[go: up one dir, main page]

JP3539546B2 - High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same - Google Patents

High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same Download PDF

Info

Publication number
JP3539546B2
JP3539546B2 JP01101799A JP1101799A JP3539546B2 JP 3539546 B2 JP3539546 B2 JP 3539546B2 JP 01101799 A JP01101799 A JP 01101799A JP 1101799 A JP1101799 A JP 1101799A JP 3539546 B2 JP3539546 B2 JP 3539546B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
galvanized steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01101799A
Other languages
Japanese (ja)
Other versions
JP2000212686A (en
Inventor
英子 安原
昌利 荒谷
章男 登坂
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP01101799A priority Critical patent/JP3539546B2/en
Publication of JP2000212686A publication Critical patent/JP2000212686A/en
Application granted granted Critical
Publication of JP3539546B2 publication Critical patent/JP3539546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用、家電用、機械構造用、建築用等の使途に適用して有利な高張力溶融亜鉛めっき鋼板に係り、とくに延性、靱性、強度−伸びバランスに優れた高張力溶融亜鉛めっき鋼板に関する。本発明における鋼板は、鋼板、鋼帯を含むものとする。
【0002】
【従来の技術】
自動車用、家電用、機械構造用、建築用等に用いられる鋼材には、強度、加工性、靱性といった機械的性質が優れていることが要求される。このうち、強度については、従来から、種々の方法により高強度化した高張力鋼板が提案されている。例えば、フェライト単相組織で、Si、Mn、Pなどの固溶強化元素を添加した固溶強化型鋼板、あるいはNb、Tiといった炭窒化物形成元素を添加した析出強化型鋼板、あるいはフェライト相と、マルテンサイト、ベイナイトなどの第2相により強化した複相組織型(DP(Dual Phase))鋼板、あるいは結晶粒の微細化により強化した鋼板などが知られている。
【0003】
一方、溶融亜鉛めっき鋼板は、耐食性に優れていることから、自動車、家電、建材等に幅広い用途に利用されている。しかし、高強度化した高張力鋼板に溶融亜鉛めっきを施すには、種々の困難があった。
例えば、固溶強化型鋼板では、固溶強化のため添加されたSi、Mn、Pなどの合金元素が、めっき密着性の劣化、合金化の遅延などの原因となり、高張力めっき鋼板の製造は非常に困難であった。また、固溶強化型鋼板では、添加合金元素が多量となるため、コストアップを招くとともに、延性等の加工性が低下し、得られる強度にも限界がある等の問題があった。
【0004】
また、複相組織型鋼板では、第2相をマルテンサイト化するために、Mn、Cr、Moなどの合金元素を添加しているが、Mn、Crは、めっき性、とくにぬれ性を劣化させ、しかもめっき後の合金化を遅滞させるため、形成されるめっき層の特性が劣化する。また、めっき後合金化処理に際し、加熱後の冷却速度が遅い時には、マルテンサイトへの変態率が減少し、複相組織型鋼板の特性が失われるため、合金化処理時に厳密な冷却制御が必要があるなどの問題があった。また、複相組織型鋼板は、強度−延性バランスは良いが、穴拡げ性に劣ることなどいくつかの問題が残されていた。
【0005】
さらに、結晶粒微細化による高張力鋼では、引張強さに加えて、降伏強さが高くなるため降伏比が高く、プレス成形時のしわが発生しやすくプレス成形性が低いという問題が残されていた。
近年、高張力鋼板においては、低コストと高機能特性を両立できる高張力鋼板の開発に目標が移行しつつある。また、さらに、自動車用鋼板においては、衝突時に乗員を保護するために、高強度化に加えて耐衝撃性にも優れていることが要求されている。
【0006】
このようなことから、高張力めっき鋼板では、強度と、それ以外の靱性、加工性等の機械的性質、さらにめっき性を含め、総合的に向上させる必要があり、高張力化に伴う延性、靱性、耐久比などの劣化を抑え、さらにめっき性の劣化を抑える目的でめっき原板である高張力鋼板における組織の微細化が重要な課題となっている。
【0007】
最近では、熱間圧延前のオーステナイト粒を極度に微細化して圧延し動的再結晶とさらに制御冷却を利用し、組織を微細化する方法が、例えば、特開平9-87798 号公報、特開平9-143570号公報、特開平10-8138 号公報に記載されている。
特開平9-87798 号公報には、Mn:1.0 〜2.5 wt%、Ti:0.05〜0.30wt%、あるいはTi:0.05〜0.30wt%およびNb:0.30wt%以下を含有するスラブを950 〜1100℃の温度に加熱し、1パス当たりの圧下率が20%以上となる圧延を少なくとも2回以上行い、仕上圧延温度がAr3変態点以上となる熱間圧延を行った後、20℃/s 以上の冷却速度で冷却し、350 〜550 ℃で巻き取り、平均結晶粒径10μm 未満のポリゴナルフェライト75体積%以上と、残留オーステナイト5〜20体積%の組織とする高張力熱延鋼板の製造方法が開示されている。
【0008】
特開平9-143570号公報には、Ti:0.05〜0.3 wt%、Nb:0.10wt%以下のうちの1種または2種を含有する鋼を950 〜1100℃の温度に加熱し、1パス当たりの圧下率が20%以上となる圧延を少なくとも2回以上行い、仕上圧延温度がAr3変態点以上となるように熱間圧延し、Ar3変態点〜750 ℃を20℃/s 以上の冷却速度で冷却し、750 ℃未満〜600 ℃の温度範囲で5 〜20sec 間滞留させたのち、再び20℃/s 以上の冷却速度で550 ℃以下の温度まで冷却し、550 ℃以下の温度で巻き取り、フェライト80体積%以上で平均フェライト粒径10μm 未満の極微細組織を有する高張力熱延鋼板の製造方法が開示されている。
【0009】
特開平10-8138 号公報には、Mn:1.0 wt%以下、Ti:0.05〜0.30wt%、あるいはTiの全部または1部に代え、その2倍量のNbを含有するスラブを950 〜1100℃の温度に加熱し、1パス当たりの圧下率が20%以上となる圧延を少なくとも2回以上行い、仕上圧延温度がAr3変態点以上となる熱間圧延した後、20℃/s 以上の冷却速度で冷却し、350 〜550 ℃で巻き取り、フェライトと残留オーステナイトからなる超微細粒組織を有する高張力熱延鋼板の製造方法が開示されている。
【0010】
また、特開平10-195588 号公報には、wt%で、C:0.02〜0.2 %、Si:0.1 〜1.5 %、Mn:0.5 〜3.0 %、S:0.010 %以下を含み、P:0.03〜0.15%、Cr:0.1 〜2.0 %、Mo:0.1 〜1.0 %から選ばれた1種または2種以上を含有し、残部はFeおよび不可避的不純物からなり、平均粒径10μm 以下のフェライト相が80〜97%を占め、残部は平均直径がフェライト平均粒径の0.2 〜1.5 倍であるマルテンサイトを主体とする第2相からなる、成形性と耐衝突特性に優れる熱延高張力鋼板が開示されている。
【0011】
【発明が解決しようとする課題】
しかしながら、特開平9-87798 号公報、特開平9-143570号公報、特開平10-8138 号公報に記載された技術は結晶粒の微細化に主眼をおいたものであるが、粒径は3.6 μm 程度までは得られるものの、これらの技術を用いて製造された鋼板では、強度および延性は向上するが、機械的特性の異方性が、とくに自動車用鋼板の加工性という観点からは、許容できるほど小さくなっているとは言い難く、また、降伏比が高く、プレス成形時にしわなどの発生が生じやすい。
【0012】
また、特開平10-195588 号公報に記載された技術で製造された高張力鋼板は、従来に比べ、成形性や耐衝撃特性は向上するが、現在要求されている自動車用鋼板の加工性という観点からは、伸びの異方性(ΔEl)が大きく、降伏比が高いという問題を残していた。
本発明は、上記した従来技術の問題を有利に解決し、超微細粒を有し、しかも降伏比が低く、強度−伸びバランス、穴拡げ性に優れ、伸びの異方性が小さく、さらに良好な特性のめっき層を有し、加工性に優れた高張力溶融亜鉛めっき鋼板を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、まずめっき原板組織の微細化について鋭意研究した結果、熱間圧延時、オーステナイト域の動的再結晶温度域で繰り返し圧下、しかも比較的軽圧下したのち急冷することにより、主相であるフェライト粒を3.5 μm 以下の超微細粒とすることができるとともに、第2相も主相と同等以上に微細化し、しかも島状に分散して形成させることができることを知見した。さらに、超微細粒を有する熱延板にAc1変態点以上(Ac1変態点+80℃)以下のα−γ2相域の温度範囲に加熱したのち冷却する焼鈍を施すと、降伏比が著しく低下し、さらに強度−伸びバランスが顕著に向上した高張力鋼板を製造できることを見いだした。さらに、この高張力鋼板に溶融亜鉛めっきを施しても形成されるめっき層は、めっき密着性に優れ、また合金化の遅延もなく、良好な特性を有することを知見した。
【0014】
本発明の基礎になった実験結果について、説明する。
C:0.12%、Si:0.3 %、Mn:0.8 %、Pi:0.005 %、Ti:0.16%を含有し、フェライト平均結晶粒径を1.5 μm あるいは4.5 μm としたフェライトを主相とする熱延鋼板(Ac1変態点:740 ℃)に、650 ℃〜880 ℃の範囲で加熱温度を変化して連続焼鈍を施した。均熱温度での保持時間は 40sec と一定した。均熱後の冷却速度は30℃/s とし、300 ℃まで急冷した。連続焼鈍後、引張試験を実施し、降伏強さYS、引張強さTS、伸びElを求め、降伏比YR、強度−伸びバランスTS×Elを計算した。なお、熱延のままの鋼板についても引張試験を実施した。それらの結果を図1および図2に示す。
【0015】
図1、図2から、熱延のままのフェライト粒径(初期粒径)が1.5 μm の超微細粒鋼板を、Ac1変態点以上(Ac1変態点+80℃)以下のα−γ2相域に加熱すると、TSが増加し、YSが低下して、YRが低下し、TS×Elが顕著に向上することがわかる。初期粒径が4.5 μm の場合には、このような低YR化およびTS×Elの顕著な向上は見られない。
【0016】
本発明者らの更なる検討により、初期粒径が3.5 μm 以下の微細粒鋼板をAc1変態点以上に加熱し、α→γ逆変態を生じさせることにより、冷却後の組織が、平均結晶粒径3.5 μm 以下の第2相を含み、その第2相がマルテンサイト相を主としさらにオーステナイト相を有するようになる。これにより多量の合金元素を添加することなく、低YS、高TSで、極めて良好なTS×Elバランスを有する鋼板となるという知見を得た。また、Ac1変態点+80℃超えて加熱すると、結晶粒が成長し、強度が低下し、材質特性が劣化する。一方、初期粒径が3.5 μm を超える鋼板では、短時間焼鈍では十分な逆変態および第2相への合金元素の濃縮が生じにくいため、冷却後にマルテンサイト等が生じにくい。長時間焼鈍で逆変態を生じさせても第2相の粒径が3.5 μm を超え、特性が劣化する。
【0017】
本発明者らは、上記した知見をもとにさらに検討を加え、本発明を完成させたのである。
すなわち、本発明は、熱延鋼板表面に溶融亜鉛めっきを施した溶融亜鉛めっき鋼板であって、前記熱延鋼板が、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %、さらにAl:0.10%以下を含み、残部が実質的にFeからなる組成を有し、かつ主相である体積率で 50 %以上のフェライトと、第2相とからなる組織を有し、前記フェライトの平均粒径が3.5 μm 以下、前記第2相の平均粒径が3.5 μm 以下で、かつ前記第2相が第2相全体的に対する体積率で 70 %以上のマルテンサイトと体積率2%以上のオーステナイトを有する高張力熱延鋼板であることを特徴とする加工性に優れた高張力溶融亜鉛めっき鋼板である。また、本発明では、前記熱延鋼板を、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %、さらにAl:0.10%以下を含み、さらに、Nb:0.3 %以下、V:0.3 %以下のうちの1種または2種を含有し、残部が実質的にFeからなる組成の高張力熱延鋼板としても、また、前記熱延鋼板を、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %、さらにAl:0.10%以下を含み、さらに、Cu:1.0 %以下、Ni:1.0 %以下、Cr:1.0 %以下、Mo:1.0 %以下のうちの1種または2種以上を含有し、残部が実質的にFeからなる組成の高張力熱延鋼板としても、また、前記熱延鋼板を、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %、さらにAl:0.10%以下を含み、さらに、Ca、REM 、Bのうちの1種または2種以上を合計で0.005 %以下を含有し、残部が実質的にFeからなる組成の高張力熱延鋼板としても、また、前記熱延鋼板を、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %、さらにAl:0.10%以下を含み、さらに、Nb:0.3 %以下、V:0.3 %以下のうちの1種または2種、Cu:1.0 %以下、Ni:1.0 %以下、Cr:1.0 %以下、Mo:1.0 %以下のうちの1種または2種以上を含有し、残部が実質的にFeからなる組成の高張力熱延鋼板としても、また、前記熱延鋼板を、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %、さらにAl:0.10%以下を含み、さらに、Nb:0.3 %以下、V:0.3 %以下のうちの1種または2種、Ca、REM 、Bのうちの1種または2種以上を合計で0.005 %以下を含有し、残部が実質的にFeからなる組成の高張力熱延鋼板としても、また、前記熱延鋼板を、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %、さらにAl:0.10%以下を含み、さらに、Cu:1.0 %以下、Ni:1.0 %以下、Cr:1.0 %以下、Mo:1.0 %以下のうちの1種または2種以上、Ca、REM 、Bのうちの1種または2種以上を合計で0.005 %以下を含有し、残部が実質的にFeからなる組成の高張力熱延鋼板としても、また、前記熱延鋼板を、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %、さらにAl:0.10%以下を含み、さらに、Nb:0.3 %以下、V:0.3 %以下のうちの1種または2種、Cu:1.0 %以下、Ni:1.0 %以下、Cr:1.0 %以下、Mo:1.0 %以下のうちの1種または2種以上、Ca、REM 、Bのうちの1種または2種以上を合計で0.005 %以下を含有し、残部が実質的にFeからなる組成の高張力熱延鋼板としてもよい。
【0018】
また、本発明は、鋼板に溶融亜鉛めっき処理を施して溶融亜鉛めっき鋼板とする溶融亜鉛めっき鋼板の製造方法において、前記鋼板を、質量%で、C: 0.01 0.3 %、 Si 1.0 %以下、 Mn 3.0 %以下、P: 0.5 %以下、 Ti 0.03 0.3 %を含み、さらに Al 0.10 %を含有し、残部が実質的に Fe からなる組成を有し、かつ主相である体積率で 50 %以上のフェライトの平均結晶粒径が3.5 μm 以下である高張力熱延鋼板とし、前記溶融亜鉛めっき処理前に、前記鋼板にAc1変態点〜(Ac1変態点+80℃)の温度範囲に加熱後、 10 100 ℃/ s の範囲の冷却速度で急冷停止温度: 200 460 ℃まで冷却する焼鈍処理を施したのち、450 〜500 ℃の温度範囲の溶融亜鉛めっき浴中に浸漬する溶融亜鉛めっき処理を施すことを特徴とする高張力溶融亜鉛めっき鋼板の製造方法である
【0019】
また、本発明では、前記鋼板を、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %を含み、さらに Al 0.10 %以下を含有し、残部が実質的に Fe からなる組成の圧延用鋼素材を、1100℃以下に再加熱するか、あるいは1100℃以下となってから、(動的再結晶の下限温度)+ 80 ℃から動的再結晶の下限温度までの動的再結晶低温域で少なくとも5パス以上の圧下を行い、仕上圧延温度をAr3変態点以上とする熱間圧延を施し、熱間圧延終了後、0.5sec以内に30℃/s以上の冷却速度で冷却して得られた、主相である体積率で 50 %以上のフェライトの平均粒径が3.5 μm 以下である組織を有する高張力熱延鋼板とするのが好ましい
【0020】
また、本発明では、鋼板に溶融亜鉛めっき処理および合金化処理を施して合金化溶融亜鉛めっき鋼板とする溶融亜鉛めっき鋼板の製造方法において、前記鋼板を、質量%で、C: 0.01 0.3 %、 Si 1.0 %以下、 Mn 3.0 %以下、P: 0.5 %以下、 Ti 0.03 0.3 %を含み、さらに Al 0.10 %以下を含有し、残部が実質的に Fe からなる組成を有し、かつ主相である体積率で 50 %以上のフェライトの平均結晶粒径が3.5 μm 以下である高張力熱延鋼板とし、前記溶融亜鉛めっき処理前に、前記鋼板にAc1変態点〜(Ac1変態点+80℃)の温度範囲に加熱後、 10 100 ℃/ s の範囲の冷却速度で急冷停止温度: 200 460 ℃まで冷却する焼鈍処理を施したのち、450 〜500 ℃の温度範囲の溶融亜鉛めっき浴中に浸漬する溶融亜鉛めっき処理を施し、ついで450 〜550 ℃の温度範囲に加熱し合金化する合金化処理を施すことを特徴とする高張力溶融亜鉛めっき鋼板の製造方法である。また、本発明では、前記鋼板を、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %を含み、さらに Al 0.10 %以下を含有し、残部が実質的に Fe からなる組成の圧延用鋼素材を、1100℃以下に再加熱するか、あるいは1100℃以下となってから、動的再結晶低温域で少なくとも5パス以上の圧下を行い、仕上圧延温度をAr3変態点以上とする熱間圧延を施し、熱間圧延終了後、0.5sec以内に30℃/s以上の冷却速度で冷却して得られた、主相である体積率で 50 %以上のフェライトの平均粒径が3.5 μm 以下である組織を有する高張力熱延鋼板とするのが好ましい。
【0021】
また、本発明の高張力溶融亜鉛めっき鋼板(高張力合金化溶融亜鉛めっき鋼板を含む)の製造方法においては、前記熱延鋼板が、前記組成に加えて、さらに量%で、Nb:0.3 %以下、V:0.3 %以下のうちの1種または2種、Cu:1.0 %以下、Ni:1.0 %以下、Cr:1.0 %以下、Mo:1.0 %以下のうちの1種または2種以上、Ca、REM 、Bのうちの1種または2種以上を合計で0.005 %以下、の各群から選ばれた1群または2群以上を含有する組成としてもよい。
【0022】
【発明の実施の形態】
まず、本発明の溶融めっき鋼板、合金化溶融亜鉛めっき鋼板のめっき原板(鋼板)として使用する高張力熱延鋼板の化学成分の限定理由について説明する。以下、質量%は単に%と記す。
C:0.01〜0.3 %
Cは、安価な強化成分であり、所望の鋼板強度に応じ必要量を含有させる。C含有量が0.01%未満では、結晶粒が粗大化し、本発明で目的とするフェライトの平均粒径3.5 μm 未満を達成できなくなる。また、C含有量が0.3 %を超えると、加工性が劣化するとともに溶接性も劣化する。このため、Cは0.01〜0.3 %の範囲とする。より好ましくは、0.05〜0.2 %の範囲である。
【0023】
Si:1.0 %以下
Siは、固溶強化成分として強度−伸びバランスを改善しつつ強度上昇に有効に寄与する。また、フェライトの生成を抑制し所望の第2相体積率を有する組織を得るうえで有効に作用するが、過剰な含有は、延性や表面性状を劣化させる。このため、Siは1.0 %以下とする。なお、好ましくは0.01〜0.7 %である。
【0024】
Mn:3.0 %以下
Mnは、Ar3変態点を低下させる作用を通じ結晶粒の微細化に寄与する。また、第2相のマルテンサイト化および残留オーステナイト化を進展させる作用を通じ、強度−伸びバランスを高める作用を有する。さらに、有害な固溶SをMnS として無害化する作用も有する。しかし、多量の含有は鋼を硬質化し、却って強度−伸びバランスを劣化させる。このようなことから、Mnは3.0 %以下とする。なお、好ましくは0.05%以上、より好ましくは0.3 〜2.0 %である。
【0025】
P:0.5 %以下
Pは、強化成分として有用であり、所望の鋼板強度に応じ含有することができるが、過剰の含有は、粒界に偏析し脆化の原因となる。このため、Pは0.5 %以下とする。なお、過度の低減はコスト高となることもあり、好ましくは0.001 〜0.2 %、より好ましくは0.005 〜0.1 %である。
【0026】
Ti:0.03〜0.3 %
Tiは、TiC として存在して、熱間圧延加熱段階での初期オーステナイト粒を微細化し、それ以降の熱間圧延過程での動的再結晶を誘起させるために有効に作用する。このような作用を発揮させるためには、少なくとも0.03%以上の含有が必要であるが、0.3 %を超えて含有しても、効果が飽和し含有量に見合う効果が期待できない。このため、Tiは0.03〜0.3 %の範囲とする。なお、好ましくは、0.05〜0.20%である。
【0027】
Al:0.10%以下
Alは、脱酸剤として作用するとともに、AlN として結晶粒を微細化する作用を有している。しかし、0.10%を超える含有は、酸化物径介在物が増加し、清浄度を低下させる。このため、Alは0.10%以下に限定する。なお、好ましくは0.005 〜0.07%である。
【0028】
Nb:0.3 %以下、V:0.3 %以下のうちの1種または2種
Nb、Vは、いずれも炭窒化物を形成し、熱間圧延加熱段階での初期オーステナイト粒を微細化する作用を有しており、必要に応じ、Tiと重畳して含有することにより、さらに動的再結晶の発生に有効に作用する。しかし、0.3 %を超えて多量に含有しても効果が飽和し含有量に見合う効果が期待できない。このため、Nb、Vとも0.3 %以下とするのが望ましい。
【0029】
Cu:1.0 %以下、Ni:1.0 %以下、Cr:1.0 %以下、Mo:1.0 %以下のうちの1種または2種以上
Cu、Mo、Ni、Crは、いずれも強化成分として、必要に応じ、含有することができるが、多量の含有はかえって強度−延性バランスを劣化させる。このため、Cu、Mo、Ni、Crは、いずれも1.0 %以下とするのが望ましい。なお、上記した作用効果を十分に発揮するためには、少なくとも0.01%以上含有させるのが好ましい。
【0030】
Ca、REM 、Bのうちの1種または2種以上を合計で0.005 %以下
Ca、REM 、Bは、いずれも硫化物の形状制御や粒界強度の上昇を通じ加工性を改善する効果を有しており、必要に応じ含有させることができる。しかし、過剰な含有は、清浄度や再結晶性に悪影響を及ぼす恐れがあるため、合計で0.005 %以下とするのが望ましい。
【0031】
本発明で溶融亜鉛めっきを表面に形成される熱延鋼板は、上記した組成以外は、残部実質的にFeからなる。
本発明で溶融亜鉛めっきを表面に形成される熱延鋼板は、平均粒径が3.5 μm 以下のフェライトを主相とし、主相と第2相とからなる組織を有する。主相は、体積率で50%以上、好ましくは 70 %以上とするのが好ましい。50%未満では、加工性が低く、強度が高くなりすぎる。第2相は、平均粒径が3.5 μm 以下で、かつ第2相全体に対する体積率で、70%以上のマルテンサイトと体積率2%以上のオーステナイトを有する。
【0032】
フェライト粒が微細化すれば、従来の高張力鋼に比べ少ない合金元素添加量で目標とする強度を確保することができ、しかも強度以外の特性の劣化が少なく、その後のめっき性も良好となる。しかし、フェライトの平均粒径が3.5 μm を超えると、結晶粒微細化による強度増加分が少なく合金添加量が増加し、さらにその後のめっき性へも悪影響を及ぼす。このため、フェライトの平均粒径を3.5 μm 以下に限定した。また、第2相の平均粒径が3.5 μm を超えて大きくなると、靱性、延性の向上が少なくなるため、第2相の平均粒径を3.5 μm 以下に限定した。
【0033】
第2相の体積率は、3〜30%とするのが望ましい。第2相の体積率が3未満では、フェライト粒微細化による強度上昇効果はあるが、延性が低下し、強度─延性バランスが低い。30%を超えると穴拡げ性が低下する。
第2相は、第2相全体に対する体積率で70%以上のマルテンサイトと体積率で2%以上のオーステナイトを有するものとする。
【0034】
第2相中のマルテンサイトの体積率が70%未満では、低降伏比が得られず、微細粒を有する鋼板の欠点である高降伏比となり、また強度−伸びバランスが低い。また、第2相中のオーステナイトの体積率が2%未満では、低い強度−伸びバランスしか得られない。オーステナイトの体積率が2%以上ではじめて、TS×Elが23000MPa・%以上となる。
【0035】
なお、本発明においては、フェライト、第2相の平均粒径は、常法に従い、圧延方向断面における平均粒径とする。
つぎに、本発明の熱延鋼板の製造方法について説明する。なお、焼鈍の前までの工程(溶綱〜熱間圧延・コイル巻き取り)は、主相であるフェライトの平均結晶粒径が3.5 μm 以下である高張力熱延鋼板を得るための好適な一例であり、この製造方法に限定されるものではない。
【0036】
上記した成分組成範囲に調整した溶鋼を、連続鋳造または造塊−分塊圧延により圧延素材とし、この圧延素材に熱間圧延を施し熱延鋼板とする。
熱間圧延は、圧延素材を、一旦冷却したのち再加熱する再加熱圧延としても、直送圧延やホットチャージローリングとしてもよい。また、薄スラブ連続鋳造法のような、連続鋳造されたスラブを直接熱間圧延してもよい。再加熱する場合には、初期オーステナイト粒を微細化するために、1100℃以下に加熱するのが望ましい。また、直送圧延する場合も、1100℃以下まで冷却したのち圧延を開始するのが動的再結晶を促進するために好ましい。なお、仕上げ圧延温度をオーステナイト域とするため、再加熱温度、または直送圧延開始温度を950 ℃以上とするのが好ましい。
【0037】
上記した温度の圧延素材に熱間圧延を施す際に、本発明では、動的再結晶温度のうちの低い温度域である、(動的再結晶の下限温度)+ 80 ℃から動的再結晶の下限温度までの温度範囲を動的再結晶低温域と定義し、該動的再結晶低温域で少なくとも5パス以上の繰り返し圧下を施すのが好ましい。動的再結晶低温域で繰り返し圧下を施すことにより、オーステナイト粒が微細化される。動的再結晶を起こさせる回数が多くなるほどオーステナイト粒の微細化が進行するため、少なくとも5パス以上で、しかも連続する5パス以上で圧下するのが好ましい。5パス未満では、オーステナイト粒の微細化の程度が小さく、平均フェライト粒径3.5 μm 以下の微細粒を達成しにくい。
【0038】
また、動的再結晶低温域での圧下率は、動的再結晶が生ずる範囲であれば特に限定されるものではないが、1パス当たり4〜20%、好ましくは20%未満とするのが望ましい。1パス当たりの圧下率が4%未満では、動的再結晶が生じない。
一方、1パス当たりの圧下率が20%を超えると、機械的性質の異方性が高くなる。
【0039】
なお、動的再結低温域での最終圧延パスは、第2相の微細化を図るため、圧下率13〜30%とするのが望ましい。
なお、Ac1 変態点以上で焼鈍するとはいえ、焼鈍前に第2相が凝集状に存在することは好ましくなく、島状(ここでいう、島状とは、第2相の粒径以下の間隔で他の第2相が存在する比率が20%以下の分散状態をいう)に分布していることが好ましい。上記熱延条件により、島状の第2相分布を得ることができる。
【0040】
本発明でいう動的再結晶温度域は、温度、歪が独立して制御できる測定装置(例えば、富士電波工機製「加工フォーマスター」)により、圧延条件をシミュレーションすることにより得られる歪−応力の関係から予め測定した値を用いるものとする。動的再結晶温度は、鋼組成、加熱温度、圧下率、圧下配分等で変化するが、850 〜1100℃の温度範囲内で、通常250 〜100 ℃の幅で存在するといわれている。なお、動的再結晶温度域の温度幅は、1パス当たりの圧下率が高いほど、あるいはTi含有量が高いほど、拡大する。
【0041】
また、組織微細化の点からは、動的再結晶温度域のできるだけ低い温度域で圧延を施すのが、γ→α変態の変態サイトが増加し有利である。そこで、オーステナイト粒の微細化を促進するうえでは、(動的再結晶の下限温度)+80℃、好ましくは(動的再結晶の下限温度)+60℃、から動的再結晶の下限温度までの温度範囲を動的再結晶低温域と定義し、この温度域で前記5パス以上の圧下を加えるのが好ましい。
【0042】
動的再結晶低温域における圧延中の被圧延材の温度低下を所定の範囲内でできるだけ少なくするため、圧延スタンド間に加熱手段を設置し、被圧延材またはロールを加熱するのが好ましい。とくに、温度低下の著しい位置に加熱手段を設置するのが有効である。加熱手段としては、高周波加熱装置により鋼板を加熱してもよく、また、電熱ヒータを用いロールを加熱してもよく、また直接通電加熱により加熱しても良い。
【0043】
なお、熱間圧延時においては、潤滑を施しつつ圧下を行ってもよいことは、いうまでもない。
本発明では、動的再結晶温度域での圧延以外の圧延条件はとくに限定されないが、圧延仕上げ温度はAr3変態点以上とする。圧延仕上げ温度がAr3変態点未満では、鋼板の延性、靱性が劣化するためである。
【0044】
上記した条件で熱間圧延を終了した熱延鋼板においては、この時点でのオーステナイト粒はほぼ等軸の結晶粒となっており、熱間圧延終了後直ちに冷却する直近急冷を行えば、γ→α変態の変態核が多く、フェライト粒の粒成長が抑制され組織が微細化される。このため、圧延終了後0.5sec以内、好ましくは、0.3 sec 以内に冷却を開始するのが好ましい。冷却開始が圧延終了後0.5 sec を超えると、粒成長が著しくなる。
【0045】
また、冷却速度は30℃/sec 以上とする。冷却速度が30℃/sec 未満では、フェライト粒の粒成長が生じ、微細化が達成できないうえ、第2相を微細にしかも島状に分布させることが難しくなる。
30℃/sec 以上の冷却速度で、好ましくは350 〜650 ℃の温度域まで冷却された熱延鋼板は、直ちにコイルに巻き取る。巻取温度や、巻き取り後の冷却速度はとくに限定するものではない。製造しようとする鋼板に応じて適宜定めればよい。しかし、巻取温度が高いと、第2相がパーライト主体の組織となりフェライト粒の粒成長が起こりやすくなる。一方、巻取温度が低すぎると、巻き取りが困難となる。このようなことから、巻取温度は350 〜650 ℃の範囲内とするのが望ましい。
【0046】
ついで、熱延鋼板は、溶融亜鉛めっき処理前に、焼鈍を施される。焼鈍方法は、とくに限定する必要はないが、生産能率の点から連続焼鈍とするのが好ましい。均熱温度は、Ac1変態点〜(Ac1変態点+80℃)の温度範囲とする。この温度域に加熱することにより、一部をγ相に変態させる。なお、均熱時間は1〜300 sec とするのが好ましく、より好ましくは20〜100secである。
【0047】
ついで、溶融亜鉛めっき浴中に浸漬されるが、200 〜460 ℃まで冷却したのち、溶融亜鉛めっき浴に浸漬するのが好ましい。なお、冷却速度は10〜100 ℃/s とするのが好ましい。冷却速度が10℃/s 未満ではCの拡散が生じ、第2相をマルテンサイトを主体とし、オーステナイトを含む組織とするのが難しくなる。一方、冷却速度が100 ℃/s を超えて速くしても、第2相の組織分率の変化はなく、また設備上この冷却速度以上とするには多大の困難を伴うため、100 ℃/s を上限とするのが望ましい。均熱後の急冷停止温度は、200 〜460 ℃の温度域とするのが望ましい。急冷停止温度が200 ℃未満では、形状不良が発生しやすく、一方、460 ℃を超えると、マルテンサイト、オーステナイトを所定量含む組織とするのが困難となる。
【0048】
溶融亜鉛めっき処理は、450 〜500 ℃の温度範囲に保持された溶融亜鉛めっき浴中に鋼板を浸漬するのが好ましい。溶融亜鉛めっき処理を施したのち、450 〜550 ℃の温度範囲に加熱し合金化する合金化処理を施してもよい。
溶融亜鉛めっき処理は、好ましくは連続亜鉛めっき設備により行うのが望ましいが、それに限定されるものではない。
【0049】
溶融亜鉛めっき処理を施したのち、450 〜550 ℃の温度範囲に加熱し合金化する合金化処理を施してもよい。合金化処理温度は、適切な合金層構造を得るための温度であり、450 ℃未満では十分な合金化が進まず、一方550 ℃を超えると、合金化が進みすぎ、成形加工時にめっき層が剥離するいわゆるパウダリング性が劣化する。
【0050】
合金化処理後、鋼板は冷却され、必要に応じ調質圧延が行われる。
【0051】
【実施例】
表1に示す組成を有する溶鋼を、連続鋳造法によりスラブ(圧延素材)とした。これらスラブを表2に示す種々の条件で加熱、熱間圧延、圧延後冷却を行って熱延鋼板(板厚1.8 〜2.9 mm)とした。なお、熱間圧延の仕上圧延温度はいずれも各鋼のAr3 変態点以上であった。また、製造条件No. 2は、潤滑圧延を実施した。ついで、これら熱延鋼板に表2に示す条件で加熱、冷却する連続焼鈍を施し、ついで、表2に示す条件で溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板とした。一部の鋼板については、さらに溶融亜鉛めっき処理後、直ちに表2に示す条件で加熱合金化処理を行い、合金化溶融亜鉛めっき鋼板とした。
【0052】
得られたこれらの鋼板について、組織、引張特性、穴拡げ加工性、めっき性を調査し、表3に示す。
組織は、鋼板の圧延方向断面について、光学顕微鏡あるいは電子顕微鏡を用いて、JIS G 0551の規定に準拠して、切断法によりフェライトの体積率、粒径および第2相の組織、体積率、粒径を測定した。粒径は、フェライト、第2相とも、それぞれ5視野以上(光学顕微鏡または電子顕微鏡により1000倍での組織写真)について測定し円相当径を求め平均粒径とした。
【0053】
また、引張特性は、鋼板の圧延方向、圧延方向に直角方向、圧延方向に45°方向から採取したJIS 5号試験片により引張特性(降伏点YS、引張強さTS、伸びEl)を測定した。引張試験は、室温で引張速度10mm/min で行った。伸びの測定値からΔEl=1/2 ・(El0 +El90)−El45で定義される各鋼板の伸びの異方性ΔElを計算した。ここで、El0 は圧延方向の伸び値、El90は圧延方向に直角方向の伸び値、El45は圧延方向に45°方向の伸び値を表す。
【0054】
また、穴拡げ加工性は、鋼板に10mmφ(D0 )の打抜き穴を加工したのち、頂角60°の円錐ポンチで押し広げる加工を施し、割れが板厚を貫通した直後の穴径Dを求め、λ= {(D−D0 )/D0 }×100 %から求められるλ値で評価した。
めっき性は、めっき層中の鉄含有量、パウダリング性、めっき性(不めっきの程度)で評価した。めっき層中の鉄含有量はX線により測定した。不めっきの程度は目視により、不めっき欠陥が全くないものを「1」、もっとも不めっきの多いものを「5」とする5段階で評価した。
【0055】
耐パウダリング性は90°曲げ戻し後の、セロハンテープに付着した亜鉛粉を蛍光X線にて測定して評価した。亜鉛粉からの亜鉛の蛍光X線強度を計数管にて2分間計測し、2500CPS以下であれば自動車などのプレス成形に評価「1」として耐えうるものとした。
これらの結果を表3に示す。
【0056】
【表1】

Figure 0003539546
【0057】
【表2】
Figure 0003539546
【0058】
【表3】
Figure 0003539546
【0059】
【表4】
Figure 0003539546
【0060】
本発明例にめっき原板として用いた鋼板は、いずれもフェライトの平均粒径が3.5 μm 以下で、かつ第2相の平均粒径が3.5 μm 以下で、第2相中のマルテンサイト量が70体積%以上、オーステナイト量が2体積%以上である組織を有し、低降伏比で、TS×El値が23000MPa・%以上と高く、さらにλ値が80%以上と高い穴拡げ加工性を有し、加工性に優れた高張力熱延鋼板であり、また、伸びの異方性ΔElが絶対値で3.0 以下と異方性が少なくなっている。この熱延鋼板に溶融亜鉛めっき処理を施した溶融亜鉛めっき鋼板はめっき性に優れ、さらに加工性を備えた溶融亜鉛めっき鋼板となっている。
【0061】
これに対し、スラブ加熱温度が高く、動的再結晶の生起がなく、フェライト平均粒径が大きく、さらに第2相のマルテンサイト量、オーステナイト量が少なく、本発明の範囲を外れる鋼板No. 4 は、YRが大きく、伸び、TS×El値が低くさらにΔElの絶対値が大となっている。
また、動的再結晶低温域で2パスしか圧下を施さず、フェライト平均粒径が大きく、さらに第2相のマルテンサイト量、オーステナイト量が少なく、本発明の範囲を外れる鋼板No. 5は、YRが大きく、伸び、TS×El値が低くなっている。
【0062】
また、焼鈍後の冷却速度が速く、本発明の範囲を外れる鋼板No.6は、第2相のオーステナイト量が少なく、鋼板No. 4、No. 5、No.22 〜No.24 よりは優れた加工性を示すが、YRがやや高く、TS×El値が若干低くなっている。鋼板No.7は、焼鈍後の冷却速度度が遅く、本発明の好適範囲を外れ、第2相中のマルテンサイト量が少なくなって、鋼板No. 4、No. 5、No.22 〜No.24 より優れた加工性を示すものの、ややYRが高く、TS×El値がやや低くなっている。鋼板No.22 は、Ti含有量が少なく、動的再結晶での圧延ができないため、フェライト平均粒径が大きくなりYRが高くなるとともに、伸び、TS×El値が低くなっている。鋼板No.23 は、Mn量が高く、第2相が52%もあってフェライトが主相とは言い難く、また、第2相もベイナイト主体となるためYRが高く、TS×El値が低い。鋼板No.24 は、C量が少なく、動的再結晶圧下によってもフェライトの平均粒径を3.5 μm 以下とすることができず、またマルテンサイトの形成も困難であった。
【0063】
【発明の効果】
本発明によれば、超微細粒を有し、良好な機械的特性を具備し、かつ強度−伸びバランス、強度−穴拡げ性バランスに優れ、めっき性にも優れ、加工性に優れた高張力溶融亜鉛めっき鋼板、高張力合金化溶融亜鉛めっき鋼板を安価に製造でき、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】YS、TSにおよぼす焼鈍温度の影響を示すグラフである。
【図2】YR、TS×Elにおよぼす焼鈍温度の影響を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength hot-dip galvanized steel sheet that is advantageous for use in automobiles, home appliances, mechanical structures, construction, and the like, and in particular, has high ductility, toughness, and high-strength hot-dip zinc excellent in strength-elongation balance. It relates to a plated steel sheet. The steel sheet in the present invention includes a steel sheet and a steel strip.
[0002]
[Prior art]
Steel materials used for automobiles, home appliances, mechanical structures, buildings, and the like are required to have excellent mechanical properties such as strength, workability, and toughness. Among them, conventionally, high-strength steel sheets with high strength by various methods have been proposed. For example, with a ferrite single phase structure, a solid solution strengthened steel sheet added with a solid solution strengthening element such as Si, Mn, or P, or a precipitation strengthened steel sheet added with a carbonitride forming element such as Nb or Ti, or a ferrite phase A double phase structure (DP (Dual Phase)) steel sheet strengthened by a second phase such as martensite and bainite, and a steel sheet strengthened by refining crystal grains are known.
[0003]
On the other hand, hot-dip galvanized steel sheets are used in a wide range of applications for automobiles, home appliances, building materials, etc. because of their excellent corrosion resistance. However, there are various difficulties in applying hot-dip galvanizing to a high-strength high-strength steel sheet.
For example, in solid solution strengthened steel sheets, alloy elements such as Si, Mn, and P added for solid solution strengthening cause deterioration of plating adhesion and delay in alloying, and the production of high tensile strength plated steel sheets It was very difficult. Further, the solid solution strengthened steel sheet has a problem in that the added alloy element becomes large in amount, which leads to an increase in cost, a reduction in workability such as ductility, and a limit in the strength obtained.
[0004]
Further, in the dual phase structure type steel sheet, alloy elements such as Mn, Cr, and Mo are added in order to convert the second phase into martensite. However, Mn and Cr deteriorate the plating property, particularly the wettability. In addition, since the alloying after plating is delayed, the characteristics of the formed plating layer deteriorate. In addition, during the alloying process after plating, when the cooling rate after heating is low, the transformation rate to martensite decreases and the properties of the dual phase type steel sheet are lost, so strict cooling control is necessary during the alloying process There was such a problem. Further, the dual-phase structure steel sheet has a good strength-ductility balance, but has some problems such as inferior hole expandability.
[0005]
Furthermore, in the case of high-strength steel by grain refinement, in addition to tensile strength, the yield strength is high, so that the yield ratio is high, and wrinkles during press forming are apt to occur, leaving the problem that press formability is low. I was
In recent years, with regard to high-strength steel sheets, the target is shifting to the development of high-strength steel sheets that can achieve both low cost and high-performance properties. Further, in order to protect an occupant in the event of a collision, a steel sheet for automobiles is required to have not only high strength but also excellent impact resistance.
[0006]
For these reasons, in the case of high-strength plated steel sheets, it is necessary to comprehensively improve the strength and other mechanical properties such as toughness and workability, and further including the plating properties. For the purpose of suppressing deterioration of toughness, durability ratio, and the like, and further suppressing deterioration of plating property, miniaturization of the structure of a high-strength steel sheet as an original plate for plating has become an important issue.
[0007]
Recently, a method in which austenite grains before hot rolling are extremely refined and rolled to utilize dynamic recrystallization and further controlled cooling to refine the structure is disclosed in, for example, JP-A-9-87798 and JP-A-9-87798. This is described in JP-A-9-143570 and JP-A-10-8138.
JP-A-9-87798 discloses that a slab containing Mn: 1.0 to 2.5 wt%, Ti: 0.05 to 0.30 wt%, or Ti: 0.05 to 0.30 wt% and Nb: 0.30 wt% or less is 950 to 1100 ° C. , And rolling at a rolling reduction of 20% or more per pass is performed at least twice, and the finish rolling temperature is ArThreeAfter hot rolling at a temperature above the transformation point, it is cooled at a cooling rate of 20 ° C / s or more, wound up at 350 to 550 ° C, and 75% by volume or more of polygonal ferrite having an average crystal grain size of less than 10 μm. A method for producing a high-tensile hot-rolled steel sheet having an austenite structure of 5 to 20% by volume is disclosed.
[0008]
JP-A-9-143570 discloses that a steel containing one or two of Ti: 0.05 to 0.3 wt% and Nb: 0.10 wt% or less is heated to a temperature of 950 to 1100 ° C. Is performed at least twice or more so that the rolling reduction becomes 20% or more, and the finish rolling temperature is ArThreeHot-rolled to a temperature above the transformation point,ThreeCool the transformation point to 750 ° C at a cooling rate of 20 ° C / s or more, stay for 5 to 20 seconds in a temperature range of less than 750 ° C to 600 ° C, and then again at a cooling rate of 20 ° C / s or more to 550 ° C or less. And a method for producing a high-tensile hot-rolled steel sheet having an ultrafine structure with a ferrite content of not less than 80% by volume and an average ferrite grain size of less than 10 μm by winding at a temperature of 550 ° C. or less.
[0009]
Japanese Patent Application Laid-Open No. 10-8138 discloses that a slab containing Mn: 1.0 wt% or less, Ti: 0.05 to 0.30 wt%, or Nb in an amount of twice or more of 950 to 1100 ° C. in place of all or part of Ti. , And rolling at a rolling reduction of 20% or more per pass is performed at least twice, and the finish rolling temperature is ArThreeAfter hot rolling to a temperature above the transformation point, cool at a cooling rate of 20 ° C / s or more, wind up at 350 to 550 ° C, and manufacture a high-tensile hot-rolled steel sheet having an ultrafine grain structure consisting of ferrite and retained austenite. A method is disclosed.
[0010]
Japanese Patent Application Laid-Open No. 10-195588 discloses that, in terms of wt%, C: 0.02 to 0.2%, Si: 0.1 to 1.5%, Mn: 0.5 to 3.0%, S: 0.010% or less, P: 0.03 to 0.15% %, Cr: 0.1 to 2.0%, Mo: 0.1 to 1.0%, the balance being Fe and unavoidable impurities, and the ferrite phase having an average grain size of 10 μm or less is 80 to 80%. A hot-rolled high-strength steel sheet having excellent formability and impact resistance comprising a second phase mainly composed of martensite having an average diameter of 0.2 to 1.5 times the average diameter of ferrite and occupying 97% of the balance is disclosed. I have.
[0011]
[Problems to be solved by the invention]
However, JP-A-9-87798, JP-A-9-143570, and JP-A-10-8138 focus on refining the crystal grains, but the particle size is 3.6. Although it can be obtained up to about μm, the strength and ductility of steel sheets manufactured using these technologies are improved, but the anisotropy of mechanical properties is not acceptable, especially from the viewpoint of workability of automotive steel sheets. It is hard to say that it is as small as possible, the yield ratio is high, and wrinkles and the like are likely to occur during press molding.
[0012]
  Also, high-tensile steel sheets manufactured by the technique described in Japanese Patent Application Laid-Open No. H10-195588 have improved formability and impact resistance as compared with conventional steel sheets. From the viewpoint, there remains a problem that the anisotropy of elongation (ΔEl) is large and the yield ratio is high.
The present invention advantageously solves the above-mentioned problems of the prior art, has ultra-fine grains, has a low yield ratio, is excellent in strength-elongation balance, hole expandability, has low elongation anisotropy, and is more favorable. It is an object of the present invention to provide a high-strength hot-dip galvanized steel sheet having a plated layer with excellent characteristics and excellent workability.
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the miniaturization of the original plate structure to achieve the above-mentioned object. As a result, during hot rolling, the rolling was repeatedly performed in the austenite dynamic recrystallization temperature range, and the pressure was relatively light. By rapid cooling after the reduction, the ferrite grains, which are the main phase, can be made into ultra-fine grains of 3.5 μm or less, and the second phase is also refined to be equal to or more than the main phase, and is dispersed and formed in an island shape. It was found that it could be done. Further, the hot rolled sheet having ultra-fine grains is Ac1Above the transformation point (Ac1Heating to the temperature range of the α-γ2 phase region below the transformation point + 80 ° C.) and then performing annealing to cool the steel can produce a high-strength steel sheet in which the yield ratio is significantly reduced and the strength-elongation balance is significantly improved. I found it. Furthermore, it has been found that the plating layer formed even when hot-dip galvanizing is applied to this high-tensile steel sheet has excellent plating adhesion, has no delay in alloying, and has good characteristics.
[0014]
The experimental results on which the present invention is based will be described.
Hot rolled steel sheet containing 0.12% C, 0.3% Si, 0.8% Mn, 0.005% Pi, and 0.16% Ti and having a ferrite average grain size of 1.5 μm or 4.5 μm as the main phase. (Ac1(Transformation point: 740 ° C.) and continuous annealing was performed while changing the heating temperature in the range of 650 ° C. to 880 ° C. The holding time at the soaking temperature was constant at 40 sec. The cooling rate after soaking was 30 ° C / s, and the material was rapidly cooled to 300 ° C. After the continuous annealing, a tensile test was performed to determine the yield strength YS, the tensile strength TS, and the elongation El, and the yield ratio YR and the strength-elongation balance TS × El were calculated. In addition, the tensile test was implemented also about the steel plate as hot rolled. The results are shown in FIGS.
[0015]
From FIG. 1 and FIG. 2, the ultra-fine grained steel sheet having a hot-rolled ferrite grain size (initial grain size) of 1.5 μm1Above the transformation point (Ac1It can be seen that when heating to the α-γ2 phase region below the transformation point (+ 80 ° C.), TS increases, YS decreases, YR decreases, and TS × El remarkably improves. When the initial particle size is 4.5 μm, such reduction in YR and remarkable improvement in TS × El are not observed.
[0016]
According to further studies by the present inventors, a fine-grained steel sheet having an initial grain size of 3.5 μm or less was obtained from Ac.1By heating above the transformation point to cause α → γ reverse transformation, the structure after cooling includes a second phase having an average crystal grain size of 3.5 μm or less, and the second phase is mainly a martensite phase. It has an austenite phase. As a result, it has been found that a steel sheet having a low YS, a high TS and an extremely good TS × El balance can be obtained without adding a large amount of alloying elements. Also, Ac1When heated above the transformation point + 80 ° C, crystal grains grow, the strength decreases, and the material properties deteriorate. On the other hand, in the case of a steel sheet having an initial grain size of more than 3.5 μm, sufficient reverse transformation and concentration of alloying elements in the second phase do not easily occur by short-time annealing, so that martensite and the like hardly occur after cooling. Even if reverse transformation is caused by long-time annealing, the particle size of the second phase exceeds 3.5 μm, and the characteristics are deteriorated.
[0017]
The present inventors have further studied based on the above findings and completed the present invention.
That is, the present invention is a hot-dip galvanized steel sheet obtained by performing hot-dip galvanizing on a hot-rolled steel sheet surface, wherein the hot-rolled steel sheet isqualityIn terms of%, C: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%,Al: 0.10% or less, the balance being substantially Fe, and the main phaseBy volume 50 %More thanIt has a structure composed of ferrite and a second phase, wherein the average particle size of the ferrite is 3.5 μm or less, the average particle size of the second phase is 3.5 μm or less, and the second phase is an entire second phase. It is a high-strength hot-dip galvanized steel sheet excellent in workability, characterized by being a high-tensile hot-rolled steel sheet having a martensite of 70% or more by volume and an austenite of 2% or more by volume. In the present invention, the hot-rolled steel sheet isqualityIn terms of%, C: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%,High-strength hot-rolled steel sheet containing Al: 0.10% or less, Nb: 0.3% or less, V: 0.3% or less, and the balance substantially consisting of Fe Also, the hot-rolled steel sheet may bequalityIn terms of%, C: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%,Further, it contains Al: 0.10% or less, further contains one or more of Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, and Mo: 1.0% or less, with the balance being Even as a high-tensile hot-rolled steel sheet having a composition substantially composed of Fe, the hot-rolled steel sheet isqualityIn terms of%, C: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%,Al: 0.10% or less, and further, one or two or more of Ca, REM and B are contained in a total of 0.005% or less, and the balance is substantially high iron. As the steel sheet, also, the hot-rolled steel sheet,qualityIn terms of%, C: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%,Al: 0.10% or less, Nb: 0.3% or less, V: one or two of 0.3% or less, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: a high-tensile hot-rolled steel sheet containing one or more of 1.0% or less, and the balance substantially consisting of Fe;qualityIn terms of%, C: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%,Al: 0.10% or less, Nb: 0.3% or less, V: 0.3% or less, one or more of Ca, REM, B, 0.005% or more in total. % Or less, and the balance is also a high-strength hot-rolled steel sheet having a composition substantially consisting of Fe,qualityIn terms of%, C: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%,Further, it contains Al: 0.10% or less, and further contains one or more of Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, and Mo: 1.0% or less, Ca, REM, B A high-tensile hot-rolled steel sheet containing 0.005% or less in total of one or more of the above, and the balance substantially consisting of Fe;qualityIn terms of%, C: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%,Al: 0.10% or less, Nb: 0.3% or less, V: one or two of 0.3% or less, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: a composition having a composition containing one or more of 1.0% or less and one or two or more of Ca, REM and B in total of 0.005% or less, and the balance substantially consisting of Fe. It may be a tension hot-rolled steel sheet.
[0018]
Further, the present invention provides a method for producing a hot-dip galvanized steel sheet by performing a hot-dip galvanizing treatment on a steel sheet to obtain a hot-dip galvanized steel sheet.In mass%, C: 0.01 ~ 0.3 %, Si : 1.0 %Less than, Mn : 3.0 % Or less, P: 0.5 %Less than, Ti : 0.03 ~ 0.3 % Al : 0.10 %, With the balance being substantially Fe Having a composition consisting ofThe main phaseBy volume 50 %More thanA high-tensile hot-rolled steel sheet having an average ferrite grain size of 3.5 μm or less,MeltingBefore galvanizing, the steel sheet1Transformation point ~ (Ac1Heated to the temperature range (transformation point + 80 ° C)rear, Ten ~ 100 ° C / s Cooling stop temperature with cooling rate in the range: 200 ~ 460 Cool down to ℃After the annealing treatment,500A method for producing a high-strength hot-dip galvanized steel sheet, characterized by performing a hot-dip galvanizing process of dipping in a hot-dip galvanizing bath in a temperature range of ° C..
[0019]
In the present invention, the steel sheet,qualityIn terms of%, C: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%And further Al : 0.10 % Or less, with the balance being substantially Fe Consists ofRolling steel material of the composition, or reheat to 1100 ℃ or less, or after it is 1100 ℃ or less,(Minimum temperature of dynamic recrystallization) + 80 ℃ to the lower limit temperature of dynamic recrystallizationDynamic recrystallizationlow temperatureAt least 5 passes in the zone and finish rolling temperature is ArThreeA main phase obtained by performing hot rolling at a transformation point or higher and cooling at a cooling rate of 30 ° C./s or more within 0.5 sec after completion of hot rolling.By volume 50 %More thanIt is preferable to use a high-tensile hot-rolled steel sheet having a structure in which the average grain size of ferrite is 3.5 μm or less..
[0020]
Further, according to the present invention, in the method for producing a galvanized steel sheet to be subjected to a hot dip galvanizing treatment and an alloying treatment on the steel sheet to obtain an alloyed hot-dip galvanized steel sheet,In mass%, C: 0.01 ~ 0.3 %, Si : 1.0 %Less than, Mn : 3.0 % Or less, P: 0.5 %Less than, Ti : 0.03 ~ 0.3 % Al : 0.10 % Or less, with the balance being substantially Fe Having a composition consisting ofThe main phaseBy volume 50 %More thanA high-tensile hot-rolled steel sheet having an average ferrite crystal grain size of 3.5 μm or less, and before the hot-dip galvanizing treatment, the steel sheet is Ac1Transformation point ~ (Ac1Heated to the temperature range (transformation point + 80 ° C)rear, Ten ~ 100 ° C / s Cooling stop temperature with cooling rate in the range: 200 ~ 460 Cool down to ℃After the annealing treatment,500A high-strength hot-dip galvanized steel sheet characterized by being subjected to a hot-dip galvanizing treatment immersed in a hot-dip galvanizing bath at a temperature range of 450 ° C, and then to an alloying process of alloying by heating to a temperature range of 450 to 550 ° C. Manufacturing methodYou.In the present invention, the steel sheet,qualityC: 0.01 to 0.3%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3%See, further Al : 0.10 % Or less, with the balance being substantially Fe Consists ofRolling steel material of rolling composition is reheated to 1100 ° C or less, or after it reaches 1100 ° C or less, dynamic recrystallizationlow temperatureAt least 5 passes in the zone and finish rolling temperature is ArThreeA main phase obtained by performing hot rolling at a transformation point or higher and cooling at a cooling rate of 30 ° C./s or more within 0.5 sec after completion of hot rolling.By volume 50 %More thanIt is preferable to use a high-tensile hot-rolled steel sheet having a structure in which the average grain size of ferrite is 3.5 μm or less.
[0021]
In the method for producing a high-strength galvanized steel sheet (including a high-strength galvannealed steel sheet) of the present invention, the hot-rolled steel sheet may further include, in addition to the composition,quality% Or less, one or two of Nb: 0.3% or less, V: 0.3% or less, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 1.0% or less The composition may contain one or more selected from each group of one or more, and one or more of Ca, REM and B in total of 0.005% or less.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reasons for limiting the chemical components of a high-strength hot-rolled steel sheet used as a plating base sheet (steel sheet) for the hot-dip coated steel sheet and the galvannealed steel sheet of the present invention will be described.Hereinafter, mass% is simply described as%.
C: 0.01-0.3%
C is an inexpensive reinforcing component, and contains a necessary amount according to the desired steel sheet strength. If the C content is less than 0.01%, the crystal grains become coarse, and it becomes impossible to achieve the average ferrite grain size of less than 3.5 μm intended in the present invention. On the other hand, if the C content exceeds 0.3%, workability is deteriorated and weldability is also deteriorated. Therefore, C is set in the range of 0.01 to 0.3%. More preferably, it is in the range of 0.05 to 0.2%.
[0023]
Si: 1.0% or less
Si effectively contributes to the increase in strength while improving the strength-elongation balance as a solid solution strengthening component. In addition, it effectively acts to suppress the formation of ferrite and obtain a structure having a desired volume ratio of the second phase, but an excessive content deteriorates ductility and surface properties. Therefore, the content of Si is set to 1.0% or less. Incidentally, the content is preferably 0.01 to 0.7%.
[0024]
Mn: 3.0% or less
Mn is ArThreeIt contributes to the refinement of crystal grains through the action of lowering the transformation point. In addition, it has the effect of enhancing the strength-elongation balance through the effect of promoting the formation of martensite and retained austenite in the second phase. Further, it also has a function of detoxifying harmful dissolved S as MnS. However, a large amount hardens the steel and rather degrades the strength-elongation balance. Therefore, Mn is set to 3.0% or less. The content is preferably at least 0.05%, more preferably 0.3 to 2.0%.
[0025]
P: 0.5% or less
P is useful as a reinforcing component and can be contained according to the desired strength of the steel sheet. However, excessive P segregates at grain boundaries and causes embrittlement. Therefore, P is set to 0.5% or less. The excessive reduction may increase the cost, and is preferably 0.001 to 0.2%, more preferably 0.005 to 0.1%.
[0026]
Ti: 0.03-0.3%
Ti is present as TiC and effectively acts to refine the initial austenite grains during the hot rolling heating step and induce dynamic recrystallization in the subsequent hot rolling process. In order to exert such an effect, the content must be at least 0.03% or more. However, if the content exceeds 0.3%, the effect is saturated and an effect corresponding to the content cannot be expected. Therefore, Ti is set in the range of 0.03 to 0.3%. In addition, Preferably, it is 0.05 to 0.20%.
[0027]
Al: 0.10% or less
AlActs as a deoxidizing agent and also has a function of refining crystal grains as AlN. However, when the content exceeds 0.10%, oxide diameter inclusions increase and the cleanliness decreases. For this reason, Al is limited to 0.10% or less.You.The content is preferably 0.005 to 0.07%.
[0028]
Nb: one or two of 0.3% or less, V: 0.3% or less
Both Nb and V form carbonitrides and have an action of refining the initial austenite grains in the hot rolling and heating stage, and if necessary, by overlapping and containing Ti, Effectively affects dynamic recrystallization. However, even if it is contained in a large amount exceeding 0.3%, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, it is desirable that both Nb and V be 0.3% or less.
[0029]
One or more of Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 1.0% or less
Any of Cu, Mo, Ni, and Cr can be contained as a reinforcing component, if necessary. However, a large amount of the component rather deteriorates the strength-ductility balance. For this reason, it is desirable that Cu, Mo, Ni, and Cr all be 1.0% or less. In order to sufficiently exhibit the above-mentioned effects, it is preferable to contain at least 0.01% or more.
[0030]
0.005% or less in total of one or more of Ca, REM and B
Ca, REM, and B all have the effect of improving workability by controlling the shape of sulfides and increasing the grain boundary strength, and can be contained as necessary. However, excessive content may adversely affect cleanliness and recrystallization, so that the total content is desirably 0.005% or less.
[0031]
The hot-rolled steel sheet having a hot-dip galvanized surface formed thereon according to the present invention is substantially composed of Fe, except for the composition described above.
The hot-rolled steel sheet having a hot-dip galvanized surface formed thereon according to the present invention has a main phase of ferrite having an average grain size of 3.5 μm or less, and has a structure composed of a main phase and a second phase. The main phase is preferably at least 50% by volume, preferably at least 70% by volume. If it is less than 50%, workability is low and strength is too high. The second phase has an average particle size of 3.5 μm or less, and has a martensite of 70% or more and an austenite of 2% or more by volume relative to the entire second phase.
[0032]
If the ferrite grains are refined, the desired strength can be secured with a smaller amount of alloying elements compared to conventional high-tensile steel, and there is little deterioration in properties other than strength, and the subsequent plating properties will be good. . However, when the average grain size of ferrite exceeds 3.5 μm, the increase in strength due to the refinement of crystal grains is small, the amount of alloy addition is increased, and the subsequent plating property is adversely affected. For this reason, the average grain size of ferrite was limited to 3.5 μm or less. Further, when the average particle size of the second phase exceeds 3.5 μm, the improvement in toughness and ductility decreases, so the average particle size of the second phase is limited to 3.5 μm or less.
[0033]
The volume ratio of the second phase is desirably 3 to 30%. The volume fraction of the second phase is 3%If it is less than 1, the effect of increasing the strength due to the refinement of ferrite grains is obtained, but the ductility is reduced and the balance between strength and ductility is low. If it exceeds 30%, the hole expandability decreases.
The second phase shall have a martensite of 70% or more by volume relative to the entire second phase and an austenite of 2% or more by volume.
[0034]
If the volume fraction of martensite in the second phase is less than 70%, a low yield ratio cannot be obtained, resulting in a high yield ratio which is a defect of a steel sheet having fine grains, and a low strength-elongation balance. If the volume fraction of austenite in the second phase is less than 2%, only a low strength-elongation balance can be obtained. Only when the volume ratio of austenite is 2% or more, TS × El becomes 23000 MPa ·% or more.
[0035]
In the present invention, the ferrite and the secondPhaseThe average particle size is defined as an average particle size in a cross section in the rolling direction according to a conventional method.
Next, a method for producing a hot-rolled steel sheet according to the present invention will be described. The steps before the annealing (welding to hot rolling / coil winding) are a suitable example for obtaining a high-strength hot-rolled steel sheet having an average crystal grain size of ferrite as a main phase of 3.5 μm or less. It is not limited to this manufacturing method.
[0036]
The molten steel adjusted to the above component composition range is made into a rolled material by continuous casting or ingot-bulking rolling, and the rolled material is subjected to hot rolling to obtain a hot-rolled steel sheet.
The hot rolling may be reheating rolling, in which the rolled material is once cooled and then reheated, or may be direct rolling or hot charge rolling. Further, a continuously cast slab such as a thin slab continuous casting method may be directly hot-rolled. In the case of reheating, it is desirable to heat to 1100 ° C. or less in order to make the initial austenite grains fine. Also, in the case of direct rolling, it is preferable to start rolling after cooling to 1100 ° C. or lower in order to promote dynamic recrystallization. In order to set the finish rolling temperature in the austenite range, it is preferable that the reheating temperature or the direct rolling start temperature is 950 ° C. or higher.
[0037]
When hot rolling the rolling material at the above temperature, in the present invention is a low temperature range of the dynamic recrystallization temperature,(Minimum temperature of dynamic recrystallization) + 80 The temperature range from ℃ to the lower limit temperature of the dynamic recrystallization is defined as the dynamic recrystallization low temperature range,It is preferable to apply at least 5 or more repetitive rolling reductions in the dynamic recrystallization low temperature range. The austenite grains are refined by repeatedly reducing the temperature in the dynamic recrystallization low temperature range. Since the finer austenite grains progress as the number of times of the dynamic recrystallization increases, it is preferable to reduce the pressure in at least 5 passes and more than 5 consecutive passes. With less than 5 passes, the degree of austenite grain refinement is small and it is difficult to achieve fine grains with an average ferrite grain size of 3.5 μm or less.
[0038]
The rolling reduction in the low temperature range of the dynamic recrystallization is not particularly limited as long as the dynamic recrystallization occurs, but it is preferably 4 to 20% per pass, preferably less than 20%. desirable. When the rolling reduction per pass is less than 4%, dynamic recrystallization does not occur.
On the other hand, when the rolling reduction per pass exceeds 20%, the anisotropy of the mechanical properties increases.
[0039]
In addition, dynamic reconnectionCrystalThe final rolling pass in the low temperature range is desirably set to a rolling reduction of 13 to 30% in order to reduce the size of the second phase.
Note that Ac1Although annealing is performed at a temperature equal to or higher than the transformation point, it is not preferable that the second phase exists in an agglomerated state before annealing, and an island shape (here, the island shape means another island at an interval equal to or less than the particle size of the second phase). The ratio in which the second phase is present is a dispersion state of 20% or less). Under the above hot rolling conditions, an island-like second phase distribution can be obtained.
[0040]
The dynamic recrystallization temperature range referred to in the present invention is a strain-stress obtained by simulating rolling conditions by a measuring device capable of independently controlling temperature and strain (for example, “Processing for Master” manufactured by Fuji Denki Koki Co., Ltd.). In this case, a value measured in advance is used. Dynamic recrystallization temperatureAreaAlthough it varies with the steel composition, heating temperature, reduction ratio, reduction distribution, etc., it is said that it exists in the temperature range of 850 to 1100 ° C, usually in the range of 250 to 100 ° C. The temperature width of the dynamic recrystallization temperature range increases as the rolling reduction per pass is higher or as the Ti content is higher.
[0041]
Further, from the viewpoint of microstructural refinement, it is advantageous to perform rolling in a temperature range as low as possible in the dynamic recrystallization temperature range, because the number of transformation sites of γ → α transformation increases. Therefore, in order to promote the refining of austenite grains, the dynamic recrystallization is performed from (lower limit temperature of dynamic recrystallization) + 80 ° C, preferably (lower limit temperature of dynamic recrystallization) + 60 ° C.CrystalThe temperature range up to the lower limit temperature is defined as a dynamic recrystallization low temperature range, and it is preferable to apply the above-mentioned 5 or more passes in this temperature range.
[0042]
In order to minimize the temperature drop of the material to be rolled during rolling in the low temperature range of dynamic recrystallization within a predetermined range, it is preferable to install a heating means between the rolling stands and heat the material to be rolled or the roll. In particular, it is effective to install the heating means at a position where the temperature drops significantly. As the heating means, the steel plate may be heated by a high-frequency heating device, the roll may be heated by using an electric heater, or the heating may be performed by direct electric heating.
[0043]
In addition, at the time of hot rolling, it goes without saying that the reduction may be performed while applying lubrication.
In the present invention, rolling conditions other than rolling in the dynamic recrystallization temperature range are not particularly limited, but the rolling finishing temperature is ArThreeAbove the transformation point. The rolling finish temperature is ArThreeIf the temperature is lower than the transformation point, ductility and toughness of the steel sheet deteriorate.
[0044]
In the hot-rolled steel sheet that has been hot-rolled under the above-described conditions, the austenite grains at this point are almost equiaxed crystal grains. There are many transformation nuclei of the α transformation, the grain growth of ferrite grains is suppressed, and the structure is refined. For this reason, it is preferable to start cooling within 0.5 sec, preferably within 0.3 sec after the end of rolling. If the start of cooling exceeds 0.5 sec after the end of rolling, grain growth becomes remarkable.
[0045]
The cooling rate is 30 ° C./sec or more. If the cooling rate is less than 30 ° C./sec, ferrite grains grow, making it difficult to achieve finer grains and making it difficult to distribute the second phase finely and in islands.
The hot-rolled steel sheet cooled at a cooling rate of 30 ° C./sec or more, preferably to a temperature range of 350 to 650 ° C., is immediately wound around a coil. The winding temperature and the cooling rate after winding are not particularly limited. What is necessary is just to determine suitably according to the steel plate to manufacture. However, when the winding temperature is high, the second phase has a structure mainly composed of pearlite, and the ferrite grains tend to grow. On the other hand, if the winding temperature is too low, winding becomes difficult. For this reason, it is desirable that the winding temperature be in the range of 350 to 650 ° C.
[0046]
Next, the hot-rolled steel sheet is annealed before the hot-dip galvanizing treatment. Although there is no particular limitation on the annealing method, continuous annealing is preferable in terms of production efficiency. The soaking temperature is Ac1Transformation point ~ (Ac1(Transformation point + 80 ° C). By heating to this temperature range, a part is transformed into the γ phase. The soaking time is preferably from 1 to 300 sec, more preferably from 20 to 100 sec.
[0047]
Next, it is immersed in a hot-dip galvanizing bath.460After cooling to a temperature of ° C., it is preferable to immerse it in a hot-dip galvanizing bath. Preferably, the cooling rate is 10 to 100 ° C./s. If the cooling rate is less than 10 ° C./s, diffusion of C occurs, and it is difficult to form a second phase mainly composed of martensite and having a structure containing austenite. On the other hand, even if the cooling rate is higher than 100 ° C./s, the structural fraction of the second phase does not change, and it is very difficult to increase the cooling rate to more than 100 ° C. It is desirable to make s the upper limit. The quenching stop temperature after soaking is 200 to460It is desirable to set the temperature range to ° C. If the quenching stop temperature is less than 200 ° C, shape defects are likely to occur.460If the temperature exceeds ℃, it is difficult to obtain a structure containing a predetermined amount of martensite and austenite.
[0048]
Hot-dip galvanizing process is 450 ~500Preferably, the steel sheet is immersed in a hot-dip galvanizing bath maintained in a temperature range of ° C. After the hot-dip galvanizing treatment, an alloying treatment for heating to a temperature range of 450 to 550 ° C. for alloying may be performed.
The hot-dip galvanizing treatment is preferably performed by a continuous galvanizing equipment, but is not limited thereto.
[0049]
After the hot-dip galvanizing treatment, an alloying treatment for heating to a temperature range of 450 to 550 ° C. for alloying may be performed. The alloying treatment temperature is a temperature for obtaining an appropriate alloy layer structure.When the temperature is lower than 450 ° C, sufficient alloying does not proceed, whereas when the temperature exceeds 550 ° C, alloying proceeds excessively, and the plating layer is formed during forming. The so-called powdering property of peeling is deteriorated.
[0050]
After the alloying treatment, the steel sheet is cooled, and temper rolling is performed as necessary.
[0051]
【Example】
Molten steel having the composition shown in Table 1 was used as a slab (rolled material) by a continuous casting method. These slabs were heated, hot-rolled, and rolled and cooled under various conditions shown in Table 2 to obtain a hot-rolled steel sheet (sheet thickness 1.8 to 2.9 mm). The finish rolling temperature of hot rolling is the ArThreeIt was above the transformation point. In addition, lubrication rolling was performed under the manufacturing condition No. 2. Subsequently, these hot-rolled steel sheets were subjected to continuous annealing for heating and cooling under the conditions shown in Table 2, and then subjected to a hot-dip galvanizing treatment under the conditions shown in Table 2 to obtain hot-dip galvanized steel sheets. Immediately after the hot-dip galvanizing treatment, some of the steel sheets were subjected to a heat alloying treatment under the conditions shown in Table 2 to obtain an alloyed hot-dip galvanized steel sheet.
[0052]
The obtained steel sheets were examined for structure, tensile properties, hole expandability, and plating properties.
The microstructure of the section of the steel sheet in the rolling direction was determined by a cutting method using an optical microscope or an electron microscope in accordance with the provisions of JIS G 0551. The diameter was measured. The particle size of each of the ferrite and the second phase was measured in five or more visual fields (structure photograph at a magnification of 1000 times with an optical microscope or an electron microscope), and the equivalent circle diameter was determined as the average particle diameter.
[0053]
The tensile properties were measured by using JIS No. 5 test pieces taken from the rolling direction of the steel sheet, a direction perpendicular to the rolling direction, and a direction of 45 ° in the rolling direction (yield point YS, tensile strength TS, elongation El). . The tensile test was performed at room temperature at a tensile speed of 10 mm / min. From the measured elongation, ΔEl = 1/2 · (El0+ El90) -El45The anisotropy ΔEl of elongation of each steel sheet defined by the equation was calculated. Where El0Is the elongation value in the rolling direction, El90Is the elongation at right angles to the rolling direction, El45Represents an elongation value in the direction of 45 ° in the rolling direction.
[0054]
The hole expandability is 10 mmφ (D0) Is punched and then expanded by a conical punch with a vertex angle of 60 °, the hole diameter D immediately after the crack penetrates the plate thickness is obtained, and λ = {(D−D0) / D0The evaluation was made based on the λ value obtained from} × 100%.
The plating property was evaluated based on the iron content in the plating layer, the powdering property, and the plating property (degree of non-plating). The iron content in the plating layer was measured by X-ray. The degree of non-plating was visually evaluated on a five-point scale where "1" had no non-plating defect and "5" had the most non-plating defect.
[0055]
The powdering resistance was evaluated by measuring the zinc powder adhered to the cellophane tape after the 90 ° bending back by fluorescent X-ray. The fluorescent X-ray intensity of the zinc from the zinc powder was measured for 2 minutes by a counter tube, and if it was 2500 CPS or less, it was determined that it could withstand press molding of an automobile or the like as “1”.
Table 3 shows the results.
[0056]
[Table 1]
Figure 0003539546
[0057]
[Table 2]
Figure 0003539546
[0058]
[Table 3]
Figure 0003539546
[0059]
[Table 4]
Figure 0003539546
[0060]
In each of the steel sheets used as the plating base sheet in the present invention, the average grain size of ferrite was 3.5 μm or less, the average grain size of the second phase was 3.5 μm or less, and the amount of martensite in the second phase was 70 vol. %, The austenite amount is 2% by volume or more, and has a low yield ratio, a TS × El value as high as 23000 MPa ·% or more, and a λ value as high as 80% or more. It is a high-tensile hot-rolled steel sheet excellent in workability, and has anisotropy of elongation ΔEl less than or equal to 3.0 or less in absolute value. A hot-dip galvanized steel sheet obtained by subjecting this hot-rolled steel sheet to a hot-dip galvanizing treatment is a hot-dip galvanized steel sheet having excellent plating properties and further having workability.
[0061]
On the other hand, steel sheet No. 4 having a high slab heating temperature, no occurrence of dynamic recrystallization, a large average ferrite grain size, a small amount of martensite and austenite in the second phase, and out of the range of the present invention was obtained. Has a large YR, elongation, a low TS × El value, and a large absolute value of ΔEl.
Further, the steel sheet No. 5 which undergoes rolling reduction only in two passes in the low temperature range of dynamic recrystallization, has a large ferrite average grain size, further has a small amount of martensite and austenite in the second phase, and is out of the range of the present invention, The YR is large, elongated, and the TS × El value is low.
[0062]
Further, the steel sheet No. 6 having a high cooling rate after annealing and deviating from the range of the present invention has a small amount of austenite of the second phase, and is superior to the steel sheets No. 4, No. 5, No. 22 to No. 24. However, the YR is slightly higher and the TS × El value is slightly lower. In steel sheet No. 7, the cooling rate after annealing was low, outside the preferred range of the present invention, the amount of martensite in the second phase was reduced, and steel sheets No. 4, No. 5, No. 22 to No. .24 Higher workability but slightly higher YR and slightly lower TS × El value. Steel sheet No. 22 has a low Ti content and cannot be rolled by dynamic recrystallization, so that the average ferrite grain size increases, the YR increases, the elongation, and the TS × El value decreases. In steel sheet No. 23, the Mn content is high, the second phase is as much as 52%, and it is difficult to say that ferrite is the main phase, and since the second phase is also mainly bainite, the YR is high and the TS × El value is low. . In steel sheet No. 24, the C content was small, the average grain size of ferrite could not be reduced to 3.5 μm or less even under dynamic recrystallization pressure, and the formation of martensite was difficult.
[0063]
【The invention's effect】
According to the present invention, it has ultrafine grains, has good mechanical properties, and is excellent in strength-elongation balance, strength-hole expandability balance, excellent in plating properties, and excellent in workability and high tension. Hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet can be manufactured at a low cost, and it has a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of annealing temperature on YS and TS.
FIG. 2 is a graph showing the effect of annealing temperature on YR and TS × El.

