[go: up one dir, main page]

JP3548736B2 - Backwashing method of separation membrane - Google Patents

Backwashing method of separation membrane Download PDF

Info

Publication number
JP3548736B2
JP3548736B2 JP2001265481A JP2001265481A JP3548736B2 JP 3548736 B2 JP3548736 B2 JP 3548736B2 JP 2001265481 A JP2001265481 A JP 2001265481A JP 2001265481 A JP2001265481 A JP 2001265481A JP 3548736 B2 JP3548736 B2 JP 3548736B2
Authority
JP
Japan
Prior art keywords
membrane
pressure
separation
fluid
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001265481A
Other languages
Japanese (ja)
Other versions
JP2003071254A (en
Inventor
政信 大方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2001265481A priority Critical patent/JP3548736B2/en
Publication of JP2003071254A publication Critical patent/JP2003071254A/en
Application granted granted Critical
Publication of JP3548736B2 publication Critical patent/JP3548736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被処理流体を膜分離する分離膜の逆洗方法に関する。
【0002】
【従来の技術】
固形物、粒子状物質等を含む被処理流体(被処理液、被処理水)の浄化処理、種々の固液分離、液液分離等には、膜分離によるろ過処理が広く用いられており、ろ過精度(ろ別サイズ)に応じて種々の分離膜が適用される。分離膜としては、例えば、精密ろ過(MF)膜、限外ろ過(UF)膜、ナノフィルトレーション(NF)膜、逆浸透(RO)膜等が挙げられる。
【0003】
このような膜分離では、その膜分離性能つまりろ過性能を長期にわたって良好に維持すべく、分離膜表面に付着又は堆積したろ別残渣である固形分等が適宜洗浄される。近年、浄化処理においては、処理済液(浄水等)の水質の更なる向上が望まれており、これに対応すべく、分離膜又は膜モジュール全体のろ過抵抗を十分に低く保持してろ過性能を良好に維持するため、膜洗浄の重要性が一層高まっている。
【0004】
ところで、これらの分離膜の性状・形状は、用途に応じて多岐にわたり、特に、大量の被処理流体を生物処理しながら継続的に膜分離するような浄化処理では、例えば、複数の膜エレメントが集合配置された膜モジュールが多段に設けられることが多い。特に、分離膜の形態として中空糸膜を用いたものは、設備構成が簡便であり、容積効率が高く、操作性に優れる等の観点から、種々の固液分離、液液分離、気液分離に多用されている。
【0005】
このような中空糸膜は、通常、中空糸状の膜エレメントが多数束ねられて中空糸膜モジュールとして用いられ、ろ過方式としては、被処理流体が中空糸の内側から供給される内圧式、及び、被処理流体が中空糸の外側から供給される外圧式がある。膜洗浄方法としては、液体(洗浄液)や気体による逆洗が一般的である。
【0006】
【発明が解決しようとする課題】
しかし、中空糸膜モジュールを用いた膜分離装置や膜ろ過器に対する一般的な逆洗による膜洗浄では、上述したような更なる洗浄効果の向上を十分に達成することが困難な場合がある。特に、ろ別サイズの極小化に応じて膜面部の微細孔径がより小さいものを用いると、固形分等のろ別残渣による微細孔の閉塞が顕著となり、このため、殊にろ過精度の高い機能膜を中空糸膜として使用する際の洗浄効率を一層高めることが切望されている。
【0007】
そこで、本発明は、このような事情に鑑みてなされたものであり、被処理流体の分離膜を逆洗する際に、その洗浄効率を従来に比して格別に高めることができる分離膜の逆洗方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明による分離膜の逆洗方法は、被処理流体を膜分離する方法であって、分離膜に対して被処理流体の流通方向における透過側から洗浄用液体を供給し、分離膜に対して被処理流体の流通方向における非透過側が所定圧力となるように減圧することにより、非透過側における分離膜の膜面部において洗浄用液体の沸騰状態を生じせしめることを特徴とする。
【0009】
ここで、本発明における「分離膜」としては、逆洗が適用できる分離膜であれば、膜の種類、性状、形状等は限定されず、分離膜に対して被処理流体の流通方向における非透過側を減圧する観点から、正圧又は負圧にて膜分離(膜ろ過)し得る形態で用いられるものに好適であり、例えば、好ましくは、膜エレメントが管状、筒状等を成す中空状のもの、より好ましくは中空糸膜が挙げられる。
【0010】
また、「非透過側」とは、すなわち分離膜に対して被処理流体が供給される側をいい、「透過側」とは、膜分離された被処理流体つまり処理済流体が透過液として排出される側をいう。具体的には、中空糸膜を例にとると、膜分離が内圧方式で行われる場合、「非透過側」とは中空糸膜の内側であるのに対して「透過側」とは中空糸膜の外側であり、膜分離が外圧方式で行われる場合、「非透過側」とは中空糸膜の外側であるのに対して「透過側」とは中空糸膜の内側である。
【0011】
このような分離膜においては、通常、膜分離の進行に伴ってその非透過側(被処理流体を供給する側)の膜面に、固形分等のろ別残渣が付着・堆積し、分離膜の微細孔が閉塞されてろ過抵抗が増大する。この分離膜に対し、本発明の逆洗方法を適用し、分離膜に対する透過側(処理済流体が排出される側)から洗浄用液体を供給すると、洗浄用液体が膜分離時の流通方向と逆方向から分離膜の微細孔内に流入し、微細孔を閉塞している堆積物や上記非透過側の膜面部上の付着物又は堆積物(以下、まとめて「堆積物」という)と接触する。
【0012】
このとき、分離膜の非透過側が所定圧力となるようにその非透過側を減圧すると、微細孔を通って非透過側の膜面部に達した洗浄用液体の沸騰状態を生じせしめることができる。具体的には、非透過側の所定圧力を洗浄用液体の温度における飽和蒸気圧(以下、単に「蒸気圧」という)以下の値とすることより、洗浄用液体の沸騰・気化が起こり、体積膨張による一種の爆噴状態が生じる。これにより、膜面部上の堆積物が破砕され、非透過側へ噴出するように膜面部から剥離除去される。
【0013】
また、洗浄用液体の種類に応じ、その洗浄用液体の沸騰状態が生じるように非透過側の減圧量を調整すると好ましい。洗浄用液体としては、水、アルコール類等の有機溶媒、酸・アルカリ等の無機溶媒等を適宜選択して種々の濃度等で用いることができ、また、界面活性剤等の種々の添加剤を添加することができる。洗浄用液体の種類が異なると、同じ温度でも蒸気圧が異なるので、用いる洗浄用液体の種類(性状、濃度等を含む)に応じて非透過側の減圧量を調整することにより、非透過側の所定圧力を必要な蒸気圧へと適切に制御することができる。
【0014】
さらに、上記列記した洗浄用液体の中では、取扱性、安全性、処理済流体のクロスコンタミネーションの防止等の観点より、水又はアルコール類を用いることが一層好ましく、特に、分子中の炭素数が比較的少ないアルコール(低級アルコール)、例えば、メタノール(CHOH)、エタノール(COH)等を用いると、同じ温度の水に比して蒸気圧が高く、減圧量が比較的少なくて済むので、動力コストを低減できる点で有用である。
【0015】
またさらに、非透過側における膜面部が当接する第1の空間領域と、第1の空間領域内の第1の圧力よりも小さい第2の圧力を有する第2の空間領域とを連通させることにより、非透過側が所定圧力となるように第1の空間領域を減圧すると好適である。
【0016】
こうすれば、第2の空間領域が例えば予め減圧されて第1の圧力より小さい第2の圧力とされており、この状態で第1の空間領域と第2の空間領域とを連通させると、第1の空間領域の第1の圧力が急激に降下する。このとき、第1の空間領域に比して第2の空間領域の容積を十分に大きくし、及び/又は、第2の圧力を第1の圧力に比して十分に低い値とすれば、第1の空間領域の圧力変化がより急峻となる。これにより、第1の空間領域に当接する膜面部の周囲の圧力を、第1の圧力(例えば常圧)から洗浄用液体の蒸気圧まで瞬時に低下させることができ、膜面部における洗浄用液体の爆噴状態を短時間で且つ強力に生起させ得る。よって、膜面部上の付着物や体積物の剥離除去効果が一層高められる。
【0017】
ここで、本発明による分離膜の逆洗方法を有効に実施するための装置としては、例えば、被処理流体を膜分離する分離膜の逆洗装置であって、分離膜に対して被処理流体の流通方向における透過側に接続された洗浄用液体の供給部と、分離膜に対して被処理流体の流通方向における非透過側に接続され、且つ、非透過側が所定圧力となるように非透過側を減圧する減圧部とを備えるものが挙げられる。より具体的には、減圧部が、非透過側において分離膜の膜面部が当接する第1の空間領域に接続されており、且つ、第1の空間領域内の第1の圧力よりも小さい第2の圧力を有する第2の空間領域を含む容器を備えるものであると好適である。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限られるものではない。
【0019】
図1及び2は、本発明による分離膜の逆洗方法を実施するための装置の好適な一実施形態の構成を模式的に示す断面図であるとともに、図1は、その逆洗装置が設けられた膜分離装置で膜分離処理を行っている状態を示し、図2は、その逆洗装置によって分離膜の逆洗を行っている状態を示すものである。
【0020】
同図において、膜分離装置10は、中空糸膜による内圧式キャピラリ型の膜分装置であり、筐体1の内部に、複数の中空糸膜エレメント2(分離膜)が長手方向に並設された膜モジュール20が設けられたものである。筐体1内の膜モジュール20の上方及び下方には、中空糸膜エレメント2の内部空間S1(第1の空間領域、非透過側)と連通するように、それぞれ被処理流体供給部SI及び被処理流体排出部SOが画成されている。筐体1の底壁には、被処理流体Wが供給される供給口N1が設けられ、ポンプ3及びバルブV3を有する配管を通して、被処理流体Wが被処理流体供給部SIに導入される。一方、筐体1の上壁には、中空糸膜エレメント2の膜壁を透過できない被処理流体Wが非透過流体Whとして排出される排出口N3が設けられている。
【0021】
また、筐体1の側壁には、洗浄用液体M(図2参照)が供給される供給口N4が設けられ、ポンプ5及びバルブV5を有する配管を通して、膜モジュール20における中空糸膜エレメント2の外部空間S2(透過側)に洗浄用液体Mが導入される。さらに、筐体1の側壁には、洗浄用液体Mが排出される排出口N2が設けられている。この排出口N2は、外部空間S2と連通しており、中空糸膜エレメント2の内部空間S1から膜壁を通して外部空間S2へ透過した被処理流体Wが処理済流体である透過流体Ws(図1参照)として排出口N2から排出されるようにもなっている。
【0022】
また、筐体1の底壁には、被処理流体供給部SIを介して中空糸膜エレメント2の内部空間S1と連通する排出口N5が設けられている。この排出口N5は、中空糸膜エレメント2の外部空間S2から膜壁を通して内部空間S1へ透過した洗浄用液体M等を逆洗液Mmとして筐体1の外部へ排出するためのものである。さらに、排出口N5には、真空ポンプ4に接続された真空槽6(容器)とバルブV6とを有する配管が接続されている。またさらに、真空槽6は、配管及び被処理流体供給部SIを介して中空糸膜エレメント2の内部空間S1と連通し得る空間部S6(第2の空間領域)を有している。
【0023】
このように、ポンプ5、バルブV5及び供給口N4から洗浄用液体Mの供給部が構成されており、真空ポンプ4、バルブV6、真空槽6及び排出口N5から減圧部が構成されている。また、これら供給部及び減圧部から本発明による分離膜の逆洗装置が構成されている。
【0024】
このように構成された本発明による分離膜の逆洗装置が設けられた膜分離装置10を用いた膜分離処理、及び、本発明による分離膜の逆洗方法の一例について以下に説明する。まず、排出口N2,N3を開放し、且つ、バルブV5,V6を閉じた状態で、ポンプ3を運転し、バルブV3を所定の開度で開けて被処理流体Wを供給口N1から被処理流体供給部SIへ導入する(図1参照)。被処理流体Wは、被処理流体供給部SIと連通する中空糸膜エレメント2の内部空間S1内に流入する。
【0025】
ここで、図3は、図1及び2に示す膜分離装置10で膜分離を行っている状態の要部を模式的に示す断面図である。中空糸膜エレメント2の膜壁2aには多数の微細孔Pが設けられており、内部空間S1を流上する被処理流体Wのうち微細孔Pを透過した液分は、透過流体Wsとして外部空間S2に流出し、排出口N2を通して膜分離装置10の外部へ排出される。排出された透過流体Wsは、必要に応じて他の処理に供せられる。
【0026】
一方、被処理流体Wのうち微細孔Pを透過できない液分や固形分は、内部空間S1を流上し、最終的に、非透過流体Whとして被処理流体排出部SO及び排出口N3を通して膜分離装置10の外部へ排出される。このような膜分離が進行するにつれて、固形分の一部は、ろ別残渣として膜面部2b上に付着、堆積、又は沈積し、さらにその一部は微細孔P内に侵入した状態で堆積し得る(以下、付着、堆積等した固形分をまとめて「堆積物R」という)。こうして膜モジュール20のろ過抵抗が増大していく。
【0027】
次に、ろ過抵抗値が予め設定した制限値となった時点で、膜分離を一旦中断して逆洗を行う。まず、排出口N3及びバルブV3を閉止し、N2を開放した状態で、ポンプ5を運転する。また、バルブV6を閉じた状態で真空ポンプ4を運転する。このとき、被処理流体供給部SI内の被処理流体Wを筐体1の外部へ排出しておく。次いで、真空槽6の空間部S6内が内部空間S1及び被処理流体供給部SI内の気圧(第1の圧力)よりも十分に小さい所定の圧力(第2の圧力)となるように減圧した後、バルブV5を開いて洗浄用液体Mを外部空間S2へ供給する。次に、外部空間S2が洗浄用液体Mで充填された後、バルブV6を開放する。
【0028】
こうすると、真空槽6の空間部S6と中空糸膜エレメント2の内部空間S1とが被処理流体供給部SIを介して連通される。空間部S6は先に減圧されているので、内部空間S1及び被処理流体供給部SI内の気体は真空槽6側へ直ちに拡散し、内部空間S1の内圧が急激に低下する。ここで、図4は、図1及び2に示す膜分離装置10で逆洗を行っている状態の要部を模式的に示す断面図である。外部空間S2に充填された洗浄用液体Mは、中空糸膜エレメント2の膜壁2aの微細孔P内に流入し、微細孔Pの膜面部2b側を閉塞していた堆積物Rと接触する。さらに、洗浄用液体Mは、堆積物R内に浸透して内部空間S1側に流出又は浸出してくる。
