【0001】
【産業上の利用分野】
本発明は、硬質脆性材料の切断に使用するダイヤモンド電着ワイヤ工具及びその製造方法に関するものである。
【0002】
【従来の技術】
ダイヤモンド電着ワイヤ工具は、ピアノ線等の素線の表面にダイヤモンド砥粒を電着したものであり、ダイヤモンド砥粒を素線全体に電着したものと素線の一部に電着したものとがある。図7及び図8に示したものは後者のワイヤ工具であり、薄く第1のニッケルメッキ層1を設けたピアノ線2の表面に、後述の砥粒電着装置で第2のニッケルメッキ層11とともにダイヤモンド砥粒12を螺旋状に電着したものである。図9は砥粒電着装置の要部を示した斜視図である。この装置は、ダイヤモンド砥粒12を内蔵した円筒状の砥粒電着槽21と、その外周に離隔させて同軸上に配置した螺旋状の遮蔽板22と、遮蔽板の両側に配置したニッケル板23とを有しており、これらの部材を図示しないニッケルメッキ溶液槽に入れたものである。
【0003】
この装置を用いてワイヤ工具を製造するには、薄い第1のニッケルメッキ層を有するピアノ線2を砥粒電着槽21の軸心に挿通し、ピアノ線2をカソードとし、ニッケル板23をアノードとして、ピアノ線に一定の送り速度を与えながらその送り速度に遮蔽板の回転速度を同調させ、ピアノ線の全面に第2のニッケルメッキ層11を電着する。この際遮蔽板の空隙部と対応する位置のピアノ線には、第2のニッケルメッキ層11と共にダイヤモンド砥粒12が電着され、スパイラル状にダイヤモンド砥粒を電着したワイヤ工具が製造される。
【0004】
このように製造されたワイヤ工具は、図8に示すように、ダイヤモンド砥粒12を電着している第2のニッケルメッキ層11がその他の部分と比較して肉厚になって螺旋凸条を形成し、螺旋状のダイヤモンド砥粒12の間に凹条(以下「チップポケット」という。)24が形成される。このチップポケット24は、硬質脆性材料の切断時に加工液を巻き込んで加工部に供給したり、切粉の排出を容易にするという機能を有しており、ワイヤ工具の連続使用による加工能率の低下を抑えると共にワイヤ工具の寿命を延ばすという働きがある。
【0005】
【発明が解決しようとする課題】
しかし、従来のワイヤ工具は、遮蔽板で遮蔽された領域のピアノ線にも第2のニッケルメッキ層が電着されるので、ニッケルメッキ層が肉厚となり、ワイヤの破断ねじり角度が小さくなるという欠点がある(図5の(3)を参照)。また、螺旋状の遮蔽板を用いる従来の製造方法では、砥粒電着槽21を円筒形にしなければならず、電着作業中にダイヤモンド砥粒12が減少しても補給することができず、長尺のワイヤ工具を製造することができないという欠点がある。また、従来の製造方法では、遮蔽板の螺旋ピッチpとダイヤモント砥粒の螺旋ピッチPとが同一になるが、ダイヤモント砥粒の回り込み等が生じ、小さいピッチの電着が困難であるという問題があった。
【0006】
本発明は、チップポケットを有しかつ破断ねじり角度が大きなダイヤモント電着ワイヤ工具を提供すること並びにダイヤモント砥粒の螺旋ピッチを自由に設定することができ、かつ長尺のワイヤ工具を製造することができる方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明に係るダイヤモンド電着ワイヤ工具は、素線2に、第1のメッキ層1の表面を螺旋状に露出させた導電性螺旋部13と、前記第1のメッキ層の表面を螺旋状に絶縁被覆した絶縁性螺旋部15とからなる2条の螺旋部が形成されており、導電性螺旋部13には第2のメッキ層11及びダイヤモンド砥粒12が電着されているものである。
【0008】
本発明に係る製造方法は、素線2に第1のメッキ層1を電着し、このメッキ層1の表面に合成樹脂をコーテングし、形成されたコーテング層をスパイラル状に研削し、露出した第1のメッキ層1に第2のメッキ層11及びダイヤモンド砥粒12を電着することを特徴とするものである。
【0009】
素線としてピアノ線1を用い、これに第1のニッケルメッキ層1を電着し、更にフッ素樹脂をコーテングし、形成されたフッ素樹脂層をスパイラル状に研削して、露出した第1のニッケルメッキ層1で導電性螺旋部13を形成し、スパイラル状に残ったフッ素樹脂層で絶縁性螺旋部15を形成するのがよい。
【0010】
【作用】
素線2の破断ねじり角度はメッキ層の厚さと反比例する。本発明に係るダイヤモンド電着ワイヤ工具は、素線2の導電性螺旋部13の間に絶縁性螺旋部15を設けることにより、ダイヤモンド砥粒の電着工程において素線2に第2のメッキ層11が電着しないので、薄い第1のメッキ層1のみが電着した部分を螺旋状に残すことができ、破断ねじり角度を大きくすることができる。
【0011】
本発明に係る製造方法は、絶縁性螺旋部を形成する際に必要なコーテングの焼成工程に先立って素線2に薄い第1のメッキ層1を形成したので、塗布した合成樹脂溶液の焼成工程での引張強度の低下を防止することができる。そして従来公知のスパイラル研削機を用いて、コーテング層を研削してスパイラル溝を簡単かつ迅速に製造することができ、スパイラル溝のピッチも任意に選択することができる。更に、ダイヤモンド砥粒12の電着加工にも従来の砥粒電着装置を利用することができ、ダイヤモンド砥粒12を補給しながら電着作業を行うことができるので、長尺のワイヤ工具を製造することが可能となる。
【0012】
【実施例】
図1は本発明に係るワイヤ工具の製造方法の工程図である。直径0.2mmのピアノ線を公知のニッケルメッキ装置に通してワイヤの表面に0.02mmの第1のニッケルメッキ層を形成する。次いで後述するコーテング装置でフッ素樹脂溶液を塗装・焼成してコーテング層を形成する。そして公知のスパイラル研削機に通して前記コーテング層を螺旋状に削除し、第1のニッケルメッキ層を螺旋状に露出させる。これにより、ピアノ線の表面に第1のニッケルメッキ層からなる導電性螺旋部とコーテング層からなる絶縁性螺旋部が形成される。最後に公知の砥粒電着装置で導電性螺旋部の表面に第2のニッケルメッキ層およびダイヤモンド砥粒を電着して本発明に係るダイヤモンド電着ワイヤ工具を製造する。
【0013】
図2は本発明のワイヤ工具の製造に使用されるコーテング装置の断面図である。この装置9は、第1のニッケルメッキ層1を有するピアノ線2を巻回した送出ドラム3と、ピアノ線に付着した脂肪を除去するためにアセトンを入れた前槽4と、フッ素樹脂溶液を入れた主槽5と、塗布されたフッ素樹脂溶液を硬化させる焼成器6と、コーテング加工済のピアノ線を巻き取る巻取ドラム7とを有している。焼成器の温度はフッ素樹脂が硬化する温度、即ち摂氏360度程度である。上記製造方法の実施に用いる他の装置、即ちニッケルメッキ装置やスパイラル研削機、砥粒電着装置は従来から使用されているものを用いてやればよい。
【0014】
図3及び図4の(a)は電着処理前のワイヤの拡大図、同図の(b)は電着処理後のワイヤの拡大図である。(a)のものは、0.2mmのピアノ線2を心線とし、その表面に0.02mmの第1のニッケルメッキ層1が電着されており、その上に螺旋状のフッ素樹脂層14が塗着されている。フッ素樹脂層14は絶縁性螺旋部15となり、第1のニッケルメッキ層1が導電性螺旋部13となる。これを砥粒電着装置に通すと、同図(b)に示すように導電性螺旋部13の上に螺旋状の第2のニッケルメッキ層11及びダイヤモンド砥粒12が電着した本発明のワイヤ工具を得ることができる。ダイヤモンド砥粒の螺旋ピッチPは、スパイラル研削機でスパイラル溝のピッチを変更するだけで簡単に変更することができる。また、従来の砥粒電着装置を使用して、ダイヤモンド砥粒の供給を連続的に行うことができるから、長尺のワイヤ工具を簡単に製造することができる。
【0015】
図5及び図6は上記構成のワイヤ工具の性能試験の結果を示したグラフである。図5は左側の縦軸に引張強度(白丸)をとり、右側の縦軸に360度(1回転)を基準としたねじり角度(黒丸)をとったものであり、横軸にピアノ線(1)、ダイヤモンド砥粒を全面に電着したもの(2)、従来の螺旋状にダイヤモンド砥粒を電着したもの(3)、本発明に係る螺旋状にダイヤモンド砥粒を電着したもの(4)をとっている。同図から明らかなように、本発明のワイヤ工具(4)は、従来のもの(2)及び(3)と比較して同程度であるが、破断ねじり角度は大幅に向上している。
【0016】
図6は製造時の各工程後に採取した試料▲2▼から▲5▼及びピアノ線▲1▼とを横軸にとり、縦軸に360度(1回転)を基準としたねじり角度をとったグラフである。▲1▼は0.2mmピアノ線、▲2▼は0.2mmピアノ線に厚さ0.02mmのニッケルメッキ層を電着したもの、▲3▼はコーテング層を形成したもの、▲4▼はスパイラル溝を形成したもの、▲5▼はダイヤモンド砥粒を電着したものである。ピアノ線▲1▼に、第1のニッケルメッキ層を電着すると破断ねじり角度は約7×360deg (即ち7回転)低下し、ダイヤモンド砥粒の電着工程で約4×360deg (即ち4回転)低下していることが分かる。
【0017】
【発明の効果】
以上にように、本発明の係るワイヤ工具は、チップポケットを有しかつ薄いニッケルメッキ層が螺旋状に存在するから破断ねじり角度が大きく、工具の寿命が長くなる。また、本発明に係る製造方法によれば、コーテング層の研削ピッチを変えることにより、導電性螺旋部のピッチを簡単に変えることができるから、ダイヤモント砥粒のピッチを自由に設定することができる。また、遮蔽板を備えた砥粒電着装置を使用する必要もないので、長尺のワイヤ工具を製造することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の製造工程を示す図
【図2】コーテング装置の側面図
【図3】電着処理前及び電着処理後のワイヤ工具の拡大側面図
【図4】図3のA部及びB部の断面図
【図5】他のワイヤ工具との性能を比較したグラフ
【図6】製造工程後に採取したサンプルを比較したグラフ
【図7】従来のワイヤ工具の拡大側面図
【図8】図7のC部断面図
【図9】砥粒電着装置の要部斜視図
【符号の説明】
1 第1のニッケルメッキ層
2 ピアノ線
11 第2のニッケルメッキ層
12 ダイヤモンド砥粒
13 導電性螺旋部
14 フッ素樹脂層
15 絶縁性螺旋部[0001]
[Industrial applications]
The present invention relates to a diamond electrodeposited wire tool used for cutting hard brittle materials and a method for manufacturing the same.
[0002]
[Prior art]
Diamond electrodeposited wire tools are those in which diamond abrasive grains are electrodeposited on the surface of a wire such as a piano wire, and those in which diamond abrasive grains are electrodeposited on the entire wire and a part of the wire. There is. FIG. 7 and FIG. 8 show the latter wire tool, in which a second nickel plating layer 11 is formed on a surface of a piano wire 2 provided with a thin first nickel plating layer 1 by an abrasive grain electrodeposition apparatus described later. In addition, diamond abrasive grains 12 are spirally electrodeposited. FIG. 9 is a perspective view showing the main part of the abrasive electrodeposition apparatus. This apparatus comprises a cylindrical electrodeposition tank 21 having a built-in diamond abrasive grain 12, a spiral shield plate 22 arranged coaxially and spaced apart from the outer periphery thereof, and nickel plates arranged on both sides of the shield plate. 23, and these members are placed in a nickel plating solution tank (not shown).
[0003]
In order to manufacture a wire tool using this apparatus, a piano wire 2 having a thin first nickel-plated layer is inserted through the axis of an abrasive electrodeposition tank 21, the piano wire 2 is used as a cathode, and the nickel plate 23 is used as a cathode. As the anode, the rotation speed of the shielding plate is synchronized with the feed speed while giving a constant feed speed to the piano wire, and the second nickel plating layer 11 is electrodeposited on the entire surface of the piano wire. At this time, the diamond wire 12 is electrodeposited together with the second nickel plating layer 11 on the piano wire at a position corresponding to the gap of the shielding plate, and a wire tool in which diamond abrasive particles are electrodeposited spirally is manufactured. .
[0004]
As shown in FIG. 8, the wire tool manufactured in this manner has a spiral ridge in which the second nickel plating layer 11 on which the diamond abrasive grains 12 are electrodeposited is thicker than other portions. Is formed, and a concave streak (hereinafter referred to as “chip pocket”) 24 is formed between the spiral diamond abrasive grains 12. The tip pocket 24 has a function of entraining a machining fluid during cutting of a hard and brittle material and supplying the machining fluid, and facilitating the discharge of cutting chips. And has the effect of extending the life of the wire tool.
[0005]
[Problems to be solved by the invention]
However, in the conventional wire tool, since the second nickel-plated layer is also electrodeposited on the piano wire in the area shielded by the shield plate, the nickel-plated layer becomes thick and the breaking torsion angle of the wire is reduced. There is a drawback (see (3) in FIG. 5). Further, in the conventional manufacturing method using a spiral shielding plate, the abrasive grain electrodeposition tank 21 has to be cylindrical, and even if the diamond abrasive grains 12 decrease during the electrodeposition operation, it cannot be replenished. However, there is a disadvantage that a long wire tool cannot be manufactured. Further, in the conventional manufacturing method, the spiral pitch p of the shielding plate and the spiral pitch P of the diamond abrasive grains are the same, but it is difficult to perform electrodeposition at a small pitch because the diamond abrasive grains wrap around. There was a problem.
[0006]
The present invention provides a diamond electroplated wire tool having a chip pocket and a large breaking torsion angle, and can freely set a helical pitch of diamond abrasive grains and manufacture a long wire tool. It aims to provide a way that can be done.
[0007]
[Means for Solving the Problems]
In the diamond electrodeposited wire tool according to the present invention, the conductive spiral portion 13 in which the surface of the first plating layer 1 is spirally exposed on the wire 2 , and the surface of the first plating layer is spirally formed. Two spiral portions composed of an insulating spiral portion 15 covered with insulation are formed, and a second plating layer 11 and diamond abrasive grains 12 are electrodeposited on the conductive spiral portion 13.
[0008]
In the manufacturing method according to the present invention, the first plating layer 1 is electrodeposited on the wire 2, a synthetic resin is coated on the surface of the plating layer 1, and the formed coating layer is spirally ground and exposed. The second plating layer 11 and the diamond abrasive grains 12 are electrodeposited on the first plating layer 1.
[0009]
A piano wire 1 is used as an element wire, a first nickel plating layer 1 is electrodeposited thereon, a fluororesin is coated thereon, and the formed fluororesin layer is ground into a spiral shape to expose the exposed first nickel layer. It is preferable that the conductive spiral portion 13 be formed by the plating layer 1 and the insulating spiral portion 15 be formed by the fluororesin layer remaining spirally.
[0010]
[Action]
The breaking torsion angle of the strand 2 is inversely proportional to the thickness of the plating layer. The diamond electrodeposited wire tool according to the present invention provides the wire 2 with the second plating layer in the electrodeposition step of the diamond abrasive grains by providing the insulating spiral portion 15 between the conductive spiral portions 13 of the wire 2. Since the electrode 11 is not electrodeposited, a portion where only the thin first plating layer 1 is electrodeposited can be left in a spiral shape, and the breaking torsion angle can be increased.
[0011]
In the manufacturing method according to the present invention, since the thin first plating layer 1 is formed on the strand 2 prior to the coating baking step necessary for forming the insulating spiral portion, the baking step of the applied synthetic resin solution is performed. , A decrease in tensile strength can be prevented. The spiral groove can be easily and quickly manufactured by grinding the coating layer using a conventionally known spiral grinder, and the pitch of the spiral groove can be arbitrarily selected. Further, a conventional abrasive electrodeposition apparatus can be used for the electrodeposition processing of the diamond abrasive grains 12, and the electrodeposition work can be performed while the diamond abrasive grains 12 are being replenished. It can be manufactured.
[0012]
【Example】
FIG. 1 is a process diagram of a method for manufacturing a wire tool according to the present invention. A piano wire having a diameter of 0.2 mm is passed through a known nickel plating apparatus to form a 0.02 mm first nickel plating layer on the surface of the wire. Next, a fluororesin solution is applied and fired by a coating apparatus described later to form a coating layer. Then, the coating layer is spirally removed by passing through a known spiral grinder, and the first nickel plating layer is spirally exposed. Thus, a conductive spiral portion made of the first nickel plating layer and an insulating spiral portion made of the coating layer are formed on the surface of the piano wire. Finally, a second nickel plating layer and diamond abrasive grains are electrodeposited on the surface of the conductive helical portion by a known abrasive electrodeposition apparatus to produce a diamond electrodeposited wire tool according to the present invention.
[0013]
FIG. 2 is a sectional view of a coating device used for manufacturing the wire tool of the present invention. The apparatus 9 includes a delivery drum 3 on which a piano wire 2 having a first nickel plating layer 1 is wound, a front tank 4 containing acetone for removing fat attached to the piano wire, and a fluororesin solution. It has a main tank 5, a sintering device 6 for curing the applied fluororesin solution, and a winding drum 7 for winding a coated piano wire. The temperature of the firing unit is a temperature at which the fluororesin is cured, that is, about 360 degrees Celsius. Other apparatuses used for carrying out the above-described manufacturing method, that is, nickel plating apparatuses, spiral grinders, and abrasive grain electrodeposition apparatuses may be those conventionally used.
[0014]
3A and 3A are enlarged views of the wire before the electrodeposition processing, and FIGS. 3B and 4B are enlarged views of the wire after the electrodeposition processing. In (a), a 0.2 mm piano wire 2 is used as a core wire, a 0.02 mm first nickel plating layer 1 is electrodeposited on the surface thereof, and a spiral fluororesin layer 14 is formed thereon. Is painted. The fluororesin layer 14 becomes the insulating spiral portion 15, and the first nickel plating layer 1 becomes the conductive spiral portion 13. When this is passed through an abrasive electrodeposition apparatus, the spiral second nickel plating layer 11 and the diamond abrasive grains 12 are electrodeposited on the conductive spiral portion 13 as shown in FIG. A wire tool can be obtained. The helical pitch P of the diamond abrasive grains can be easily changed only by changing the pitch of the spiral groove with a spiral grinder. In addition, since the supply of diamond abrasive grains can be continuously performed using the conventional abrasive electrodeposition apparatus, a long wire tool can be easily manufactured.
[0015]
FIGS. 5 and 6 are graphs showing the results of the performance test of the wire tool having the above configuration. FIG. 5 shows the tensile strength (open circle) on the left vertical axis, the torsion angle (black circle) based on 360 degrees (one rotation) on the right vertical axis, and the piano wire (1) on the horizontal axis. ), Electrodeposited diamond abrasive grains on the entire surface (2), conventional spiral electrodeposited diamond abrasive grains (3), and spirally electrodeposited diamond abrasive grains according to the present invention (4) ). As is clear from the figure, the wire tool (4) of the present invention is comparable to the conventional tools (2) and (3), but the breaking torsion angle is greatly improved.
[0016]
FIG. 6 is a graph in which the abscissa represents the samples (2) to (5) and the piano wire (1) collected after each step of the manufacturing process, and the ordinate represents the twist angle based on 360 degrees (one rotation). It is. (1) is a 0.2 mm piano wire, (2) is a 0.2 mm piano wire electrodeposited with a nickel plating layer having a thickness of 0.02 mm, (3) is a coating layer formed, (4) is A spiral groove is formed, and (5) is an electrodeposited diamond abrasive. When the first nickel plating layer is electrodeposited on the piano wire {circle around (1)}, the breaking torsion angle decreases by about 7 × 360 deg (ie, 7 rotations), and about 4 × 360 deg (ie, 4 rotations) in the electrodeposition step of diamond abrasive grains. It can be seen that it has decreased.
[0017]
【The invention's effect】
As described above, the wire tool according to the present invention has a chip pocket and a thin nickel-plated layer in a spiral shape, so that the breaking torsion angle is large and the tool life is extended. Further, according to the manufacturing method of the present invention, the pitch of the conductive spiral portion can be easily changed by changing the grinding pitch of the coating layer, so that the pitch of the diamond abrasive grains can be freely set. it can. In addition, since it is not necessary to use an abrasive electrodeposition device provided with a shielding plate, there is an effect that a long wire tool can be manufactured.
[Brief description of the drawings]
1 is a view showing a manufacturing process of the present invention; FIG. 2 is a side view of a coating apparatus; FIG. 3 is an enlarged side view of a wire tool before and after electrodeposition processing; FIG. FIG. 5 is a graph comparing performance with other wire tools. FIG. 6 is a graph comparing samples taken after the manufacturing process. FIG. 7 is an enlarged side view of a conventional wire tool. FIG. 9 is a sectional view of a part C in FIG. 7;
DESCRIPTION OF SYMBOLS 1 1st nickel plating layer 2 piano wire 11 2nd nickel plating layer 12 diamond abrasive grain 13 conductive spiral part 14 fluororesin layer 15 insulating spiral part