[go: up one dir, main page]

JP2007313487A - Water gas conversion reaction catalyst and water gas conversion reaction method using the same. - Google Patents

Water gas conversion reaction catalyst and water gas conversion reaction method using the same. Download PDF

Info

Publication number
JP2007313487A
JP2007313487A JP2006148817A JP2006148817A JP2007313487A JP 2007313487 A JP2007313487 A JP 2007313487A JP 2006148817 A JP2006148817 A JP 2006148817A JP 2006148817 A JP2006148817 A JP 2006148817A JP 2007313487 A JP2007313487 A JP 2007313487A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
weight
water gas
conversion reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006148817A
Other languages
Japanese (ja)
Inventor
Isao Takahara
功 高原
Masahiro Saito
昌弘 斉藤
Kazuhisa Murata
和久 村田
Hitoshi Inaba
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006148817A priority Critical patent/JP2007313487A/en
Publication of JP2007313487A publication Critical patent/JP2007313487A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract


【課題】 一酸化炭素を水蒸気と反応させて水素と二酸化炭素に変換するための水性ガス転化反応において、高活性を発揮する触媒を提供する。
【解決手段】 酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、アルカリ金属元素および酸化珪素を必須成分とする触媒であって、触媒全体を100重量%とするとき、各成分の含有量が、上記の順に20〜70重量%、10〜60重量%、1〜50重量%、1〜50重量%、0.5〜10重量%および0.5〜2重量%である、水性ガス転化反応用触媒。
【選択図】なし

PROBLEM TO BE SOLVED: To provide a catalyst exhibiting high activity in a water gas conversion reaction for reacting carbon monoxide with water vapor to convert it into hydrogen and carbon dioxide.
SOLUTION: A catalyst having copper oxide, zinc oxide, zirconium oxide, aluminum oxide, alkali metal element and silicon oxide as essential components, and when the total amount of the catalyst is 100% by weight, the content of each component is as described above. 20 to 70% by weight, 10 to 60% by weight, 1 to 50% by weight, 1 to 50% by weight, 0.5 to 10% by weight and 0.5 to 2% by weight of the catalyst for water gas conversion reaction .
[Selection figure] None

Description

本発明は、水性ガス転化反応用触媒に関し、更に詳しくは一酸化炭素と水蒸気を反応させて二酸化炭素および水素を製造する(水性ガスシフト反応あるいはCOシフト反応などと呼ばれる)際に使用される触媒及びそれを用いた水性ガス転化反応に関するものである。   The present invention relates to a catalyst for water gas conversion reaction, and more specifically, a catalyst used when carbon dioxide and water vapor are reacted to produce carbon dioxide and hydrogen (referred to as water gas shift reaction or CO shift reaction) and It relates to a water gas conversion reaction using the same.

従来から、水性ガス転化反応は、炭化水素からの水素製造におけるCO除去あるいはメタノール合成やオキソ合成におけるH/CO比の調整のための重要な反応であることが知られており、さらに、最近では、燃料電池用のCO含有量が低い水素を、炭化水素などから製造するための主要な工程の一つとして注目されている。
この水性ガス転化反応は下記反応式に示されるように、COとHOからHとCOを生成する反応である。

Figure 2007313487
これまでに、このような水性ガス転化反応用触媒としては、高温反応用として、鉄・クロム系触媒が、低温反応用として、銅/亜鉛/アルミニウムの酸化物からなる触媒あるいは銅/亜鉛/クロムの酸化物からなる触媒が開発され、工業的に実施されている(例えば非特許文献1参照)。また、酸化銅/酸化亜鉛系触媒に、特定量の酸化珪素を添加することにより、高活性で高耐久性・長期安定性に優れたものとすることも提案されている(特許文献1)。さらに、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンを必須成分とする触媒もある(特許文献2)。 Conventionally, the water gas conversion reaction is known to be an important reaction for removing CO in hydrogen production from hydrocarbons or adjusting the H 2 / CO ratio in methanol synthesis or oxo synthesis. Therefore, hydrogen having a low CO content for fuel cells is attracting attention as one of the main processes for producing hydrocarbons and the like.
This water gas conversion reaction is a reaction for generating H 2 and CO 2 from CO and H 2 O as shown in the following reaction formula.
Figure 2007313487
Up to now, as such a catalyst for water gas conversion reaction, an iron / chromium-based catalyst is used for a high temperature reaction, a catalyst made of a copper / zinc / aluminum oxide or a copper / zinc / chromium is used for a low temperature reaction. Catalysts comprising these oxides have been developed and implemented industrially (see, for example, Non-Patent Document 1). It has also been proposed to add a specific amount of silicon oxide to a copper oxide / zinc oxide catalyst to achieve high activity, high durability, and long-term stability (Patent Document 1). Furthermore, there is a catalyst having copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese oxide as essential components (Patent Document 2).

しかしながら、何れの触媒もCO転化率が未だ満足すべきでないのが現状であり、高性能な触媒の開発が重要な技術開発課題となっている。
本発明者らは、酸化銅/酸化亜鉛系触媒の触媒活性を改善するために、様々な改良を試みており、既に、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよびアルカリ金属元素を必須成分とする高性能触媒が水性ガス転化反応において極めて高い触媒活性を示すことを見いだし、出願している(特許文献3)。
「触媒講座」第8巻、251頁〜262頁 触媒学会編、講談社発行(1985) 特開2000−126597号公報 特開2004−126597号公報 特願2005−58357号
However, the present situation is that the CO conversion rate of any catalyst is not yet satisfactory, and the development of a high-performance catalyst is an important technical development subject.
In order to improve the catalytic activity of the copper oxide / zinc oxide catalyst, the present inventors have tried various improvements, and already include copper oxide, zinc oxide, zirconium oxide, aluminum oxide and alkali metal elements as essential components. Has been found and has been filed (patent document 3).
"Catalyst Lecture" Vol. 8, pp. 251-262, Catalytic Society, published by Kodansha (1985) JP 2000-126597 A JP 2004-126597 A Japanese Patent Application No. 2005-58357

しかしながら、その後の本発明者等の検討によれば、先に出願した特許文献3の高性能触媒において、触媒活性の長時間安定性を改善することが必要であることが判明した。本発明は、このような実情に鑑みなされたものであり、水性ガス転化反応において、触媒活性が極めて高く、しかも、触媒活性の長時間安定性に優れた触媒及びそれを用いた水性ガス転化反応方法を提供することを主な目的とする。   However, according to subsequent studies by the present inventors, it has been found that it is necessary to improve the long-term stability of the catalyst activity in the high-performance catalyst of Patent Document 3 filed earlier. The present invention has been made in view of such circumstances, and in a water gas conversion reaction, the catalyst activity is extremely high, and the catalyst activity is excellent in long-term stability of the catalyst activity, and the water gas conversion reaction using the catalyst. The main purpose is to provide a method.

本発明者は、銅を含む触媒について種々の研究を行った結果、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、アルカリ金属元素および酸化珪素を必須成分とする触媒により、その課題を解決し得ることを見出した。   As a result of various studies on a catalyst containing copper, the present inventor can solve the problem with a catalyst containing copper oxide, zinc oxide, zirconium oxide, aluminum oxide, alkali metal element and silicon oxide as essential components. I found out.

即ち、本発明によれば、第一に、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、アルカリ金属元素および酸化珪素を必須成分とする、水性ガス転化反応において極めて高い触媒活性を示し、しかも、触媒活性の長時間安定性に優れた触媒が提供される。
第二に、第一の発明において、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、アルカリ金属元素および酸化珪素を必須成分とする触媒であって、触媒全体を100重量%とするとき、各成分の含有量が、上記の順に20〜70重量%、10〜60重量%、1〜50重量%、1〜50重量%、0.5〜10重量%および0.5〜2重量%であることを特徴とする水性ガス転化反応用触媒が提供される。
第三に、一酸化炭素および水蒸気を上記第一の触媒に接触させることを特徴とする水性ガス転化反応方法が提供される。
That is, according to the present invention, firstly, it exhibits extremely high catalytic activity in a water gas conversion reaction comprising copper oxide, zinc oxide, zirconium oxide, aluminum oxide, alkali metal element and silicon oxide as essential components, A catalyst having excellent long-term stability of catalytic activity is provided.
Second, in the first invention, a catalyst containing copper oxide, zinc oxide, zirconium oxide, aluminum oxide, alkali metal element and silicon oxide as essential components, and when the total amount of the catalyst is 100% by weight, each component The content of is 20 to 70% by weight, 10 to 60% by weight, 1 to 50% by weight, 1 to 50% by weight, 0.5 to 10% by weight and 0.5 to 2% by weight in the above order. A catalyst for water gas conversion reaction is provided.
Third, there is provided a water gas conversion reaction method characterized by contacting carbon monoxide and water vapor with the first catalyst.

本発明の触媒は、水性ガス転化反応において、極めて高い触媒活性を示し、しかも、触媒活性の長時間安定性にも優れたものである。従って、水性ガス転化反応転化反応を工業的有利に実施することができる。   The catalyst of the present invention exhibits extremely high catalytic activity in the water gas conversion reaction, and also has excellent long-term stability of catalytic activity. Accordingly, the water gas conversion reaction conversion reaction can be carried out industrially advantageously.

本発明の水性ガス転化反応用触媒は、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、アルカリ金属元素および酸化珪素を必須成分とすることを特徴とする。本発明の触媒は、前述の先の出願(特許文献3)の触媒に酸化珪素を添加したものであるが、酸化珪素の効果は、触媒成分の結晶成長を抑制することにより、触媒活性を安定化することである。   The water gas conversion reaction catalyst of the present invention is characterized by containing copper oxide, zinc oxide, zirconium oxide, aluminum oxide, alkali metal element and silicon oxide as essential components. The catalyst of the present invention is obtained by adding silicon oxide to the catalyst of the previous application (Patent Document 3). The effect of silicon oxide is to stabilize the catalyst activity by suppressing the crystal growth of the catalyst component. It is to become.

各触媒成分の割合は、特に限定されないが、触媒全体を100重量%とするとき、酸化銅が20〜70重量%、酸化亜鉛が10〜60重量%、酸化ジルコニウムが1〜50重量%、酸化アルミニウムが1〜50重量%、アルカリ金属元素が0.5〜10重量、酸化珪素0.5〜2重量%とされる。このような量的範囲において、組成を反応条件に応じて適切に定めることにより、その反応条件に適した触媒性能を得ることができる。特に、本発明の特徴である酸化珪素の添加量は、0.5重量より少ない場合には、上記の酵素活性の安定化という効果が少なく、また、2重量%を超える場合には活性が低下してくる。   The ratio of each catalyst component is not particularly limited, but when the total catalyst is 100% by weight, copper oxide is 20 to 70% by weight, zinc oxide is 10 to 60% by weight, zirconium oxide is 1 to 50% by weight, oxidation Aluminum is 1 to 50% by weight, alkali metal element is 0.5 to 10% by weight, and silicon oxide is 0.5 to 2% by weight. In such a quantitative range, by appropriately determining the composition according to the reaction conditions, catalyst performance suitable for the reaction conditions can be obtained. In particular, when the amount of silicon oxide, which is a feature of the present invention, is less than 0.5% by weight, the effect of stabilizing the above enzyme activity is small, and when it exceeds 2% by weight, the activity decreases. Come on.

また、本発明においては、本発明の趣旨を損なわない範囲で、他の物質を含んでいても良い。そのような物質としては、たとえば、酸化カルシウム、酸化マグネシウム、酸化ランタン、酸化セリウム、グラファイトなどが挙げられる。   Moreover, in this invention, the other substance may be included in the range which does not impair the meaning of this invention. Examples of such a substance include calcium oxide, magnesium oxide, lanthanum oxide, cerium oxide, and graphite.

本発明の触媒成分となる酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムの原料としては、それぞれの硝酸塩、塩酸塩、硫酸塩、有機酸塩、水酸化物等を用いることができる。
また、アルカリ金属に属する元素の原料としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムなどの水酸化物、炭酸塩、炭酸水素塩、硝酸塩、有機酸塩等を用いることができる。
さらに、酸化珪素の原料としては、コロイダルシリカが最も好ましいが、コロイダルシリカに限定されるものでなく、溶存シリカ、珪酸、各種珪酸塩等も用いることができる。
As raw materials for copper oxide, zinc oxide, zirconium oxide, and aluminum oxide, which are catalyst components of the present invention, respective nitrates, hydrochlorides, sulfates, organic acid salts, hydroxides, and the like can be used.
In addition, hydroxides such as lithium, sodium, potassium, rubidium, and cesium, carbonates, bicarbonates, nitrates, organic acid salts, and the like can be used as raw materials for elements belonging to alkali metals.
Furthermore, colloidal silica is most preferable as a raw material for silicon oxide, but is not limited to colloidal silica, and dissolved silica, silicic acid, various silicates, and the like can also be used.

本発明の触媒を製造する方法は、現在よく知られている酸化銅−酸化亜鉛系の水性ガス転化反応用触媒の製造方法と特に変わるものではなく、現行の各種の製造方法が適用可能である。
例えば、共沈法、含浸法、混合法、逐次沈殿法、アルコキシド法等の方法により、あるいは、これらの方法を組み合わせた方法により触媒前駆体を調製し、次いで、触媒前駆体を空気中で焼成することにより製造できる。触媒前駆体の焼成温度は、特に限定しないが、300〜650℃の範囲が好ましく、350℃〜600℃が特に好ましい。このようにして製造された触媒は、そのままで、あるいは適当な方法により造粒または打錠成型して用いる。触媒の粒子径や形状は、反応方式、反応器の形状によって任意に選択できる。すなわち、本発明による触媒は、固定床、流動床等いずれの反応方式においても用いることができる。
或いは、前記の方法により、本発明の触媒を構成する成分であるアルカリ金属元素を除いたその他の構成成分からなるものを得た後、その焼成後の酸化物に、アルカリ金属元素を添加し、再度乾燥、焼成して、触媒とすることもできる。
The method for producing the catalyst of the present invention is not particularly different from the currently well-known method for producing a copper oxide-zinc oxide-based water gas conversion reaction catalyst, and various current production methods can be applied. .
For example, a catalyst precursor is prepared by a method such as a coprecipitation method, an impregnation method, a mixing method, a sequential precipitation method, an alkoxide method, or a combination of these methods, and then the catalyst precursor is calcined in air. Can be manufactured. Although the calcination temperature of a catalyst precursor is not specifically limited, The range of 300-650 degreeC is preferable and 350 degreeC-600 degreeC is especially preferable. The catalyst thus produced is used as it is or after being granulated or tableted by an appropriate method. The particle diameter and shape of the catalyst can be arbitrarily selected depending on the reaction system and the shape of the reactor. That is, the catalyst according to the present invention can be used in any reaction system such as a fixed bed and a fluidized bed.
Or after obtaining what consists of other structural components except the alkali metal element which is a component which constitutes a catalyst of the present invention by the above-mentioned method, an alkali metal element is added to the oxide after the firing, It can be dried and calcined again to form a catalyst.

焼成後の触媒は、反応に使用する前に触媒中の酸化銅を金属銅に予め還元しても良い。但し、この還元を行わない場合にも、反応ガス中の一酸化炭素や水素により酸化銅は自然に還元されるので、事前の還元操作は必須ではない。   The catalyst after calcination may be obtained by previously reducing copper oxide in the catalyst to metallic copper before use in the reaction. However, even when this reduction is not performed, the copper oxide is naturally reduced by carbon monoxide or hydrogen in the reaction gas, and therefore a prior reduction operation is not essential.

上記本発明にかかる触媒を用いる、一酸化炭素と水蒸気との水性ガス転化反応方法における反応条件は、原料ガス中の一酸化炭素や水素の濃度や触媒成分の含有量などにより異なり得る。   The reaction conditions in the water gas conversion reaction method of carbon monoxide and water vapor using the catalyst according to the present invention may vary depending on the concentration of carbon monoxide and hydrogen in the raw material gas, the content of the catalyst component, and the like.

通常、反応温度は150〜300℃、反応圧力は1〜100気圧(絶対圧力)、原料ガス中(水蒸気を除く)の一酸化炭素のモル濃度は1〜30%、水蒸気と原料ガス中の一酸化炭素のモル比は1〜100、原料ガス(水蒸気を除く)の空間速度は1,000〜100,000(1/h)の範囲が適当である。   Usually, the reaction temperature is 150 to 300 ° C., the reaction pressure is 1 to 100 atm (absolute pressure), the molar concentration of carbon monoxide in the raw material gas (excluding water vapor) is 1 to 30%, one in the water vapor and the raw material gas. The molar ratio of carbon oxide is suitably 1 to 100, and the space velocity of the raw material gas (excluding water vapor) is suitably in the range of 1,000 to 100,000 (1 / h).

以下、実施例をあげて本発明の特徴とするところをより一層明確にする。   Hereinafter, the features of the present invention will be further clarified by giving examples.

(実施例1)
硝酸銅三水和物35.1g、硝酸亜鉛六水和物25.3g、オキシ硝酸ジルコニウム二水和物12.5g、硝酸アルミニウム九水和物8.5gおよびコロイダルシリカ(日産化学工業社製スノーテックスO、シリカ濃度20重量%)1.0gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム36.3gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を105℃で乾燥し、空気中、600℃で2時間焼成した。この焼成後の酸化物の組成は、酸化銅45.1重量%、酸化亜鉛27.1重量%、酸化ジルコニウム22.5重量%、酸化アルミニウム4.5重量%および酸化珪素0.8重量%であった。次に、250〜600μmに粒度調整した焼成後の酸化物1.5gに、0.8重量%の水酸化カリウム水溶液1.9gを添加し、105℃で乾燥し、空気中、400℃で焼成した後、触媒とした。この触媒の組成は、酸化銅44.7重量%、酸化亜鉛26.8重量%、酸化ジルコニウム22.3重量%、酸化アルミニウム4.4重量%、水酸化カリウム1重量%および酸化珪素0.8重量%であった。
Example 1
Copper nitrate trihydrate 35.1 g, zinc nitrate hexahydrate 25.3 g, zirconium oxynitrate dihydrate 12.5 g, aluminum nitrate nonahydrate 8.5 g and colloidal silica (Snow manufactured by Nissan Chemical Industries, Ltd.) 1.0 g (Tex O, silica concentration 20% by weight) was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 36.3 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 105 ° C. and calcined in air at 600 ° C. for 2 hours. The composition of the oxide after firing was 45.1% by weight of copper oxide, 27.1% by weight of zinc oxide, 22.5% by weight of zirconium oxide, 4.5% by weight of aluminum oxide and 0.8% by weight of silicon oxide. there were. Next, 1.9 g of 0.8 wt% potassium hydroxide aqueous solution is added to 1.5 g of the calcined oxide whose particle size is adjusted to 250 to 600 μm, dried at 105 ° C., and calcined at 400 ° C. in the air. After that, a catalyst was obtained. The composition of this catalyst was 44.7% by weight of copper oxide, 26.8% by weight of zinc oxide, 22.3% by weight of zirconium oxide, 4.4% by weight of aluminum oxide, 1% by weight of potassium hydroxide and 0.8% of silicon oxide. % By weight.

得られた触媒0.56gを反応管に充填し、ヘリウムと水素の混合ガス(ヘリウム90容量%、水素10容量%)を毎分300mlの流速で供給し300℃で触媒中の酸化銅の水素還元を行った。触媒の還元後、反応管に、原料ガス(CO10容量%、CO 18容量%、水素72容量%)と水蒸気を供給し、水性ガス転化反応を行った。反応条件は、温度、240℃、圧力、1MPa、原料ガス流速、100ml/分、水蒸気と原料ガスの容量比、0.25であった。反応生成ガスをガスクロマトグラフにより分析した。その結果、反応経過時間50時間においてCO転化率は82%であり、反応経過時間500時間においてCO転化率は82%であった(表1参照)。この結果から、本発明の触媒は、活性が高く、しかも、長時間安定性にも優れていることが明らかである。 0.56 g of the obtained catalyst was filled into a reaction tube, and a mixed gas of helium and hydrogen (90% by volume of helium, 10% by volume of hydrogen) was supplied at a flow rate of 300 ml / min. Reduction was performed. After reduction of the catalyst, the reaction tube, the raw material gas (CO 10 vol%, CO 2 18 volume%, of hydrogen 72% by volume) and supplying the water vapor, were water gas shift reaction. The reaction conditions were temperature, 240 ° C., pressure, 1 MPa, raw material gas flow rate, 100 ml / min, volume ratio of water vapor and raw material gas, 0.25. The reaction product gas was analyzed by gas chromatography. As a result, the CO conversion rate was 82% at a reaction elapsed time of 50 hours, and the CO conversion rate was 82% at a reaction elapsed time of 500 hours (see Table 1). From this result, it is clear that the catalyst of the present invention has high activity and excellent long-term stability.

(実施例2)
コロイダルシリカの量を1.5gとする以外は実施例1と同様にして沈殿物を得、その沈殿物を実施例1と同様にして乾燥、焼成した。この焼成後の酸化物の組成は、酸化銅45.0重量%、酸化亜鉛27.0重量%、酸化ジルコニウム22.4重量%、酸化アルミニウム4.4重量%および酸化珪素1.2重量%であった。次に、250〜600μmに粒度調整した焼成後の酸化物1.5gに、0.8重量%の水酸化カリウム水溶液1.9gを添加し、105℃で乾燥し、空気中、400℃で焼成した後、触媒とした。この触媒の組成は、酸化銅44.6重量%、酸化亜鉛26.7重量%、酸化ジルコニウム22.2重量%、酸化アルミニウム4.3重量%、水酸化カリウム1重量%および酸化珪素1.2重量%であった。
(Example 2)
A precipitate was obtained in the same manner as in Example 1 except that the amount of colloidal silica was 1.5 g, and the precipitate was dried and fired in the same manner as in Example 1. The composition of the oxide after firing was 45.0% by weight of copper oxide, 27.0% by weight of zinc oxide, 22.4% by weight of zirconium oxide, 4.4% by weight of aluminum oxide and 1.2% by weight of silicon oxide. there were. Next, 1.9 g of 0.8 wt% potassium hydroxide aqueous solution is added to 1.5 g of the calcined oxide whose particle size is adjusted to 250 to 600 μm, dried at 105 ° C., and calcined at 400 ° C. in the air. After that, a catalyst was obtained. The composition of this catalyst was 44.6% copper oxide, 26.7% zinc oxide, 22.2% zirconium oxide, 4.3% aluminum oxide, 1% potassium hydroxide and 1.2% silicon oxide. % By weight.

得られた触媒0.56gを反応管に充填し、実施例1と同様にして、水性ガス転化反応を行った。その結果、反応経過時間50時間においてCO転化率は82%であり、反応経過時間500時間においてCO転化率は83%であった(表1参照)。この結果から、本発明の触媒は、活性が高く、しかも、長時間安定性にも優れていることが明らかである。   0.56 g of the obtained catalyst was charged into a reaction tube, and a water gas conversion reaction was performed in the same manner as in Example 1. As a result, the CO conversion rate was 82% at a reaction elapsed time of 50 hours, and the CO conversion rate was 83% at a reaction elapsed time of 500 hours (see Table 1). From this result, it is clear that the catalyst of the present invention has high activity and excellent long-term stability.

(実施例3)
コロイダルシリカの量を2.0gとする以外は実施例1と同様にして沈殿物を得、その沈殿物を実施例1と同様にして乾燥、焼成した。この焼成後の酸化物の組成は、酸化銅44.8重量%、酸化亜鉛26.9重量%、酸化ジルコニウム22.3重量%、酸化アルミニウム4.4重量%および酸化珪素1.6重量%であった。次に、250〜600μmに粒度調整した焼成後の酸化物1.5gに、0.8重量%の水酸化カリウム水溶液1.9gを添加し、105℃で乾燥し、空気中、400℃で焼成した後、触媒とした。この触媒の組成は、酸化銅44.4重量%、酸化亜鉛26.6重量%、酸化ジルコニウム22.1重量%、酸化アルミニウム4.3重量%、水酸化カリウム1重量%および酸化珪素1.6重量%であった。
(Example 3)
A precipitate was obtained in the same manner as in Example 1 except that the amount of colloidal silica was 2.0 g. The precipitate was dried and fired in the same manner as in Example 1. The composition of the oxide after firing was 44.8% by weight of copper oxide, 26.9% by weight of zinc oxide, 22.3% by weight of zirconium oxide, 4.4% by weight of aluminum oxide and 1.6% by weight of silicon oxide. there were. Next, 1.9 g of 0.8 wt% potassium hydroxide aqueous solution is added to 1.5 g of the calcined oxide whose particle size is adjusted to 250 to 600 μm, dried at 105 ° C., and calcined at 400 ° C. in the air. After that, a catalyst was obtained. The composition of this catalyst was 44.4% by weight copper oxide, 26.6% by weight zinc oxide, 22.1% by weight zirconium oxide, 4.3% by weight aluminum oxide, 1% by weight potassium hydroxide and 1.6% silicon oxide. % By weight.

得られた触媒0.56gを反応管に充填し、実施例1と同様にして、水性ガス転化反応を行った。その結果、反応経過時間50時間においてCO転化率は80%であり、反応経過時間500時間においてCO転化率は80%であった(表1参照)。この結果から、本発明の触媒は、活性が高く、しかも、長時間安定性にも優れていることが明らかである。   0.56 g of the obtained catalyst was charged into a reaction tube, and a water gas conversion reaction was performed in the same manner as in Example 1. As a result, the CO conversion rate was 80% at a reaction elapsed time of 50 hours, and the CO conversion rate was 80% at a reaction elapsed time of 500 hours (see Table 1). From this result, it is clear that the catalyst of the present invention has high activity and excellent long-term stability.

(比較例1)
コロイダルシリカを用いないこと以外は実施例1と同様にして沈殿物を得、その沈殿物を実施例1と同様にして乾燥、焼成した。この焼成後の酸化物の組成は、酸化銅45.5重量%、酸化亜鉛27.3重量%、酸化ジルコニウム22.7重量%、酸化アルミニウム4.5重量%であった。次に、250〜600μmに粒度調整した焼成後の酸化物1.5gに、0.8重量%の水酸化カリウム水溶液1.9gを添加し、105℃で乾燥し、空気中、400℃で焼成した後、触媒とした。この触媒の組成は、酸化銅45.0重量%、酸化亜鉛27.0重量%、酸化ジルコニウム22.5重量%、酸化アルミニウム4.5重量%、水酸化カリウム1重量%であった。
(Comparative Example 1)
A precipitate was obtained in the same manner as in Example 1 except that colloidal silica was not used. The precipitate was dried and fired in the same manner as in Example 1. The composition of the oxide after firing was 45.5% by weight of copper oxide, 27.3% by weight of zinc oxide, 22.7% by weight of zirconium oxide, and 4.5% by weight of aluminum oxide. Next, 1.9 g of 0.8 wt% potassium hydroxide aqueous solution is added to 1.5 g of the calcined oxide whose particle size is adjusted to 250 to 600 μm, dried at 105 ° C., and calcined at 400 ° C. in the air. After that, a catalyst was obtained. The composition of this catalyst was copper oxide 45.0% by weight, zinc oxide 27.0% by weight, zirconium oxide 22.5% by weight, aluminum oxide 4.5% by weight, and potassium hydroxide 1% by weight.

得られた触媒0.56gを反応管に充填し、実施例1と同様にして、水性ガス転化反応を行った。その結果、反応経過時間50時間においてCO転化率は83%であり、反応経過時間500時間においてCO転化率は80%であった(表1参照)。この結果から、酸化珪素を含まない触媒は、活性の安定性が十分でないことが明らかである。   0.56 g of the obtained catalyst was charged into a reaction tube, and a water gas conversion reaction was performed in the same manner as in Example 1. As a result, the CO conversion rate was 83% at a reaction elapsed time of 50 hours, and the CO conversion rate was 80% at a reaction elapsed time of 500 hours (see Table 1). From this result, it is clear that the catalyst containing no silicon oxide is not sufficiently stable in activity.

(比較例2)
実施例3で得られた、酸化銅44.8重量%、酸化亜鉛26.9重量%、酸化ジルコニウム22.3重量%、酸化アルミニウム4.4重量%および酸化珪素1.6重量%からなる焼成後の酸化物を250〜600μmに粒度調製し、水酸化カリウム水溶液を添加することなくそのまま触媒とした。
(Comparative Example 2)
Firing comprising 44.8% by weight of copper oxide, 26.9% by weight of zinc oxide, 22.3% by weight of zirconium oxide, 4.4% by weight of aluminum oxide and 1.6% by weight of silicon oxide obtained in Example 3. The particle size of the subsequent oxide was adjusted to 250 to 600 μm, and the catalyst was used as it was without adding an aqueous potassium hydroxide solution.

得られた触媒0.56gを反応管に充填し、実施例1と同様にして、水性ガス転化反応を行った。その結果、反応経過時間50時間においてCO転化率は72%であり、反応経過時間500時間においてCO転化率は72%であった(表1参照)。この結果から、アルカリ金属元素を含まない触媒は、活性が著しく低いことが明らかである。   0.56 g of the obtained catalyst was charged into a reaction tube, and a water gas conversion reaction was performed in the same manner as in Example 1. As a result, the CO conversion rate was 72% at a reaction elapsed time of 50 hours, and the CO conversion rate was 72% at a reaction elapsed time of 500 hours (see Table 1). From this result, it is clear that the catalyst containing no alkali metal element has a significantly low activity.

Figure 2007313487
Figure 2007313487

本発明の水性ガス転化反応用触媒は、その高い触媒活性を示し、しかもその触媒活性の長時間安定性にも優れていることから、炭化水素やバイオマスからの水素製造におけるCO除去、メタノール合成やオキソ合成におけるH/CO比の調製、或いは燃料電池用のCO含有量が低い水素の製造等に有用である。
The catalyst for water gas conversion reaction of the present invention exhibits its high catalytic activity and is excellent in long-term stability of its catalytic activity, so that CO removal, methanol synthesis and the like in hydrogen production from hydrocarbons and biomass can be performed. This is useful for adjusting the H 2 / CO ratio in oxo synthesis or for producing hydrogen with a low CO content for fuel cells.

Claims (3)

酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、アルカリ金属元素および酸化珪素を必須成分とすることを特徴とする水性ガス転化反応用触媒。   A catalyst for water gas conversion reaction comprising copper oxide, zinc oxide, zirconium oxide, aluminum oxide, alkali metal element and silicon oxide as essential components. 酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウム、アルカリ金属元素および酸化珪素を必須成分とする触媒であって、触媒全体を100重量%とするとき、各成分の含有量が、上記の順に20〜70重量%、10〜60重量%、1〜50重量%、1〜50重量%、0.5〜10重量%および0.5〜2重量%であることを特徴とする請求項1記載の水性ガス転化反応用触媒。   A catalyst comprising copper oxide, zinc oxide, zirconium oxide, aluminum oxide, alkali metal element and silicon oxide as essential components, and when the total catalyst is 100% by weight, the content of each component is 20 to 20 in the above order. 2. An aqueous solution according to claim 1, characterized in that it is 70%, 10-60%, 1-50%, 1-50%, 0.5-10% and 0.5-2% by weight. Catalyst for gas conversion reaction. 一酸化炭素および水蒸気を請求項1又は2の触媒に接触させることを特徴とする水性ガス転化反応方法。
A water gas conversion reaction method comprising contacting carbon monoxide and water vapor with the catalyst according to claim 1 or 2.
JP2006148817A 2006-05-29 2006-05-29 Water gas conversion reaction catalyst and water gas conversion reaction method using the same. Pending JP2007313487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148817A JP2007313487A (en) 2006-05-29 2006-05-29 Water gas conversion reaction catalyst and water gas conversion reaction method using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148817A JP2007313487A (en) 2006-05-29 2006-05-29 Water gas conversion reaction catalyst and water gas conversion reaction method using the same.

Publications (1)

Publication Number Publication Date
JP2007313487A true JP2007313487A (en) 2007-12-06

Family

ID=38847828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148817A Pending JP2007313487A (en) 2006-05-29 2006-05-29 Water gas conversion reaction catalyst and water gas conversion reaction method using the same.

Country Status (1)

Country Link
JP (1) JP2007313487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247961A (en) * 2008-04-03 2009-10-29 Yasuo Ishikawa Catalyst for collecting hydrogen from water, catalyst producing apparatus, hydrogen generating device, hydrogen engine system, and hydrogen burner system
CN111715227A (en) * 2019-03-20 2020-09-29 中石化南京化工研究院有限公司 Copper-based medium-temperature shift catalyst and preparation method thereof
GB2600238A (en) * 2020-10-09 2022-04-27 Johnson Matthey Plc Hydrogen process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229399A (en) * 1995-01-11 1996-09-10 United Catalyst Inc Stabilized copper oxide-zinc oxide catalyst containing co-catalyst and its preparation
JPH11244700A (en) * 1998-03-04 1999-09-14 Osaka Gas Co Ltd Carbon monoxide conversion catalyst
JP2000126597A (en) * 1998-10-28 2000-05-09 Agency Of Ind Science & Technol Carbon monoxide conversion catalyst and a method for converting carbon monoxide using the catalyst
JP2004329976A (en) * 2003-04-30 2004-11-25 National Institute Of Advanced Industrial & Technology High temperature CO shift reaction catalyst
JP2006239557A (en) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology Catalyst for water gas conversion reaction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229399A (en) * 1995-01-11 1996-09-10 United Catalyst Inc Stabilized copper oxide-zinc oxide catalyst containing co-catalyst and its preparation
JPH11244700A (en) * 1998-03-04 1999-09-14 Osaka Gas Co Ltd Carbon monoxide conversion catalyst
JP2000126597A (en) * 1998-10-28 2000-05-09 Agency Of Ind Science & Technol Carbon monoxide conversion catalyst and a method for converting carbon monoxide using the catalyst
JP2004329976A (en) * 2003-04-30 2004-11-25 National Institute Of Advanced Industrial & Technology High temperature CO shift reaction catalyst
JP2006239557A (en) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology Catalyst for water gas conversion reaction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247961A (en) * 2008-04-03 2009-10-29 Yasuo Ishikawa Catalyst for collecting hydrogen from water, catalyst producing apparatus, hydrogen generating device, hydrogen engine system, and hydrogen burner system
CN111715227A (en) * 2019-03-20 2020-09-29 中石化南京化工研究院有限公司 Copper-based medium-temperature shift catalyst and preparation method thereof
GB2600238A (en) * 2020-10-09 2022-04-27 Johnson Matthey Plc Hydrogen process
GB2600238B (en) * 2020-10-09 2024-06-05 Johnson Matthey Plc Hydrogen process

Similar Documents

Publication Publication Date Title
WO2018049735A1 (en) A metal oxide catalyst for methanol synthesis from co2 hydrogenation and preparation method of the catalyst
KR101085038B1 (en) Catalyst for synthesizing methanol from syngas and its preparation method
JP5592250B2 (en) Catalytic hydrogenation of carbon dioxide to synthesis gas.
CN102083745B (en) Process for operating HTS reactor
JP3010314B2 (en) Hydrocarbon preparation method
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP5353952B2 (en) Method for producing catalyst for methanation reaction of carbon oxide
Larimi et al. Partial oxidation of methane over Ni/CeZrO2 mixed oxide solid solution catalysts
CN105251505A (en) Cobalt-based catalyst for synthesis gas to C2+ oxygenate and co-production of olefins and its preparation method and application
JP2007313487A (en) Water gas conversion reaction catalyst and water gas conversion reaction method using the same.
JP3837520B2 (en) Catalyst for CO shift reaction
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP4110241B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst
JP4512748B2 (en) Catalyst for water gas conversion reaction
JP2005052730A (en) Catalyst for propane dehydrogenation reaction
JP7029346B2 (en) Indene manufacturing method
JPH039772B2 (en)
CN110871075A (en) Zirconium dioxide catalyst loaded with iron, cobalt and potassium, preparation method and application thereof
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
JP2010058043A (en) Method for manufacturing steam reforming catalyst and hydrogen
CN101646641A (en) Process for the conversion of syngas to oxygenates
JP3752531B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JPH08176034A (en) Method of synthesizing methanol
JP4696295B2 (en) Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214