JPH0831428A - Negative electrode collector and button alkaline battery using it - Google Patents
Negative electrode collector and button alkaline battery using itInfo
- Publication number
- JPH0831428A JPH0831428A JP16387394A JP16387394A JPH0831428A JP H0831428 A JPH0831428 A JP H0831428A JP 16387394 A JP16387394 A JP 16387394A JP 16387394 A JP16387394 A JP 16387394A JP H0831428 A JPH0831428 A JP H0831428A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- current collector
- indium
- electrode current
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02E60/12—
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Primary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はボタン形アルカリ電池の
負極ケースを兼ねた負極集電体に係わり、さらに詳しく
は水素ガス発生の抑制及び貯蔵中の性能劣化を防止でき
る水銀無添加のボタン形アルカリ電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode current collector that also serves as a negative electrode case of a button type alkaline battery, and more specifically, a button type without mercury addition capable of suppressing generation of hydrogen gas and preventing performance deterioration during storage. Regarding alkaline batteries.
【0002】[0002]
【従来の技術】亜鉛を負極とするボタン形アルカリ電池
には、用途に応じて二酸化マンガン、酸化銀、あるいは
空気中の酸素を正極作用物質とする各種電池があり、こ
れら電池は、時計や補聴器、小型電子機器等へと需要が
拡大している。2. Description of the Related Art Button-type alkaline batteries having zinc as a negative electrode include various batteries having manganese dioxide, silver oxide, or oxygen in the air as a positive electrode acting substance according to the application. These batteries are used for watches and hearing aids. , The demand is expanding to small electronic devices.
【0003】従来、ボタン形に限らず亜鉛粉を負極とす
るアルカリ電池にはゲル状亜鉛負極中に水銀が添加され
ていた。この水銀は、亜鉛合金粉や負極集電体の表面を
覆い、それらの水素過電圧を高めて水素ガスの発生を抑
制していた。Conventionally, mercury is added to the gelled zinc negative electrode in alkaline batteries having zinc powder as the negative electrode, not limited to the button type. This mercury covered the surfaces of the zinc alloy powder and the negative electrode current collector, increased their hydrogen overvoltage, and suppressed the generation of hydrogen gas.
【0004】しかしながら、近年、生活環境への関心の
高まりの中で、少量とはいえ有害な水銀が電池中に含有
されていることが問題となってきており、水銀を添加し
ない電池の開発が望まれていた。However, in recent years, with increasing interest in the living environment, it has become a problem that a small amount of harmful mercury is contained in the battery, and the development of a battery without addition of mercury has become a problem. Was wanted.
【0005】ところが、電池に水銀を添加しなければ、
亜鉛合金粉や負極集電体からの水素ガスの発生が増大
し、電池の膨れや漏液、貯蔵中の大幅な性能劣化等の問
題が発生する。これらの問題を解決するために、インジ
ウム、ビスマス、鉛等を添加した腐食しにくい亜鉛合金
粉を使用したり、インジウム化合物、ビスマス化合物等
を腐食抑制剤としてゲル状亜鉛負極中に含有させたりし
ている。また、亜鉛合金粉の腐食を抑制する界面活性剤
をゲル状亜鉛負極中に添加することも提案されている。
これらの技術は、既に円筒形アルカリ乾電池では使わ
れ、水銀を添加しない電池が発売されている。However, unless mercury is added to the battery,
Generation of hydrogen gas from the zinc alloy powder and the negative electrode current collector increases, which causes problems such as battery swelling, liquid leakage, and drastic performance deterioration during storage. In order to solve these problems, a zinc alloy powder containing indium, bismuth, lead, etc., which is hard to corrode, is used, or an indium compound, a bismuth compound, etc. are contained in the gel zinc negative electrode as a corrosion inhibitor. ing. It has also been proposed to add a surfactant that suppresses corrosion of zinc alloy powder to the gelled zinc negative electrode.
These technologies have already been used in cylindrical alkaline dry batteries, and batteries containing no added mercury have been put on the market.
【0006】[0006]
【発明が解決しようとする課題】これに対してボタン形
アルカリ電池では、円筒形アルカリ乾電池と同様の技術
をそのまま適用しても水素ガスの発生を抑制することは
不十分で、電池の膨れや漏液等の問題を生じてしまう。
これは、円筒形アルカリ乾電池では発生した水素ガスを
ある程度受けとめられるスペースがあるが、ボタン形ア
ルカリ電池にはこのようなスペースが無く、電池内部の
水素ガスの発生がほとんど許されないためである。従っ
て、ボタン形アルカリ電池では円筒形アルカリ乾電池以
上に水素ガス発生を抑制する必要がある。On the other hand, in the button type alkaline battery, even if the same technique as that of the cylindrical alkaline dry battery is applied as it is, it is not sufficient to suppress the generation of hydrogen gas and the swelling of the battery and the Problems such as liquid leakage will occur.
This is because the cylindrical alkaline dry battery has a space for receiving the generated hydrogen gas to some extent, but the button alkaline battery does not have such a space and almost no generation of hydrogen gas inside the battery is allowed. Therefore, in the button type alkaline battery, it is necessary to suppress the generation of hydrogen gas more than in the cylindrical alkaline dry battery.
【0007】ところで、インジウム化合物や界面活性剤
の含有量を増やせば、水素ガスの抑制の効果は大きくな
るが、電池性能に影響を及ぼしてしまい、特に界面活性
剤を多量に添加すると、電池の電気特性や放電性能を大
きく悪化させる要因となってしまう。By the way, when the content of the indium compound or the surfactant is increased, the effect of suppressing the hydrogen gas is increased, but the battery performance is affected. Particularly, when a large amount of the surfactant is added, the battery performance is improved. It becomes a factor that significantly deteriorates the electrical characteristics and the discharge performance.
【0008】さらに具合の悪いことには、これらの技術
により亜鉛合金粉からの水素ガスの発生が抑制できて
も、負極集電体からの水素ガスの発生を抑制することは
あまり期待できない。ボタン形アルカリ電池では負極集
電体からのガス発生も大きな問題であり、これを抑制す
ることも必須である。To make matters worse, even if the generation of hydrogen gas from the zinc alloy powder can be suppressed by these techniques, the generation of hydrogen gas from the negative electrode current collector cannot be expected so much. In button-type alkaline batteries, gas generation from the negative electrode current collector is also a big problem, and it is also essential to suppress it.
【0009】そこで、負極集電体のゲル状亜鉛負極と接
触する表面部分を、たとえばインジウムやスズ等の亜鉛
より水素過電圧の高い金属で被覆して、負極集電体から
の水素ガスの発生を抑制することが提案されている。し
かし、負極集電体にインジウムを被覆するとアルカリ電
解液が這い上りやすくなるため、ガスケットと負極集電
体の間からアルカリ電解液が漏液しやすくなってしま
う。スズはインジウムよりはアルカリ電解液の這い上り
が少ないが、負極集電体に被覆する方法として、容易で
ある電気メッキや無電解メッキを用いると、表面状態に
よりアルカリ電解液が這い上り易くなる傾向があり、や
はりガスケットと負極集電体の間からアルカリ電解液が
漏液しやすくなってしまうという問題がある。Therefore, the surface portion of the negative electrode current collector that comes into contact with the gelled zinc negative electrode is coated with a metal having a higher hydrogen overvoltage than zinc, such as indium or tin, to prevent generation of hydrogen gas from the negative electrode current collector. It has been proposed to suppress. However, when the negative electrode current collector is coated with indium, the alkaline electrolyte solution easily crawls up, so that the alkaline electrolyte solution easily leaks from between the gasket and the negative electrode current collector. Although tin does not creep up more than alkaline electrolyte than indium, when electroplating or electroless plating is used as a method for coating the negative electrode current collector, the alkaline electrolyte tends to creep up easily depending on the surface condition. However, there is a problem that the alkaline electrolyte is likely to leak from between the gasket and the negative electrode current collector.
【0010】また、インジウム又はスズの被覆方法とし
ては、電気メッキ、溶融メッキ、無電解メッキ等が有る
が、溶融メッキは、インジウム被膜を薄く制御すること
が難しいので、前述のように電気メッキあるいは無電解
メッキとなる。電気メッキの場合、メッキしない部分に
マスキングが必要で、成形加工後の負極集電体へのマス
キングは複雑になるので、予めインジウム又はスズを被
覆した材料を成形加工する方法が容易である。しかし、
成形加工でメッキされた表面が傷ついたり、異物の付着
等が発生しやすく水素ガス発生の原因となりかねない。
反面、無電解メッキであれば成形加工後の負極集電体の
銅面に選択的にメッキされ、傷や異物も被覆することが
でき、メッキ後に異物が付着する可能性も少なく有利で
あるが、メッキを厚くすることが難しいため、水素ガス
発生の抑制効果が電気メッキに比べ、小さくなる可能性
がある。Further, as a method of coating indium or tin, there are electroplating, hot dipping, electroless plating and the like. However, in hot dipping, it is difficult to control the thickness of the indium coating thinly. It becomes electroless plating. In the case of electroplating, it is necessary to mask the non-plated portion and the masking of the negative electrode current collector after the molding process becomes complicated. Therefore, the method of molding the material previously coated with indium or tin is easy. But,
The plated surface may be scratched during the molding process, and foreign matter may easily adhere to it, which may cause generation of hydrogen gas.
On the other hand, electroless plating is advantageous because it can be selectively plated on the copper surface of the negative electrode current collector after molding to cover scratches and foreign matter, and there is little possibility that foreign matter will adhere after plating. Since it is difficult to thicken the plating, the effect of suppressing the generation of hydrogen gas may be smaller than that of electroplating.
【0011】本発明は、上記問題を解決するためになさ
れたもので、その目的はボタン形アルカリ電池の負極ケ
ースを兼ねた負極集電体に関し、水銀を添加しないボタ
ン形アルカリ電池に使用しても水素ガスの発生を抑制で
き、かつ貯蔵中の性能劣化を防止できる負極集電体を有
する高性能なボタン形アルカリ電池を提供することにあ
る。The present invention has been made to solve the above problems, and its object is to provide a negative electrode current collector which also serves as a negative electrode case of a button type alkaline battery, and which is used in a button type alkaline battery containing no added mercury. Another object of the present invention is to provide a high-performance button-type alkaline battery having a negative electrode current collector capable of suppressing generation of hydrogen gas and preventing performance deterioration during storage.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するた
め、本発明の請求項1は、亜鉛合金、アルカリ電解液お
よびゲル化剤で構成されるゲル状亜鉛負極を有するボタ
ン形アルカリ電池の負極ケースを兼ねた負極集電体であ
って、少なくともゲル状亜鉛負極と接触する表面部分に
インジウム又はスズが存在し、さらに少なくともガスケ
ットとの接触部分に撥水処理剤を塗布したことを特徴と
する。To achieve the above object, the first aspect of the present invention provides a negative electrode for a button type alkaline battery having a gelled zinc negative electrode composed of a zinc alloy, an alkaline electrolyte and a gelling agent. A negative electrode current collector that also serves as a case, characterized in that indium or tin is present at least on the surface portion in contact with the gelled zinc negative electrode, and a water repellent agent is applied to at least the contact portion with the gasket. .
【0013】本発明の請求項2は、前記負極ケースを兼
ねた負極集電体は、ニッケル−ステンレス−銅又はニッ
ケル−鉄−銅の3層クラッド材で構成されており、前記
銅面へインジウム又はスズを無電解メッキで被覆した
後、撥水処理剤を塗布し、撥水処理剤塗布工程及び洗浄
工程での乾燥を90℃以下で行なっていることを特徴と
する。According to a second aspect of the present invention, the negative electrode current collector also serving as the negative electrode case is composed of a three-layer clad material of nickel-stainless-copper or nickel-iron-copper, and indium is added to the copper surface. Alternatively, the method is characterized in that after coating tin with electroless plating, a water repellent treatment agent is applied, and drying in the water repellent treatment agent applying step and the washing step is performed at 90 ° C. or lower.
【0014】本発明の請求項3のボタン形アルカリ電池
は、請求項1又は請求項2記載のボタン形アルカリ電池
用負極集電体を使用し、前記ゲル状亜鉛負極中に亜鉛合
金粉に対してインジウムとして0.01〜0.1wt%
のインジウム化合物及びアルカリ電解液中で安定な界面
活性剤0.01wt%以下を含有することを特徴とす
る。A button type alkaline battery according to claim 3 of the present invention uses the negative electrode current collector for a button type alkaline battery according to claim 1 or 2, and uses zinc alloy powder in the gel zinc negative electrode. 0.01 to 0.1 wt% as indium
The indium compound and the surfactant which is stable in an alkaline electrolyte are contained in an amount of 0.01 wt% or less.
【0015】[0015]
【作用】本発明の負極集電体を備えたボタン形アルカリ
電池の作用機構は、必ずしも明かでないが、次のように
推察される。負極集電体のゲル状亜鉛負極と接触する表
面部分に被覆されたインジウム又はスズは、負極集電体
の水素過電圧を高くし、水素ガスの発生を抑制する。イ
ンジウムやスズは銅に対して内部に拡散しやすく、温度
が高いほどその傾向は強いため、洗浄工程や撥水処理剤
塗布工程での乾燥を高温で行なうと、インジウムやスズ
が銅内部に拡散して水素ガス発生の抑制効果が小さくな
ってしまう。そこで、乾燥温度を抑制すればインジウム
やスズの拡散が防げる。これはメッキを厚くすることが
出来ない無電解メッキでは特に有効であり、乾燥温度が
90℃以下であれば水素ガス発生の抑制効果は保たれ
る。The mechanism of operation of the button type alkaline battery provided with the negative electrode current collector of the present invention is not necessarily clear, but it is presumed as follows. The indium or tin coated on the surface portion of the negative electrode current collector that is in contact with the gelled zinc negative electrode increases the hydrogen overvoltage of the negative electrode current collector and suppresses the generation of hydrogen gas. Indium and tin easily diffuse into copper, and the higher the temperature, the stronger the tendency.Therefore, if drying is performed at high temperature in the washing process and water repellent treatment process, indium and tin diffuse into the copper. As a result, the effect of suppressing the generation of hydrogen gas becomes small. Therefore, if the drying temperature is suppressed, the diffusion of indium and tin can be prevented. This is particularly effective in electroless plating in which plating cannot be made thick, and the effect of suppressing hydrogen gas generation is maintained if the drying temperature is 90 ° C. or lower.
【0016】また負極集電体に塗布された撥水処理剤
は、ガスケットと負極集電体の間にアルカリ電解液が進
入するのを妨げ、漏液するのを防ぐ。そのため、少なく
ともガスケットと負極集電体の接触部分に塗布されてい
れば効果は発揮される。The water repellent agent applied to the negative electrode current collector prevents the alkaline electrolyte from entering between the gasket and the negative electrode current collector, and prevents the liquid from leaking. Therefore, the effect is exhibited if it is applied to at least the contact portion between the gasket and the negative electrode current collector.
【0017】一方、ゲル状亜鉛負極中に含有されるイン
ジウム化合物及びアルカリ電解液に安定な界面活性剤
は、亜鉛合金粉の腐食による水素ガスの発生を抑制する
ものである。ゲル状亜鉛負極中において、インジウム化
合物は徐々に電解液に溶解してインジウムイオンとな
り、それらが亜鉛合金粉にふれてインジウムとして表面
に析出し、亜鉛合金粉の水素過電圧を高くして腐食しに
くくする。界面活性剤は、亜鉛合金粉の表面を覆い電解
液との接触を制限して、腐食しにくくしている。On the other hand, the indium compound contained in the gelled zinc negative electrode and the surfactant stable in the alkaline electrolyte suppress generation of hydrogen gas due to corrosion of the zinc alloy powder. In the gel zinc negative electrode, the indium compound gradually dissolves in the electrolytic solution to form indium ions, which are then deposited on the surface as indium by touching the zinc alloy powder, increasing the hydrogen overvoltage of the zinc alloy powder and making it less likely to corrode. To do. The surface-active agent covers the surface of the zinc alloy powder and limits the contact with the electrolytic solution to prevent corrosion.
【0018】ボタン形アルカリ電池では、インジウム化
合物と界面活性剤のうち、どちらか一方のみを含有した
のではガス発生抑制の効果が不十分であり、両者を適量
含有することで、より大きな効果が得られる。インジウ
ム化合物の含有量は、亜鉛合金粉に対してインジウムと
して0.01〜0.1wt%に限定され、0.01wt
%より少ないとガス発生抑制の効果が発揮されず、0.
1wt%より多いと電池性能への影響が大きく、放電性
能等が悪化する。また、界面活性剤の含有量は亜鉛合金
粉に対して0.01wt%以下に限定され、0.01w
t%より多く含有した場合、亜鉛合金粉の表面に多量に
付着し、電気特性や放電性能に大きな悪影響を与えるば
かりか、インジウム化合物の水素ガス抑制機構も阻害
し、効果が充分発揮されないため、かえって水素ガス発
生が増加してしまう。また、ゲル状亜鉛負極中のインジ
ウム化合物は、亜鉛合金粉同士等の接触を良好にし、電
池の内部抵抗を低減させる働きもする。これは、界面活
性剤の添加により少なからず起こる放電性能への悪影響
を補い、より性能を向上させるものである。In the button type alkaline battery, the effect of suppressing the gas generation is insufficient if only one of the indium compound and the surfactant is contained, and a larger effect can be obtained by containing an appropriate amount of both. can get. The content of the indium compound is limited to 0.01 to 0.1 wt% as indium with respect to the zinc alloy powder, and 0.01 wt%
%, The effect of suppressing gas generation is not exhibited and
If it is more than 1 wt%, the battery performance is greatly affected and the discharge performance and the like deteriorate. Further, the content of the surfactant is limited to 0.01 wt% or less with respect to the zinc alloy powder, and 0.01 w
If the content is more than t%, a large amount adheres to the surface of the zinc alloy powder, which not only has a great adverse effect on electrical characteristics and discharge performance, but also inhibits the hydrogen gas suppressing mechanism of the indium compound, and the effect is not sufficiently exerted. On the contrary, hydrogen gas generation will increase. In addition, the indium compound in the gelled zinc negative electrode also functions to improve the contact between zinc alloy powders and the like and reduce the internal resistance of the battery. This compensates for the adverse effect on the discharge performance that occurs not a little due to the addition of the surfactant, and further improves the performance.
【0019】[0019]
【実施例】以下、本発明の実施例を具体的に説明する。 (実施例1)ニッケル−ステンレス−銅の3層クラッド
材を、図1に示すようなLR44型アルカリマンガン電
池に使用する負極ケースを兼ねた負極集電体に成形し
た。この負極集電体の銅面に無電解メッキでインジウム
を被覆した後、全面にシリコン系撥水処理剤を塗布し
た。洗浄工程や撥水処理剤塗布工程での乾燥は80℃で
行なった。EXAMPLES Examples of the present invention will be specifically described below. (Example 1) A three-layer clad material of nickel-stainless-copper was molded into a negative electrode current collector which also served as a negative electrode case used in an LR44 type alkaline manganese battery as shown in FIG. The copper surface of this negative electrode current collector was coated with indium by electroless plating, and then the entire surface was coated with a silicon water repellent agent. Drying in the washing step and the water repellent treatment agent applying step was performed at 80 ° C.
【0020】一方、アルミニウム,インジウム,ビスマ
スを含有する亜鉛合金粉、35wt%水酸化カリウム水
溶液、ポリアクリル酸、亜鉛合金粉に対してインジウム
として0.01wt%の酸化インジウム及び亜鉛合金粉
に対して0.003wt%のパーフルオロアルキルポリ
オキシエチレン系の界面活性剤を撹拌混合してゲル状亜
鉛負極を調製した。また、電解二酸化マンガン及び鱗状
黒煙を撹拌混合後、成形して正極合剤を調製した。On the other hand, zinc alloy powder containing aluminum, indium and bismuth, 35 wt% potassium hydroxide aqueous solution, polyacrylic acid, zinc alloy powder 0.01 wt% indium oxide as indium oxide and zinc alloy powder A gel type zinc negative electrode was prepared by stirring and mixing 0.003 wt% perfluoroalkyl polyoxyethylene-based surfactant. In addition, electrolytic manganese dioxide and scaly black smoke were stirred and mixed, and then molded to prepare a positive electrode mixture.
【0021】上記負極集電体とゲル状亜鉛負極及び正極
合剤を用いて、図1に示すようなLR44型アルカリマ
ンガン電池を作製した。同図において、1は負極ケース
を兼ねた負極集電体であり、この負極集電体1の内側に
ゲル状亜鉛負極2があり、さらに液保持材4とセパレー
タ3を介して正極合剤6が配置されている。この亜鉛負
極2、液保持材4、セパレータ3および正極合剤6を包
むように、かつ亜鉛負極2との間にガスケット5を配し
て正極ケース7を液密に取り付ける。図2は、図1のA
部分の拡大図であり、ニッケル−ステンレス−銅の3層
クラッド材の銅面にインジウムまたはスズが被覆されて
いる。An LR44 type alkaline manganese battery as shown in FIG. 1 was prepared using the above negative electrode current collector, gelled zinc negative electrode and positive electrode mixture. In FIG. 1, reference numeral 1 denotes a negative electrode current collector that also serves as a negative electrode case, a gelled zinc negative electrode 2 is present inside the negative electrode current collector 1, and a positive electrode mixture 6 is provided via a liquid holding material 4 and a separator 3. Are arranged. A gasket 5 is arranged so as to enclose the zinc negative electrode 2, the liquid holding material 4, the separator 3 and the positive electrode mixture 6, and a gasket 5 is arranged between the zinc negative electrode 2 and the positive electrode case 7 to be liquid-tightly attached. FIG. 2 shows A of FIG.
FIG. 6 is an enlarged view of a portion, in which a copper surface of a nickel-stainless-copper three-layer clad material is coated with indium or tin.
【0022】(実施例2)酸化インジウムの含有量が亜
鉛合金粉に対してインジウムとして0.05wt%であ
ること以外は、実施例1と同様にしてLR44型アルカ
リマンガン電池を作製した。(Example 2) An LR44 type alkaline manganese battery was produced in the same manner as in Example 1 except that the content of indium oxide was 0.05 wt% as indium based on the zinc alloy powder.
【0023】(実施例3)酸化インジウムの含有量が亜
鉛合金粉に対してインジウムとして0.1wt%である
こと以外は、実施例1と同様にしてLR44型アルカリ
マンガン電池を作製した。(Example 3) An LR44 type alkaline manganese battery was produced in the same manner as in Example 1 except that the content of indium oxide was 0.1 wt% as indium with respect to the zinc alloy powder.
【0024】(実施例4)パーフルオロアルキルポリオ
キシエチレン系の界面活性剤の含有量が、亜鉛合金粉に
対して0.001wt%であること以外は、実施例2と
同様にしてLR44型アルカリマンガン電池を作製し
た。Example 4 An LR44 type alkali was prepared in the same manner as in Example 2 except that the content of the perfluoroalkylpolyoxyethylene-based surfactant was 0.001 wt% based on the zinc alloy powder. A manganese battery was produced.
【0025】(実施例5)パーフルオロアルキルポリオ
キシエチレン系の界面活性剤の含有量が、亜鉛合金粉に
対して0.005wt%であること以外は、実施例2と
同様にしてLR44型アルカリマンガン電池を作製し
た。Example 5 An LR44 type alkali was prepared in the same manner as in Example 2 except that the content of the perfluoroalkylpolyoxyethylene-based surfactant was 0.005 wt% based on the zinc alloy powder. A manganese battery was produced.
【0026】(実施例6)パーフルオロアルキルポリオ
キシエチレン系の界面活性剤の含有量が、亜鉛合金粉に
対して0.01wt%であること以外は、実施例2と同
様にしてLR44型アルカリマンガン電池を作製した。Example 6 An LR44 type alkali was prepared in the same manner as in Example 2 except that the content of the perfluoroalkylpolyoxyethylene-based surfactant was 0.01 wt% with respect to the zinc alloy powder. A manganese battery was produced.
【0027】(実施例7)負極集電体に無電解メッキで
スズを被覆した以外は、実施例1と同様にしてLR44
型アルカリマンガン電池を作製した。Example 7 LR44 was carried out in the same manner as in Example 1 except that the negative electrode current collector was coated with tin by electroless plating.
Type alkaline manganese battery was prepared.
【0028】(実施例8)負極集電体に無電解メッキで
スズを被覆した以外は、実施例3と同様にしてLR44
型アルカリマンガン電池を作製した。(Example 8) LR44 was carried out in the same manner as in Example 3 except that the negative electrode current collector was coated with tin by electroless plating.
Type alkaline manganese battery was prepared.
【0029】(実施例9)負極集電体に無電解メッキで
スズを被覆した以外は、実施例2と同様にしてLR44
型アルカリマンガン電池を作製した。Example 9 LR44 was carried out in the same manner as in Example 2 except that the negative electrode current collector was coated with tin by electroless plating.
Type alkaline manganese battery was prepared.
【0030】(実施例10)負極集電体に無電解メッキ
でスズを被覆した以外は、実施例6と同様にしてLR4
4型アルカリマンガン電池を作製した。次に、上記した
本発明の実施例と比較するための各種比較例を下記のよ
うに作製した。Example 10 LR4 was carried out in the same manner as in Example 6 except that the negative electrode current collector was coated with tin by electroless plating.
A 4-type alkaline manganese battery was produced. Next, various comparative examples for comparison with the above-described examples of the present invention were prepared as follows.
【0031】(比較例1)酸化インジウムの含有量が亜
鉛合金粉に対してインジウムとして0.005wt%で
あること以外は、実施例1と同様にしてLR44型アル
カリマンガン電池を作製した。Comparative Example 1 An LR44 type alkaline manganese battery was produced in the same manner as in Example 1 except that the content of indium oxide was 0.005 wt% as indium based on the zinc alloy powder.
【0032】(比較例2)酸化インジウムの含有量が亜
鉛合金粉に対してインジウムとして0.2wt%である
こと以外は、実施例1と同様にしてLR44型アルカリ
マンガン電池を作製した。Comparative Example 2 An LR44 type alkaline manganese battery was prepared in the same manner as in Example 1 except that the content of indium oxide was 0.2 wt% as indium based on the zinc alloy powder.
【0033】(比較例3)パーフルオロアルキルポリオ
キシエチレン系の界面活性剤の含有量が、0.015w
t%である以外は、実施例2と同様にしてLR44型ア
ルカリマンガン電池を作製した。(Comparative Example 3) The content of the perfluoroalkylpolyoxyethylene-based surfactant was 0.015w.
An LR44 type alkaline manganese battery was produced in the same manner as in Example 2 except that the amount was t%.
【0034】(比較例4)ゲル状亜鉛負極中に界面活性
剤を含有してしないこと以外は、実施例3と同様にして
LR44型アルカリマンガン電池を作製した。Comparative Example 4 An LR44 type alkaline manganese battery was prepared in the same manner as in Example 3 except that the gelled zinc negative electrode did not contain a surfactant.
【0035】(比較例5)ゲル状亜鉛負極中にインジウ
ム化合物を含有してしないこと以外は、実施例5と同様
にしてLR44型アルカリマンガン電池を作製した。Comparative Example 5 An LR44 type alkaline manganese battery was produced in the same manner as in Example 5, except that the gelled zinc negative electrode did not contain an indium compound.
【0036】(比較例6)ニッケル−ステンレス−銅の
3層クラッド材を負極集電体に成形した後、何も被覆せ
ずにそのまま使用した以外は、実施例2と同様にしてL
R44型アルカリマンガン電池を作製した。Comparative Example 6 L was prepared in the same manner as in Example 2 except that a nickel-stainless-copper three-layer clad material was molded into a negative electrode current collector and used as it was without any coating.
An R44 type alkaline manganese battery was produced.
【0037】(比較例7)酸化インジウムの含有量が亜
鉛合金粉に対してインジウムとして0.1wt%、パー
フルオロアルキルポリオキシエチレン系の界面活性剤の
含有量が亜鉛合金粉に対して0.01wt%であること
以外は、比較例6と同様にしてLR44型アルカリマン
ガン電池を作製した。(Comparative Example 7) The content of indium oxide was 0.1 wt% as indium based on the zinc alloy powder, and the content of perfluoroalkyl polyoxyethylene-based surfactant was 0.1% based on the zinc alloy powder. An LR44 type alkaline manganese battery was produced in the same manner as in Comparative Example 6 except that the content was 01 wt%.
【0038】(比較例8)インジウム化合物及びパーフ
ルオロアルキルポリオキシエチレン系の界面活性剤をゲ
ル状亜鉛負極中に含有しないこと以外は、実施例1と同
様にしてLR44型アルカリマンガン電池を作製した。(Comparative Example 8) An LR44 type alkaline manganese battery was prepared in the same manner as in Example 1 except that the indium compound and the perfluoroalkylpolyoxyethylene-based surfactant were not contained in the gelled zinc negative electrode. .
【0039】(比較例9)ニッケル−ステンレス−銅の
3層クラッド材を負極集電体に成形した後、何も被覆せ
ずにそのまま使用した以外は、比較例8と同様にしてL
R44型アルカリマンガン電池を作製した。Comparative Example 9 L was prepared in the same manner as in Comparative Example 8 except that a nickel-stainless-copper three-layer clad material was molded into a negative electrode current collector and used as it was without any coating.
An R44 type alkaline manganese battery was produced.
【0040】(比較例10)ニッケル−ステンレス−銅
の3層クラッド材を成形した負極集電体に、無電解メッ
キでインジウムを被覆する際に洗浄工程及び撥水処理剤
塗布工程での乾燥温度を120℃とした以外は、実施例
2と同様にしてLR44型アルカリマンガン電池を作製
した。(Comparative Example 10) Drying temperature in a washing step and a water repellent treatment agent coating step when indium is coated on a negative electrode current collector formed by molding a nickel-stainless-copper three-layer clad material by electroless plating. An LR44 type alkaline manganese battery was produced in the same manner as in Example 2 except that the temperature was set to 120 ° C.
【0041】(比較例11)ニッケル−ステンレス−銅
の3層クラッド材を成形した負極集電体に、無電解メッ
キでインジウムを被覆する際に洗浄工程及び撥水処理剤
塗布工程での乾燥温度を150℃とした以外は、実施例
2と同様にしてLR44型アルカリマンガン電池を作製
した。(Comparative Example 11) Drying temperature in a washing step and a water repellent treatment agent applying step when indium is coated on a negative electrode current collector formed of a nickel-stainless-copper three-layer clad material by electroless plating. A LR44 type alkaline manganese battery was produced in the same manner as in Example 2 except that the temperature was set to 150 ° C.
【0042】(比較例12)ニッケル−ステンレス−銅
の3層クラッド材を成形した負極集電体に、無電解メッ
キでスズを被覆する際に洗浄工程及び撥水処理剤塗布工
程での乾燥温度を120℃とした以外は、実施例9と同
様にしてLR44型アルカリマンガン電池を作製した。(Comparative Example 12) Drying temperature in a washing step and a water repellent treatment agent applying step when a negative electrode current collector formed by molding a nickel-stainless-copper three-layer clad material is coated with tin by electroless plating. An LR44 type alkaline manganese battery was produced in the same manner as in Example 9 except that the temperature was set to 120 ° C.
【0043】(比較例13)ニッケル−ステンレス−銅
の3層クラッド材を成形した負極集電体に、無電解メッ
キでスズを被覆する際に洗浄工程及び撥水処理剤塗布工
程での乾燥温度を150℃とした以外は、実施例9と同
様にしてLR44型アルカリマンガン電池を作製した。(Comparative Example 13) Drying temperature in a washing step and a water repellent treatment agent coating step when a negative electrode current collector formed by molding a nickel-stainless-copper three-layer clad material is coated with tin by electroless plating. A LR44 type alkaline manganese battery was produced in the same manner as in Example 9 except that the temperature was set to 150 ° C.
【0044】(比較例14)ニッケル−ステンレス−銅
の3層クラッド材を成形した負極集電体に、無電解メッ
キでスズを被覆した後、撥水処理剤を塗布しなかった以
外は、実施例9と同様にしてLR44型アルカリマンガ
ン電池を作製した。(Comparative Example 14) A comparative example was carried out except that a negative electrode current collector formed by molding a nickel-stainless-copper three-layer clad material was coated with tin by electroless plating and then no water repellent agent was applied. An LR44 type alkaline manganese battery was produced in the same manner as in Example 9.
【0045】(比較例15)ニッケル−ステンレス−銅
の3層クラッド材を成形した負極集電体に、無電解メッ
キでインジウムを被覆した後、撥水処理剤を塗布しなか
った以外は、実施例2と同様にしてLR44型アルカリ
マンガン電池を作製した。(Comparative Example 15) A comparative example was carried out except that a negative electrode current collector formed by molding a nickel-stainless-copper three-layer clad material was coated with indium by electroless plating and then no water repellent treatment was applied. An LR44 type alkaline manganese battery was produced in the same manner as in Example 2.
【0046】(比較例16)ニッケル−ステンレス−銅
の3層クラッド材を成形した負極集電体に、何も被覆せ
ずに、撥水処理剤を塗布した以外は、実施例2と同様に
してLR44型アルカリマンガン電池を作製した。(Comparative Example 16) The procedure of Example 2 was repeated, except that the negative electrode current collector formed by molding the nickel-stainless-copper three-layer clad material was coated with the water repellent agent without any coating. Thus, an LR44 type alkaline manganese battery was produced.
【0047】(比較例17)亜鉛合金粉が鉛を含有し、
3%汞化したものである以外は、比較例9と同様にして
LR44型アルカリマンガン電池を作製した。以上のよ
うに作製した実施例及び比較例の各試作電池を使用し、
各種評価試験を行なった。この各種評価試験は、耐漏液
試験は50個、他の試験は20個の平均値である。(Comparative Example 17) A zinc alloy powder contains lead,
An LR44 type alkaline manganese battery was produced in the same manner as in Comparative Example 9 except that the LR44 type was changed to 3%. Using each prototype battery of the example and the comparative example produced as described above,
Various evaluation tests were conducted. In these various evaluation tests, the leak resistance test is an average value of 50 and the other tests are average values of 20.
【0048】以下、各種評価試験方法とその結果につい
て説明する。第1に、実施例1〜10、比較例1〜9及
び比較例17の各試作電池について、電池総高、開路電
圧及び内部抵抗を測定した。また1.3kΩ連続放電の
1.2Vまでの放電持続時間を測定し、各実施例の放電
性能を調査した。さらに、60℃で40日間貯蔵した
後、電池総高変化と開路電圧の劣化を測定するととも
に、1.3kΩ連続放電を行ない、放電性能の劣化を調
査した。これら60℃貯蔵による変化量は、電池内部で
の水素ガスの発生量と相関し、変化量が小さいほど水素
ガスの発生量は少ない。この結果を表1に示す。Hereinafter, various evaluation test methods and their results will be described. First, the total battery height, open circuit voltage, and internal resistance of the prototype batteries of Examples 1 to 10, Comparative Examples 1 to 9, and Comparative Example 17 were measured. In addition, the discharge duration of 1.3 kΩ continuous discharge up to 1.2 V was measured to investigate the discharge performance of each example. Furthermore, after being stored at 60 ° C. for 40 days, the change in the total height of the battery and the deterioration of the open circuit voltage were measured, and 1.3 kΩ continuous discharge was performed to investigate the deterioration of the discharge performance. The amount of change due to storage at 60 ° C. correlates with the amount of hydrogen gas generated inside the battery, and the smaller the amount of change, the smaller the amount of hydrogen gas generated. Table 1 shows the results.
【0049】[0049]
【表1】 [Table 1]
【0050】表1から明らかなように、実施例1〜3,
7,8及び比較例1,2によれば、インジウム化合物の
ゲル状亜鉛負極中の含有量は0.01〜0.1wt%が
妥当であり、この範囲からはずれた場合、水素ガス発生
の抑制が不十分であったり、放電性能に悪影響を与えた
りする。As is clear from Table 1, Examples 1-3,
According to Nos. 7 and 8 and Comparative Examples 1 and 2, the content of the indium compound in the gelled zinc negative electrode is appropriate to be 0.01 to 0.1 wt%, and when deviating from this range, the generation of hydrogen gas is suppressed. Is insufficient, or the discharge performance is adversely affected.
【0051】また、実施例4〜6,9,10及び比較例
3によれば、アルカリ電解液中で安定な界面活性剤のゲ
ル状亜鉛負極中の含有量は0.01wt%以下が妥当で
あり、この範囲からはずれた場合、放電性能を著しく悪
化させる。Further, according to Examples 4 to 6, 9 and 10 and Comparative Example 3, it is appropriate that the content of the surfactant stable in the alkaline electrolyte in the gelled zinc negative electrode is 0.01 wt% or less. If it is out of this range, the discharge performance is significantly deteriorated.
【0052】さらに、比較例4〜9によれば、ゲル状亜
鉛負極中へのインジウム化合物の含有、ゲル状亜鉛負極
中への界面活性剤の含有、負極集電体のゲル状亜鉛負極
と接触する部分へのインジウム又はスズの被覆のいずれ
が欠けた場合にも、本発明の目的は達成されず、水素ガ
ス発生の抑制が不十分となり電池総高の増加や、放電性
能の大幅な劣化を起こす。Further, according to Comparative Examples 4 to 9, inclusion of an indium compound in the gel zinc negative electrode, inclusion of a surfactant in the gel zinc negative electrode, and contact with the gel zinc negative electrode of the negative electrode current collector. When any of the coating of indium or tin on the portion to be damaged is lacking, the object of the present invention is not achieved, the suppression of hydrogen gas generation is insufficient, the total battery height is increased, and the discharge performance is significantly deteriorated. Wake up.
【0053】第2に、実施例2,9と比較例10〜13
及び比較例17の各試作電池を使用し前述と同様の試験
を行ない、負極集電体の洗浄工程及び撥水処理剤塗布工
程における、乾燥温度の水素ガス発生量への影響を調
べ、この結果を表2に示す。Second, Examples 2 and 9 and Comparative Examples 10 to 13
And the same test as described above was performed using each prototype battery of Comparative Example 17, and the influence of the drying temperature on the hydrogen gas generation amount in the washing process of the negative electrode current collector and the water repellent treatment agent applying process was examined. Is shown in Table 2.
【0054】[0054]
【表2】 [Table 2]
【0055】表2によれば、洗浄工程や撥水処理剤塗布
工程での乾燥温度が80℃である実施例に対して、乾燥
温度が90℃を越える比較例10〜13は明らかに貯蔵
による性能劣化が進んでおり、乾燥温度が高いほどその
傾向は強い。According to Table 2, Comparative Examples 10 to 13 in which the drying temperature is higher than 90 ° C. are obviously due to storage, compared with the Examples in which the drying temperature in the washing process and the water repellent treatment agent applying process is 80 ° C. Performance deterioration is progressing, and the higher the drying temperature, the stronger the tendency.
【0056】第3に、実施例2,9と比較例14〜16
及び比較例17の各試作電池を、60℃−93%RHで
貯蔵し、高温高湿下での耐漏液性試験を行ない、負極集
電体への撥水処理剤塗布の効果を調べた。電池内部での
水素ガスの発生が多ければ耐漏液性は悪くなるが、負極
集電体を電解液が這い上がりやすければ、水素ガスの発
生が少なくてもガスケットと負極集電体の間から漏液す
る。この結果を表3に示す。Third, Examples 2 and 9 and Comparative Examples 14 to 16
Each prototype battery of Comparative Example 17 was stored at 60 ° C.-93% RH, and a leak resistance test under high temperature and high humidity was conducted to examine the effect of applying the water repellent treatment agent to the negative electrode current collector. If the amount of hydrogen gas generated inside the battery is large, the resistance to liquid leakage will be poor, but if the electrolyte easily crawls over the negative electrode current collector, even if the amount of hydrogen gas generated is small, leakage will occur from between the gasket and the negative electrode current collector. To liquidate. The results are shown in Table 3.
【0057】[0057]
【表3】 [Table 3]
【0058】表3によれば、本発明品の負極集電体を使
用した電池は明らかに耐漏液性に優れており、撥水処理
剤の塗布が耐漏液性を向上させることがわかる。From Table 3, it can be seen that the battery using the negative electrode current collector of the present invention is obviously excellent in liquid leakage resistance, and the application of the water repellent treatment improves liquid leakage resistance.
【0059】なお、本発明は上記実施例により限定され
るものではない。すなわち、上記実施例では、インジウ
ム化合物は酸化インジウム、界面活性剤はパーフルオロ
アルキルポリオキシエチレン系を使用しているが、とも
にこれに限定されるものではなく、インジウム化合物及
び界面活性剤が他のもの、例えば水酸化インジウム及び
ポリオキシエチレン系の界面活性剤等の組み合わせであ
っても、本発明による効果は得られる。The present invention is not limited to the above embodiment. That is, although indium oxide is used as the indium compound and a perfluoroalkylpolyoxyethylene-based surfactant is used as the surfactant in the above-mentioned examples, the indium compound and the surfactant are not limited to these, and other indium compounds and surfactants are used. The effect of the present invention can be obtained even with a combination of indium hydroxide and a polyoxyethylene-based surfactant.
【0060】撥水処理剤についても同様であり、フッ素
系のものであってもかまわない。また塗布方法も、負極
集電体がガスケットと接触する部分に、撥水処理剤が塗
布されさえすればどのような塗布方法であっても構わな
い。亜鉛合金粉等の他の要素についても本発明の範囲を
逸脱しない限り、変更して差し支えない。The same applies to the water repellent agent, and a fluorine-based agent may be used. Further, the application method may be any application method as long as the water repellent agent is applied to the portion where the negative electrode current collector contacts the gasket. Other elements such as zinc alloy powder may be changed without departing from the scope of the present invention.
【0061】上記実施例ではボタン形アルカリマンガン
電池について説明したが、本発明はこれに限定されるも
のではなく、酸化銀電池、空気亜鉛電池等のゲル状亜鉛
を負極とする各種ボタン形アルカリ電池に適用できるこ
とは勿論である。Although the button type alkaline manganese battery has been described in the above embodiment, the present invention is not limited to this, and various button type alkaline batteries such as silver oxide batteries and zinc air batteries having gel zinc as a negative electrode are used. Of course, it can be applied to.
【0062】[0062]
【発明の効果】以上説明したように、本発明によって作
製されたボタン形アルカリ電池用負極集電体は、水銀を
添加しないボタン形アルカリ電池に用いても負極集電体
からの水素ガスの発生を抑制でき、またこの負極集電体
を使用し、ゲル亜鉛負極中にインジウム化合物及びアル
カリ電解液中で安定な界面活性剤を適量含有した本発明
のボタン形アルカリ電池は、貯蔵中の漏液や電池の膨
れ、性能劣化等を防止できるというすぐれた効果を奏す
る。As described above, the negative electrode current collector for a button type alkaline battery manufactured according to the present invention produces hydrogen gas from the negative electrode current collector even when used in a button type alkaline battery to which mercury is not added. In addition, the button-type alkaline battery of the present invention containing the appropriate amount of an indium compound and a surfactant that is stable in an alkaline electrolyte in a gel zinc negative electrode can prevent leakage of liquid during storage. It also has the excellent effect of preventing swelling of batteries, deterioration of performance, and the like.
【図1】本発明の実施例で作製したLR44型アルカリ
マンガン電池の断面図。FIG. 1 is a cross-sectional view of an LR44 type alkaline manganese battery manufactured in an example of the present invention.
【図2】図1のA部の拡大図。FIG. 2 is an enlarged view of part A in FIG.
1…負極集電体、2…ゲル状亜鉛負極、3…セパレー
タ、4…液保持材、5…ガスケット、6…正極合剤、7
…正極ケース。DESCRIPTION OF SYMBOLS 1 ... Negative electrode collector, 2 ... Gel zinc negative electrode, 3 ... Separator, 4 ... Liquid holding material, 5 ... Gasket, 6 ... Positive electrode mixture, 7
… Positive electrode case.
Claims (3)
剤で構成されるゲル状亜鉛負極を有するボタン形アルカ
リ電池の負極ケースを兼ねた負極集電体であって、少な
くともゲル状亜鉛負極と接触する表面部分にインジウム
又はスズが存在し、さらに少なくともガスケットとの接
触部分に撥水処理剤を塗布したことを特徴とするボタン
形アルカリ電池用負極集電体。1. A negative electrode current collector which also serves as a negative electrode case of a button type alkaline battery having a gelled zinc negative electrode composed of a zinc alloy, an alkaline electrolyte and a gelling agent, and which is in contact with at least the gelled zinc negative electrode. A negative electrode current collector for a button type alkaline battery, characterized in that indium or tin is present on the surface portion thereof, and a water repellent treatment agent is applied to at least a portion contacting the gasket.
ニッケル−ステンレス−銅又はニッケル−鉄−銅の3層
クラッド材で構成されており、前記銅面へインジウム又
はスズを無電解メッキで被覆した後、撥水処理剤を塗布
し、撥水処理剤塗布工程及び洗浄工程での乾燥を90℃
以下で行なっていることを特徴とする請求項1記載のボ
タン形アルカリ電池用負極集電体。2. The negative electrode current collector also serving as the negative electrode case,
It is composed of a three-layer clad material of nickel-stainless-copper or nickel-iron-copper. The copper surface is coated with indium or tin by electroless plating, and then a water repellent treatment agent is applied to the water repellent treatment agent. 90 ° C for drying in coating process and cleaning process
The negative electrode current collector for a button type alkaline battery according to claim 1, which is performed as follows.
ルカリ電池用負極集電体を使用し、前記ゲル状亜鉛負極
中に亜鉛合金粉に対してインジウムとして0.01〜
0.1wt%のインジウム化合物及びアルカリ電解液中
で安定な界面活性剤0.01wt%以下を含有すること
を特徴とするボタン形アルカリ電池。3. The negative electrode current collector for a button type alkaline battery according to claim 1 or 2, wherein 0.01 to 0.01 as indium is added to the zinc alloy powder in the gel zinc negative electrode.
A button type alkaline battery containing 0.1 wt% of an indium compound and 0.01 wt% or less of a surfactant stable in an alkaline electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16387394A JPH0831428A (en) | 1994-07-15 | 1994-07-15 | Negative electrode collector and button alkaline battery using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16387394A JPH0831428A (en) | 1994-07-15 | 1994-07-15 | Negative electrode collector and button alkaline battery using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0831428A true JPH0831428A (en) | 1996-02-02 |
Family
ID=15782405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16387394A Pending JPH0831428A (en) | 1994-07-15 | 1994-07-15 | Negative electrode collector and button alkaline battery using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0831428A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005100805A (en) * | 2003-09-25 | 2005-04-14 | Toshiba Battery Co Ltd | Button type alkaline battery |
JP2007080614A (en) * | 2005-09-13 | 2007-03-29 | Sony Corp | Alkaline battery |
-
1994
- 1994-07-15 JP JP16387394A patent/JPH0831428A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005100805A (en) * | 2003-09-25 | 2005-04-14 | Toshiba Battery Co Ltd | Button type alkaline battery |
JP2007080614A (en) * | 2005-09-13 | 2007-03-29 | Sony Corp | Alkaline battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1430562B1 (en) | Zinc/air cell | |
EP1187236B1 (en) | Alkaline battery | |
CN1797811B (en) | Negative electrode can, alkaline cell and production method for same | |
JP4927071B2 (en) | Air cell with improved leakage resistance | |
JP3522303B2 (en) | Button type alkaline battery | |
JPH0831428A (en) | Negative electrode collector and button alkaline battery using it | |
JPH08222233A (en) | Alkaline button battery | |
JP4196226B2 (en) | Mercury-free alkaline battery | |
JPH06223834A (en) | Button type alkaline battery | |
JP3512826B2 (en) | Button type alkaline battery | |
JPH09283150A (en) | Alkaline battery and its negative current collector | |
JPH08213031A (en) | Alkaline button battery | |
JP4717222B2 (en) | Alkaline battery | |
JPH0785877A (en) | Button type alkaline battery | |
US20060127757A1 (en) | Alkaline cell and production method for same | |
JPH09147816A (en) | Alkaline button battery | |
JPH0757705A (en) | Button type alkaline battery | |
JP2737233B2 (en) | Zinc alkaline battery | |
JPH0620693A (en) | Alkaline battery | |
JP2005100805A (en) | Button type alkaline battery | |
JP2737232B2 (en) | Zinc alkaline battery | |
JPH0750612B2 (en) | Zinc alkaline battery | |
JP3470425B2 (en) | Manufacturing method of button type alkaline battery | |
JP2737231B2 (en) | Zinc alkaline battery | |
JP2784151B2 (en) | Alkaline battery |