Claims (10)

熱延鋼板表面に溶融亜鉛めっきを施した溶融亜鉛めっき鋼板であって、前記熱延鋼板が、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %、さらに Al 0.10 %以下を含み、残部が実質的にFeからなる組成を有し、かつ主相である体積率で 50 %以上のフェライトと、第2相とからなる組織を有し、前記フェライトの平均粒径が3.5 μm 以下、前記第2相の平均粒径が3.5 μm 以下で、かつ前記第2相が、第2相全体に対する体積率で、70%以上のマルテンサイトと体積率2%以上のオーステナイトを有する高張力熱延鋼板であることを特徴とする加工性に優れた高張力溶融亜鉛めっき鋼板。A galvanized steel sheet subjected to hot-dip galvanized hot-rolled steel sheet, the hot-rolled steel sheet, in mass%, C: 0.01~0.3%, Si : 1.0% or less, Mn: 3.0% or less, P : 0.5% or less, Ti: 0.03 to 0.3% , Al : 0.10 % or less , the balance being substantially composed of Fe, and the main phase of ferrite having a volume fraction of 50 % or more ; The ferrite has a structure composed of two phases, wherein the ferrite has an average particle size of 3.5 μm or less, the second phase has an average particle size of 3.5 μm or less, and the second phase has a volume ratio to the entire second phase. A high-strength hot-dip galvanized steel sheet having excellent workability, characterized by being a high-tensile hot-rolled steel sheet having 70% or more of martensite and austenite of 2% or more by volume. 前記熱延鋼板が、前記組成に加えて、さらに、量%で、Nb:0.3 %以下、V:0.3 %以下のうちの1種または2種を含有する組成の高張力熱延鋼板であることを特徴とする請求項1に記載の高張力溶融亜鉛めっき鋼板。The hot-rolled steel sheet, in addition to the composition, further, in mass%, Nb: 0.3% or less, V: is a high tensile hot-rolled steel sheet having a composition containing one or two of 0.3% or less high-tensile galvanized steel sheet according to claim 1, characterized in that. 前記熱延鋼板が、前記組成に加えて、さらに、量%で、Cu:1.0 %以下、Ni:1.0 %以下、Cr:1.0 %以下、Mo:1.0 %以下のうちの1種または2種以上を含有する組成の高張力熱延鋼板であることを特徴とする請求項1または2に記載の加工性に優れた高張力溶融亜鉛めっき鋼板。The hot-rolled steel sheet, in addition to the composition, further, in mass%, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 1 kind or two kinds of the 1.0% The high-strength hot-dip galvanized steel sheet having excellent workability according to claim 1 or 2 , which is a high-tensile hot-rolled steel sheet having the above composition. 前記熱延鋼板が、前記組成に加えて、さらに、量%で、Ca、REM 、Bのうちの1種または2種以上を合計で0.005 %以下を含有する組成の高張力熱延鋼板であることを特徴とする請求項1ないしのいずれかに記載の高張力溶融亜鉛めっき鋼板。The hot-rolled steel sheet, in addition to the composition, further, in mass%, Ca, REM, with one or high-tensile hot-rolled steel sheet having a composition containing 0.005% or less of two or more in total of B The high-strength hot-dip galvanized steel sheet according to any one of claims 1 to 3 , wherein 鋼板に溶融亜鉛めっき処理を施して溶融亜鉛めっき鋼板とする溶融亜鉛めっき鋼板の製造方法において、前記鋼板を、質量%で、C: 0.01 0.3 %、 Si 1.0 %以下、 Mn 3.0 %以下、P: 0.5 %以下、 Ti 0.03 0.3 %を含み、さらに Al 0.10 %以下を含有し、残部が実質的に Fe からなる組成を有し、かつ主相である体積率で 50 %以上のフェライトの平均結晶粒径が3.5 μm 以下である高張力熱延鋼板とし、前記溶融亜鉛めっき処理前に、前記鋼板にAc1変態点〜(Ac1変態点+80℃)の温度範囲に加熱後、 10 100 ℃/ S の範囲の冷却速度で急冷停止温度: 200 460 ℃まで冷却する焼鈍処理を施したのち、450 〜500 ℃の温度範囲の溶融亜鉛めっき浴中に浸漬する溶融亜鉛めっき処理を施すことを特徴とする高張力溶融亜鉛めっき鋼板の製造方法。In the method for producing a hot-dip galvanized steel sheet by subjecting the steel sheet to a hot-dip galvanizing treatment, the steel sheet is expressed in terms of % by mass as C: 0.01 to 0.3 %, Si : 1.0 % or less, and Mn : 3.0 % or less. , P: 0.5 % or less, Ti : 0.03 to 0.3 %, Al : 0.10 % or less, the balance substantially consisting of Fe , and at least 50 % by volume as the main phase the average crystal grain size of the ferrite is a high-tensile hot-rolled steel sheet is 3.5 [mu] m or less, before the hot-dip galvanizing treatment, after heating to a temperature range of Ac 1 transformation point - the steel plate (Ac 1 transformation point + 80 ° C.) , 10 ~ 100 ℃ / S in the range of the cooling rate in a quench stop temperature: 200 after subjected to annealing to cool to ~ 460 ℃, 450 ~ immersed in the molten galvanizing bath temperature range of 500 ° C. galvanizing For producing high-strength hot-dip galvanized steel sheet, characterized by performing a heat treatment . 鋼板に溶融亜鉛めっき処理および合金化処理を施して合金化溶融亜鉛めっき鋼板とする溶融亜鉛めっき鋼板の製造方法において、前記鋼板を、質量%で、C: 0.01 0.3 %、 Si 1. 0 %以下、 Mn 3. 0 %以下、P: 0.5 %以下、 Ti 0.03 0.3 %を含み、さらに Al 0.10 %以下を含有し、残部が実質的に Fe からなる組成を有し、かつ主相である体積率で 50 %以上のフェライトの平均結晶粒径が3.5 μm 以下である高張力熱延鋼板とし、前記溶融亜鉛めっき処理前に、前記鋼板にAc1変態点〜(Ac1変態点+80℃)の温度範囲に加熱後、 10 100 ℃/ s の範囲の冷却速度で急冷停止温度: 200 460 ℃まで冷却する焼鈍処理を施したのち、450 〜500 ℃の温度範囲の溶融亜鉛めっき浴中に浸漬する溶融亜鉛めっき処理を施し、ついで450 〜550 ℃の温度範囲に加熱し合金化する合金化処理を施すことを特徴とする高張力溶融亜鉛めっき鋼板の製造方法。In a method for producing a hot-dip galvanized steel sheet by subjecting the steel sheet to a hot-dip galvanizing treatment and an alloying treatment to obtain an alloyed hot-dip galvanized steel sheet, the steel sheet is expressed in terms of % by mass, C: 0.01 to 0.3 %, and Si : 1.0. %, Mn : 3.0 % or less, P: 0.5 % or less, Ti : 0.03 to 0.3 %, Al : 0.10 % or less, the balance being substantially Fe , and a high-tensile hot-rolled steel sheet having an average crystal grain size of more than 50% of ferrite at a volume ratio which is the main phase is a 3.5 [mu] m or less, the prior galvanizing treatment, ~ Ac 1 transformation point to said steel plate (Ac 1 transformation After heating to a temperature range of + 80 ° C) , quench at a cooling rate of 10 to 100 ° C / s. Stop temperature: After performing an annealing treatment to cool to 200 to 460 ° C , melting in a temperature range of 450 to 500 ° C. Perform hot-dip galvanizing treatment by immersion in a galvanizing bath, and then apply a temperature range of 450 to 550 ° C. Heating method for manufacturing a high-tensile galvanized steel sheet characterized by performing alloying treatment for alloying to. 前記鋼板が、量%で、C:0.01〜0.3 %、Si:1.0 %以下、Mn:3.0 %以下、P:0.5 %以下、Ti:0.03〜0.3 %を含み、さらに Al 0.10 %以下含有し、残部が実質的に Fe からなる組成の圧延用鋼素材を、1100℃以下に再加熱するか、あるいは1100℃以下となってから、(動的再結晶の下限温度)+ 80 ℃から動的再結晶の下限温度までの動的再結晶低温域で少なくとも5パス以上の圧下を行い、仕上圧延温度をAr3変態点以上とする熱間圧延を施し、熱間圧延終了後、0.5sec以内に30℃/s以上の冷却速度で冷却して得られた、主相である体積率で 50 %以上のフェライトの平均粒径が3.5 μm 以下である組織を有する高張力熱延鋼板であることを特徴とする請求項5または6に記載の高張力溶融亜鉛めっき鋼板の製造方法。The steel sheet, in mass%, C: 0.01~0.3%, Si : 1.0% or less, Mn: 3.0% or less, P: 0.5% or less, Ti: 0.03 to 0.3% only contains further Al: 0.10% or less Rolling steel material with a composition consisting essentially of Fe , with the balance being substantially Fe , is reheated to 1100 ° C or lower, or after the temperature reaches 1100 ° C or lower , from (lower limit temperature for dynamic recrystallization) + 80 ° C. At least 5 passes are reduced in the low temperature range of the dynamic recrystallization to the lower limit temperature of the dynamic recrystallization, hot rolling is performed so that the finishing rolling temperature is equal to or higher than the Ar 3 transformation point, and 0.5 sec after the completion of the hot rolling. A high-tensile hot-rolled steel sheet having a structure in which the average grain size of ferrite with a volume fraction of 50 % or more as a main phase is 3.5 μm or less, obtained by cooling at a cooling rate of 30 ° C./s or more within The method for producing a high-strength hot-dip galvanized steel sheet according to claim 5 or 6 , wherein: 前記組成に加えて、さらに、質量%で、 Nb 0.3 %以下、V: 0.3 以下のうちの1種または2種を含有する組成を有することを特徴とする請求項5ないし7のいずれかに記載の高張力溶融亜鉛めっき鋼板の製造方法 8. The composition according to claim 5, further comprising , in addition to the above composition , one or more of Nb : 0.3 % or less and V: 0.3 % or less by mass% . The method for producing a high-strength galvanized steel sheet according to item 1 . 前記組成に加えて、さらに、質量%で、 Cu 1.0 %以下、 Ni 1.0 %以下、 Cr 1.0 %以下、 Mo 1.0 %以下のうちの1種または2種以上を含有する組成を有することを特徴とする請求項5ないし8のいずれかに記載の高張力溶融亜鉛めっき鋼板の製造方法 In addition to the above-mentioned composition, the composition further has a composition containing one or more of Cu : 1.0 % or less, Ni : 1.0 % or less, Cr : 1.0 % or less, and Mo : 1.0 % or less by mass%. The method for producing a high-strength hot-dip galvanized steel sheet according to any one of claims 5 to 8, characterized in that: 前記組成に加えて、さらに、質量%で、 Ca REM 、Bのうちの1種または2種以上を合計で 0.005 %以下を含有する組成を有することを特徴とする請求項5ないし9のいずれかに記載の高張力溶融亜鉛めっき鋼板の製造方法 10. The composition according to claim 5, further comprising, in addition to the composition, a composition containing , by mass%, one or more of Ca , REM , and B in total of 0.005 % or less. A method for producing a high-tensile hot-dip galvanized steel sheet according to any of the claims .
JP01101799A 1999-01-19 1999-01-19 High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same Expired - Fee Related JP3539546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01101799A JP3539546B2 (en) 1999-01-19 1999-01-19 High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01101799A JP3539546B2 (en) 1999-01-19 1999-01-19 High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000212686A JP2000212686A (en) 2000-08-02
JP3539546B2 true JP3539546B2 (en) 2004-07-07

Family

ID=11766353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01101799A Expired - Fee Related JP3539546B2 (en) 1999-01-19 1999-01-19 High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3539546B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534362B2 (en) * 2001-02-02 2010-09-01 Jfeスチール株式会社 Hot-rolled high-tensile steel plate with excellent chemical conversion and corrosion resistance and method for producing the same
JP5087813B2 (en) * 2001-08-31 2012-12-05 Jfeスチール株式会社 High-tensile hot-dip galvanized steel sheet with excellent plating properties and method for producing the same
JP4577100B2 (en) * 2005-06-07 2010-11-10 住友金属工業株式会社 High tensile hot dip galvanized steel sheet and manufacturing method
JP4716856B2 (en) * 2005-11-10 2011-07-06 日新製鋼株式会社 Method for producing high-strength galvannealed steel sheet with excellent ductility
JP4623233B2 (en) 2009-02-02 2011-02-02 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5391801B2 (en) * 2009-04-16 2014-01-15 新日鐵住金株式会社 Hot-rolled hot-rolled steel sheet and manufacturing method thereof
JP5434375B2 (en) * 2009-08-27 2014-03-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5499984B2 (en) * 2010-08-06 2014-05-21 新日鐵住金株式会社 Hot-rolled hot-rolled steel sheet and manufacturing method thereof
JP5870825B2 (en) * 2012-04-06 2016-03-01 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2015040335A (en) * 2013-08-22 2015-03-02 株式会社神戸製鋼所 Steel for machine structural use excellent in machinability
JP6443555B2 (en) 2016-03-25 2018-12-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR102165051B1 (en) * 2016-03-31 2020-10-13 제이에프이 스틸 가부시키가이샤 Thin steel sheet and plated steel sheet, and manufacturing method of thin steel sheet and plating steel sheet

Also Published As

Publication number Publication date
JP2000212686A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
CN109642288B (en) High-strength steel sheet and method for producing same
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
TWI406966B (en) High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP4165272B2 (en) High-tensile hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same
WO2016113788A1 (en) High-strength hot-dip galvanized steel sheet and production method thereof
KR20070061859A (en) High strength steel sheet with excellent elongation and hole expandability and manufacturing method
WO2000065119A1 (en) High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof
JP7164024B2 (en) High-strength steel plate and its manufacturing method
JP2008255442A (en) High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
JP4608822B2 (en) Highly ductile hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
WO2018088421A1 (en) High-strength cold-rolled thin steel sheet and method for producing high-strength cold-rolled thin steel sheet
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
CN113316656A (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP3433687B2 (en) High-strength hot-rolled steel sheet excellent in workability and method for producing the same
WO2022172540A1 (en) High-strength steel sheet and method for manufacturing same
JP3587126B2 (en) High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same
JP3539546B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP4314842B2 (en) High-tensile hot-dip galvanized steel sheet excellent in strength-elongation balance and fatigue characteristics and method for producing the same
JP2002129241A (en) Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility
JP2004052071A (en) High tensile strength cold rolled steel sheet with composite structure having excellent stretch flanging property, strength-ductility balance and strain age hardenability, and method of producing the same
WO2022075072A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these
JP4826694B2 (en) Method for improving fatigue resistance of thin steel sheet
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees