JP3552866B2 - Manufacturing method of button type alkaline battery - Google Patents
Manufacturing method of button type alkaline battery Download PDFInfo
- Publication number
- JP3552866B2 JP3552866B2 JP02625997A JP2625997A JP3552866B2 JP 3552866 B2 JP3552866 B2 JP 3552866B2 JP 02625997 A JP02625997 A JP 02625997A JP 2625997 A JP2625997 A JP 2625997A JP 3552866 B2 JP3552866 B2 JP 3552866B2
- Authority
- JP
- Japan
- Prior art keywords
- sealant
- battery
- type alkaline
- packing
- button
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はボタン形アルカリ電池の製造方法に関し、さらに詳しくは、ボタン形アルカリ電池の合成樹脂パッキングのシール剤塗布方法の改良に関する。
【0002】
【従来の技術】
亜鉛を負極とするボタン形アルカリ電池には、用途に応じて二酸化マンガン、酸化銀、あるいは空気中の酸素をそれぞれ正極作用物質とする各種電池がある。これらの電池は、時計、補聴器、小型電子機器等に使用されている。
【0003】
これらのボタン形電池は、例えば図2や図3に示すような構造をしている。すなわち、図2はLR44型アルカリマンガン電池の断面図であって、図中、1は負極集電体、2はゲル状亜鉛負極、3はセパレータ、4は液保持材、5はパッキング、6は正極合剤、7は正極缶である。また、図3はPR44型空気電池の断面図であって、図中、11は負極集電体、12はゲル状亜鉛負極、13はセパレータ、14はパッキング、15は空気極、16は正極缶、17はテフロン膜、18は空気拡散紙である。
【0004】
上記したように、ボタン形電池の構造は、パッキング5、14が負極集電体と正極缶との間にあって電池を封口しているが、このパッキング(合成樹脂)と負極集電体との間、あるいは正極缶との間から内部の電解液が外部に漏液しやすい性質がある。この漏液をくい止めるため、パッキング、負極集電体あるいは正極缶に各種シール剤を塗布して、接着性や密着性を向上させている。
【0005】
シール剤の使用方法としては、電極組立て時にパッキングと他の部品の接触部分にディスペンサー等を使ってシール剤を塗布する方法や、予めパッキング全体に別工程でシール剤を塗布してから組立てを行う方法がある。
【0006】
このうち、電池組立て時にシール剤を塗布する方法は、個々の部品について管理しやすいが、工程が複雑になってしまう。また、部品1個づつに行うので効率が悪く、特にボタン形電池には直径4mm程度のごく小さな製品もあるので、組立て時にこの部品に塗布するのは簡単ではない。
【0007】
一方、予めパッキングにシール剤を塗布する方法は、製造方法は複雑にはならないが、次のような問題点がある。すなわち、この方法のシール剤塗布方法としては、シール剤溶液中に部品を浸し、取り出した後に乾燥させるディップ法が最も簡潔な方法としてあるが、この方法では一度に大量の部品を処理できるので効率的である反面、すべての部品に均一なシール剤塗布を行うことが難しいという問題がある。例えば、溶液に浸した時や乾燥時の部品の置き方や重なり方で、塗布量が左右され、乾燥前に液が垂れたり、部品の形状によっては液が溜まったりして、塗布不良の原因となる。また、乾燥後に部品同士が付着しあってしまうので、それを剥がす必要が生じ、工程が増えるばかりか部品が傷つく恐れもある。この様にして、大量の生産品の中には塗布不良品ができ、通常よりも漏液しやすい製品が発生してしまう恐れがある。
【0008】
【発明が解決しようとする課題】
ところで市販されている電池の中で、少量とはいえ未だに水銀が使われているのは、ボタン形アルカリ電池だけである。ボタン形アルカリ電池では、亜鉛に水銀を添加しなければ亜鉛合金粉や負極集電体からの水素ガス発生が増大し、電池の膨れや漏液、貯蔵中の大幅な性能劣化等の問題が発生する。
【0009】
この問題を解決するため、従来様々な対策が考案されてきたが、その中で、負極集電体のゲル状負極と接触する表面部分を例えばインジウムやスズ等の亜鉛より水素過電圧の高い金属で被覆して、負極集電体からの水素ガスの発生を抑制することが提案されている。中でも、無電解法によるメッキは、負極集電体成形後にゲル状亜鉛と接触する銅面だけに選択的にメッキされるため、工程が簡潔でかつ効果が大きい。
【0010】
ところが無電解メッキは電気メッキに比較して表面状態が荒れやすく、そのため電解液が這い上がりやすくなる傾向があり、パッキングと負極集電体の間からアルカリ電解液が漏液しやすくなる。このような状態の中で、前述のようにパッキングへのシール剤塗布が不均一であれば、接着不良の部分から直ぐに漏液が始まり、一層問題が大きくなる。
本発明は上記状況に対処してなされたもので、ボタン形アルカリ電池において、耐漏液特性を向上することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成するためにボタン形アルカリ電池のパッキングに関して改良を加えたものであって、予めシール剤を塗布した合成樹脂パッキングを用いて組み立てを行うボタン形アルカリ電池の製造方法において、合成樹脂パッキングにシール剤を塗布する方法が、合成樹脂パッキングを回転流動させながらシール剤溶液を噴霧し、同時に乾燥空気を通気して合成樹脂パッキング表面にシール剤を乾燥固化させることからなることを特徴とする。
【0012】
多数のパッキングを回転流動させてシール剤溶液を噴霧するには、例えば回転するドラムを用い、その中にパッキングをいれて、流動しているパッキングにシール剤溶液をスプレーにより噴霧する等の方法がとられる。ドラム内には温度調整された空気を供給して塗布液を部品上で直ちに乾燥固化させる。
【0013】
この方法によれば、従来のディップ法に比べてスプレーされたシール剤が部品上で直ちに乾燥するので、液垂れや液溜まりが発生せず、少しづつ徐々に付着するので、塗布量が均一になる。また、部品同士の付着も生じない。また、塗布量の管理は塗布時間を調整することによって容易に行える。
【0014】
【発明の実施の形態】
本発明の実施の形態を以下に説明する。
(実施例)
シール剤としてポリアミド系樹脂を使用した。すなわち、ポリアミド系樹脂を溶剤(トルエン+イソプロピルアルコール)に溶解させて5%溶液を調製し、シール剤溶液とした。
【0015】
回転するドラム((株)パウレック製ドリアコーター)内で、図2に示すようなLR44型アルカリマンガン電池に使用するナイロンパッキングに上記のシール剤溶液を噴霧し、同時に乾燥空気を通気して、ナイロンパッキングに上記シール剤を乾燥固化させた。
【0016】
(比較例1)
次に、同じポリアミド系樹脂を、同じ溶剤に溶解させて、10%溶液を調製した。このシール剤溶液中に、LR44型アルカリマンガン電池用ナイロンパッキングを浸し、その後取り出して、熱風乾燥機で乾燥し、比較例の部品を作成した。乾燥後、部品同士が付着しあっているので、ほぐしが必要であった。
上記の実施例の部品および比較例の部品へのシール剤付着量の変化を調べるため、以下の実験を行った。
【0017】
実施例及び比較例の部品、各100個の重量を測定し、シール剤塗布前の部品の重量からシール剤の付着量を測定した。
表1及び図1にその結果を示す。図1において、(a)は実施例の結果を、(b)は比較例1の結果を表している。
【0018】
【表1】
【0019】
表1の分散値や図1から明らかなように、本発明の実施例は、比較例よりもシール剤の付着量のバラつきが少なく均一である。
次に上記実施例および比較例の各部品を用いてそれぞれ水銀無添加電池を下記に示すように作成した。
【0020】
パッキングとして、前述の実施例および比較例1によるナイロンパッキングをそれぞれ使用した。次に、ニッケル−ステンレス−銅の3層クラッド材を負極ケースを兼ねた負極集電体に成形し、その銅面に無電解法により、スズメッキを施した。上記の各ナイロンパッキングおよび負極集電体を用いて、図2に示すようなLR44型アルカリマンガン電池を作成した。なお、亜鉛負極は無汞化亜鉛合金粉、水酸化カリウム水溶液、ポリアクリル酸、さらにガス発生抑制のための添加剤としての酸化インジウム及びパーフルオロアルキルポリオキシエチレン系界面活性剤で構成したものを用いた。また、正極合剤は電解二酸化マンガン及び鱗状黒鉛を撹拌混合した後に成形して構成されるものを用いた。これらを実施例電池及び比較例1電池とした。
【0021】
(比較例2)
負極ケースを兼ねた負極集電体にスズメッキはせず、3%汞化亜鉛合金粉をゲル状亜鉛負極に使用して、他は比較例と同様にして、図2に示すようなLR44型アルカリマンガン電池を作成して、比較例2電池とした。
【0022】
以上のように作成した実施例及び比較例1,2の各試作電池を使用し、耐漏液試験を行った。試験方法は、各試作電池500個を45℃−93%RHの環境下で貯蔵し、40日目及び60日目の漏液発生数を調べた。
表2に耐漏液試験の結果を示す
【表2】
【0023】
実施例と比較例1の電池で比較すると、明らかに差があり、本発明による部品を使用した実施例の電池は、耐漏液特性に優れている。
また、比較例2の電池は、無電解スズメッキをキャップに施していないので、電解液のはい上がりは少なく、本来は漏液が発生しにくい仕様である。しかしながら、比較例1の部品を使用した場合は、シール剤付着量が不均一なので、表2のように少数の漏液が発生する。これは、貯蔵が進むほどに差が現れ、60日目では、比較例2でも漏液数が増加するが、実施例では漏液していない。
なお、本発明は上記実施例により限定されるものではない。
【0024】
本発明に直接影響を及ぼさない、亜鉛合金粉の組成等の要素については本発明の範囲を逸脱しない限り、変更して差支えない。
上記実施例ではボタン形アルカリマンガン電池について説明したが、本発明はこれに限定されるものではなく、ボタン形酸化銀電池、空気亜鉛電池等のゲル状亜鉛を負極とする各種ボタン形アルカリ電池に適用できる。
【0025】
【発明の効果】
以上のように、本発明によれば、ボタン形アルカリ電池の合成樹脂パッキングにシール剤を均一に塗布することができるので、耐漏液特性の優れたボタン形アルカリ電池を提供することができる。
【図面の簡単な説明】
【図1】(a)は本発明の実施例のシール剤塗布量の頻度グラフ、(b)は比較例1のシール剤塗布量の頻度グラフ。
【図2】本発明の実施例で作成したLR44型アルカリマンガン電池の断面図。
【図3】PR44型空気亜鉛電池の断面図。
【符号の説明】
1,11…負極集電体、2,12…ゲル状亜鉛負極、3,13…セパレータ、4…液保持材、5,14…パッキング、6…正極合剤、7,16…正極缶、15…空気極、17…テフロン膜、18…空気拡散紙。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a button-type alkaline battery, and more particularly, to an improvement in a method of applying a sealant to a synthetic resin packing of a button-type alkaline battery.
[0002]
[Prior art]
Button-type alkaline batteries having zinc as a negative electrode include various batteries using manganese dioxide, silver oxide, or oxygen in the air as a positive electrode active material, depending on the application. These batteries are used in watches, hearing aids, small electronic devices, and the like.
[0003]
These button batteries have a structure as shown in FIGS. 2 and 3, for example. That is, FIG. 2 is a cross-sectional view of an LR44 type alkaline manganese battery, in which 1 is a negative electrode current collector, 2 is a gelled zinc negative electrode, 3 is a separator, 4 is a liquid holding material, 5 is packing, and 6 is The positive electrode mixture 7 is a positive electrode can. FIG. 3 is a sectional view of a PR44 type air battery, in which 11 is a negative electrode current collector, 12 is a gelled zinc negative electrode, 13 is a separator, 14 is a packing, 15 is an air electrode, and 16 is a positive electrode can. , 17 is a Teflon film, and 18 is an air diffusion paper.
[0004]
As described above, the button-type battery has a structure in which the
[0005]
As a method of using the sealant, a method of applying the sealant using a dispenser or the like to a contact portion between the packing and other parts at the time of assembling the electrode, or applying the sealant in advance to the entire packing in a separate process and then assembling There is a way.
[0006]
Among them, the method of applying the sealant at the time of assembling the battery makes it easy to manage individual components, but complicates the process. In addition, the efficiency is low because the operation is performed for each part, and since there is a very small button-type battery having a diameter of about 4 mm, it is not easy to apply the liquid to this part during assembly.
[0007]
On the other hand, the method of applying the sealant to the packing in advance does not complicate the manufacturing method, but has the following problems. In other words, the simplest method of applying a sealant in this method is a dip method in which a part is immersed in a sealant solution, taken out, and then dried. On the other hand, there is a problem that it is difficult to uniformly apply a sealant to all parts. For example, the amount of application depends on how parts are placed or overlapped when immersed in a solution or dried, causing the liquid to drip before drying or to accumulate depending on the shape of the parts, causing poor coating. It becomes. In addition, since the parts adhere to each other after drying, it is necessary to remove the parts, which increases the number of steps and may damage the parts. In this way, defective products may be formed in a large number of products, and there is a possibility that a product which is more likely to leak than usual may be generated.
[0008]
[Problems to be solved by the invention]
By the way, among the batteries on the market, only button-type alkaline batteries use mercury, albeit in small quantities. In button-type alkaline batteries, if mercury is not added to zinc, the generation of hydrogen gas from zinc alloy powder and the negative electrode current collector will increase, causing problems such as battery swelling, liquid leakage, and significant performance degradation during storage. I do.
[0009]
In order to solve this problem, various countermeasures have been devised in the past. Among them, the surface portion of the negative electrode current collector that contacts the gelled negative electrode is made of a metal having a higher hydrogen overvoltage than zinc, such as indium or tin, for example. It has been proposed to coat to suppress generation of hydrogen gas from the negative electrode current collector. Above all, the plating by the electroless method is simple and highly effective because the plating is selectively performed only on the copper surface that comes into contact with the gel zinc after the formation of the negative electrode current collector.
[0010]
However, electroless plating has a rougher surface condition than electroplating, so that the electrolyte tends to creep up, and the alkaline electrolyte tends to leak from between the packing and the negative electrode current collector. In such a state, if the application of the sealant to the packing is not uniform as described above, the liquid leakage starts immediately from the defective bonding portion, and the problem is further increased.
The present invention has been made in view of the above circumstances, and has as its object to improve the leakage resistance of a button-type alkaline battery.
[0011]
[Means for Solving the Problems]
The present invention is an improvement on the packing of a button-type alkaline battery in order to achieve the above object, and in a method of manufacturing a button-type alkaline battery which is assembled using a synthetic resin packing to which a sealant has been applied in advance, The method of applying the sealant to the synthetic resin packing comprises spraying the sealant solution while rotating and flowing the synthetic resin packing, and simultaneously drying and solidifying the sealant on the synthetic resin packing surface by aerating dry air. Features.
[0012]
In order to spray a sealant solution by rotating and flowing a large number of packings, for example, a method of using a rotating drum, putting the packing therein, and spraying the sealant solution onto the flowing packings by spraying, etc. Be taken. The temperature-controlled air is supplied into the drum to immediately dry and solidify the coating liquid on the part.
[0013]
According to this method, the sprayed sealant dries immediately on the part compared to the conventional dipping method, so that dripping or pooling does not occur and gradually adheres little by little, so that the coating amount is uniform. Become. Also, there is no adhesion between parts. Further, the application amount can be easily controlled by adjusting the application time.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below.
(Example)
A polyamide resin was used as a sealant. That is, a polyamide resin was dissolved in a solvent (toluene + isopropyl alcohol) to prepare a 5% solution, which was used as a sealant solution.
[0015]
The above sealing agent solution was sprayed onto a nylon packing used for an LR44 type alkaline manganese battery as shown in FIG. 2 in a rotating drum (a Doria coater manufactured by Powrex Co., Ltd.). The sealant was dried and solidified in packing.
[0016]
(Comparative Example 1)
Next, the same polyamide resin was dissolved in the same solvent to prepare a 10% solution. The nylon packing for LR44 type alkaline manganese battery was immersed in this sealing agent solution, then taken out and dried with a hot-air drier to prepare a part of a comparative example. After the drying, the parts were adhered to each other, so that the loosening was necessary.
The following experiment was conducted in order to examine the change in the amount of the sealant adhered to the parts of the above-described example and the parts of the comparative example.
[0017]
The weight of each of the parts of the example and the comparative example was measured, and the adhesion amount of the sealant was measured from the weight of the parts before the application of the sealant.
Table 1 and FIG. 1 show the results. In FIG. 1, (a) shows the result of the example, and (b) shows the result of the comparative example 1.
[0018]
[Table 1]
[0019]
As is clear from the dispersion values in Table 1 and FIG. 1, the examples of the present invention have less variation in the amount of adhesion of the sealant and are more uniform than the comparative examples.
Next, mercury-free batteries were prepared as shown below using the respective parts of the above-mentioned Examples and Comparative Examples.
[0020]
As the packing, the nylon packings according to the above-described example and comparative example 1 were used. Next, a three-layer clad material of nickel-stainless-copper was formed into a negative electrode current collector also serving as a negative electrode case, and the copper surface was plated with tin by an electroless method. Using each of the above nylon packings and the negative electrode current collector, an LR44 type alkaline manganese battery as shown in FIG. 2 was prepared. The zinc negative electrode was composed of a non-melonized zinc alloy powder, an aqueous potassium hydroxide solution, polyacrylic acid, and an indium oxide and a perfluoroalkylpolyoxyethylene surfactant as additives for suppressing gas generation. Using. The positive electrode mixture used was formed by stirring and mixing electrolytic manganese dioxide and scale-like graphite and then molding. These were designated as Example batteries and Comparative Example 1 batteries.
[0021]
(Comparative Example 2)
The negative electrode current collector also serving as the negative electrode case was not tin-plated, but 3% calcined zinc alloy powder was used for the gelled zinc negative electrode. A manganese battery was made to be a comparative example 2 battery.
[0022]
A leak resistance test was performed using the prototype batteries of Example and Comparative Examples 1 and 2 prepared as described above. In the test method, 500 prototype batteries were stored in an environment of 45 ° C. and 93% RH, and the number of leaks on the 40th and 60th days was examined.
Table 2 shows the results of the leak resistance test.
[0023]
There is a clear difference between the battery of the example and the battery of the comparative example 1, and the battery of the example using the component according to the present invention has excellent liquid leakage resistance.
Further, since the battery of Comparative Example 2 does not have electroless tin plating applied to the cap, the electrolyte is less likely to spill over and is originally designed to be less likely to leak. However, when the parts of Comparative Example 1 were used, a small amount of liquid leakage occurred as shown in Table 2 because the amount of the applied sealant was not uniform. This shows a difference as the storage progresses. On the 60th day, the number of leaks increases in Comparative Example 2 as well, but no leak occurs in Examples.
Note that the present invention is not limited by the above-described embodiment.
[0024]
Elements that do not directly affect the present invention, such as the composition of the zinc alloy powder, may be changed without departing from the scope of the present invention.
Although the button-type alkaline manganese battery has been described in the above embodiment, the present invention is not limited to this, and is applicable to various button-type alkaline batteries using gel zinc as a negative electrode, such as a button-type silver oxide battery and an air zinc battery. Applicable.
[0025]
【The invention's effect】
As described above, according to the present invention, the sealant can be uniformly applied to the synthetic resin packing of the button-type alkaline battery, so that a button-type alkaline battery excellent in liquid leakage resistance can be provided.
[Brief description of the drawings]
FIG. 1A is a frequency graph of a sealant application amount according to an example of the present invention, and FIG.
FIG. 2 is a sectional view of an LR44 type alkaline manganese battery prepared in an example of the present invention.
FIG. 3 is a sectional view of a PR44 type zinc-air battery.
[Explanation of symbols]
1, 11: negative electrode current collector, 2, 12: gelled zinc negative electrode, 3, 13: separator, 4: liquid holding material, 5, 14: packing, 6: positive electrode mixture, 7, 16: positive electrode can, 15 ... air electrode, 17 ... Teflon film, 18 ... air diffusion paper.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02625997A JP3552866B2 (en) | 1997-02-10 | 1997-02-10 | Manufacturing method of button type alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02625997A JP3552866B2 (en) | 1997-02-10 | 1997-02-10 | Manufacturing method of button type alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10223184A JPH10223184A (en) | 1998-08-21 |
JP3552866B2 true JP3552866B2 (en) | 2004-08-11 |
Family
ID=12188278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02625997A Expired - Fee Related JP3552866B2 (en) | 1997-02-10 | 1997-02-10 | Manufacturing method of button type alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3552866B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6327148B2 (en) * | 2012-05-21 | 2018-05-23 | 株式会社スリーボンド | Non-aqueous electrolyte battery sealant composition |
CN107658396B (en) * | 2017-10-31 | 2023-05-02 | 宁波必霸能源有限公司 | Alkaline button cell sealing ring and alkaline button cell |
-
1997
- 1997-02-10 JP JP02625997A patent/JP3552866B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10223184A (en) | 1998-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7348096B2 (en) | Flexible thin printed battery and device and method of manufacturing same | |
US7695840B2 (en) | Electrochemical cell having a deposited gas electrode | |
JP2008258010A (en) | Manufacturing device for secondary battery electrode plate and its manufacturing method | |
JP3552866B2 (en) | Manufacturing method of button type alkaline battery | |
US20090220861A1 (en) | Method for producing alkaline battery, and alkaline battery | |
JP3522303B2 (en) | Button type alkaline battery | |
JP4196226B2 (en) | Mercury-free alkaline battery | |
CN110323368A (en) | A kind of zinc air button cell and preparation method thereof | |
JPH08222189A (en) | Cover metal plate for battery case, battery case, and battery | |
JP3997606B2 (en) | Secondary battery electrode plate and method for manufacturing the secondary battery electrode plate | |
JPH08222233A (en) | Alkaline button battery | |
JPH09283150A (en) | Alkaline battery and its negative current collector | |
JPS6063875A (en) | Paste type cadmium anode plate for sealed alkaline storage battery | |
JPS5846823B2 (en) | Alkaline battery manufacturing method | |
JP3594752B2 (en) | Air zinc button type battery | |
JPH0831428A (en) | Negative electrode collector and button alkaline battery using it | |
JP3470425B2 (en) | Manufacturing method of button type alkaline battery | |
JPS5832353A (en) | Manufacture of battery | |
JPS61135054A (en) | Manufacture of nickel electrode for alkaline secondary battery | |
JPH0785877A (en) | Button type alkaline battery | |
JP2001257001A (en) | Non-aqueous secondary battery and manufacturing method | |
JPS61273857A (en) | Manufacture of positive electrode for thin cell | |
JPS58201254A (en) | Manufacture of cadmium electrode for sealed alkaline storage battery | |
JPH07307158A (en) | Manganese dry battery | |
JPH0955195A (en) | Alkaline battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040427 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040427 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080514 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |