[go: up one dir, main page]

JP3530937B2 - Catalyst for methanol synthesis - Google Patents

Catalyst for methanol synthesis

Info

Publication number
JP3530937B2
JP3530937B2 JP2001069040A JP2001069040A JP3530937B2 JP 3530937 B2 JP3530937 B2 JP 3530937B2 JP 2001069040 A JP2001069040 A JP 2001069040A JP 2001069040 A JP2001069040 A JP 2001069040A JP 3530937 B2 JP3530937 B2 JP 3530937B2
Authority
JP
Japan
Prior art keywords
oxide
catalyst
weight
methanol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001069040A
Other languages
Japanese (ja)
Other versions
JP2002263497A (en
Inventor
昌弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001069040A priority Critical patent/JP3530937B2/en
Publication of JP2002263497A publication Critical patent/JP2002263497A/en
Application granted granted Critical
Publication of JP3530937B2 publication Critical patent/JP3530937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素酸化物(CO
および/またはCO)の触媒水素化によりメタノー
ルを合成するために使用する触媒に関するものである。
TECHNICAL FIELD The present invention relates to a carbon oxide (CO
2 and / or CO) for the synthesis of methanol by catalytic hydrogenation.

【0002】[0002]

【従来の技術】従来、合成ガス(COとH との混合
ガス)を主原料とし、それに少量のCO を添加した
混合ガスからのメタノールの合成反応は、例えば、銅/
亜鉛/アルミニウムの酸化物からなる触媒或いは銅/亜
鉛/クロムの酸化物からなる触媒を用いて、250〜3
50℃、50〜150気圧の条件下で工業的に実施され
ている(触媒講座第7巻、触媒学会編、講談社発行(1
985))。
2. Description of the Related Art Conventionally, a synthesis reaction of methanol from a mixed gas in which a synthetic gas (a mixed gas of CO and H 2 ) is used as a main raw material and a small amount of CO 2 is added is, for example, copper /
250 to 3 using a catalyst composed of zinc / aluminum oxide or a catalyst composed of copper / zinc / chromium oxide
It is carried out industrially under the conditions of 50 ° C and 50 to 150 atm (Catalyst Course Vol. 7, edited by The Catalyst Society, published by Kodansha (1
985)).

【0003】一方、CO と水素を主原料とするメタ
ノール合成は、炭素資源の循環再利用および地球環境問
題の観点から、最近注目されてきている。CO を主
成分とするガスを触媒上で水素と反応させてメタノール
を合成する場合には、反応の熱力学的平衡から、上記の
合成ガスからのメタノール合成で採用されているよりも
低い温度で反応を行なう必要がある。また、銅系触媒上
でのメタノール合成反応では、原料ガス中のCO
水素からメタノールが生成するが、メタノールと共に生
成する水(水蒸気)により反応阻害がおこる(Appl
ied Catalysis A:General 1
38(1966)311−318)。生成した水は、原
料ガス中のCOと反応することにより、CO と水素
が生成し、再び、メタノールが生成することになるが、
メタノールとともに生成する水の量は、原料ガス中のC
/CO比が増加するとともに増加する。これらの
理由から、CO 含有量の高い原料ガスからメタノー
ルを合成するには、合成ガスを主原料とするCO
有量の少ない原料ガス(現行のメタノール合成における
原料ガス)からのメタノール合成で使用されている触媒
よりもさらに高活性であるともに、長時間の耐久性にも
優れた触媒が必要とされている。
On the other hand, methanol synthesis using CO 2 and hydrogen as main raw materials has recently been drawing attention from the viewpoint of recycling and recycling of carbon resources and global environmental problems. When a gas containing CO 2 as a main component is reacted with hydrogen on a catalyst to synthesize methanol, the temperature lower than that used in the above-mentioned synthesis of methanol from the synthesis gas is considered due to the thermodynamic equilibrium of the reaction. It is necessary to carry out the reaction in. Further, in the methanol synthesis reaction on the copper-based catalyst, methanol is produced from CO 2 and hydrogen in the raw material gas, but the reaction is inhibited by water (steam) produced together with the methanol (Appl.
ied Catalysis A: General 1
38 (1966) 311-318). The produced water reacts with CO in the raw material gas to produce CO 2 and hydrogen, and again produces methanol.
The amount of water produced together with methanol is C in the raw material gas.
O 2 / CO ratio increases with increasing. For these reasons, in order to synthesize methanol from a raw material gas having a high CO 2 content, a synthesis gas is used as a main raw material and a raw material gas having a small CO 2 content (raw material gas in the current methanol synthesis) is used for methanol synthesis. There is a need for a catalyst that is more highly active than the catalysts used and has excellent long-term durability.

【0004】そのため、銅/亜鉛/アルミニウムの酸化
物からなる触媒に種々の化合物を添加して、触媒の性能
を改善する試みは、これまで数多く行われてきている。
本発明者は、既に、酸化銅、酸化亜鉛、酸化アルミニウ
ムおよび酸化珪素を必須成分とし、酸化ジルコニウムな
どを任意成分とする高活性で、長時間の耐久性にも優れ
た触媒を開発した(特開平10−309466号公
報)。
Therefore, many attempts have been made so far to improve the performance of the catalyst by adding various compounds to the catalyst composed of oxides of copper / zinc / aluminum.
The present inventor has already developed a highly active catalyst which contains copper oxide, zinc oxide, aluminum oxide and silicon oxide as essential components and zirconium oxide and the like as optional components and has excellent long-term durability. Kaihei 10-309466).

【0005】しかしながら、その後の本発明者等の検討
によれば、上記発明による触媒は耐久性に優れたもので
あるが、更なる改善の余地があることが判明した。
However, subsequent studies by the present inventors have revealed that the catalyst according to the present invention has excellent durability, but there is room for further improvement.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記発明
(特開平10−309466号公報)を更に改良発展さ
せたものであって、炭素酸化物を水素と反応させてメタ
ノールを合成するに際し、高活性で、とくに長時間の耐
久性にも優れた触媒を提供することを主な目的とする。
DISCLOSURE OF THE INVENTION The present invention is a further improvement and development of the above invention (Japanese Patent Laid-Open No. 10-309466), wherein when carbon oxide is reacted with hydrogen to synthesize methanol, The main purpose is to provide a catalyst having high activity and excellent durability especially for a long time.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記発明に
よるメタノール合成用触媒の耐久性をさらに向上させる
ために、鋭意、研究を進めた結果、上記の既発明の触媒
に、さらに、酸化セリウムを添加した触媒により、その
目的を達成し得ることを見い出した。
Means for Solving the Problems The present inventor has made diligent studies to improve the durability of the catalyst for methanol synthesis according to the above-mentioned invention, and as a result, the above-mentioned catalyst of the present invention was further oxidized. It has been found that a catalyst with cerium added can achieve that end.

【0008】即ち、本発明によれば、第一に、酸化銅、
酸化亜鉛、酸化アルミニウム、酸化珪素および酸化セリ
ウムを必須成分とし、酸化珪素はコロイダルシリカまた
は水中溶存シリカに由来し、かつ触媒は480〜690
℃での焼成処理を受けていることを特徴とするメタノー
ル合成用触媒が提供される。第二に、第一の発明におい
て、更に酸化ジルコニウムを含有することを特徴とする
メタノール合成触媒が提供される。第三に、第一又は第
二の発明において、酸化銅、酸化亜鉛、酸化アルミニウ
ム、酸化珪素および酸化セリウムを必須成分とし、酸化
ジルコニウムを任意成分とする金属酸化物で構成された
触媒であって、触媒全体を100重量%とするとき、各
酸化物の含有量が、上記の順に20〜60重量%、10
〜50重量%、2〜10重量%、0.30〜0.9重量
%、1〜7重量%、0〜40重量%であり、酸化珪素は
コロイダルシリカまたは水中溶存シリカに由来し、かつ
触媒は480〜690℃での焼成処理を受けていること
を特徴とするメタノール合成用触媒が提供される。
That is, according to the present invention, firstly, copper oxide,
Zinc oxide, aluminum oxide, silicon oxide and cerium oxide are essential components, silicon oxide is derived from colloidal silica or dissolved silica in water, and the catalyst is 480 to 690.
There is provided a catalyst for synthesizing methanol, which has been subjected to a calcination treatment at ° C. Secondly, in the first invention, there is provided a methanol synthesis catalyst characterized by further containing zirconium oxide. Thirdly, in the first or second invention, there is provided a catalyst comprising a metal oxide containing copper oxide, zinc oxide, aluminum oxide, silicon oxide and cerium oxide as essential components and zirconium oxide as an optional component. When the total amount of the catalyst is 100% by weight, the content of each oxide is 20 to 60% by weight and 10 in the above order.
-50% by weight, 2-10% by weight, 0.30-0.9% by weight, 1-7% by weight, 0-40% by weight, the silicon oxide is derived from colloidal silica or dissolved silica in water, and a catalyst Provides a catalyst for methanol synthesis characterized by being subjected to a calcination treatment at 480 to 690 ° C.

【0009】[0009]

【発明の実施の形態】以下本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0010】本発明のメタノール合成触媒成分は、酸化
銅、酸化亜鉛、酸化アルミニウム、酸化珪素(コロイダ
ルシリカまたは水中溶存シリカ由来のもの)および酸化
セリウムを必須成分とするものであるが、触媒の更なる
活性の向上などのために、酸化ジルコニウム、酸化ガリ
ウム、酸化パラジウム、酸化硼素などの任意成分、特に
酸化ジルコニウムを添加することは有効である。また、
本発明の趣旨を損なわない範囲で、他の物質を含んでい
ても良い。
The methanol synthesis catalyst component of the present invention contains copper oxide, zinc oxide, aluminum oxide, silicon oxide (from colloidal silica or dissolved silica in water) and cerium oxide as essential components. It is effective to add an optional component such as zirconium oxide, gallium oxide, palladium oxide, or boron oxide, especially zirconium oxide, in order to improve the activity. Also,
Other substances may be included as long as the gist of the present invention is not impaired.

【0011】本発明の触媒の特徴は、優れた耐久性、即
ち、その高い触媒活性が長期にわたって維持されること
にあり、前記特開平10−309466号公報記載の発
明の触媒よりも更に優れた耐久性を発揮することであ
る。これは、新たに添加した酸化セリウムの作用による
ものである。酸化セリウムの作用の内容が完全には明ら
かになっているわけではないが、酸化セリウム中のセリ
ウムの価数が四価から三価との間を容易に往来できるこ
とにより、反応中の触媒表面を活性状態に保持できるも
のと推察している。なお、セリウムと同じく希土類元素
の一つであるランタンの酸化物を添加しても、酸化ラン
タン中のランタンの価数が三価のまま変化しないため、
触媒の性能は改善されなかった(後記比較例2等参
照)。
A feature of the catalyst of the present invention is that it has excellent durability, that is, its high catalytic activity is maintained for a long period of time, and is further superior to the catalyst of the invention described in JP-A-10-309466. It is to demonstrate durability. This is due to the action of the newly added cerium oxide. Although the content of the action of cerium oxide is not completely clear, the cerium oxide in cerium oxide can easily move between tetravalent and trivalent, so that the surface of the catalyst during the reaction can be It is speculated that it can be kept active. Even if lanthanum oxide, which is one of the rare earth elements like cerium, is added, the valence of lanthanum in lanthanum oxide remains trivalent,
The performance of the catalyst was not improved (see Comparative Example 2 below).

【0012】また、本発明においては、酸化ケイ素とし
て、コロイダルシリカまたは水中溶存シリカに由来のも
のを用いる。同じ酸化珪素でも、たとえばケイ酸ナトリ
ウム(水ガラス)やケイ酸カリウムを添加して製造した
場合には、所期の効果を有する触媒が得られない。な
お、コロイダルシリカと水中溶存シリカとを併用しても
よい。
Further, in the present invention, as the silicon oxide, one derived from colloidal silica or water-dissolved silica is used. Even with the same silicon oxide, when it is produced by adding sodium silicate (water glass) or potassium silicate, for example, a catalyst having the desired effect cannot be obtained. In addition, colloidal silica and water-dissolved silica may be used in combination.

【0013】各触媒成分の割合は、特に限定されない
が、触媒全体を100重量%とするとき、酸化銅が20
〜60重量%(好ましくは30〜50重量%)、酸化亜
鉛が10〜50重量%(好ましくは20〜40重量
%)、酸化アルミニウムが2〜10重量%(好ましくは
4〜8重量%)、酸化ケイ素が0.3〜0.9重量%、
酸化セリウムが1〜7重量%(好ましくは2〜6重量
%)、酸化ジルコニウムなどの任意成分0〜40重量%
(好ましくは10〜30重量%)とされる。このような
量的範囲において、組成を目的反応に応じて適切に定め
ることにより、その反応に適した触媒性能を得ることが
できる。
The proportion of each catalyst component is not particularly limited, but when the total amount of the catalyst is 100% by weight, the copper oxide content is 20%.
-60 wt% (preferably 30-50 wt%), zinc oxide 10-50 wt% (preferably 20-40 wt%), aluminum oxide 2-10 wt% (preferably 4-8 wt%), 0.3 to 0.9% by weight of silicon oxide,
1 to 7% by weight (preferably 2 to 6% by weight) of cerium oxide, and 0 to 40% by weight of optional components such as zirconium oxide.
(Preferably 10 to 30% by weight). By appropriately determining the composition in such a quantitative range according to the target reaction, it is possible to obtain the catalytic performance suitable for the reaction.

【0014】さらに本発明の銅系触媒は、480〜69
0℃での焼成処理を受けていることが必要である。焼成
温度が480℃未満では、触媒の活性が不足し、耐久性
も不足する。焼成温度が690℃を越えるときも、触媒
活性および耐久性の点でマイナスとなる。このように焼
成処理温度は480〜690℃の範囲から選ばれるが、
触媒の性能上の観点から、上記範囲の中でも高目の52
0〜680℃とすることが望ましい。特に好ましい範囲
は、より高目の560〜670℃である。
Further, the copper-based catalyst of the present invention is 480-69.
It is necessary to have been subjected to a baking treatment at 0 ° C. If the calcination temperature is lower than 480 ° C, the activity of the catalyst is insufficient and the durability is also insufficient. Even when the calcination temperature exceeds 690 ° C., it becomes negative in terms of catalytic activity and durability. Thus, the firing temperature is selected from the range of 480 to 690 ° C,
From the viewpoint of catalyst performance, it is higher than the above range of 52.
It is desirable to set the temperature to 0 to 680 ° C. A particularly preferable range is a higher temperature range of 560 to 670 ° C.

【0015】本発明の触媒は、特開平10−30946
6号公報に記載の方法あるいはそれに準ずる方法により
容易に製造されるが、その1例を説明すると、次の通り
である。先ず、銅、亜鉛、アルミニウム、セリウム及び
好ましくはジルコニウムなどの任意成分の硝酸塩、硫酸
塩などを水に溶解し、それに所定量のコロイダルシリカ
を添加した混合水溶液を調製する。一方、炭酸ナトリウ
ム、炭酸水素ナトリウムなどを水に溶解し、沈殿剤水溶
液とする。これらの二つの溶液を混合することにより、
共沈殿物が生成する。これを、ろ過、洗浄したものを、
所定の温度で乾燥、焼成することにより、酸化銅、酸化
亜鉛、酸化アルミニウム、酸化珪素、酸化セリウムおよ
び好ましくは酸化ジルコニウムからなる本発明の触媒が
製造される。
The catalyst of the present invention is disclosed in JP-A-10-30946.
It is easily manufactured by the method described in Japanese Patent Publication No. 6 or a method analogous thereto, and an example thereof is as follows. First, nitrate, sulfate, etc., which are optional components such as copper, zinc, aluminum, cerium, and preferably zirconium, are dissolved in water, and a predetermined amount of colloidal silica is added to prepare a mixed aqueous solution. On the other hand, sodium carbonate, sodium hydrogen carbonate, etc. are dissolved in water to obtain a precipitant aqueous solution. By mixing these two solutions,
A coprecipitate forms. This is filtered and washed,
The catalyst of the present invention composed of copper oxide, zinc oxide, aluminum oxide, silicon oxide, cerium oxide and preferably zirconium oxide is produced by drying and calcining at a predetermined temperature.

【0016】触媒成分である酸化銅、酸化亜鉛、酸化ア
ルミニウム、酸化セリウム、及び酸化ジルコニウムなど
の任意の金属酸化物を調製するための原料としては、水
溶性の硝酸塩、硫酸塩、オキシ硝酸塩、オキシ塩化物な
どを適宜用いることができる。また、酸化珪素の原料と
しては、上記したように、コロイダルシリカあるいは水
中溶存シリカに由来するものが用いられる。
Raw materials for preparing any metal oxides such as copper oxide, zinc oxide, aluminum oxide, cerium oxide, and zirconium oxide, which are catalyst components, include water-soluble nitrates, sulfates, oxynitrates, and oxynitrates. Chlorides and the like can be used as appropriate. As the raw material of silicon oxide, as described above, one derived from colloidal silica or water-dissolved silica is used.

【0017】上記の触媒製造過程において、触媒成分を
含む沈殿物を調製するための沈殿剤としては、炭酸ナト
リウム、炭酸水素ナトリウム、水酸化ナトリウムなどの
塩基性化合物を用いることができる。沈殿物の洗浄、ろ
過、乾燥は、公知の方法で行うことができる。
In the above catalyst production process, a basic compound such as sodium carbonate, sodium hydrogen carbonate or sodium hydroxide can be used as a precipitating agent for preparing a precipitate containing a catalyst component. Washing, filtration and drying of the precipitate can be performed by known methods.

【0018】乾燥後の沈殿物は、480℃〜690℃
(好ましくは、520〜680℃)で酸素雰囲気下(通
常は空気中)で焼成処理することにより、上述の金属成
分は酸化物の形態となる。
The precipitate after drying has a temperature of 480 ° C to 690 ° C.
By performing the firing treatment in an oxygen atmosphere (usually in air) at (preferably 520 to 680 ° C.), the above-mentioned metal component becomes an oxide form.

【0019】このようにして得た触媒は、そのままで、
あるいは適当な方法により造粒または打錠成型して用い
る。触媒の粒子径や形状は、反応方式、反応器の形状に
よって任意に選択できる。
The catalyst thus obtained is as it is,
Alternatively, it is used after being granulated or tableted by an appropriate method. The particle size and shape of the catalyst can be arbitrarily selected depending on the reaction system and the shape of the reactor.

【0020】上記のようにして得られた本発明のメタノ
ール合成用触媒は、使用に先立って、水素により触媒中
の酸化銅成分を還元しても良い。但し、この還元を行わ
ない場合にも、水素を原料の一部として使用するメタノ
ール合成反応時に自然に還元されるので、事前の還元操
作は必須ではない。
The catalyst for synthesizing methanol of the present invention obtained as described above may be reduced with hydrogen to reduce the copper oxide component in the catalyst prior to use. However, even if this reduction is not performed, the reduction operation is not essential because it is naturally reduced during the methanol synthesis reaction using hydrogen as a part of the raw material.

【0021】本発明による触媒は、気相でのメタノール
合成反応においても、触媒を液体中に懸濁して行なうメ
タノール合成反応においても、有用である。
The catalyst according to the present invention is useful both in the methanol synthesis reaction in the gas phase and in the methanol synthesis reaction carried out by suspending the catalyst in a liquid.

【0022】本発明による触媒を用いてメタノールを合
成する際の反応条件は、原料ガス中の炭素酸化物と水素
の濃度や触媒成分の含有量などにより異なり得るが、反
応温度は150〜350℃、反応圧力は1〜30MPa
の範囲が適している。
The reaction conditions for synthesizing methanol using the catalyst according to the present invention may differ depending on the concentrations of carbon oxide and hydrogen in the raw material gas, the content of catalyst components, etc., but the reaction temperature is 150 to 350 ° C. , The reaction pressure is 1 to 30 MPa
The range is suitable.

【0023】[0023]

【実施例】以下、実施例をあげて本発明の特徴とすると
ころをより一層明確にする。
EXAMPLES Hereinafter, the features of the present invention will be further clarified by giving examples.

【0024】実施例1 硝酸銅三水和物35.4g、硝酸亜鉛六水和物25.5
g、硝酸アルミニウム九水和物8.5g、オキシ硝酸ジ
ルコニウム二水和物11.1g、コロイダルシリカ(日
産化学工業(株)製、スノーテックスO、シリカ濃度2
0重量%)1.0gおよび硝酸セリウム六水和物1.6
gを蒸留水に溶解し、300mlの水溶液を調製し、A
液とした。一方、無水炭酸ナトリウム36.5gを蒸留
水に溶解し、300mlの水溶液を調製し、B液とし
た。A液およびB液を、それぞれ、8ml/分の速度で
良く攪拌した800mlの室温の蒸留水に、同時に滴下
して沈殿物を得た。この沈殿物を室温にて3日間熟成さ
せた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除
去した。その後、沈殿物を110℃で乾燥し、空気中、
600℃で2時間焼成して、触媒を得た。この触媒の組
成は、酸化銅45.1重量%、酸化亜鉛27.1重量
%、酸化アルミニウム4.5重量%、酸化ジルコニウム
19.8重量%、酸化珪素0.8重量%および酸化セリ
ウム(CeO)2.7重量%であった。
Example 1 35.4 g of copper nitrate trihydrate and 25.5 zinc nitrate hexahydrate
g, aluminum nitrate nonahydrate 8.5 g, zirconium oxynitrate dihydrate 11.1 g, colloidal silica (manufactured by Nissan Chemical Industries, Ltd., Snowtex O, silica concentration 2)
0% by weight) 1.0 g and cerium nitrate hexahydrate 1.6
g in distilled water to prepare an aqueous solution of 300 ml.
It was a liquid. On the other hand, 36.5 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. The liquids A and B were simultaneously added dropwise to 800 ml of room temperature distilled water, which was well stirred at a rate of 8 ml / min, to obtain precipitates. The precipitate was aged at room temperature for 3 days, filtered and washed to remove sodium from the precipitate. After that, the precipitate is dried at 110 ° C., and in air,
It was calcined at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst was as follows: 45.1% by weight of copper oxide, 27.1% by weight of zinc oxide, 4.5% by weight of aluminum oxide, 19.8% by weight of zirconium oxide, 0.8% by weight of silicon oxide and cerium oxide (CeO). 2 ) It was 2.7% by weight.

【0025】得られた触媒1mlを反応管に充填し、ヘ
リウムと水素の混合ガス(ヘリウム90容量%、水素1
0容量%)を用いて、250℃で、2時間還元処理を行
った後、22容量%のCO 、3容量%のCOおよび
75容量%のH からなる混合ガスを触媒層に通し
て、圧力5MPa、混合ガス流量167ml/分、温度
250℃の条件下に上記混合ガスを反応させた。反応生
成ガスをガスクロマトグラフにより分析し、メタノール
空時収量を調べた。反応経過時間48時間および100
0時間におけるメタノール空時収量、並びに触媒活性安
定性(反応経過時間1000時間におけるメタノール空
時収量/反応経過時間48時間におけるメタノール空時
収量)を表1に示す。メタノール以外の生成物は、主に
COであり、痕跡量のメタン、ジメチルエーテル、ギ酸
メチルの生成が認められた。
A reaction tube was filled with 1 ml of the obtained catalyst, and a mixed gas of helium and hydrogen (helium 90% by volume, hydrogen 1
(0% by volume) at 250 ° C. for 2 hours, and then a mixed gas of 22% by volume of CO 2 , 3% by volume of CO and 75% by volume of H 2 is passed through the catalyst layer. The mixed gas was reacted under conditions of a pressure of 5 MPa, a mixed gas flow rate of 167 ml / min, and a temperature of 250 ° C. The reaction product gas was analyzed by gas chromatography to examine the space-time yield of methanol. Reaction elapsed time 48 hours and 100
Table 1 shows the methanol space-time yield at 0 hours, and the catalytic activity stability (methanol space-time yield at the reaction elapsed time of 1000 hours / methanol space-time yield at the reaction elapsed time of 48 hours). Products other than methanol were mainly CO, and formation of trace amounts of methane, dimethyl ether, and methyl formate was observed.

【0026】実施例2 硝酸銅三水和物35.5g、硝酸亜鉛六水和物25.6
g、硝酸アルミニウム九水和物8.6g、オキシ硝酸ジ
ルコニウム二水和物10.1g、コロイダルシリカ(日
産化学工業(株)製、スノーテックスO、シリカ濃度2
0重量%)1.0gおよび硝酸セリウム六水和物2.7
gを蒸留水に溶解し、300mlの水溶液を調製し、A
液とした。一方、無水炭酸ナトリウム36.7gを蒸留
水に溶解し、300mlの水溶液を調製し、B液とし
た。A液およびB液を、それぞれ、8ml/分の速度で
良く攪拌した800mlの室温の蒸留水に、同時に滴下
して沈殿物を得た。この沈殿物を室温にて3日間熟成さ
せた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除
去した。その後、沈殿物を110℃で乾燥し、空気中、
600℃で2時間焼成して、触媒を得た。この触媒の組
成は、酸化銅45.2重量%、酸化亜鉛27.1重量
%、酸化アルミニウム4.5重量%、酸化ジルコニウム
18.0重量%、酸化珪素0.8重量%および酸化セリ
ウム(CeO)4.4重量%であった。
Example 2 35.5 g of copper nitrate trihydrate and 25.6 of zinc nitrate hexahydrate
g, aluminum nitrate nonahydrate 8.6 g, zirconium oxynitrate dihydrate 10.1 g, colloidal silica (manufactured by Nissan Chemical Industries, Ltd., Snowtex O, silica concentration 2)
0% by weight) 1.0 g and cerium nitrate hexahydrate 2.7
g in distilled water to prepare an aqueous solution of 300 ml.
It was a liquid. On the other hand, 36.7 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. The liquids A and B were simultaneously added dropwise to 800 ml of room temperature distilled water, which was well stirred at a rate of 8 ml / min, to obtain precipitates. The precipitate was aged at room temperature for 3 days, filtered and washed to remove sodium from the precipitate. After that, the precipitate is dried at 110 ° C., and in air,
It was calcined at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst is as follows: copper oxide 45.2 wt%, zinc oxide 27.1 wt%, aluminum oxide 4.5 wt%, zirconium oxide 18.0 wt%, silicon oxide 0.8 wt% and cerium oxide (CeO). 2 ) It was 4.4% by weight.

【0027】得られた触媒1mlを反応管に充填し、実
施例1と同様にして、メタノール合成反応を行った。反
応生成ガスをガスクロマトグラフにより分析し、メタノ
ール空時収量を調べた。反応経過時間48時間および1
000時間におけるメタノール空時収量、並びに触媒活
性安定性(反応経過時間1000時間におけるメタノー
ル空時収量/反応経過時間48時間におけるメタノール
空時収量)を表1に示す。メタノール以外の生成物は、
主にCOであり、痕跡量のメタン、ジメチルエーテル、
ギ酸メチルの生成が認められた。
The reaction tube was filled with 1 ml of the obtained catalyst, and a methanol synthesis reaction was carried out in the same manner as in Example 1. The reaction product gas was analyzed by gas chromatography to examine the space-time yield of methanol. Reaction elapsed time 48 hours and 1
Table 1 shows the methanol space-time yield at 000 hours and the catalyst activity stability (methanol space-time yield at reaction elapsed time 1000 hours / methanol space-time yield at reaction elapsed time 48 hours). Products other than methanol are
Mainly CO, trace amounts of methane, dimethyl ether,
Formation of methyl formate was observed.

【0028】比較例1 硝酸銅三水和物35.1g、硝酸亜鉛六水和物25.3
g、硝酸アルミニウム九水和物8.5g、オキシ硝酸ジ
ルコニウム12.5gおよびコロイダルシリカ(日産化
学工業(株)製、スノーテックスO、シリカ濃度20重
量%)1.0gを蒸留水に溶解し、300mlの水溶液
を調製し、A液とした。一方、無水炭酸ナトリウム3
6.3gを蒸留水に溶解し、300mlの水溶液を調製
し、B液とした。A液およびB液を、それぞれ、8ml
/分の速度で良く攪拌した800mlの室温の蒸留水
に、同時に滴下して沈殿物を得た。この沈殿物を室温に
て3日間熟成させた後、ろ過、洗浄を行い、沈殿物中の
ナトリウムを除去した。その後、沈殿物を110℃で乾
燥し、空気中、600℃で2時間焼成して、触媒を得
た。この触媒の組成は、酸化銅45.2重量%、酸化亜
鉛27.0重量%、酸化アルミニウム4.5重量%、酸
化ジルコニウム22.5重量%および酸化珪素0.8重
量%であった。
Comparative Example 1 35.1 g of copper nitrate trihydrate, zinc nitrate hexahydrate 25.3
g, aluminum nitrate nonahydrate 8.5 g, zirconium oxynitrate 12.5 g and colloidal silica (Nissan Chemical Co., Ltd., Snowtex O, silica concentration 20% by weight) 1.0 g are dissolved in distilled water, A 300 ml aqueous solution was prepared and designated as solution A. On the other hand, anhydrous sodium carbonate 3
6.3 g was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. 8 ml each of solution A and solution B
A precipitate was obtained by simultaneously dropping it into 800 ml of room temperature distilled water that was well stirred at a speed of 1 / min. The precipitate was aged at room temperature for 3 days, filtered and washed to remove sodium from the precipitate. Then, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst was 45.2% by weight of copper oxide, 27.0% by weight of zinc oxide, 4.5% by weight of aluminum oxide, 22.5% by weight of zirconium oxide and 0.8% by weight of silicon oxide.

【0029】得られた触媒1mlを反応管に充填し、実
施例1と同様にして、メタノール合成反応を行った。反
応生成ガスをガスクロマトグラフにより分析し、メタノ
ール空時収量を調べた。反応経過時間48時間および1
000時間におけるメタノール空時収量、並びに触媒活
性安定性(反応経過時間1000時間におけるメタノー
ル空時収量/反応経過時間48時間におけるメタノール
空時収量)を表1に示す。メタノール以外の生成物は、
主にCOであり、痕跡量のメタン、ジメチルエーテル、
ギ酸メチルの生成が認められた。この結果から、酸化セ
リウムを添加していない触媒の活性の安定性は、酸化セ
リウム添加触媒の活性の安定性よりも低いことが明らか
である。
1 ml of the obtained catalyst was filled in a reaction tube, and a methanol synthesis reaction was carried out in the same manner as in Example 1. The reaction product gas was analyzed by gas chromatography to examine the space-time yield of methanol. Reaction elapsed time 48 hours and 1
Table 1 shows the methanol space-time yield at 000 hours and the catalyst activity stability (methanol space-time yield at reaction elapsed time 1000 hours / methanol space-time yield at reaction elapsed time 48 hours). Products other than methanol are
Mainly CO, trace amounts of methane, dimethyl ether,
Formation of methyl formate was observed. From this result, it is clear that the activity stability of the catalyst to which cerium oxide is not added is lower than the activity stability of the cerium oxide-added catalyst.

【0030】比較例2 硝酸銅三水和物35.4g、硝酸亜鉛六水和物25.5
g、硝酸アルミニウム九水和物8.6g、オキシ硝酸ジ
ルコニウム二水和物10.1g、コロイダルシリカ(日
産化学工業(株)製、スノーテックスO、シリカ濃度2
0重量%)1.0gおよび硝酸ランタン六水和物3.1
gを蒸留水に溶解し、300mlの水溶液を調製し、A
液とした。一方、無水炭酸ナトリウム36.7gを蒸留
水に溶解し、300mlの水溶液を調製し、B液とし
た。A液およびB液を、それぞれ、8ml/分の速度で
良く攪拌した800mlの室温の蒸留水に、同時に滴下
して沈殿物を得た。この沈殿物を室温にて3日間熟成さ
せた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除
去した。その後、沈殿物を110℃で乾燥し、空気中、
600℃で2時間焼成して、触媒を得た。この触媒の組
成は、酸化銅45.2重量%、酸化亜鉛27.1重量
%、酸化アルミニウム4.5重量%、酸化ジルコニウム
18.0重量%、酸化珪素0.8重量%および酸化ラン
タン4.5重量%であった。
Comparative Example 2 35.4 g of copper nitrate trihydrate and 25.5 zinc nitrate hexahydrate
g, aluminum nitrate nonahydrate 8.6 g, zirconium oxynitrate dihydrate 10.1 g, colloidal silica (manufactured by Nissan Chemical Industries, Ltd., Snowtex O, silica concentration 2)
0% by weight) and lanthanum nitrate hexahydrate 3.1
g in distilled water to prepare an aqueous solution of 300 ml.
It was a liquid. On the other hand, 36.7 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. The liquids A and B were simultaneously added dropwise to 800 ml of room temperature distilled water, which was well stirred at a rate of 8 ml / min, to obtain precipitates. The precipitate was aged at room temperature for 3 days, filtered and washed to remove sodium from the precipitate. After that, the precipitate is dried at 110 ° C., and in air,
It was calcined at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst is as follows: copper oxide 45.2% by weight, zinc oxide 27.1% by weight, aluminum oxide 4.5% by weight, zirconium oxide 18.0% by weight, silicon oxide 0.8% by weight and lanthanum oxide 4. It was 5% by weight.

【0031】得られた触媒1mlを反応管に充填し、実
施例1と同様にして、メタノール合成反応を行った。反
応生成ガスをガスクロマトグラフにより分析し、メタノ
ール空時収量を調べた。反応経過時間48時間および1
000時間におけるメタノール空時収量、並びに触媒活
性安定性(反応経過時間1000時間におけるメタノー
ル空時収量/反応経過時間48時間におけるメタノール
空時収量)を表1に示す。メタノール以外の生成物は、
主にCOであり、痕跡量のメタン、ジメチルエーテル、
ギ酸メチルの生成が認められた。この結果から、酸化ラ
ンタンを添加した触媒は、触媒活性の安定性が改善され
ないことが明らかである。
1 ml of the obtained catalyst was filled in a reaction tube, and a methanol synthesis reaction was carried out in the same manner as in Example 1. The reaction product gas was analyzed by gas chromatography to examine the space-time yield of methanol. Reaction elapsed time 48 hours and 1
Table 1 shows the methanol space-time yield at 000 hours and the catalyst activity stability (methanol space-time yield at reaction elapsed time 1000 hours / methanol space-time yield at reaction elapsed time 48 hours). Products other than methanol are
Mainly CO, trace amounts of methane, dimethyl ether,
Formation of methyl formate was observed. From this result, it is clear that the stability of the catalytic activity is not improved in the catalyst to which lanthanum oxide is added.

【0032】比較例3 硝酸銅三水和物35.5g、硝酸亜鉛六水和物25.6
g、硝酸アルミニウム九水和物8.6g、オキシ硝酸ジ
ルコニウム二水和物10.1gおよび硝酸セリウム六水
和物2.7gを蒸留水に溶解し、300mlの水溶液を
調製し、A液とした。一方、無水炭酸ナトリウム36.
7gを蒸留水に溶解し、300mlの水溶液を調製し、
B液とした。A液およびB液を、それぞれ、8ml/分
の速度で良く攪拌した800mlの室温の蒸留水に、同
時に滴下して沈殿物を得た。この沈殿物を室温にて3日
間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリ
ウムを除去した。その後、沈殿物を110℃で乾燥し、
空気中、600℃で2時間焼成して、触媒を得た。この
触媒の組成は、酸化銅45.5重量%、酸化亜鉛27.
3重量%、酸化アルミニウム4.5重量%、酸化ジルコ
ニウム18.2重量%および酸化セリウム(CeO
4.5重量%であった。
Comparative Example 3 35.5 g of copper nitrate trihydrate and 25.6 of zinc nitrate hexahydrate
g, aluminum nitrate nonahydrate 8.6 g, zirconium oxynitrate dihydrate 10.1 g and cerium nitrate hexahydrate 2.7 g were dissolved in distilled water to prepare 300 ml of an aqueous solution, which was designated as solution A. . On the other hand, anhydrous sodium carbonate 36.
Dissolve 7 g in distilled water to prepare 300 ml aqueous solution,
It was designated as solution B. The liquids A and B were simultaneously added dropwise to 800 ml of room temperature distilled water, which was well stirred at a rate of 8 ml / min, to obtain precipitates. The precipitate was aged at room temperature for 3 days, filtered and washed to remove sodium from the precipitate. After that, the precipitate is dried at 110 ° C.,
It was calcined in air at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst was as follows: copper oxide 45.5% by weight, zinc oxide 27.
3% by weight, aluminum oxide 4.5% by weight, zirconium oxide 18.2% by weight and cerium oxide (CeO 2 ).
It was 4.5% by weight.

【0033】得られた触媒1mlを反応管に充填し、実
施例1と同様にして、メタノール合成反応を行った。反
応生成ガスをガスクロマトグラフにより分析し、メタノ
ール空時収量を調べた。反応経過時間48時間および1
000時間におけるメタノール空時収量、並びに触媒活
性安定性(反応経過時間1000時間におけるメタノー
ル空時収量/反応経過時間48時間におけるメタノール
空時収量)を表1に示す。メタノール以外の生成物は、
主にCOであり、痕跡量のメタン、ジメチルエーテル、
ギ酸メチルの生成が認められた。この結果から、既発明
(特願9−294097)で明らかにしたように、酸化
珪素を添加していない触媒は、触媒活性の安定性が著し
く低いことが明らかである。
The reaction tube was filled with 1 ml of the obtained catalyst, and a methanol synthesis reaction was carried out in the same manner as in Example 1. The reaction product gas was analyzed by gas chromatography to examine the space-time yield of methanol. Reaction elapsed time 48 hours and 1
Table 1 shows the methanol space-time yield at 000 hours and the catalyst activity stability (methanol space-time yield at reaction elapsed time 1000 hours / methanol space-time yield at reaction elapsed time 48 hours). Products other than methanol are
Mainly CO, trace amounts of methane, dimethyl ether,
Formation of methyl formate was observed. From this result, it is clear that the stability of the catalytic activity is extremely low in the catalyst to which silicon oxide is not added, as has been clarified in the existing invention (Japanese Patent Application No. 9-294097).

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明のメタノール合成触媒は、優れた
耐久性、即ち、その高い触媒活性が長期にわたって維持
され、先に提案した特開平10−309466号記載の
触媒よりも更に優れた耐久性を発揮するので、工業的に
極めて有利な触媒活性安定性の高い触媒ということがで
きる。
The methanol synthesis catalyst of the present invention has excellent durability, that is, its high catalytic activity is maintained for a long period of time, and is even more durable than the catalyst described in JP-A-10-309466 previously proposed. Since it exhibits the above, it can be said to be a catalyst having high catalytic activity stability, which is extremely advantageous industrially.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 C07C 29/15,31/04 JICSTPLUSファイル(JOI S) WPI(DIALOG)Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B01J 21/00-37/36 C07C 29 / 15,31 / 04 JISSTPLUS file (JOIS) WPI (DIALOG)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化銅、酸化亜鉛、酸化アルミニウム、
酸化珪素および酸化セリウムを必須成分とし、酸化珪素
はコロイダルシリカまたは水中溶存シリカに由来し、か
つ触媒は480〜690℃での焼成処理を受けているこ
とを特徴とするメタノール合成用触媒。
1. Copper oxide, zinc oxide, aluminum oxide,
A catalyst for methanol synthesis characterized in that silicon oxide and cerium oxide are essential components, silicon oxide is derived from colloidal silica or water-dissolved silica, and the catalyst has been subjected to a calcination treatment at 480 to 690 ° C.
【請求項2】 更に酸化ジルコニウムを含有することを
特徴とする請求項1記載のメタノール合成触媒。
2. The methanol synthesis catalyst according to claim 1, further comprising zirconium oxide.
【請求項3】 酸化銅、酸化亜鉛、酸化アルミニウム、
酸化珪素および酸化セリウムを必須成分とし、酸化ジル
コニウムを任意成分とする金属酸化物で構成された触媒
であって、触媒全体を100重量%とするとき、各酸化
物の含有量が、上記の順に20〜60重量%、10〜5
0重量%、2〜10重量%、0.30〜0.9重量%、
1〜7重量%、0〜40重量%であり、酸化珪素はコロ
イダルシリカまたは水中溶存シリカに由来し、かつ触媒
は480〜690℃での焼成処理を受けていることを特
徴とする請求項1又は2記載のメタノール合成用触媒。
3. Copper oxide, zinc oxide, aluminum oxide,
A catalyst composed of a metal oxide containing silicon oxide and cerium oxide as essential components and zirconium oxide as an optional component, wherein the content of each oxide is in the above order when the entire catalyst is 100% by weight. 20-60% by weight, 10-5
0% by weight, 2 to 10% by weight, 0.30 to 0.9% by weight,
1 to 7% by weight, 0 to 40% by weight, the silicon oxide is derived from colloidal silica or dissolved silica in water, and the catalyst has been subjected to a calcination treatment at 480 to 690 ° C. Or the catalyst for synthesizing methanol according to 2.
JP2001069040A 2001-03-12 2001-03-12 Catalyst for methanol synthesis Expired - Lifetime JP3530937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069040A JP3530937B2 (en) 2001-03-12 2001-03-12 Catalyst for methanol synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069040A JP3530937B2 (en) 2001-03-12 2001-03-12 Catalyst for methanol synthesis

Publications (2)

Publication Number Publication Date
JP2002263497A JP2002263497A (en) 2002-09-17
JP3530937B2 true JP3530937B2 (en) 2004-05-24

Family

ID=18927132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069040A Expired - Lifetime JP3530937B2 (en) 2001-03-12 2001-03-12 Catalyst for methanol synthesis

Country Status (1)

Country Link
JP (1) JP3530937B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105222B (en) * 2008-07-24 2014-07-09 现代重工业株式会社 Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
KR101068995B1 (en) * 2008-12-08 2011-09-30 현대중공업 주식회사 Synthesis method of methanol using syngas produced by mixing and reforming methane, steam and carbon dioxide
WO2011043151A1 (en) * 2009-10-08 2011-04-14 三井化学株式会社 Process for production of methanol
CN101983765B (en) * 2010-11-15 2012-12-26 大连理工大学 Catalyst for preparing methyl alcohol by catalytic hydrogenation on assistant modified carbon dioxide and preparation method thereof
CN102302934B (en) * 2011-05-12 2013-01-30 大连理工大学 Catalyst for the catalytic hydrogenation of carbon dioxide to methanol modified by a novel additive and its preparation method
CN103316683A (en) * 2013-07-05 2013-09-25 昆明理工大学 Preparation method of carbon nanotube loaded copper-based catalyst applied to methanol synthesis
CN109939687A (en) * 2017-12-19 2019-06-28 财团法人工业技术研究院 Catalysts and Processes for Converting Carbon Oxygen to Methanol
CN114849718A (en) * 2022-05-17 2022-08-05 山东亮剑环保新材料有限公司 Rare earth doped CO 2 Preparation method of hydrogenation composite catalyst

Also Published As

Publication number Publication date
JP2002263497A (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP3232326B2 (en) Copper-based catalyst and method for producing the same
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
CN109621965A (en) A kind of ZnO-ZrO of Copper-cladding Aluminum Bar2Solid solution catalyst and its preparation method and application
CN112169799A (en) Method for synthesizing light olefins by hydrogenation of carbon dioxide using iron-based catalysts
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
JP3530937B2 (en) Catalyst for methanol synthesis
EP0110357B1 (en) Process for the production of mixed alcohols
CN1403376A (en) Cerium-base quaternary nano level composite RE oxide and its prepn process
EP2301663B1 (en) Catalyst for fischer-tropsch synthesis and method for producing hydrocarbons
JP2976716B2 (en) Catalyst for methanol synthesis and method for producing the same
CA2283137A1 (en) Use of ce/zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
JP3163374B2 (en) Catalyst for methanol synthesis
JPS647974B2 (en)
JP3837520B2 (en) Catalyst for CO shift reaction
JP2001205089A (en) Catalyst for methanol synthesis and method for producing the same
CN109158120B (en) A kind of CO2 hydrogenation catalyst based on adsorption enhancement and preparation method thereof
JP2010194420A (en) Copper-based catalyst, and pretreatment method therefor
JP4512748B2 (en) Catalyst for water gas conversion reaction
JP3837487B2 (en) Methanol reforming catalyst
JP3752531B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JP2007313487A (en) Water gas conversion reaction catalyst and water gas conversion reaction method using the same.
JP3376380B2 (en) Catalyst for methanol synthesis
JP4972315B2 (en) Method for producing nitrogen-containing compound
JP3143745B1 (en) Catalyst for synthesizing methyl acetate and acetic acid and method for synthesizing methyl acetate and acetic acid using the catalyst
JP3837512B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3530937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term