき、能力の低いマイクロコンピュータのS/Wでも路面反力トルク検出手段を実現することができる。
【0055】
請求項7に記載の発明によれば、上記操舵トルク検出手段の出力にローパスないしは遅延フィルタを演算して路面反力トルク推定値を得るようにしたので、路面反力トルク推定値の精度を向上させることができる。
【0056】
請求項8に記載の発明によれば、路面反力トルク検出手段を、モータ電流検出手段の出力から演算されるステアリング軸換算のモータトルクから路面反力トルク推定値を得る路面反力トルク推定手段により構成したので、演算を簡略化でき、能力の低いマイクロコンピュータのS/Wでも路面反力トルク検出手段を実現することができる。
【0057】
請求項9に記載の発明によれば、上記ステアリング軸換算のモータトルクにローパスないしは遅延フィルタを演算して路面反力トルク推定値を得るようにしたので、路面反力トルク推定値の精度を向上させることができる。
【0058】
請求項10に記載の発明によれば、運転者による操舵トルクを補助するトルクを発生させるモータのトルクを制御して、ハンドルの戻り時の車両及びステアリング系の摩擦力を補償するとともに、ハンドルあるいはモータの回転方向、ないしはステアリング系の運動方向に応じて上記補償量を設定するようにしたので、摩擦力の作用する方向の違いによるハンドル戻り特性のアンバランスをなくすことができ、ハンドルを確実に中心に戻すことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係わる電動式パワーステアリング装置の構成を示すブロック図である。
【図2】本実施の形態1に係わる電動式パワーステアリング装置の動作を示すフローチャートである。
【図3】本実施の形態2に係わる電動式パワーステアリング装置の構成を示すブロック図である。
【図4】本実施の形態2に係わる電動式パワーステアリング装置の動作を示すフローチャートである。
【図5】本実施の形態3に係わる電動式パワーステアリング装置の動作を示すフローチャートである。
【図6】戻しトルク補償器の特性を示す図である。
【図7】方向補正係数補償器の特性を示す図である。
【図8】戻しトルク補償器の特性を示す図である。
【符号の説明】
1 操舵トルク検出器、2 操舵トルク制御器、3 ダンピング補償器、4 慣性補償器、5 モータ速度検出手段、6 モータ加速度検出手段、8 モータ電流決定手段、9 モータ駆動器、10 モータ、11 モータ電流検出器、
12 第1の加算器、13 第2の加算器、14 車速検出器、
70A,70B ハンドル戻し補正手段、71 モータ回転方向判別器、
71B 路面反力トルク方向判別器、72,72B 戻しトルク補償器、
73 方向係数補償器、73B 方向補正係数補償器、74 路面反力トルク検出器。

Claims (10)

  1. 運転者による操舵トルクを補助するトルクを発生させるモータを備え、ステアリング系の操舵力を補助する電動式パワーステアリング装置において、上記モータのトルクを制御し、ハンドルの戻りの方向による車両及びステアリング系の摩擦力を補償するためのハンドル戻し補正量を設定するハンドル戻し補正手段を設けるとともに、上記ハンドル戻し補正手段に、ハンドルあるいはモータの回転方向、ないしはステアリング系の運動方向に応じて、上記ハンドル戻し補正量を補正する手段を設けたことを特徴とする電動式パワーステアリング装置。
  2. ハンドル戻し補正手段を、上記補正量に対応する補正電流をモータ制御電流に加算し、ハンドルないしはモータの回転方向にトルクを付加する構成としたことを特徴とする請求項1記載の電動式パワーステアリング装置。
  3. ハンドル戻し補正手段は、タイヤが路面から受ける路面反力トルクを検出する路面反力トルク検出手段と、上記路面反力トルク検出手段の出力に基づいてハンドル戻し補正量を求める手段とを備えたことを特徴とする請求項1記載の電動式パワーステアリング装置。
  4. 路面反力トルク検出手段は、ハンドル角検出手段と、上記ハンドル角検出手段の出力に基づいて路面反力トルクを求める手段とを備えたことを特徴とする請求項3記載の電動式パワーステアリング装置。
  5. 運転者による操舵トルクを検出する操舵トルク検出手段と、モータに流れる電流を検出するモータ電流検出手段とを設けるとともに、上記路面反力トルク検出手段を、上記操舵トルク検出手段の出力に、上記モータの電流検出手段の出力から演算されるステアリング軸換算のモータトルクを加算し、更に、ステアリング軸換算のモータ慣性トルクを減算した値をローパスフィルタないしは遅延フィルタを通し、路面反力トルク推定値を得る路面反力トルク推定手段により構成したことを特徴とする請求項3記載の電動式パワーステアリング装置。
  6. 運転者による操舵トルクを検出する操舵トルク検出手段を設けるとともに、上記路面反力トルク検出手段を、上記操舵トルク検出手段の出力に基づいて路面反力トルク推定値を得る路面反力トルク推定手段により構成したことを特徴とする請求項3項記載の電動式パワーステアリング装置。
  7. 運転者による操舵トルクを検出する操舵トルク検出手段を設けるとともに、上記路面反力トルク検出手段を、上記操舵トルク検出手段の出力にローパスないしは遅延フィルタを演算して路面反力トルク推定値を得る路面反力トルク推定手段により構成したことを特徴とする請求項3記載の電動式パワーステアリング装置。
  8. モータに流れる電流を検出するモータ電流検出手段を設けるとともに、上記路面反力トルク検出手段を、上記モータ電流検出手段の出力から演算されるステアリング軸換算のモータトルクから路面反力トルク推定値を得る路面反力トルク推定手段により構成したことを特徴とする請求項3記載の電動式パワーステアリング装置。
  9. モータに流れる電流を検出するモータ電流検出手段を設けるとともに、上記路面反力トルク検出手段を、上記モータ電流検出手段の出力から演算されるステアリング軸換算のモータトルクにローパスないしは遅延フィルタを演算して路面反力トルク推定値を得る路面反力トルク推定手段により構成したことを特徴とする請求項3記載の電動式パワーステアリング装置。
  10. 運転者による操舵トルクを補助するトルクを発生させるモータを備え、ステアリング系の操舵力を補助する電動式パワーステアリング装置において、上記モータのトルクを制御して、ハンドルの戻り時の車両及びステアリング系の摩擦力を補償するとともに、ハンドルあるいはモータの回転方向、ないしはステアリング系の運動方向に応じて上記補償量を設定するようにしたことを特徴とする電動式パワーステアリング装置の制御方法。
JP26114299A 1999-09-14 1999-09-14 電動式パワーステアリング装置とその制御方法 Expired - Fee Related JP3599613B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26114299A JP3599613B2 (ja) 1999-09-14 1999-09-14 電動式パワーステアリング装置とその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26114299A JP3599613B2 (ja) 1999-09-14 1999-09-14 電動式パワーステアリング装置とその制御方法

Publications (2)

Publication Number Publication Date
JP2001080536A JP2001080536A (ja) 2001-03-27
JP3599613B2 true JP3599613B2 (ja) 2004-12-08

Family

ID=17357692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26114299A Expired - Fee Related JP3599613B2 (ja) 1999-09-14 1999-09-14 電動式パワーステアリング装置とその制御方法

Country Status (1)

Country Link
JP (1) JP3599613B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622137B2 (ja) * 2001-04-11 2011-02-02 日産自動車株式会社 電動パワーステアリング制御装置
JP4779495B2 (ja) * 2004-10-27 2011-09-28 日産自動車株式会社 車両用操舵装置
JP4715446B2 (ja) * 2005-10-31 2011-07-06 日本精工株式会社 電動パワーステアリング装置の制御装置
JP5003228B2 (ja) * 2007-03-23 2012-08-15 トヨタ自動車株式会社 電動パワーステアリング装置
DE102013112901A1 (de) * 2013-11-22 2015-05-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zum Lenken eines Kraftfahrzeugs
KR102145198B1 (ko) * 2014-05-28 2020-08-18 현대모비스 주식회사 전동식 파워 스티어링 시스템의 컬럼토크 보상 장치 및 방법
KR102172576B1 (ko) * 2014-09-02 2020-11-02 현대모비스 주식회사 Mdps 시스템의 프릭션 보상 제어 장치 및 방법
JP7035574B2 (ja) 2018-01-31 2022-03-15 株式会社ジェイテクト 操舵制御装置
CN115071680B (zh) * 2022-06-28 2024-06-07 重庆长安汽车股份有限公司 车辆驾驶辅助横向控制系统安全限制方法及可读存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068836A (ja) * 1992-06-10 1994-01-18 Omron Corp 電動式パワーステアリング装置
JP3840309B2 (ja) * 1997-05-20 2006-11-01 カヤバ工業株式会社 電動パワーステアリング制御装置
JPH11321685A (ja) * 1998-05-11 1999-11-24 Toyota Motor Corp 車両用操舵制御装置

Also Published As

Publication number Publication date
JP2001080536A (ja) 2001-03-27

Similar Documents

Publication Publication Date Title
US6496762B2 (en) Electric power steering controller and method of controlling same
JP4248739B2 (ja) 電動パワーステアリング制御装置及びその制御方法
JP3353770B2 (ja) 電動式パワーステアリング制御装置
JP3633453B2 (ja) 電動式ステアリング装置の制御装置
JP4152556B2 (ja) 電動式パワーステアリング制御装置及びその制御方法
JP5109342B2 (ja) 電動パワーステアリング装置
US6736236B2 (en) Electric power steering controller
JP5028960B2 (ja) 電動パワーステアリング装置
JP2008162398A (ja) 車両用操舵制御装置
JP3599613B2 (ja) 電動式パワーステアリング装置とその制御方法
JP5066993B2 (ja) 電動パワーステアリング装置
JP3600510B2 (ja) 電動式パワーステアリング装置の制御装置
JP5552744B2 (ja) 電動パワーステアリング装置
JP7222309B2 (ja) 車両用操向装置
JP3974391B2 (ja) 電動パワーステアリング装置の制御装置
JP4715446B2 (ja) 電動パワーステアリング装置の制御装置
JP2005001481A (ja) 電動パワーステアリング装置
JP4586258B2 (ja) 車両の操舵制御装置
JP2003081112A (ja) 電動式パワーステアリング制御装置及びその制御方法
JP2005320003A (ja) 電動式パワーステアリング制御装置
JP3891575B2 (ja) ドライバ操舵状態推定器およびこれを用いた電動操舵装置
JP4749452B2 (ja) 電動パワーステアリング装置
JP2009143368A (ja) 電動パワーステアリング装置
JP2012076657A (ja) 電動パワーステアリング装置
JP2017177950A (ja) 電動パワーステアリング装置、プログラム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees