[go: up one dir, main page]

JP3584096B2 - Method for producing silicon oxide - Google Patents

Method for producing silicon oxide Download PDF

Info

Publication number
JP3584096B2
JP3584096B2 JP29038695A JP29038695A JP3584096B2 JP 3584096 B2 JP3584096 B2 JP 3584096B2 JP 29038695 A JP29038695 A JP 29038695A JP 29038695 A JP29038695 A JP 29038695A JP 3584096 B2 JP3584096 B2 JP 3584096B2
Authority
JP
Japan
Prior art keywords
silicon oxide
silicon
metal
substrate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29038695A
Other languages
Japanese (ja)
Other versions
JPH09110412A (en
Inventor
昇 岡本
Original Assignee
住友チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友チタニウム株式会社 filed Critical 住友チタニウム株式会社
Priority to JP29038695A priority Critical patent/JP3584096B2/en
Publication of JPH09110412A publication Critical patent/JPH09110412A/en
Application granted granted Critical
Publication of JP3584096B2 publication Critical patent/JP3584096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、食品包装材料等に使用されるプラスチックフィルムの表面に酸化珪素を蒸着する際に用いる酸化珪素の製造方法に関する。
【0002】
【従来の技術】
近年、食料品、医療品、電子材料、光学関係等の各分野においては、金属酸化物を被覆したプラスチックフィルムが、透明性や耐熱性、ガスバリヤ性に優れることから、包装材料やガス遮蔽材として注目され、その需要を伸ばしている。その金属酸化物としてはアルミ系、珪素系の2つが主に使用されているが、酸化アルミ被覆フィルムは耐レトルト性に問題がある。また、金属アルミを被覆したフィルムは、これらの金属酸化物を用いたものよりガスバリア性に優れているが、電子レンジに使用できず、また不透明なため内容物を直視できないという欠点が存在する。これらに対し、酸化珪素被覆フィルムは、ガスバリア性、耐レトルト性、透明性、電子レンジ対応性等のいずれも兼ね備え、現在最も高い総合評価を得ている。
【0003】
フィルム上へ酸化珪素を被覆する方法としては、スパッタ法と蒸着法がある。スパッタ法は蒸着法と比較して成膜速度が遅いため、低コストを要求される包装材料等の分野には適さない。このため包装材料等の分野では蒸着法が多用されている。
【0004】
酸化珪素を蒸着したフィルムは、蒸着材料である酸化珪素を真空中で抵抗加熱や誘導加熱などにより直接加熱して蒸発させ、その蒸気をフィルムに付着させることにより製造される。この製造では、加熱時に酸化珪素が飛散する現象(スプラッシュ)を防止するため、蒸着材料を塊状にする対策がとられる。
【0005】
また近年では、加熱手段としてEB(電子)を使用した蒸着も増加している。EBの使用は、狭い範囲に高エネルギーを集中させることができ、蒸気圧の低い金属酸化物でも比較的容易に蒸発させることが可能である。しかし、EBの照射が均一に行われず部分的に高エネルギーが与えられると、金属酸化物中の酸素が分解して、系内の圧力を上昇させる。このため蒸発膜厚が不均一になったり、フィルムとの付着性が不十分になったりする。そこでEBを蒸着材料に均一に照射することが必要になる。
【0006】
【発明が解決しようとする課題】
EBを蒸着材料に均一に照射するには、蒸着材料の表面に平坦性を持たせることが必要である。しかし、スプラッシュを防止するために従来使用されている塊状の酸化珪素は、砕けた状態のため、EBを均一に照射するのが大変困難であり、また材料に切れ目があるためEBを連続して照射することが不可能である。
【0007】
塊状の酸化珪素が砕けるという問題の原因は、その酸化珪素の製造時にある。酸化珪素蒸着フィルムの製造に蒸着材料として使用される塊状の酸化珪素は、従来は粉末の原料珪素を容器内に充填し、真空下でこれを加熱蒸発させ、石英からなる基体の表面に蒸着させることにより製造される。しかし、石英と酸化珪素の付着性が強いため、石英の表面に蒸着した酸化珪素を石英から剥離させるときに、その酸化珪素が砕けてしまうのである。
【0008】
一方、SUS板等の金属は酸化珪素との付着性が石英より弱く、その表面に蒸着した酸化珪素を原形のまま剥離させることができる。しかし、金属の表面に蒸着した酸化珪素は、表面が凹凸状態となり、金属酸化物蒸着フィルムの蒸着材料として用いた場合にEBの均一照射が不可能であり、蒸発特性が著しく悪化するなどの問題がある。
【0009】
本発明の目的は、基体上に蒸着した酸化珪素の表面が平坦で、しかも、その酸化珪素を砕けることなく基体から剥離させることができる酸化珪素の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
塊状の酸化珪素を蒸着により製造する場合に、基体として金属を使用すると、その金属表面に蒸着した酸化珪素は砕けることなく金属基体から剥離する。しかし、得られた酸化珪素の表面は凹凸状態となり、EB照射に不適なものとなる。
【0011】
本発明者は金属基体の表面に蒸着する酸化珪素の表面を平坦にする方法の開発を企画し、実験研究を続けた結果、その金属基体の表面を酸処理やサンドブラスト等により粗な組織とするのが有効なことを知見し、本発明を完成させた。
【0012】
酸化珪素に限らず、気体から固体への相変化における核発生密度は、その固体の界面張力、分子量、密度、過飽和度、温度等に依存する。中でも過飽和度の増大は、核発生密度を著しく増加させる。本発明においては、過飽和度等の環境条件を変化させることなく、物理的な方法で核発生密度を増加させた。なぜなら、過飽和度等の環境条件は、核発生後の成長段階にも大きな影響を与える。従来の環境条件を変えることは、酸化珪素の成長に悪影響を与えることになるため好ましくない。未処理金属と処理金属の表面の差異は、前述の物理的影響に相当する。つまり、未処理金属の表面は組織が緻密であり、原料ガスの凝縮、蒸着時、固体酸化珪素の発生源となる核の発生密度が小さく、基体表面において局所的に酸化珪素が成長してしまうため、生成した酸化珪素の表面は凹凸状態となる。一方、表面処理を施した金属基体表面は、未処理金属表面と比較し、表面状態が粗である。この物理的な要因によって、核発生密度が増加し、局所的な成長が抑止され、基体表面均一に成長が起こる。そのため、生成する酸化珪素の表面は平坦なものとなる。
【0013】
このとき、酸化珪素の核発生速度は速い。なぜなら、核発生速度は温度に影響され、高温ほど速度は速くなる。蒸着部では、下部からの輻射熱のみで、十分核発生必要温度以上に達するため、核発生速度は速くなっている。核発生速度が速い状態で原料ガスの供給が十分でないと、金属基体の表面全体に核が均一に成長せず、一部の核が異常成長する。そうなると金属基体の表面に生成する酸化珪素の表面が凹凸状態になり、EB照射に不適なものとなる。この観点から、原料珪素の中に発熱体、あるいは熱伝導体を配置するのがよい。原料珪素は粉状であるため熱吸収が悪いが、その中に発熱体あるいは熱伝導体を配置し、原料珪素を内外から同時加熱することにより、蒸発速度が速くなり、生成酸化珪素の表面をより平坦にすることができる。
【0014】
本発明の酸化珪素の製造方法は、酸化珪素を蒸発発生させる基体として表面組織を粗に処理した金属を使用することにより、生成した酸化珪素を基体表面から剥離しやすくし、その剥離時に酸化珪素が砕けるのを防止すると共に、その酸化珪素をEB照射に適した平坦な表面とする。
【0015】
また、原料珪素の中に発熱体あるいは熱伝導体を配置することにより、酸化珪素の表面をより平坦なものにすることができる。
【0016】
基体に使用する金属としては、耐熱性、軽量性、耐食性に優れたものが必要であり、具体的にはステンレス鋼、チタン等を用いることができる。
【0017】
金属の表面を粗の組織にする処理は、以下の方法を用いることができる。化学的手法については、酸、アルカリを用いる薬品処理の他、溶剤処理、蒸気処理、オートクレーブ処理等がある。物理的手法では、スパッタエッチング処理、ショットブラスト処理、タンブリング処理、ボールミル処理等がある。主だった処理の内容を表1に示す。
【0018】
【表1】

Figure 0003584096
【0019】
表面組織の粗密状態は例えば、顕微鏡観察による表面塊状粒子の大きさで表すことができ、本発明ではこれが50〜500μmの範囲が望ましい。これが小さすぎると平坦な表面を有する酸化珪素が生成せず、大きすぎると酸化珪素の蒸着が困難になる。
【0020】
原料珪素の中に配置する発熱体としては、外周部と同様にグラファイトヒーターを用いることができる。熱伝導体としては、原料珪素を加熱するために従来から使用されているヒーターにより高効率に加熱され且つ原料珪素を汚染しないグラファイト、高融点金属(タンタル、タングステン等)などを用いることができる。
【0021】
【発明の実施の形態】
以下に本発明の望ましい実施の形態を図1により説明する。
【0022】
シリコン粉末と石英粉末を混合したものを原料珪素1としてグラファイト製の容器2に充填する。この容器2の中心部には熱伝導体3としてグラファイト棒を設置する。これとは別に基体4としての4枚のSUS304板をエチルアルコールで洗浄後、酸処理し水洗して乾燥させる。乾燥後4枚の基体4を角筒状に組み合わせる。
【0023】
原料珪素1を充填し熱伝導体3を設置した容器2を真空チャンバー5内のヒータ6の内側に配置し、真空チャンバー5の上部に、角筒状に組み合わせた基体4を取り付ける。
【0024】
真空チャンバー5内を真空排気して、ヒータ6により容器2内の原料珪素1を蒸発させた。その蒸気は角筒状に組み合わせた基体4の内面に付着し、酸化珪素7を析出させる。
【0025】
このとき、原料珪素1は粉体であるため熱伝導性が低い。内部に熱伝導体3が存在しない場合、蒸発に必要なエネルギーが原料珪素1の中心部まで到達するのにかなりの時間がかかる。中心部に熱伝導体3を設置することにより、熱伝導体3が存在しないときに上下方向に放熱された熱を熱伝導体3が吸収し、その熱を原料珪素1に中心部から伝達するため、原料珪素1は外側からも内側からも加熱されることになり、熱伝導体3を設置していないときよりも原料珪素1の蒸発速度が速くなり、表面がより平坦な酸化珪素7を生成させることができる。
【0026】
基体4の内面に酸化珪素7が十分に蒸着したことを確認した後、チャンバー5内を冷却し大気圧に戻して基体4を取り出す。
【0027】
基体4の内面に蒸着した酸化珪素7の表面は平坦となる。その酸化珪素7を基体4から剥離させるときに酸化珪素7が砕けることもない。かくして、表面が平坦な平板状の酸化珪素7が得られる。
【0028】
得られた平板状の酸化珪素7を任意の大きさに切断してEB照射によるプラスチックフィルムの真空蒸着材料に用いる。その蒸着材料は塊状であるためスプラッシュは発生せず、また砕けていないためにEBの連続照射が可能であり、更に表面が平坦なためEBの均一照射も可能である。その結果、均一な厚さの蒸着膜が効率よく生成される。
【0029】
本発明の効果を確認するために、容器2の中心部に配置し且つ基体4を酸洗した場合、容器2の中心部に熱伝導体3を設置しなかった場合、基体4を酸処理しなかった場合について、酸化珪素7の製造を実際に行った。いずれの場合も剥離時に酸化珪素7が砕けることはなかったが、表面の平坦度が表2のように変化した。なお、表2は製造条件と精製SiOの平坦度を示したものである。
【0030】
【表2】
Figure 0003584096
【0031】
【発明の効果】
以上に述べた通り、本発明の酸化珪素の製造方法は、基体として金属を用いるので、基体表面に蒸着した酸化珪素を剥離させるときにその酸化珪素が砕けるのを防ぐことができる。しかも、金属を用いたときに問題となる酸化珪素の表面凹凸化を金属表面の粗化処理により防止するので、酸化珪素の表面を平坦にすることができる。従ってEB照射による蒸着に適した塊状の酸化珪素を製造することができる。
【図面の簡単な説明】
【図1】本発明法を実施するのに適した装置構成の1例を示す模式図である。
【符号の説明】
1 原料珪素
3 発熱体(熱伝導体)
4 基体
5 真空チャンバー
6 ヒータ
7 酸化珪素[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing silicon oxide used for depositing silicon oxide on the surface of a plastic film used for food packaging materials and the like.
[0002]
[Prior art]
In recent years, in various fields such as foodstuffs, medical supplies, electronic materials, and optics, plastic films coated with metal oxides have excellent transparency, heat resistance, and gas barrier properties. Attention is growing and its demand is growing. Aluminum oxide and silicon oxide are mainly used as the metal oxide, but the aluminum oxide-coated film has a problem in retort resistance. Films coated with metal aluminum have better gas barrier properties than those using these metal oxides, but have the drawback that they cannot be used in microwave ovens and their contents are opaque, so that the contents cannot be seen directly. On the other hand, the silicon oxide-coated film has all of gas barrier properties, retort resistance, transparency, compatibility with a microwave oven, etc., and is currently receiving the highest overall evaluation.
[0003]
Methods for coating silicon oxide on a film include a sputtering method and a vapor deposition method. The sputtering method has a lower film formation rate than the vapor deposition method, and therefore is not suitable for fields such as packaging materials requiring low cost. For this reason, the vapor deposition method is frequently used in the field of packaging materials and the like.
[0004]
A film on which silicon oxide is deposited is manufactured by directly heating and evaporating silicon oxide as a deposition material in a vacuum by resistance heating, induction heating, or the like, and attaching the vapor to the film. In this manufacturing, measures are taken to make the vapor deposition material clump to prevent the phenomenon (splash) of silicon oxide scattering during heating.
[0005]
In recent years, vapor deposition using EB (electrons) as a heating means has also been increasing. The use of EB allows high energy to be concentrated in a narrow range, and even a metal oxide having a low vapor pressure can be relatively easily evaporated. However, when EB irradiation is not performed uniformly and high energy is applied partially, oxygen in the metal oxide is decomposed, and the pressure in the system is increased. For this reason, the thickness of the evaporated film becomes non-uniform or the adhesion to the film becomes insufficient. Therefore, it is necessary to uniformly irradiate the EB to the deposition material.
[0006]
[Problems to be solved by the invention]
In order to uniformly irradiate the EB to the deposition material, it is necessary to impart a flatness to the surface of the deposition material. However, since the bulk silicon oxide conventionally used to prevent splash is in a crushed state, it is very difficult to uniformly irradiate the EB, and since there is a break in the material, the EB is continuously formed. Irradiation is impossible.
[0007]
The cause of the problem that the massive silicon oxide is broken is in the production of the silicon oxide. Conventionally, bulk silicon oxide used as a vapor deposition material in the production of silicon oxide vapor-deposited film is conventionally filled with powdered raw material silicon in a container, heated and evaporated under vacuum, and vapor-deposited on the surface of a substrate made of quartz. It is manufactured by However, since the adhesion between quartz and silicon oxide is strong, when silicon oxide deposited on the surface of quartz is separated from quartz, the silicon oxide is broken.
[0008]
On the other hand, a metal such as a SUS plate has weaker adhesion to silicon oxide than quartz, and silicon oxide deposited on its surface can be peeled off in its original form. However, the silicon oxide deposited on the surface of the metal has an uneven surface, and when it is used as a deposition material for a metal oxide deposition film, uniform irradiation of EB is impossible, and the evaporation characteristics are significantly deteriorated. There is.
[0009]
An object of the present invention is to provide a method for manufacturing silicon oxide, in which the surface of silicon oxide deposited on a substrate is flat and the silicon oxide can be separated from the substrate without being crushed.
[0010]
[Means for Solving the Problems]
When a metal is used as a base when a massive silicon oxide is manufactured by vapor deposition, the silicon oxide deposited on the metal surface is separated from the metal base without being crushed. However, the surface of the obtained silicon oxide becomes uneven, which is unsuitable for EB irradiation.
[0011]
The present inventor plans to develop a method for flattening the surface of silicon oxide deposited on the surface of the metal substrate, and as a result of continuing experimental research, the surface of the metal substrate is roughened by acid treatment or sandblasting. The present invention was found to be effective, and the present invention was completed.
[0012]
Not only silicon oxide but also the nucleation density in the phase change from gas to solid depends on the interfacial tension, molecular weight, density, supersaturation, temperature, etc. of the solid. In particular, an increase in supersaturation significantly increases the nucleation density. In the present invention, the nucleation density was increased by a physical method without changing environmental conditions such as the degree of supersaturation. This is because environmental conditions such as the degree of supersaturation have a great influence on the growth stage after nucleation. Changing the conventional environmental conditions is not preferable because it adversely affects the growth of silicon oxide. The difference between the surface of the untreated metal and the surface of the treated metal corresponds to the aforementioned physical effects. In other words, the surface of the untreated metal has a dense structure, the density of nuclei that is a source of solid silicon oxide during condensation and vapor deposition of the source gas is small, and silicon oxide grows locally on the surface of the base. Therefore, the surface of the generated silicon oxide is in an uneven state. On the other hand, the surface of the surface of the metal substrate subjected to the surface treatment is rougher than that of the untreated metal surface. Due to this physical factor, the nucleation density increases, local growth is suppressed, and growth occurs uniformly on the substrate surface. Therefore, the surface of the generated silicon oxide is flat.
[0013]
At this time, the nucleation rate of silicon oxide is high. Because the nucleation rate is affected by the temperature, the higher the temperature, the faster the rate. In the vapor deposition unit, the nucleus generation speed is high because the radiant heat from the lower part alone sufficiently reaches the nucleus generation necessary temperature. If the supply of the raw material gas is not sufficient at a high nucleus generation rate, the nuclei do not grow uniformly on the entire surface of the metal substrate, and some nuclei grow abnormally. Then, the surface of the silicon oxide formed on the surface of the metal substrate becomes uneven, and becomes unsuitable for EB irradiation. From this viewpoint, it is preferable to dispose a heating element or a heat conductor in the raw material silicon. The raw material silicon is powdery and therefore has poor heat absorption, but a heating element or heat conductor is placed in it and the raw material silicon is heated simultaneously from inside and outside, so that the evaporation rate is increased and the surface of the generated silicon oxide is reduced. It can be flatter.
[0014]
The method for producing silicon oxide of the present invention uses a metal whose surface texture is roughened as a substrate for evaporating and generating silicon oxide, thereby facilitating peeling of the generated silicon oxide from the substrate surface. Is prevented from being broken, and the silicon oxide has a flat surface suitable for EB irradiation.
[0015]
Further, by disposing a heating element or a heat conductor in the raw material silicon, the surface of the silicon oxide can be made flatter.
[0016]
As the metal used for the base, one having excellent heat resistance, light weight, and corrosion resistance is required, and specifically, stainless steel, titanium, and the like can be used.
[0017]
The following method can be used to make the surface of the metal rough. As the chemical method, there are a solvent treatment, a steam treatment, an autoclave treatment and the like, in addition to a chemical treatment using an acid or an alkali. Physical methods include sputter etching, shot blasting, tumbling, and ball milling. Table 1 shows the details of the main processing.
[0018]
[Table 1]
Figure 0003584096
[0019]
The density of the surface texture can be represented by, for example, the size of the surface aggregated particles observed with a microscope. In the present invention, the size is preferably in the range of 50 to 500 μm. If it is too small, silicon oxide having a flat surface will not be generated, and if it is too large, it becomes difficult to deposit silicon oxide.
[0020]
A graphite heater can be used as the heating element arranged in the raw material silicon, similarly to the outer peripheral portion. As the heat conductor, graphite, a high-melting-point metal (such as tantalum, tungsten, etc.) which is efficiently heated by a conventionally used heater for heating the raw silicon and does not contaminate the raw silicon can be used.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to FIG.
[0022]
A mixture of silicon powder and quartz powder is filled as a raw material silicon 1 into a graphite container 2. At the center of the container 2, a graphite rod is provided as a heat conductor 3. Separately, four SUS304 plates as the substrate 4 are washed with ethyl alcohol, then acid-treated, washed with water, and dried. After drying, the four substrates 4 are combined in a rectangular tube shape.
[0023]
The container 2 filled with the silicon raw material 1 and having the heat conductor 3 installed therein is disposed inside the heater 6 in the vacuum chamber 5, and the base 4 combined in a rectangular cylindrical shape is attached to the upper part of the vacuum chamber 5.
[0024]
The inside of the vacuum chamber 5 was evacuated to vacuum, and the raw material silicon 1 in the container 2 was evaporated by the heater 6. The vapor adheres to the inner surface of the base 4 combined in the shape of a rectangular tube, and deposits silicon oxide 7.
[0025]
At this time, since the raw material silicon 1 is a powder, the thermal conductivity is low. If the heat conductor 3 does not exist inside, it takes a considerable time for the energy required for evaporation to reach the center of the raw silicon 1. By disposing the heat conductor 3 at the center, the heat conductor 3 absorbs the heat radiated in the vertical direction when the heat conductor 3 is not present, and transmits the heat to the raw material silicon 1 from the center. Therefore, the source silicon 1 is heated from the outside and the inside, and the evaporation rate of the source silicon 1 becomes faster than when the thermal conductor 3 is not installed, so that the silicon oxide 7 having a flatter surface is removed. Can be generated.
[0026]
After confirming that the silicon oxide 7 has been sufficiently deposited on the inner surface of the substrate 4, the inside of the chamber 5 is cooled and returned to the atmospheric pressure, and the substrate 4 is taken out.
[0027]
The surface of the silicon oxide 7 deposited on the inner surface of the base 4 becomes flat. When the silicon oxide 7 is separated from the base 4, the silicon oxide 7 does not break. Thus, a flat silicon oxide 7 having a flat surface is obtained.
[0028]
The obtained flat silicon oxide 7 is cut into an arbitrary size and used as a vacuum deposition material for a plastic film by EB irradiation. Since the vapor deposition material is in a lump, no splash is generated, and since it is not broken, continuous irradiation of EB is possible. Further, since the surface is flat, EB can be uniformly irradiated. As a result, a deposited film having a uniform thickness is efficiently generated.
[0029]
In order to confirm the effect of the present invention, the base 4 is subjected to an acid treatment when it is disposed at the center of the container 2 and the base 4 is pickled, and when the heat conductor 3 is not provided at the center of the container 2, When there was no silicon oxide, the production of silicon oxide 7 was actually performed. In each case, the silicon oxide 7 did not break during peeling, but the flatness of the surface changed as shown in Table 2. Table 2 shows the manufacturing conditions and the flatness of the purified SiO.
[0030]
[Table 2]
Figure 0003584096
[0031]
【The invention's effect】
As described above, in the method for producing silicon oxide of the present invention, since a metal is used as the base, it is possible to prevent the silicon oxide from being broken when the silicon oxide deposited on the surface of the base is peeled off. In addition, surface roughness of silicon oxide, which is a problem when using metal, is prevented by roughening the metal surface, so that the surface of silicon oxide can be flattened. Therefore, a massive silicon oxide suitable for vapor deposition by EB irradiation can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an apparatus configuration suitable for carrying out the method of the present invention.
[Explanation of symbols]
1 Raw material silicon 3 Heating element (thermal conductor)
4 Base 5 Vacuum chamber 6 Heater 7 Silicon oxide

Claims (2)

原料珪素を加熱蒸発させて基体の表面に蒸着させる酸化珪素の製造方法において、前記基体として表面組織を粗に処理した金属を使用することを特徴とする酸化珪素の製造方法。What is claimed is: 1. A method for producing silicon oxide, comprising heating and evaporating raw silicon to deposit on a surface of a substrate, wherein the substrate is made of a metal whose surface texture is roughened. 原料珪素の中に発熱体あるいは熱伝導体を配置することを特徴とする請求項1に記載の酸化珪素の製造方法。The method for producing silicon oxide according to claim 1, wherein a heating element or a heat conductor is disposed in the raw material silicon.
JP29038695A 1995-10-11 1995-10-11 Method for producing silicon oxide Expired - Fee Related JP3584096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29038695A JP3584096B2 (en) 1995-10-11 1995-10-11 Method for producing silicon oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29038695A JP3584096B2 (en) 1995-10-11 1995-10-11 Method for producing silicon oxide

Publications (2)

Publication Number Publication Date
JPH09110412A JPH09110412A (en) 1997-04-28
JP3584096B2 true JP3584096B2 (en) 2004-11-04

Family

ID=17755349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29038695A Expired - Fee Related JP3584096B2 (en) 1995-10-11 1995-10-11 Method for producing silicon oxide

Country Status (1)

Country Link
JP (1) JP3584096B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3865033B2 (en) 2000-02-04 2007-01-10 信越化学工業株式会社 Continuous production method and continuous production apparatus for silicon oxide powder
EP1443126B1 (en) * 2001-09-17 2008-05-07 OSAKA Titanium Technologies Co., Ltd. Silicon monoxide vapor deposition material and method for preparation thereof
KR100829736B1 (en) * 2002-02-07 2008-05-15 삼성에스디아이 주식회사 Heating vessel of vacuum deposition equipment
JP4680521B2 (en) * 2004-03-05 2011-05-11 新日鉄マテリアルズ株式会社 SiO generating apparatus and SiO manufacturing apparatus
JP4900573B2 (en) 2006-04-24 2012-03-21 信越化学工業株式会社 Method for producing silicon oxide powder
JP4666184B2 (en) 2008-03-12 2011-04-06 信越化学工業株式会社 Method for producing silicon oxide sintered body for film deposition, and method for producing silicon oxide deposited film
JP5942897B2 (en) * 2012-03-22 2016-06-29 信越化学工業株式会社 Continuous production method and production apparatus for silicon oxide precipitate
US12195345B2 (en) 2018-08-27 2025-01-14 Osaka Titanium Technologies Co., Ltd. SiO powder production method and spherical particulate SiO powder

Also Published As

Publication number Publication date
JPH09110412A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
JP3584096B2 (en) Method for producing silicon oxide
CN1044010C (en) Method for resistance heating of metal using a pyrolytic boron nitride coated graphite boat
US5405517A (en) Magnetron sputtering method and apparatus for compound thin films
JP4296256B2 (en) Manufacturing method of superconducting material
JP2000109076A (en) Inner coated bottle and method of manufacturing the same
JPH10229058A (en) Deposition chamber equipment with coating
Bleykher et al. The properties of Cu films deposited by high rate magnetron sputtering from a liquid target
US3063865A (en) Process of treating a boron nitride crucible with molten aluminum
JPH03153864A (en) Method and device for surface coating of particle
JPH10152396A (en) Material having crystalline oriented membrane of titanium dioxide and its production
JP2004111386A5 (en) Manufacturing apparatus and method for producing layer containing organic compound
CN108277458B (en) A method for preparing free-form flower-shaped copper particles without template
JPH03120358A (en) Apparatus and method for coating parts by ark discharge
JPH02285067A (en) Device for forming thin film in vacuum
JP2001192206A (en) Manufacturing method of amorphous carbon coated member
KR100711488B1 (en) Manufacturing method of aluminum-magnesium alloy film
CN204676150U (en) The equipment of multilayer barrier film is formed at Glass Containers inwall
CN220166262U (en) Vacuum coating equipment
RU2777062C1 (en) Method for obtaining nanosized films of titanium nitride
RU2709069C1 (en) Method for electron-beam application of hardening coating on articles made from polymer materials
JP4061802B2 (en) Deposition tank
JP3261864B2 (en) Vacuum evaporation apparatus and vacuum evaporation method
TWI720651B (en) Film forming device
JP2012153923A (en) Vacuum deposition apparatus
JPS59224116A (en) Production device for amorphous silicon film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees