[go: up one dir, main page]

JP2004329976A - High temperature CO shift reaction catalyst - Google Patents

High temperature CO shift reaction catalyst Download PDF

Info

Publication number
JP2004329976A
JP2004329976A JP2003124824A JP2003124824A JP2004329976A JP 2004329976 A JP2004329976 A JP 2004329976A JP 2003124824 A JP2003124824 A JP 2003124824A JP 2003124824 A JP2003124824 A JP 2003124824A JP 2004329976 A JP2004329976 A JP 2004329976A
Authority
JP
Japan
Prior art keywords
catalyst
weight
oxide
temperature
shift reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003124824A
Other languages
Japanese (ja)
Other versions
JP4012965B2 (en
Inventor
Masahiro Saito
昌弘 斉藤
Isao Takahara
功 高原
Kazuhisa Murata
和久 村田
Hitoshi Inaba
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003124824A priority Critical patent/JP4012965B2/en
Publication of JP2004329976A publication Critical patent/JP2004329976A/en
Application granted granted Critical
Publication of JP4012965B2 publication Critical patent/JP4012965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

【課題】一酸化炭素を水蒸気と反応させて水素と二酸化炭素に変換するための高温COシフト反応において、高活性を発揮する触媒を提供する。
【解決手段】酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムを必須成分とし、二酸化マンガンを任意成分とする触媒であり、かつ、500℃〜650℃という高温にて焼成された触媒であって、好ましくは触媒全体を100重量%とするとき、各成分の含有量が、上記の順に、20〜70重量%、10〜60重量%、1〜50重量%、1〜50重量%および0〜25重量%であること高温COシフト反応用触媒。
【選択図】なし
An object of the present invention is to provide a catalyst exhibiting high activity in a high-temperature CO shift reaction for converting carbon monoxide with water vapor to convert it into hydrogen and carbon dioxide.
A catalyst comprising copper oxide, zinc oxide, zirconium oxide, and aluminum oxide as essential components, and manganese dioxide as an optional component, and a catalyst calcined at a high temperature of 500 ° C to 650 ° C, Preferably, when the entire catalyst is 100% by weight, the content of each component is preferably from 20 to 70% by weight, 10 to 60% by weight, 1 to 50% by weight, 1 to 50% by weight and 0 to 25% in the above order. The catalyst for the high-temperature CO shift reaction to be in wt%.
[Selection diagram] None

Description

【0001】
【発明の属する技術分野】
本発明は、水性ガス転化反応用触媒に関し、更に詳しくは一酸化炭素と水蒸気を反応させて、二酸化炭素および水素を製造する(COシフト反応あるいは水性ガスシフト反応などと呼ばれる)際に使用されるCOシフト反応用触媒に関する。
【0002】
【従来の技術】
従来より、COシフト反応は、炭化水素からの水素製造におけるCO除去あるいはメタノール合成やオキソ合成におけるH/CO比の調整のための重要な反応であることが知られており、さらに、最近では、燃料電池用のCO含有量が低い水素を、炭化水素などから製造するための主要な工程の一つとして注目されている。
このシフト反応は下記反応式に示されるように、COとHOからHとCOを生成する反応である。
【化1】
CO + HO → CO + H
これまでに、このようなCOシフト反応用触媒としては、高温反応用(320℃〜400℃にて実施される)として鉄・クロム系触媒、低温反応用(150℃〜300℃にて実施される)として銅/亜鉛/アルミニウムの酸化物からなる触媒あるいは銅/亜鉛/クロムの酸化物からなる触媒が開発され、工業的に実施されている(例えば非特許文献1参照)。
しかしながら、何れの触媒もCO転化率が未だ満足すべきでないのが現状であり、高性能な触媒の開発が重要な技術開発課題となっている。
【0003】
【非特許文献1】
「触媒講座」第8巻、251頁〜262頁 触媒学会編、講談社発行(1985)。
【0004】
【発明が解決しようとする課題】
本発明は、このような実情に鑑みなされたものであり、高温COシフト反応に用いられている鉄・クロム系触媒の触媒活性よりも高い活性を示す新たな高温COシフト反応用触媒を提供することを主な目的とする。
【0005】
【課題を解決するための手段】
本発明者は、銅を含む触媒について種々の研究を行った結果、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムを必須成分とし、二酸化マンガンを任意成分とする触媒であって、かつ、500℃〜650℃という高温にて焼成された触媒により、その課題を解決し得ることを見い出した。
【0006】
即ち、本発明によれば、第一に、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムを必須成分とし、二酸化マンガンを任意成分とする触媒であって、かつ、500℃〜650℃という高温にて焼成されたことを特徴とする、高温COシフト反応において高い性能を示す触媒が提供される。
第二に、第一の発明において、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムを必須成分とし、二酸化マンガンを任意成分とする触媒であって、触媒全体を100重量%とするとき、各成分の含有量が、上記の順に20〜70重量%、10〜60重量%、1〜50重量%、1〜50重量%および0〜25重量%であることを特徴とするCOシフト反応用触媒が提供される。
第三に、一酸化炭素および水蒸気を上記第一又は第二の触媒に接触させることを特徴とする高温COシフト反応方法が提供される。
第四に、一酸化炭素および水蒸気を上記第一又は第二の触媒に接触させ、高温COシフト反応させることを特徴とする二酸化炭素及び水素の製造方法が提供される。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0008】
本発明の高温COシフト反応用触媒は、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムを必須成分とし、二酸化マンガンを任意成分とする触媒であり、かつ、500℃〜650℃という高温にて焼成されたものであることを特徴とする。
本発明においては、焼成温度を500℃〜650℃に設定することが重要である。焼成温度が500℃未満であると、触媒成分間の相互作用が弱いなどの理由により、触媒活性が低く、また、焼成温度が650℃を越えると、触媒成分の結晶化などの理由により、触媒活性が低くなるため、本発明の所期の目的を達成できない。
【0009】
各触媒成分の割合は、特に限定されないが、触媒全体を100重量%とするとき、酸化銅が20〜70重量%、酸化亜鉛が10〜60重量%、酸化ジルコニウムが1〜50重量%、酸化アルミニウムが1〜50重量%、二酸化マンガンが0〜25重量%とされる。このような量的範囲において、組成を反応条件に応じて適切に定めることにより、その反応条件に適した触媒性能を得ることができる。また、本発明の高温COシフト反応用触媒は、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムを必須成分とし、二酸化マンガンを必須成分とするが、本発明の反応を損なわない範囲で、他の物質を含んでいても良い。このような物質としては、たとえば、酸化カルシウム、酸化マグネシウム、酸化珪素、酸化ランタン、酸化セリウムなどが挙げられる。
【0010】
本発明の触媒成分となる酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび二酸化マンガンの原料としては、それぞれの硝酸塩、塩酸塩、硫酸鉛、有機酸塩、水酸化物等を用いることができる。触媒は、共沈法、含浸法、混合法、逐次沈殿法、アルコキシド法等の方法により、あるいは、これらの方法を組み合わせた方法により触媒前駆体を調製し、次いで、触媒前駆体を空気中で500〜650℃で焼成することにより製造できる。
【0011】
このようにして製造された触媒は、そのままで、あるいは適当な方法により造粒または打錠成型して用いる。触媒の粒子径や形状は、反応方式、反応器の形状によって任意に選択できる。すなわち、本発明による触媒は、固定床、流動床等いずれの反応方式においても用いることができる。
【0012】
焼成後の触媒は、反応に使用する前に触媒中の酸化銅を金属銅に予め還元しても良い。但し、この還元を行わない場合にも、反応ガス中の一酸化炭素や水素により酸化銅は自然に還元されるので、事前の還元操作は必須ではない。
【0013】
上記本発明にかかる触媒を用いる、一酸化炭素の水蒸気による高温COシフト反応方法における反応条件は、原料ガス中の一酸化炭素や水素の濃度や触媒成分の含有量などにより異なり得る。
【0014】
通常、反応温度は350〜450℃、反応圧力は1〜100気圧(絶対圧力)、原料ガス中(水蒸気を除く)の一酸化炭素のモル濃度は1〜30%、水蒸気と原料ガス中の一酸化炭素のモル比は1〜100、原料ガス(水蒸気を除く)の空間速度は1,000〜500,000(1/h)の範囲が適当である。
【0015】
【実施例】
以下、実施例をあげて本発明の特徴とするところをより一層明確にする。
【0016】
実施例1
硝酸銅三水和物11.7g、硝酸亜鉛六水和物8.4g、オキシ硝酸ジルコニウム二水和物4.2g、硝酸アルミニウム九水和物2.8gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム12.1gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調整した後、500℃で再度焼成して触媒とした。この触媒の組成は、酸化銅45.5重量%、酸化亜鉛27.3重量%、酸化ジルコニウム22.7重量%、酸化アルミニウム4.5重量%であった。
【0017】
得られた触媒0.2mlを反応管に充填し、ヘリウムと水素の混合ガス(ヘリウム90容量%、水素10容量%)を毎分300mlの流速で供給し450℃で触媒中の酸化銅の水素還元を行った。触媒の還元後、反応管に、原料ガス(CO10容量%、CO 18容量%、水素72容量%)と水蒸気を供給し、反応を行った。反応条件は、温度、400℃、圧力、0.15MPa、水蒸気と原料ガスの容量比は0.3、原料ガス(水蒸気を除く)の空間速度は90,000(1/h)であった。反応生成ガスをガスクロマトグラフにより分析した。その結果、反応時間10時間においてCO転化率は25%であった(表1参照)。
【0018】
実施例2
実施例1で得た250〜600μmに粒度調整した酸化物を、550℃で再度焼成して触媒とした。この触媒の組成は、実施例1と同じであった。
【0019】
得られた触媒0.2mlを反応管に充填し、実施例1と同様にして、高温COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率は25%であった(表1参照)。
【0020】
実施例3
実施例1で得た250〜600μmに粒度調整した酸化物を、600℃で再度焼成して触媒とした。この触媒の組成は、実施例1と同じであった。
【0021】
得られた触媒0.2mlを反応管に充填し、実施例1と同様にして、高温COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率は26%であった(表1参照)。
【0022】
実施例4
実施例1で得た250〜600μmに粒度調整した酸化物を、650℃で再度焼成して触媒とした。この触媒の組成は、実施例1と同じであった。
【0023】
得られた触媒0.2mlを反応管に充填し、実施例1と同様にして、高温COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率は25%であった(表1参照)。
【0024】
実施例5
硝酸銅三水和物10.2g、硝酸亜鉛六水和物9.8g、オキシ硝酸ジルコニウム二水和物3.0g、硝酸アルミニウム九水和物2.8g、硝酸マンガン六水和物1.8gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム12.8gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、600℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.5重量%、酸化亜鉛32.3重量%、酸化ジルコニウム16.6重量%、酸化アルミニウム4.6重量%、二酸化マンガン5.9重量%であった。
【0025】
得られた触媒0.2mlを反応管に充填し、実施例1と同様にして、高温COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率は26%であった(表1参照)。
【0026】
実施例6
硝酸銅三水和物10.0g、硝酸亜鉛六水和物9.6g、オキシ硝酸ジルコニウム二水和物1.6g、硝酸アルミニウム九水和物2.8g、硝酸マンガン六水和物3.7gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.6gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、600℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.7重量%、酸化亜鉛32.5重量%、酸化ジルコニウム9.3重量%、酸化アルミニウム4.6重量%、二酸化マンガン12.8重量%であった。
【0027】
得られた触媒0.2mlを反応管に充填し、実施例1と同様にして、高温COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率は26%であった(表1参照)。
【0028】
比較例1
実施例1で得た250〜600μmに粒度調整した酸化物を、400℃で再度焼成して触媒とした。この触媒の組成は、実施例1と同じであった。
【0029】
得られた触媒0.2mlを反応管に充填し、実施例1と同様にして、高温COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率は22%であった(表1参照)。
【0030】
比較例2
実施例1で得た250〜600μmに粒度調整した酸化物を、700℃で再度焼成して触媒とした。この触媒の組成は、実施例1と同じであった。
【0031】
得られた触媒0.2mlを反応管に充填し、実施例1と同様にして、高温COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率は21%であった(表1参照)。
【0032】
比較例3
工業的に用いられている鉄・クロム系触媒0.2mlを反応管に充填し、実施例1と同様にして、高温COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率は12%であった(表1参照)。
【0033】

Figure 2004329976
【0034】
表1に示す結果から、本発明の酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムを必須成分とし、酸化マンガンを任意成分とする触媒であって、かつ、かつ、500℃〜650℃という高温にて焼成された触媒を用いれば、高温COシフト反応において、高いCO転化率を得ることができることが明らかである。
【0035】
【発明の効果】
本発明の触媒は、高温COシフト反応において、極めて高い触媒活性を示すものである。従って、高温COシフト反応を工業的有利に実施することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for a water gas shift reaction, and more particularly, to a method of reacting carbon monoxide with water vapor to produce carbon dioxide and hydrogen (referred to as a CO shift reaction or a water gas shift reaction). The present invention relates to a catalyst for a shift reaction.
[0002]
[Prior art]
Conventionally, it has been known that the CO shift reaction is an important reaction for removing CO in the production of hydrogen from hydrocarbons or adjusting the H 2 / CO ratio in methanol synthesis or oxo synthesis. It is receiving attention as one of the main processes for producing hydrogen having a low CO content for fuel cells from hydrocarbons and the like.
This shift reaction is a reaction for generating H 2 and CO 2 from CO and H 2 O as shown in the following reaction formula.
Embedded image
CO + H 2 O → CO 2 + H 2
To date, such CO shift reaction catalysts include iron-chromium catalysts for high-temperature reactions (implemented at 320 ° C. to 400 ° C.) and catalysts for low-temperature reactions (implemented at 150 ° C. to 300 ° C.). A catalyst comprising an oxide of copper / zinc / aluminum or a catalyst comprising an oxide of copper / zinc / chromium has been developed and industrially implemented (see Non-Patent Document 1, for example).
However, at present, the CO conversion rate of any of the catalysts is not yet satisfactory, and the development of a high-performance catalyst is an important technical development task.
[0003]
[Non-patent document 1]
"Catalyst Course", Vol. 8, pp. 251-262, edited by The Catalysis Society of Japan, published by Kodansha (1985).
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and provides a new catalyst for a high-temperature CO shift reaction that exhibits an activity higher than the catalytic activity of an iron / chromium-based catalyst used in a high-temperature CO shift reaction. Its main purpose is to:
[0005]
[Means for Solving the Problems]
The present inventor has conducted various studies on a catalyst containing copper. As a result, the catalyst containing copper oxide, zinc oxide, zirconium oxide, and aluminum oxide as essential components and manganese dioxide as an optional component, and having a temperature of 500 ° C. It has been found that a catalyst calcined at a high temperature of 6650 ° C. can solve the problem.
[0006]
That is, according to the present invention, first, a catalyst containing copper oxide, zinc oxide, zirconium oxide, and aluminum oxide as essential components and manganese dioxide as an optional component, and at a high temperature of 500 ° C to 650 ° C. A catalyst that exhibits high performance in a high-temperature CO shift reaction, characterized in that the catalyst is calcined.
Second, in the first invention, a catalyst containing copper oxide, zinc oxide, zirconium oxide, and aluminum oxide as essential components and manganese dioxide as an optional component. Is 20 to 70% by weight, 10 to 60% by weight, 1 to 50% by weight, 1 to 50% by weight and 0 to 25% by weight in the above order. Provided.
Third, there is provided a high-temperature CO shift reaction method characterized by contacting carbon monoxide and steam with the first or second catalyst.
Fourth, there is provided a method for producing carbon dioxide and hydrogen, wherein carbon monoxide and steam are brought into contact with the first or second catalyst to cause a high-temperature CO shift reaction.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0008]
The catalyst for a high-temperature CO shift reaction of the present invention is a catalyst containing copper oxide, zinc oxide, zirconium oxide, and aluminum oxide as essential components and manganese dioxide as an optional component, and is calcined at a high temperature of 500 ° C. to 650 ° C. It is characterized by having been done.
In the present invention, it is important to set the firing temperature at 500 ° C to 650 ° C. If the calcination temperature is lower than 500 ° C., the catalytic activity is low because the interaction between the catalyst components is weak, and if the calcination temperature exceeds 650 ° C., the catalyst component is crystallized and the like. Due to the low activity, the intended object of the present invention cannot be achieved.
[0009]
The proportion of each catalyst component is not particularly limited. When the total catalyst is 100% by weight, copper oxide is 20 to 70% by weight, zinc oxide is 10 to 60% by weight, zirconium oxide is 1 to 50% by weight, Aluminum is 1 to 50% by weight, and manganese dioxide is 0 to 25% by weight. In such a quantitative range, by appropriately determining the composition according to the reaction conditions, it is possible to obtain a catalyst performance suitable for the reaction conditions. The catalyst for the high-temperature CO shift reaction of the present invention contains copper oxide, zinc oxide, zirconium oxide, and aluminum oxide as essential components, and manganese dioxide as an essential component, but other components within a range that does not impair the reaction of the present invention. May contain substances. Examples of such a substance include calcium oxide, magnesium oxide, silicon oxide, lanthanum oxide, and cerium oxide.
[0010]
As a raw material of copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese dioxide which are the catalyst components of the present invention, respective nitrates, hydrochlorides, lead sulfates, organic acid salts, hydroxides and the like can be used. The catalyst is prepared by a method such as a coprecipitation method, an impregnation method, a mixing method, a sequential precipitation method, an alkoxide method, or a method combining these methods, and then the catalyst precursor is prepared in the air. It can be manufactured by firing at 500 to 650 ° C.
[0011]
The catalyst thus produced is used as it is or after granulation or tableting by an appropriate method. The particle size and shape of the catalyst can be arbitrarily selected depending on the reaction system and the shape of the reactor. That is, the catalyst according to the present invention can be used in any reaction system such as a fixed bed and a fluidized bed.
[0012]
After the calcined catalyst, the copper oxide in the catalyst may be reduced to metallic copper before use in the reaction. However, even when this reduction is not performed, a prior reduction operation is not essential because copper oxide is naturally reduced by carbon monoxide and hydrogen in the reaction gas.
[0013]
The reaction conditions in the high-temperature CO shift reaction method using water vapor of carbon monoxide using the catalyst according to the present invention may vary depending on the concentration of carbon monoxide and hydrogen in the raw material gas, the content of the catalyst component, and the like.
[0014]
Usually, the reaction temperature is 350 to 450 ° C., the reaction pressure is 1 to 100 atm (absolute pressure), the molar concentration of carbon monoxide in the raw material gas (excluding water vapor) is 1 to 30%, The molar ratio of carbon oxide is suitably in the range of 1 to 100, and the space velocity of the raw material gas (excluding water vapor) is suitably in the range of 1,000 to 500,000 (1 / h).
[0015]
【Example】
Hereinafter, features of the present invention will be further clarified with reference to examples.
[0016]
Example 1
11.7 g of copper nitrate trihydrate, 8.4 g of zinc nitrate hexahydrate, 4.2 g of zirconium oxynitrate dihydrate and 2.8 g of aluminum nitrate nonahydrate were dissolved in distilled water, and 100 ml of an aqueous solution was dissolved. Was prepared and used as solution A. Separately, anhydrous sodium carbonate (12.1 g) was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. The solution A and the solution B were simultaneously dropped into 300 ml of room temperature distilled water, which was well stirred at a rate of 8 ml / min, to obtain a precipitate. This precipitate was aged at room temperature for one day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression-molded, pulverized, adjusted to a particle size of 250 to 600 μm, and fired again at 500 ° C. to obtain a catalyst. The composition of the catalyst was 45.5% by weight of copper oxide, 27.3% by weight of zinc oxide, 22.7% by weight of zirconium oxide, and 4.5% by weight of aluminum oxide.
[0017]
A reaction tube was filled with 0.2 ml of the obtained catalyst, and a mixed gas of helium and hydrogen (helium 90% by volume, hydrogen 10% by volume) was supplied at a flow rate of 300 ml / min. Reduction was performed. After the reduction of the catalyst, a raw material gas (10% by volume of CO, 18% by volume of CO 2 , and 72% by volume of hydrogen) and steam were supplied to the reaction tube to perform a reaction. The reaction conditions were as follows: temperature, 400 ° C., pressure, 0.15 MPa, volume ratio of steam to raw material gas was 0.3, and space velocity of raw material gas (excluding water vapor) was 90,000 (1 / h). The reaction product gas was analyzed by gas chromatography. As a result, the CO conversion was 25% at a reaction time of 10 hours (see Table 1).
[0018]
Example 2
The oxide obtained in Example 1 and having a particle size adjusted to 250 to 600 μm was calcined again at 550 ° C. to obtain a catalyst. The composition of this catalyst was the same as in Example 1.
[0019]
0.2 ml of the obtained catalyst was filled in a reaction tube, and a high-temperature CO shift reaction was performed in the same manner as in Example 1. As a result, 10 hours after the reaction elapsed time, the CO conversion was 25% (see Table 1).
[0020]
Example 3
The oxide having a particle size adjusted to 250 to 600 μm obtained in Example 1 was calcined again at 600 ° C. to obtain a catalyst. The composition of this catalyst was the same as in Example 1.
[0021]
0.2 ml of the obtained catalyst was filled in a reaction tube, and a high-temperature CO shift reaction was performed in the same manner as in Example 1. As a result, 10 hours after the reaction elapsed time, the CO conversion was 26% (see Table 1).
[0022]
Example 4
The oxide whose particle size was adjusted to 250 to 600 μm obtained in Example 1 was calcined again at 650 ° C. to obtain a catalyst. The composition of this catalyst was the same as in Example 1.
[0023]
0.2 ml of the obtained catalyst was filled in a reaction tube, and a high-temperature CO shift reaction was performed in the same manner as in Example 1. As a result, 10 hours after the reaction elapsed time, the CO conversion was 25% (see Table 1).
[0024]
Example 5
Copper nitrate trihydrate 10.2 g, zinc nitrate hexahydrate 9.8 g, zirconium oxynitrate dihydrate 3.0 g, aluminum nitrate nonahydrate 2.8 g, manganese nitrate hexahydrate 1.8 g Was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. Separately, 12.8 g of anhydrous sodium carbonate was dissolved in distilled water to prepare 100 ml of an aqueous solution, which was used as solution B. The solution A and the solution B were simultaneously dropped into 300 ml of room temperature distilled water, which was well stirred at a rate of 8 ml / min, to obtain a precipitate. This precipitate was aged at room temperature for one day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression-molded, pulverized, adjusted to a particle size of 250 to 600 μm, and fired again at 600 ° C. to obtain a catalyst. The composition of this catalyst was 40.5% by weight of copper oxide, 32.3% by weight of zinc oxide, 16.6% by weight of zirconium oxide, 4.6% by weight of aluminum oxide, and 5.9% by weight of manganese dioxide.
[0025]
0.2 ml of the obtained catalyst was filled in a reaction tube, and a high-temperature CO shift reaction was performed in the same manner as in Example 1. As a result, 10 hours after the reaction elapsed time, the CO conversion was 26% (see Table 1).
[0026]
Example 6
Copper nitrate trihydrate 10.0 g, zinc nitrate hexahydrate 9.6 g, zirconium oxynitrate dihydrate 1.6 g, aluminum nitrate nonahydrate 2.8 g, manganese nitrate hexahydrate 3.7 g Was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. Separately, 13.6 g of anhydrous sodium carbonate was dissolved in distilled water to prepare 100 ml of an aqueous solution, which was used as solution B. The solution A and the solution B were simultaneously dropped into 300 ml of room temperature distilled water, which was well stirred at a rate of 8 ml / min, to obtain a precipitate. This precipitate was aged at room temperature for one day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression-molded, pulverized, adjusted to a particle size of 250 to 600 μm, and fired again at 600 ° C. to obtain a catalyst. The composition of this catalyst was 40.7% by weight of copper oxide, 32.5% by weight of zinc oxide, 9.3% by weight of zirconium oxide, 4.6% by weight of aluminum oxide, and 12.8% by weight of manganese dioxide.
[0027]
0.2 ml of the obtained catalyst was filled in a reaction tube, and a high-temperature CO shift reaction was performed in the same manner as in Example 1. As a result, 10 hours after the reaction elapsed time, the CO conversion was 26% (see Table 1).
[0028]
Comparative Example 1
The oxide whose particle size was adjusted to 250 to 600 μm obtained in Example 1 was calcined again at 400 ° C. to obtain a catalyst. The composition of this catalyst was the same as in Example 1.
[0029]
0.2 ml of the obtained catalyst was filled in a reaction tube, and a high-temperature CO shift reaction was performed in the same manner as in Example 1. As a result, 10 hours after the reaction elapsed time, the CO conversion was 22% (see Table 1).
[0030]
Comparative Example 2
The oxide whose particle size was adjusted to 250 to 600 μm obtained in Example 1 was calcined again at 700 ° C. to obtain a catalyst. The composition of this catalyst was the same as in Example 1.
[0031]
0.2 ml of the obtained catalyst was filled in a reaction tube, and a high-temperature CO shift reaction was performed in the same manner as in Example 1. As a result, 10 hours after the reaction elapsed time, the CO conversion was 21% (see Table 1).
[0032]
Comparative Example 3
A reaction tube was filled with 0.2 ml of an industrially used iron-chromium catalyst, and a high-temperature CO shift reaction was carried out in the same manner as in Example 1. As a result, 10 hours after the reaction elapsed time, the CO conversion was 12% (see Table 1).
[0033]
Figure 2004329976
[0034]
From the results shown in Table 1, it is a catalyst containing copper oxide, zinc oxide, zirconium oxide, and aluminum oxide as essential components and manganese oxide as an optional component, and at a high temperature of 500 ° C. to 650 ° C. It is apparent that a high CO conversion can be obtained in the high-temperature CO shift reaction by using the catalyst calcined by the above method.
[0035]
【The invention's effect】
The catalyst of the present invention exhibits extremely high catalytic activity in a high-temperature CO shift reaction. Therefore, the high-temperature CO shift reaction can be carried out industrially advantageously.

Claims (4)

酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムを必須成分とし、二酸化マンガンを任意成分とする触媒であって、500℃〜650℃で焼成処理されたものであることを特徴とする高温COシフト反応用触媒。A high-temperature CO shift reaction comprising copper oxide, zinc oxide, zirconium oxide, and aluminum oxide as essential components, and manganese dioxide as an optional component, which has been calcined at 500 to 650 ° C. Catalyst. 酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムを必須成分とし、二酸化マンガンを任意成分とする触媒であって、触媒全体を100重量%とするとき、各成分の含有量が、上記の順に20〜70重量%、10〜60重量%、1〜50重量%、1〜50重量%および0〜25重量%であることを特徴とする請求項1に記載の高温COシフト反応用触媒。A catalyst containing copper oxide, zinc oxide, zirconium oxide, and aluminum oxide as essential components and manganese dioxide as an optional component. When the entire catalyst is 100% by weight, the content of each component is 20 to The high temperature CO shift reaction catalyst according to claim 1, wherein the catalyst is 70% by weight, 10 to 60% by weight, 1 to 50% by weight, 1 to 50% by weight and 0 to 25% by weight. 一酸化炭素および水蒸気を請求項1又は2の触媒に接触させることを特徴とする高温COシフト反応方法。A high-temperature CO shift reaction method comprising contacting carbon monoxide and water vapor with the catalyst according to claim 1 or 2. 一酸化炭素および水蒸気を請求項1又は2の触媒に接触させ高温COシフト反応させることを特徴とする二酸化炭素及び水素の製造方法。3. A method for producing carbon dioxide and hydrogen, wherein carbon monoxide and steam are brought into contact with the catalyst of claim 1 to cause a high-temperature CO shift reaction.
JP2003124824A 2003-04-30 2003-04-30 Catalyst for high temperature CO shift reaction Expired - Lifetime JP4012965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124824A JP4012965B2 (en) 2003-04-30 2003-04-30 Catalyst for high temperature CO shift reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124824A JP4012965B2 (en) 2003-04-30 2003-04-30 Catalyst for high temperature CO shift reaction

Publications (2)

Publication Number Publication Date
JP2004329976A true JP2004329976A (en) 2004-11-25
JP4012965B2 JP4012965B2 (en) 2007-11-28

Family

ID=33502257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124824A Expired - Lifetime JP4012965B2 (en) 2003-04-30 2003-04-30 Catalyst for high temperature CO shift reaction

Country Status (1)

Country Link
JP (1) JP4012965B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239557A (en) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology Catalyst for water gas conversion reaction
JP2007209976A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd WATER GAS CONVERSION OXIDATION CATALYST FOR REFORMER OF FUEL CELL SYSTEM, MANUFACTURING METHOD THEREOF, AND FUEL CELL SYSTEM
JP2007313487A (en) * 2006-05-29 2007-12-06 National Institute Of Advanced Industrial & Technology Water gas conversion reaction catalyst and water gas conversion reaction method using the same.
GB2422615B (en) * 2004-03-18 2009-01-28 Gen Motors Corp High activity water gas shift catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949268B (en) * 2014-04-17 2016-01-20 中国科学院山西煤炭化学研究所 The synthesis copper Mn catalyst of methyl formate and method for making and application

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422615B (en) * 2004-03-18 2009-01-28 Gen Motors Corp High activity water gas shift catalyst
JP2006239557A (en) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology Catalyst for water gas conversion reaction
JP4512748B2 (en) * 2005-03-03 2010-07-28 独立行政法人産業技術総合研究所 Catalyst for water gas conversion reaction
JP2007209976A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd WATER GAS CONVERSION OXIDATION CATALYST FOR REFORMER OF FUEL CELL SYSTEM, MANUFACTURING METHOD THEREOF, AND FUEL CELL SYSTEM
JP4686486B2 (en) * 2006-02-10 2011-05-25 三星エスディアイ株式会社 WATER GAS CONVERSION OXIDATION CATALYST FOR REFORMER OF FUEL CELL SYSTEM, MANUFACTURING METHOD THEREOF, AND FUEL CELL SYSTEM
JP2007313487A (en) * 2006-05-29 2007-12-06 National Institute Of Advanced Industrial & Technology Water gas conversion reaction catalyst and water gas conversion reaction method using the same.

Also Published As

Publication number Publication date
JP4012965B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
KR101085038B1 (en) Catalyst for synthesizing methanol from syngas and its preparation method
CA2681411C (en) Catalyst precursor substance, and catalyst using the same
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
WO2018049735A1 (en) A metal oxide catalyst for methanol synthesis from co2 hydrogenation and preparation method of the catalyst
CN102083745B (en) Process for operating HTS reactor
CN109310995A (en) Catalyst and process for the direct hydrogenation of synthesis gas and/or carbon dioxide to methanol
EP1161992A1 (en) New catalysts for oxidative steam reforming of methanol as a new and efficient method for the selective production of hydrogen for fuel cells and their synthesis method
JP6883289B2 (en) Hydrogen production method and catalyst for hydrogen production
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
CN102600852B (en) Catalyst for preparing dimethyl ether as well as preparation method and application thereof
Larimi et al. Partial oxidation of methane over Ni/CeZrO2 mixed oxide solid solution catalysts
JP3837520B2 (en) Catalyst for CO shift reaction
KR101372237B1 (en) Method for preparing complex metal oxide catalysts for methanol synthesis from CO₂, method of methanol production using complex metal oxide catalysts
CN105080564A (en) Catalyst used for preparation of carbon monoxide by conversion of carbon dioxide and use method thereof
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP2003038957A (en) Catalyst for reforming dimethyl ether and method for producing hydrogen containing gas using the same
US11247959B2 (en) Method for directly preparing dimethyl ether by synthesis gas
CN113145127B (en) Cu catalyst for preparing hydrogen by reforming methanol and steam, and preparation method and application thereof
JP3086867B2 (en) Catalyst for syngas production and method for syngas production
JP2007313487A (en) Water gas conversion reaction catalyst and water gas conversion reaction method using the same.
JP4512748B2 (en) Catalyst for water gas conversion reaction
JPH08176034A (en) Method of synthesizing methanol
JP4202087B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP3752531B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
RU2431526C1 (en) Catalyst, preparation method thereof and method of producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

R150 Certificate of patent or registration of utility model

Ref document number: 4012965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term