【0029】
この状態で、上述の如く、内部空間S1が急激に減圧される。このとき、内部空間S1の圧力が洗浄用液体Mのその温度における蒸気圧以下とされれば、内部空間S1内に流入又は浸出した洗浄用液体Mが瞬時に沸騰・気化して急激な体積膨張が生じ、気化した洗浄用液体Mgの内部空間S1側への爆噴状態が生起される。
【0030】
そして、その噴出力により、堆積物Rは破砕されて内部空間S1側へ吹き飛ばされ、破砕片(物)Rsとなり、洗浄用液体Mの気液混合物と共に逆洗液Mmとして内部空間S1内を流下する。この逆洗液Mmは、被処理流体供給部SIを通って排出口N5から真空槽6へ流入し、更に系外へ排出されて処理される。それから、かかる逆洗処理を一定時間継続して膜モジュール20のろ過抵抗を本来の値に回復させ、前述した膜分離手順を再び実施して被処理流体Wの膜分離処理を再開する。
【0031】
ところで、本発明で使用する洗浄用液体Mとしては、先述したように、水、アルコール類等の有機溶媒、酸・アルカリ等の無機溶媒等を適宜選択して種々の濃度等で用いることができ、更に界面活性剤等の種々の添加剤を添加してもよい。ここで、洗浄用液体Mとして水を用いた場合、バルブV6を開くことにより、内部空間S1の圧力が水の蒸気圧以下となるように、真空槽6の空間部S6を減圧する。
【0032】
空間部S6内の所定の圧力つまり第2の圧力は、主として、(1)用いる水の蒸気圧、並びに、(2)内部空間S1、被処理流体供給部SI、配管及び真空槽6の容積に加え、他の補正要因、例えば、内部空間S1への水の浸出量、堆積物Rの量(ろ過抵抗で把握することも可)、膜モジュール20の高さ、並びに、被処理流体供給部SI、配管及び真空槽6の形状因子等による圧力損失、等を考慮して決定し得る。
【0033】
図5は、水の蒸気圧と温度との関係を示すグラフであり、水の物性諸量として一般に知られているものを便宜的に掲載したものである。本図より、例えば、洗浄用液体Mとして、内部空間S1における温度が60℃程度となる状態の温水を用いた場合、バルブV6を開いた状態で内部空間S1内の圧力が約150mmHg(20kPa)以下となるようにすれば、膜面部2bにおける洗浄用液体Mの沸騰状態を生じせしめることができ、図4に示すような気化した洗浄用液体Mgの爆噴状態が生起され得る。
【0034】
また、他の洗浄用液体Mを用いた場合にも、水を用いた場合と同様にして真空槽6の空間部S6の第2の圧力を設定し得る。ここで、図6は、アルコール類の一例としてメタノールの蒸気圧と温度との関係を示すグラフであり、メタノールの物性諸量として一般に知られているものを便宜的に掲載したものである。本図より、メタノールを洗浄用液体Mとして用いた場合、先述した水の例と同温度(60℃)での蒸気圧は、610mmHg(81kPa)を若干上回る程度である。よって、同温度の水を用いたときに比して空間部S6の減圧量を格別に軽減できる。また、メタノールやエタノール等の低級アルコールは工業上の利用性に優れており、純度の高いものを入手可能であるので、これらの点において有用である。
【0035】
また、換言すれば、洗浄用液体Mの種類、濃度、添加剤の含有量等(液性)によってその蒸気圧は種々の値をとるので、かかる洗浄用液体Mの液性に応じて、真空槽6の空間部S6ひいては中空糸膜エレメント2における内部空間S1内の減圧量を調整するように、真空ポンプ4の運転を制御することが望ましい。さらに、内部空間S1の所定圧力を、洗浄用液体Mの蒸気圧に対して裕度をもって低い圧力とすれば、内部空間S1に流入又は浸出した洗浄用液体Mが沸騰に至る時間がより短縮され、爆噴による堆積物Rの破砕力が増強されるので一層好ましい。
【0036】
このように構成された膜分離装置10及びそれを用いた逆洗方法によれば、中空糸膜エレメント2内の外部空間S2に洗浄用液体Mを供給し、内部空間S1内の圧力を洗浄用液体Mのその温度における蒸気圧以下として沸騰状態を生ぜしめ、その爆噴力により堆積物Rを破砕して膜面部2bから剥離除去する。よって、膜壁2aの微細孔Pの内部に入り込んで沈積した堆積物Rを十分に内部空間S1側へ破砕・噴出させることができ、しかも、その破砕力によって膜面部2bにおける微細孔Pの周囲の堆積物Rをも吹き飛ばすように除去できる。したがって、従来の逆洗方法に比して、膜モジュール20の逆洗効率を格段に高めることが可能となる。
【0037】
また、真空槽6を設け、外部空間S2に洗浄用液体Mを充填して微細孔Pに流入させた状態で、先に減圧しておいた真空槽6の空間部S6と内部空間S1とを連通させ、これにより、内部空間S1における洗浄用液体Mの沸騰状態を瞬時に形成せしめるので、気化した洗浄用液体Mgの爆噴力を増大できる。よって、膜面部2b上の堆積物Rの剥離効果がより高められ、逆洗効率を一層向上できる。さらに、洗浄用液体Mを適宜選択して用い、特にメタノール等の低級アルコールを用いると、真空槽6の空間部S6ひいては内部空間S1の減圧量を軽減できるので、動力コストを低減して経済上有利である。
【0038】
なお、本発明は上述した実施形態に限定されるものではなく、例えば、図1〜4に示した内圧式の膜分離装置10に代えて、外圧式の膜分離方式に供される膜モジュールにも適用可能である。また、中空糸膜エレメント2の種類は特に限定されない。さらに、膜モジュール20の設置方向(長手方向)は鉛直方向に制限されるものではない。
【0039】
またさらに、内部空間S1の減圧手順及び外部空間S2への洗浄用液体Mの供給に係る手順は上述した手順に限定されない。例えば、真空槽6の空間部S6を予め定常的に減圧しておき、膜分離が終了した時点でバルブV6を開放して、或るいは、洗浄用液体Mを供給し始めると共にバルブV6を開放するといった種々の運転が可能である。さらにまた、膜モジュール20の数量も図示に限定されず、本発明によれば、従来に比して多段数の膜モジュール20を有する膜分離装置の逆洗を高効率で実施し得る。
【0040】
【発明の効果】
以上説明したように、本発明の分離膜の逆洗方法によれば、分離膜に対して被処理流体の流通方向における透過側から洗浄用液体を供給し、分離膜に対して被処理流体の流通方向における非透過側が所定圧力となるように減圧することにより、非透過側における分離膜の膜面部において洗浄用液体の沸騰状態を生じせしめ、これにより、膜面部に堆積等した固形分等を破砕して剥離除去する。よって、被処理流体の分離膜を逆洗する際の洗浄効率を、従来に比して格別に向上させることができる。また、その結果、分離膜の所望の膜分離性能を長期にわたって良好に維持することが可能となる。
【図面の簡単な説明】
【図1】本発明による分離膜の逆洗方法を実施するための装置の好適な一実施形態の構成を模式的に示す断面図であり、その逆洗装置が設けられた膜分離装置で膜分離処理を行っている状態を示すものである。
【図2】本発明による分離膜の逆洗方法を実施するための装置の好適な一実施形態の構成を模式的に示す断面図であり、その逆洗装置によって分離膜の逆洗を行っている状態を示すものである。
【図3】図1及び2に示す膜分離装置で膜分離を行っている状態の要部を模式的に示す断面図である。
【図4】図1及び2に示す膜分離装置で逆洗を行っている状態の要部を模式的に示す断面図である。
【図5】水の蒸気圧と温度との関係を示すグラフである。
【図6】メタノールの蒸気圧と温度との関係を示すグラフである。
【符号の説明】
2…中空糸膜エレメント(分離膜)、20…膜モジュール、2a…膜壁、2b…膜面部、4…真空ポンプ、5…ポンプ、6…真空槽(容器)、10…膜分離装置、M…洗浄用液体、Mg…気化した洗浄用液体、Mm…逆洗液、N1,N4…供給口、N2,N3,N5…排出口、P…微細孔、R…体積物、S1…内部空間(第1の空間領域、非透過側)、S2…外部空間(透過側)、S6…空間部(第2の空間領域)、SI…被処理流体供給部、SO…被処理流体排出部、V3,V5,V6…バルブ、W…被処理流体、Wh…非透過流体、Ws…透過流体。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for backwashing a separation membrane for membrane-separating a fluid to be treated.
[0002]
[Prior art]
Filtration treatment by membrane separation is widely used for purification treatment of a fluid to be treated (liquid to be treated, water to be treated) containing solid matter, particulate matter, etc., various solid-liquid separation, liquid-liquid separation, etc. Various separation membranes are applied according to the filtration accuracy (filter size). Examples of the separation membrane include a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, a nanofiltration (NF) membrane, and a reverse osmosis (RO) membrane.
[0003]
In such membrane separation, in order to maintain good membrane separation performance, that is, filtration performance, for a long period of time, solids and the like, which are filtration residues adhered or deposited on the separation membrane surface, are appropriately washed. In recent years, in the purification treatment, further improvement of the water quality of the treated liquid (purified water, etc.) has been desired, and in order to cope with this, the filtration performance of the separation membrane or the entire membrane module is maintained sufficiently low to maintain the filtration performance. The importance of membrane cleaning has been further increased in order to maintain good results.
[0004]
By the way, the properties and shapes of these separation membranes vary widely depending on the application, and in particular, in a purification treatment in which a large amount of a fluid to be treated is continuously separated while biological treatment is performed, for example, a plurality of membrane elements are used. In many cases, collectively arranged membrane modules are provided in multiple stages. In particular, those using a hollow fiber membrane as the form of the separation membrane are various types of solid-liquid separation, liquid-liquid separation, and gas-liquid separation from the viewpoint of simple equipment configuration, high volumetric efficiency, and excellent operability. It is heavily used for
[0005]
Such a hollow fiber membrane is generally used as a hollow fiber membrane module in which a large number of hollow fiber membrane elements are bundled, and as a filtration method, an internal pressure type in which a fluid to be treated is supplied from the inside of the hollow fiber, and There is an external pressure type in which the fluid to be treated is supplied from outside the hollow fiber. As a membrane cleaning method, a backwash with a liquid (cleaning liquid) or gas is generally used.
[0006]
[Problems to be solved by the invention]
However, in the case of membrane cleaning by general backwashing of a membrane separation device or a membrane filter using a hollow fiber membrane module, it may be difficult to achieve a further improvement in the cleaning effect as described above. In particular, when a fine pore having a smaller pore size at the membrane surface is used in accordance with the minimization of the filtration size, blockage of the fine pores by the filtration residue such as solid content becomes remarkable, and therefore, a function having a particularly high filtration accuracy is used. It has been desired to further improve the washing efficiency when the membrane is used as a hollow fiber membrane.
[0007]
Therefore, the present invention has been made in view of such circumstances, and when backwashing the separation membrane of the fluid to be treated, the separation efficiency of the separation membrane can be significantly improved as compared with the related art. It is intended to provide a backwash method.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a method for backwashing a separation membrane according to the present invention is a method for membrane-separating a fluid to be treated, wherein a cleaning liquid is applied to the separation membrane from a permeation side in a flow direction of the fluid to be treated. By supplying and reducing the pressure on the non-permeate side of the separation membrane in the flow direction of the fluid to be treated to a predetermined pressure, the boiling state of the cleaning liquid is caused on the membrane surface of the separation membrane on the non-permeate side. Features.
[0009]
Here, as the “separation membrane” in the present invention, the type, properties, shape, etc. of the membrane are not limited as long as it is a separation membrane to which backwashing can be applied. From the viewpoint of reducing the pressure on the permeation side, it is suitable for those used in a form capable of performing membrane separation (membrane filtration) under a positive pressure or a negative pressure. For example, preferably, a hollow membrane element having a tubular or tubular shape is preferred. And more preferably a hollow fiber membrane.
[0010]
Further, the “non-permeate side” means a side to which the fluid to be treated is supplied to the separation membrane, and the “permeate side” means that the fluid to be treated that has been subjected to membrane separation, that is, the processed fluid is discharged as a permeate. The side that is being done. Specifically, taking a hollow fiber membrane as an example, when the membrane separation is performed by an internal pressure method, the “non-permeate side” is inside the hollow fiber membrane while the “permeate side” is the hollow fiber When the membrane is separated by an external pressure method outside the membrane, the “non-permeate side” is outside the hollow fiber membrane, whereas the “permeate side” is inside the hollow fiber membrane.
[0011]
In such a separation membrane, a filtration residue such as a solid content usually adheres and accumulates on the membrane surface on the non-permeate side (side on which the fluid to be treated is supplied) as the membrane separation proceeds, and the separation membrane The micropores are closed and the filtration resistance increases. When the backwashing method of the present invention is applied to this separation membrane, and the cleaning liquid is supplied from the permeation side (the side from which the treated fluid is discharged) to the separation membrane, the cleaning liquid flows along the membrane separation direction. It flows into the micropores of the separation membrane from the opposite direction, and comes into contact with the deposits closing the micropores or the deposits or deposits on the non-permeation side membrane surface (hereinafter collectively referred to as “deposits”). I do.
[0012]
At this time, when the pressure on the non-permeate side of the separation membrane is reduced so that the pressure on the non-permeate side becomes a predetermined pressure, a boiling state of the cleaning liquid that has reached the non-permeate side membrane surface through the micropores can be generated. Specifically, by setting the predetermined pressure on the non-permeate side to a value equal to or lower than the saturated vapor pressure (hereinafter, simply referred to as “vapor pressure”) at the temperature of the cleaning liquid, the cleaning liquid boils and vaporizes, A type of explosion occurs due to expansion. As a result, the deposit on the film surface is crushed and separated from the film surface so as to be ejected to the non-permeation side.
[0013]
Further, it is preferable to adjust the reduced pressure amount on the non-permeation side so that a boiling state of the cleaning liquid is generated according to the type of the cleaning liquid. As the washing liquid, water, organic solvents such as alcohols, inorganic solvents such as acids and alkalis can be appropriately selected and used at various concentrations and the like, and various additives such as surfactants can be used. Can be added. Different types of cleaning liquids have different vapor pressures even at the same temperature. Therefore, by adjusting the pressure reduction amount on the non-permeate side according to the type (including properties, concentration, etc.) of the cleaning liquid to be used, the non-permeate side is adjusted. Can be appropriately controlled to a required vapor pressure.
[0014]
Further, among the cleaning liquids listed above, it is more preferable to use water or alcohols from the viewpoints of handleability, safety, prevention of cross-contamination of the treated fluid, and in particular, the number of carbon atoms in the molecule. When an alcohol (lower alcohol) having a relatively small amount, such as methanol (CH 3 OH) or ethanol (C 2 H 5 OH), is used, the vapor pressure is higher than that of water at the same temperature, and the reduced pressure is relatively small. Since only a small amount is required, it is useful in that power costs can be reduced.
[0015]
Furthermore, the first space region in which the membrane surface portion on the non-transmission side abuts and the second space region having a second pressure smaller than the first pressure in the first space region communicate with each other. It is preferable to reduce the pressure in the first space region so that the non-transmission side has a predetermined pressure.
[0016]
With this configuration, for example, the second space region is previously reduced in pressure to a second pressure smaller than the first pressure, and when the first space region and the second space region communicate with each other in this state, The first pressure in the first space region drops sharply. At this time, if the volume of the second space region is made sufficiently large as compared with the first space region and / or the second pressure is made a sufficiently low value as compared with the first pressure, The pressure change in the first space region becomes steeper. This makes it possible to instantaneously reduce the pressure around the membrane surface portion in contact with the first space region from the first pressure (for example, normal pressure) to the vapor pressure of the cleaning liquid. Explosion state can be generated strongly in a short time. Therefore, the effect of removing and removing the deposits and the volume on the film surface portion is further enhanced.
[0017]
Here, as an apparatus for effectively performing the separation membrane backwashing method according to the present invention, for example, a separation membrane backwashing apparatus for membrane-separating a fluid to be treated, and the fluid to be treated with respect to the separation membrane is used. The cleaning liquid supply unit connected to the permeation side in the flow direction of the liquid to be filtered is connected to the non-permeation side in the flow direction of the fluid to be treated with respect to the separation membrane, and the non-permeation side is kept at a predetermined pressure. And a pressure reducing unit for reducing the pressure on the side. More specifically, the decompression unit is connected to the first space region where the membrane surface portion of the separation membrane abuts on the non-permeate side, and is smaller than the first pressure in the first space region. Suitably, it comprises a container comprising a second spatial region having a pressure of 2.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. Note that the same components are denoted by the same reference numerals, and redundant description will be omitted. Unless otherwise specified, the positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings. The dimensional ratios in the drawings are not limited to the illustrated ratios.
[0019]
FIGS. 1 and 2 are cross-sectional views schematically showing a configuration of a preferred embodiment of an apparatus for carrying out a method for backwashing a separation membrane according to the present invention, and FIG. FIG. 2 shows a state in which a membrane separation process is being performed by the obtained membrane separation apparatus, and FIG. 2 shows a state in which the separation membrane is being backwashed by the backwash apparatus.
[0020]
In the figure, a membrane separation device 10 is an internal pressure type capillary type membrane separation device using a hollow fiber membrane, and a plurality of hollow fiber membrane elements 2 (separation membranes) are arranged in a longitudinal direction in a housing 1. In this case, a membrane module 20 is provided. Above and below the membrane module 20 in the housing 1, the fluid supply section SI and the fluid supply section are respectively connected so as to communicate with the internal space S <b> 1 (first space area, non-permeable side) of the hollow fiber membrane element 2. A processing fluid outlet SO is defined. A supply port N1 to which the fluid to be treated W is supplied is provided on the bottom wall of the housing 1, and the fluid to be treated W is introduced into the fluid supply part SI through the pipe having the pump 3 and the valve V3. On the other hand, the upper wall of the housing 1 is provided with a discharge port N3 through which the fluid W that cannot pass through the membrane wall of the hollow fiber membrane element 2 is discharged as a non-permeable fluid Wh.
[0021]
Further, a supply port N4 to which a cleaning liquid M (see FIG. 2) is supplied is provided on a side wall of the housing 1, and the hollow fiber membrane element 2 in the membrane module 20 is passed through a pipe having a pump 5 and a valve V5. The cleaning liquid M is introduced into the external space S2 (transmission side). Further, a discharge port N2 for discharging the cleaning liquid M is provided on a side wall of the housing 1. This discharge port N2 communicates with the external space S2, and the target fluid W that has passed from the internal space S1 of the hollow fiber membrane element 2 to the external space S2 through the membrane wall into the external space S2 is a permeated fluid Ws (FIG. 1). (See Reference)).
[0022]
The bottom wall of the housing 1 is provided with an outlet N5 that communicates with the internal space S1 of the hollow fiber membrane element 2 via the fluid supply section SI. The discharge port N5 is for discharging the cleaning liquid M or the like that has permeated from the external space S2 of the hollow fiber membrane element 2 through the membrane wall to the internal space S1 to the outside of the housing 1 as a backwash liquid Mm. Further, a pipe having a vacuum tank 6 (container) connected to the vacuum pump 4 and a valve V6 is connected to the discharge port N5. Furthermore, the vacuum chamber 6 has a space part S6 (second space area) that can communicate with the internal space S1 of the hollow fiber membrane element 2 via the pipe and the fluid supply part SI to be treated.
[0023]
As described above, the pump 5, the valve V5, and the supply port N4 constitute a supply section of the cleaning liquid M, and the vacuum pump 4, the valve V6, the vacuum tank 6, and the discharge port N5 constitute a pressure reducing section. Further, a backwashing apparatus for the separation membrane according to the present invention is constituted by the supply section and the pressure reducing section.
[0024]
An example of the membrane separation process using the membrane separation apparatus 10 provided with the separation membrane backwashing apparatus according to the present invention configured as described above, and an example of the separation membrane backwashing method according to the present invention will be described below. First, the pump 3 is operated with the discharge ports N2 and N3 opened and the valves V5 and V6 closed, and the valve V3 is opened at a predetermined opening to supply the fluid W to be processed from the supply port N1. It is introduced into the fluid supply section SI (see FIG. 1). The fluid W to be processed flows into the internal space S1 of the hollow fiber membrane element 2 that communicates with the fluid supply section SI.
[0025]
Here, FIG. 3 is a cross-sectional view schematically showing a main part in a state where the membrane separation is performed by the membrane separation device 10 shown in FIGS. The membrane wall 2a of the hollow fiber membrane element 2 is provided with a large number of micropores P. Of the fluid W to be processed flowing up the internal space S1, the liquid component that has passed through the micropores P is converted into a permeated fluid Ws by the outside. It flows out into the space S2 and is discharged to the outside of the membrane separation device 10 through the discharge port N2. The discharged permeate fluid Ws is subjected to other processing as necessary.
[0026]
On the other hand, the liquid component or solid component of the target fluid W that cannot pass through the micropores P flows up the internal space S1, and finally passes through the target fluid discharge portion SO and the discharge port N3 as a non-permeate fluid Wh. It is discharged outside the separation device 10. As the membrane separation proceeds, a part of the solid content adheres, accumulates, or deposits on the membrane surface portion 2b as a filtration residue, and a part of the solid content accumulates while penetrating into the micropores P. (Hereinafter, solids deposited, deposited, etc. are collectively referred to as “deposit R”). Thus, the filtration resistance of the membrane module 20 increases.
[0027]
Next, when the filtration resistance value reaches a preset limit value, the membrane separation is temporarily interrupted and backwashing is performed. First, the pump 5 is operated with the outlet N3 and the valve V3 closed and the N2 opened. The vacuum pump 4 is operated with the valve V6 closed. At this time, the processing target fluid W in the processing target fluid supply unit SI is discharged to the outside of the housing 1. Next, the pressure in the space portion S6 of the vacuum chamber 6 was reduced to a predetermined pressure (second pressure) sufficiently smaller than the pressure in the internal space S1 and the pressure of the fluid supply portion SI (first pressure). Thereafter, the valve V5 is opened to supply the cleaning liquid M to the external space S2. Next, after the outer space S2 is filled with the cleaning liquid M, the valve V6 is opened.
[0028]
In this way, the space S6 of the vacuum chamber 6 and the internal space S1 of the hollow fiber membrane element 2 are communicated via the fluid supply section SI. Since the pressure in the space S6 is reduced first, the gas in the internal space S1 and the gas in the fluid supply part SI to be processed are immediately diffused to the vacuum tank 6 side, and the internal pressure in the internal space S1 drops rapidly. Here, FIG. 4 is a cross-sectional view schematically showing a main part in a state where back washing is performed in the membrane separation device 10 shown in FIGS. The cleaning liquid M filled in the external space S2 flows into the micropores P of the membrane wall 2a of the hollow fiber membrane element 2, and comes into contact with the deposit R that has closed the micropores P on the membrane surface 2b side. . Further, the cleaning liquid M permeates into the deposit R and flows out or leach to the internal space S1 side.
[0029]
In this state, the internal space S1 is rapidly reduced in pressure as described above. At this time, if the pressure in the internal space S1 is equal to or lower than the vapor pressure of the cleaning liquid M at that temperature, the cleaning liquid M flowing or leaching into the internal space S1 instantaneously boils and evaporates, causing rapid volume expansion. Is generated, and an explosion state of the vaporized cleaning liquid Mg toward the internal space S1 is generated.
[0030]
Then, by the ejection power, the sediment R is crushed and blown off to the inner space S1 side, and becomes a crushed piece (object) Rs, and flows down in the inner space S1 together with the gas-liquid mixture of the cleaning liquid M as the backwash liquid Mm. I do. The backwash liquid Mm flows into the vacuum tank 6 from the discharge port N5 through the fluid supply section SI, and is further discharged outside the system for processing. Then, the backwashing process is continued for a certain period of time to restore the filtration resistance of the membrane module 20 to the original value, and the above-described membrane separation procedure is performed again to restart the membrane separation process for the fluid W to be treated.
[0031]
By the way, as described above, the washing liquid M used in the present invention can be used in various concentrations and the like by appropriately selecting water, an organic solvent such as alcohols, an inorganic solvent such as acids and alkalis, and the like. Further, various additives such as a surfactant may be added. Here, when water is used as the cleaning liquid M, the space S6 of the vacuum chamber 6 is depressurized by opening the valve V6 so that the pressure of the internal space S1 becomes equal to or lower than the vapor pressure of water.
[0032]
The predetermined pressure in the space S6, that is, the second pressure mainly depends on (1) the vapor pressure of the water to be used, and (2) the volume of the internal space S1, the fluid supply section SI to be processed, the pipe, and the vacuum tank 6. In addition, other correction factors, for example, the amount of leaching of water into the internal space S1, the amount of the sediment R (can also be grasped by filtration resistance), the height of the membrane module 20, and the fluid supply part SI , The pressure loss due to the shape factor of the piping and the vacuum tank 6, and the like.
[0033]
FIG. 5 is a graph showing the relationship between the vapor pressure of water and the temperature, and shows, for convenience, those generally known as various physical properties of water. From this drawing, for example, when hot water in which the temperature in the internal space S1 is about 60 ° C. is used as the cleaning liquid M, the pressure in the internal space S1 is about 150 mmHg (20 kPa) with the valve V6 opened. By doing so, the boiling state of the cleaning liquid M on the film surface portion 2b can be caused, and the explosive state of the vaporized cleaning liquid Mg as shown in FIG. 4 can be generated.
[0034]
Also, when another cleaning liquid M is used, the second pressure of the space S6 of the vacuum chamber 6 can be set in the same manner as when water is used. Here, FIG. 6 is a graph showing the relationship between the vapor pressure of methanol as an example of alcohols and the temperature, and shows, for convenience, those generally known as various physical properties of methanol. As shown in this drawing, when methanol is used as the cleaning liquid M, the vapor pressure at the same temperature (60 ° C.) as that of the above-mentioned water is slightly higher than 610 mmHg (81 kPa). Therefore, the amount of reduced pressure in the space S6 can be significantly reduced as compared with the case where water at the same temperature is used. In addition, lower alcohols such as methanol and ethanol are excellent in industrial use, and high-purity alcohols are available. Therefore, they are useful in these respects.
[0035]
In other words, since the vapor pressure of the cleaning liquid M varies depending on the type, concentration, additive content, and the like (liquid properties) of the cleaning liquid M, the vacuum pressure varies depending on the liquid properties of the cleaning liquid M. It is desirable to control the operation of the vacuum pump 4 so as to adjust the amount of reduced pressure in the space S6 of the tank 6 and thus in the internal space S1 of the hollow fiber membrane element 2. Further, if the predetermined pressure in the internal space S1 is set to a pressure lower than the vapor pressure of the cleaning liquid M with a margin, the time required for the cleaning liquid M flowing or leaching into the internal space S1 to boil is further reduced. This is more preferable because the crushing force of the sediment R by the explosion is enhanced.
[0036]
According to the membrane separation device 10 configured as described above and the backwashing method using the same, the cleaning liquid M is supplied to the external space S2 in the hollow fiber membrane element 2 and the pressure in the internal space S1 is reduced for cleaning. The boiling state is generated when the liquid M has a vapor pressure equal to or lower than the vapor pressure at that temperature, and the explosive force crushes the deposit R to separate and remove the deposit R from the film surface portion 2b. Therefore, the sediment R that has entered the micropores P of the membrane wall 2a and deposited can be sufficiently crushed and ejected toward the internal space S1, and the crushing force causes the periphery of the micropores P in the membrane surface portion 2b. Can be removed so as to blow off the deposit R. Therefore, the backwashing efficiency of the membrane module 20 can be significantly improved as compared with the conventional backwashing method.
[0037]
Further, in a state where the vacuum chamber 6 is provided, the external space S2 is filled with the cleaning liquid M and flows into the fine holes P, the space S6 of the vacuum chamber 6 and the internal space S1 which have been previously depressurized are separated. Since the boiling state of the cleaning liquid M in the internal space S1 is instantaneously formed, the explosive force of the vaporized cleaning liquid Mg can be increased. Therefore, the effect of removing the deposit R on the film surface portion 2b is further enhanced, and the backwashing efficiency can be further improved. Further, when the cleaning liquid M is appropriately selected and used, and particularly when a lower alcohol such as methanol is used, the amount of decompression of the space S6 of the vacuum chamber 6 and thus the internal space S1 can be reduced, so that power costs are reduced and economy is reduced. It is advantageous.
[0038]
The present invention is not limited to the above-described embodiment. For example, instead of the internal pressure type membrane separation device 10 shown in FIGS. Is also applicable. The type of the hollow fiber membrane element 2 is not particularly limited. Further, the installation direction (longitudinal direction) of the membrane module 20 is not limited to the vertical direction.
[0039]
Furthermore, the procedure for reducing the pressure in the internal space S1 and the procedure for supplying the cleaning liquid M to the external space S2 are not limited to the above-described procedures. For example, the space S6 of the vacuum chamber 6 is steadily depressurized in advance, and the valve V6 is opened when the membrane separation is completed, or the supply of the cleaning liquid M is started and the valve V6 is opened. Various operations are possible. Furthermore, the number of the membrane modules 20 is not limited to the illustrated one, and according to the present invention, the backwashing of the membrane separation device having the multi-stage number of the membrane modules 20 can be performed with higher efficiency than in the past.
[0040]
【The invention's effect】
As described above, according to the method for backwashing a separation membrane of the present invention, the cleaning liquid is supplied to the separation membrane from the permeation side in the flow direction of the fluid to be treated, and the separation fluid is supplied to the separation membrane. By reducing the pressure on the non-permeate side in the flow direction so as to be a predetermined pressure, a boiling state of the cleaning liquid is generated on the membrane surface of the separation membrane on the non-permeate side, whereby solids and the like deposited on the membrane surface are removed. Crush and peel off. Therefore, the cleaning efficiency at the time of backwashing the separation membrane of the fluid to be treated can be significantly improved as compared with the related art. As a result, the desired membrane separation performance of the separation membrane can be favorably maintained for a long period of time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a configuration of a preferred embodiment of an apparatus for performing a method for backwashing a separation membrane according to the present invention, wherein the membrane is separated by a membrane separation apparatus provided with the backwash apparatus. This shows a state where the separation process is being performed.
FIG. 2 is a cross-sectional view schematically showing a configuration of a preferred embodiment of an apparatus for performing a method for backwashing a separation membrane according to the present invention. It shows the state where it is.
FIG. 3 is a cross-sectional view schematically showing a main part in a state where membrane separation is performed by the membrane separation apparatus shown in FIGS. 1 and 2.
FIG. 4 is a cross-sectional view schematically showing a main part in a state where back washing is being performed by the membrane separation device shown in FIGS. 1 and 2.
FIG. 5 is a graph showing a relationship between vapor pressure of water and temperature.
FIG. 6 is a graph showing the relationship between the vapor pressure of methanol and temperature.
[Explanation of symbols]
Reference numeral 2: hollow fiber membrane element (separation membrane), 20: membrane module, 2a: membrane wall, 2b: membrane surface portion, 4: vacuum pump, 5: pump, 6: vacuum tank (vessel), 10: membrane separation device, M ... cleaning liquid, Mg ... vaporized cleaning liquid, Mm ... backwashing liquid, N1, N4 ... supply port, N2, N3, N5 ... discharge port, P ... micropore, R ... volume, S1 ... internal space ( 1st space area, non-transmission side), S2 ... external space (transmission side), S6 ... space section (2nd space area), SI ... processed fluid supply section, SO ... processed fluid discharge section, V3 V5, V6: valve, W: fluid to be treated, Wh: non-permeable fluid, Ws: permeable fluid.

Claims (3)

被処理流体を膜分離する分離膜の逆洗方法であって、
前記分離膜に対して前記被処理流体の流通方向における透過側から洗浄用液体を供給し、
前記分離膜に対して前記被処理流体の流通方向における非透過側が所定圧力となるように減圧することにより、該非透過側における該分離膜の膜面部において前記洗浄用液体の沸騰状態を生じせしめる、
ことを特徴とする分離膜の逆洗方法。
A method for backwashing a separation membrane for membrane-separating a fluid to be treated,
A cleaning liquid is supplied to the separation membrane from a permeation side in a flow direction of the fluid to be processed,
By reducing the pressure on the non-permeate side in the flow direction of the fluid to be treated with respect to the separation membrane so as to be a predetermined pressure, a boiling state of the cleaning liquid is caused on the membrane surface of the separation membrane on the non-permeate side.
A method for backwashing a separation membrane, comprising:
前記洗浄用液体の種類に応じ、該洗浄用液体の沸騰状態が生じるように前記非透過側の減圧量を調整する、ことを特徴とする請求項1記載の分離膜の逆洗方法。The method for backwashing a separation membrane according to claim 1, wherein the amount of reduced pressure on the non-permeate side is adjusted so that a boiling state of the cleaning liquid is generated according to the type of the cleaning liquid. 前記非透過側における前記膜面部が当接する第1の空間領域と、該第1の空間領域内の第1の圧力よりも小さい第2の圧力を有する第2の空間領域とを連通させることにより、前記非透過側が前記所定圧力となるように該第1の空間領域を減圧する、
ことを特徴とする請求項1又は2に記載の分離膜の逆洗方法。
By connecting a first space area where the membrane surface portion abuts on the non-transmission side with a second space area having a second pressure smaller than the first pressure in the first space area. Reducing the pressure in the first space region so that the non-permeate side has the predetermined pressure;
The method for backwashing a separation membrane according to claim 1 or 2, wherein:
JP2001265481A 2001-09-03 2001-09-03 Backwashing method of separation membrane Expired - Fee Related JP3548736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265481A JP3548736B2 (en) 2001-09-03 2001-09-03 Backwashing method of separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265481A JP3548736B2 (en) 2001-09-03 2001-09-03 Backwashing method of separation membrane

Publications (2)

Publication Number Publication Date
JP2003071254A JP2003071254A (en) 2003-03-11
JP3548736B2 true JP3548736B2 (en) 2004-07-28

Family

ID=19091938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265481A Expired - Fee Related JP3548736B2 (en) 2001-09-03 2001-09-03 Backwashing method of separation membrane

Country Status (1)

Country Link
JP (1) JP3548736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172797A (en) * 2010-02-25 2011-09-08 Keisuke Matsuzaki Ascites treatment system and cleaning method thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763718B2 (en) * 2004-12-24 2011-08-31 シーメンス・ウォーター・テクノロジーズ・コーポレーション Cleaning membrane filtration systems
NZ562786A (en) 2005-04-29 2010-10-29 Siemens Water Tech Corp Chemical clean for membrane filter
MY146286A (en) 2005-08-22 2012-07-31 Siemens Industry Inc An assembly for water filtration using a tube manifold to minimise backwash
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
EP3078411B1 (en) 2007-05-29 2020-11-04 Rohm & Haas Electronic Materials Singapore Pte. Ltd Membrane cleaning with pulsed airlift pump
JP2013500144A (en) 2008-07-24 2013-01-07 シーメンス インダストリー インコーポレイテッド Method and filtration system for providing structural support to a filtration membrane module array in a filtration system
AU2010257526A1 (en) 2009-06-11 2012-01-12 Siemens Industry, Inc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
WO2011136888A1 (en) 2010-04-30 2011-11-03 Siemens Industry, Inc Fluid flow distribution device
AU2011305377B2 (en) 2010-09-24 2014-11-20 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
KR20140097140A (en) 2011-09-30 2014-08-06 에보쿠아 워터 테크놀로지스 엘엘씨 Isolation valve
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
AU2013231145B2 (en) 2012-09-26 2017-08-17 Evoqua Water Technologies Llc Membrane potting methods
DE112013004713T5 (en) 2012-09-26 2015-07-23 Evoqua Water Technologies Llc Membrane safety device
AU2013323934A1 (en) 2012-09-27 2015-02-26 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
HUE061765T2 (en) 2013-10-02 2023-08-28 Rohm & Haas Electronic Mat Singapore Pte Ltd Device for repairing a membrane filtration module
EP3322511B1 (en) 2015-07-14 2022-09-07 Rohm & Haas Electronic Materials Singapore Pte. Ltd Aeration device for filtration system
CN109966925B (en) * 2019-03-02 2023-11-24 汤宇 Backflushing film cleaning process and device by flash explosion method
CN118320622A (en) * 2024-06-14 2024-07-12 江苏海容水务股份有限公司 Low-temperature boiling chemical cleaning device for reverse osmosis membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011172797A (en) * 2010-02-25 2011-09-08 Keisuke Matsuzaki Ascites treatment system and cleaning method thereof

Also Published As

Publication number Publication date
JP2003071254A (en) 2003-03-11

Similar Documents

Publication Publication Date Title
JP3548736B2 (en) Backwashing method of separation membrane
JP4975950B2 (en) Membrane module cleaning method
CA2535360C (en) Backwash
JP4903113B2 (en) Water treatment system and operation method thereof
CA2626941A1 (en) Combination membrane/biolytic filtration
Aptel et al. Categories of membrane operations
JP2003053160A (en) Cleaning method for separating membrane and membrane filtrater
JP2010501340A (en) Low pressure backwash
US7422690B2 (en) Filtering system
JP7642336B2 (en) Purification system, purification method, membrane separation device, and method for producing solvent
US10639590B2 (en) Filtration system and method for chemical rinsing a filtration system
WO1993012865A1 (en) Pervaporation apparatus and process
KR101525408B1 (en) membrane distillation device with vortex generator
JP2008080255A (en) Pure water making apparatus
WO2017046214A1 (en) Filtration system and method for backwashing a filtration system
JP2003181248A (en) Separating membrane module and module assembly
US20240325951A1 (en) Method of filtrating liquid, and filtration apparatus for filtrating liquid
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JP3838689B2 (en) Water treatment system
JP3354257B2 (en) Oil-water separation method and oil-water separation device
JP7122915B2 (en) How to clean the filtration unit
JP7352125B2 (en) Membrane separation equipment and membrane separation method
WO2012157668A1 (en) Filtration apparatus and method for washing filtration apparatus
JP2010094585A (en) Separation device of liquid mixture, and separation method of liquid mixture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees