JP3525710B2 - Secondary battery and its positive electrode active material - Google Patents
Secondary battery and its positive electrode active materialInfo
- Publication number
- JP3525710B2 JP3525710B2 JP31858897A JP31858897A JP3525710B2 JP 3525710 B2 JP3525710 B2 JP 3525710B2 JP 31858897 A JP31858897 A JP 31858897A JP 31858897 A JP31858897 A JP 31858897A JP 3525710 B2 JP3525710 B2 JP 3525710B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive agent
- active material
- metal oxide
- positive electrode
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007774 positive electrode material Substances 0.000 title claims description 39
- 239000006258 conductive agent Substances 0.000 claims description 102
- 229910044991 metal oxide Inorganic materials 0.000 claims description 50
- 150000004706 metal oxides Chemical class 0.000 claims description 50
- 239000011248 coating agent Substances 0.000 claims description 35
- 238000000576 coating method Methods 0.000 claims description 35
- 239000002245 particle Substances 0.000 claims description 33
- 239000011149 active material Substances 0.000 claims description 18
- 239000002923 metal particle Substances 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- 230000004927 fusion Effects 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- 239000000843 powder Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910015645 LiMn Inorganic materials 0.000 description 2
- 229910014143 LiMn2 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910014540 LiMn2O Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 241000282797 Tapirus Species 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、二次電池及びその
正極活物質に関するものである。TECHNICAL FIELD The present invention relates to a secondary battery and its positive electrode active material.
【0002】[0002]
【従来の技術】従来より、二次電池の正極活物質として
種々の金属酸化物が用いられているが、その多くは金属
酸化物自体の電子電導率が低いため、金属酸化物に対し
て炭素粉末からなる導電剤を添加している。導電剤を添
加することにより、個々の金属酸化物間に電子電導性を
与えて還元反応を促進させている。2. Description of the Related Art Conventionally, various metal oxides have been used as a positive electrode active material for secondary batteries. However, most of them have a low electron conductivity, so that the carbon oxide is less than the metal oxide. A conductive agent made of powder is added. By adding a conductive agent, electron conductivity is given between individual metal oxides to accelerate the reduction reaction.
【0003】ここで、電池性能に影響を与える原因の1
つとして、金属酸化物と導電剤との混合状態が問題とな
る。すなわち、金属酸化物粉末と炭素材微粉末とがいか
に均一に頻度よく接触しているかということである。こ
れらの接触強度が低下すると、電子が充分に正極活物質
に伝達供給されない部分が生じ、結果的に未反応のまま
残存する活物質が生じるため、正極活物質の利用率が低
下する。[0003] Here, one of the causes that affect the battery performance.
One problem is the mixed state of the metal oxide and the conductive agent. That is, how uniformly and frequently the metal oxide powder and the carbon material fine powder are in contact with each other. When the contact strength is reduced, a portion where electrons are not sufficiently transferred and supplied to the positive electrode active material is generated, and as a result, an active material that remains unreacted is generated, and thus the utilization rate of the positive electrode active material is reduced.
【0004】上記問題を解決するものとして、例えば、
特開昭61−214362号公報には、二酸化マンガン
粒子表面に黒鉛微粉末を層状に形成した正極活物質が提
案され、特公平7−36332号公報には、金属酸化物
粉末と人造黒鉛粉末との粒径比を10-1〜10-5とし、
金属酸化物を覆う炭素材料の被覆率を0.5〜15%と
した正極活物質が提案されている。To solve the above problem, for example,
Japanese Patent Application Laid-Open No. 61-214362 proposes a positive electrode active material in which fine graphite powder is layered on the surface of manganese dioxide particles, and Japanese Patent Publication No. 7-36332 discloses a metal oxide powder and an artificial graphite powder. The particle size ratio of 10 -1 to 10 -5 ,
A positive electrode active material has been proposed in which the coverage of the carbon material covering the metal oxide is 0.5 to 15%.
【0005】また、特開平9−92265号公報には、
金属酸化物の見かけ表面の15%以上を0.01μm〜
0.3μmの厚さで覆う比表面積が150m2 /g以上
の炭素材料とからなる正極活物質と該正極活物質間に介
在する導電剤を構成する炭素粉とからなる正極活物質が
提案されている。Further, in Japanese Patent Laid-Open No. 9-92265,
15 μm or more of the apparent surface of the metal oxide is 0.01 μm
A positive electrode active material composed of a positive electrode active material made of a carbon material having a specific surface area of 150 μm 2 / g or more and covered with a thickness of 0.3 μm and carbon powder constituting a conductive agent interposed between the positive electrode active materials has been proposed. ing.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、本発明
者等の検討によれば、上記の各公報の正極活物質を用い
た二次電池においては、低負荷時及び通常負荷時では良
好な正極活物質の利用率を示すが、例えば、電流密度
4.0mA/cm2 程度の高負荷時では容量等の電池特
性が不十分であることがわかった。これは、以下のよう
な理由によると推定される。However, according to the study by the present inventors, in the secondary battery using the positive electrode active material of each of the above publications, good positive electrode activity is obtained at low load and normal load. Although the utilization factor of the substance is shown, it has been found that the battery characteristics such as the capacity are insufficient under a high load condition such as a current density of about 4.0 mA / cm 2 . This is presumed to be due to the following reasons.
【0007】すなわち、金属酸化物粉末は導電剤粉末で
被覆されているので、金属酸化物全体において導電性が
均一化されており、そのため、活物質の利用効率が良く
低負荷で高い容量を示す。しかし、個々の金属酸化物粉
末の粒子間に界面が存在するため、高負荷時にはこれが
抵抗となって利用効率が下がり、容量も低くなってしま
う。That is, since the metal oxide powder is coated with the conductive agent powder, the conductivity is made uniform throughout the metal oxide. Therefore, the utilization efficiency of the active material is good and the load is high and the capacity is high. . However, since there is an interface between the particles of the individual metal oxide powders, this becomes resistance when the load is high, and the utilization efficiency is reduced, and the capacity is also reduced.
【0008】二次電池を、例えば電気自動車等に用いる
場合には、低負荷時とともに高負荷時において大容量の
電池特性が要求されるため、二次電池の高負荷時の性能
向上は不可欠である。そこで、本発明は上記点に鑑み
て、低負荷時及び高負荷時において良好な容量を両立す
る二次電池の正極活物質を提供することを目的とする。When the secondary battery is used in, for example, an electric vehicle or the like, it is essential to improve the performance of the secondary battery when the load is high, because a large capacity battery characteristic is required under both high load and low load. is there. Therefore, in view of the above points, the present invention has an object to provide a positive electrode active material for a secondary battery that achieves both good capacity under low load and high load.
【0009】[0009]
【課題を解決するための手段】本発明者等は、低負荷時
には、上記のように、被覆導電剤によって金属酸化物個
々の粒子表面を被覆することで活物質の利用効率を良く
することで良好な容量を維持することとし、さらに、別
の導電剤(以下、添加導電剤という)を添加することで
高負荷時に電子の導電経路を形成して電池容量向上を図
ることに着目した。また、正極活物質の電極化への影響
についても考慮した。Means for Solving the Problems The inventors of the present invention can improve the utilization efficiency of an active material by coating the surface of individual metal oxide particles with a coating conductive agent as described above when the load is low. Attention was paid to maintaining a good capacity and further adding another conductive agent (hereinafter referred to as an added conductive agent) to form a conductive path of electrons at the time of high load to improve the battery capacity. In addition, the influence of the positive electrode active material on the electrode formation was also considered.
【0010】通常、導電剤による金属酸化物の被覆は、
圧縮、剪断等の機械的エネルギーにより両者を混合して
複数の粒子を表面融合させる、いわゆるメカノ処理(メ
カノフュージョン)という方法を用いて行われる。メカ
ノ処理による被覆においては、被覆導電剤は、ある一定
以上、活物質粒子より小さい微粒子(すなわち比表面積
が大きい粒子)である必要がある。Generally, the coating of metal oxide with a conductive agent is
It is carried out by using a method called so-called mechano-fusion (mechano-fusion) in which both are mixed by mechanical energy such as compression and shearing and the plurality of particles are surface-fused. In the coating by the mechano treatment, the coating conductive agent needs to be fine particles smaller than the active material particles (that is, particles having a large specific surface area) above a certain level.
【0011】本発明者等は、このメカノ処理による被覆
について検討した。その結果を図3に示す。図3は、金
属酸化物への被覆導電剤添加量(例えば、図中に示す様
に0.5wt%〜5.5wt%)に対して、被覆導電剤
で被覆された後の金属酸化物粒子の(混合粉)の比表面
積の推移を示したものである。ここで、横軸の処理時間
は上記の混合に要した時間である。The present inventors examined the coating by this mechano treatment. The result is shown in FIG. FIG. 3 shows metal oxide particles after being coated with a coating conductive agent with respect to the amount of the coating conductive agent added to the metal oxide (for example, 0.5 wt% to 5.5 wt% as shown in the figure). It shows the transition of the specific surface area of (mixed powder). Here, the processing time on the horizontal axis is the time required for the above mixing.
【0012】処理時間とともに被覆後の導電剤の比表面
積は減少するが、ある時間でその減少は飽和する。ま
た、被覆導電剤添加量の増加とともに被覆後の導電剤の
比表面積も増加する。被覆された金属酸化物の電極化に
おいては、結着剤により各粒子が結合されて正極を構成
されるが、本発明者等は、被覆導電剤添加量が或る程度
(例えば、5wt%より大)以上では、被覆後の導電剤
の比表面積が過大(例えば、40m2/gより大)とな
り、電極に剥がれや欠け等が生じやくなることを見出し
た。ここで、結着剤量を増やせばよいがその分電池容量
は低下する。The specific surface area of the conductive agent after coating decreases with the treatment time, but the reduction saturates at a certain time. Further, the specific surface area of the conductive agent after coating increases as the amount of the coating conductive agent added increases. In forming a coated metal oxide into an electrode, the particles are bound by a binder to form a positive electrode. However, the present inventors have found that the coating conductive agent is added to a certain extent (for example, 5 wt% or more). It has been found that above the above, the specific surface area of the conductive agent after coating becomes excessive (for example, larger than 40 m 2 / g), and peeling or chipping of the electrode easily occurs. Here, the amount of the binder may be increased, but the battery capacity is reduced accordingly.
【0013】従って、上記添加導電剤の比表面積を被覆
導電剤と同じか、それよりも大きいものとすると、添加
導電剤を添加した場合に、実質的に被覆導電剤の添加量
を増加させたのと同じとなり、上記被覆後の導電剤の比
表面積の過大を生じ、電極において上記の剥がれや欠け
等が生じる恐れがある。そのため、電極化のためには、
添加導電剤は比表面積が被覆導電剤より小さいことが好
ましい。また、添加導電剤の比表面積を被覆導電剤より
も小さくすることで、添加導電剤の粒径を大きくでき、
金属酸化物粒子間に介在して電子の導電経路を形成しや
すくなると考えられる。Therefore, if the specific surface area of the added conductive agent is the same as or larger than that of the coated conductive agent, the added amount of the coated conductive agent is substantially increased when the added conductive agent is added. As described above, the specific surface area of the conductive agent after the coating may become excessive, and the above-mentioned peeling or chipping may occur in the electrode. Therefore, for making electrodes,
The added conductive agent preferably has a specific surface area smaller than that of the coated conductive agent. Further, by making the specific surface area of the added conductive agent smaller than that of the coated conductive agent, the particle size of the added conductive agent can be increased,
It is considered that it is easy to form an electron conductive path by interposing between the metal oxide particles.
【0014】そして、上記検討結果に基づき、以下の技
術的手段を採用するに至った。すなわち、請求項1記載
の発明によれば、活物質本体を構成する多数の金属酸化
物の粒子と、金属酸化物の各粒子表面を被覆する第1の
導電剤と、金属酸化物の各粒子間に介在し比表面積が第
1の導電剤よりも小さい第2の導電剤とを含むリチウム
二次電池の正極活物質を特徴とする。Based on the above-mentioned examination results, the following technical means have been adopted. That is, according to the invention described in claim 1, a large number of metal oxide particles constituting the active material main body, a first conductive agent coating the surface of each particle of the metal oxide, and each particle of the metal oxide. Lithium containing a second conductive agent interposed between and having a specific surface area smaller than that of the first conductive agent
The positive electrode active material of the secondary battery is featured.
【0015】それによって、第1の導電剤によって低負
荷時の容量を良好とできるとともに、高負荷時において
は、金属酸化物粒子間に介在する第2の導電剤によって
電子の導電経路が確保され、その周辺の活物質(金属酸
化物)が使われるので、利用効率向上が図れ良好な容量
を実現できる。さらに、第2の導電剤は比表面積が第1
の導電剤より小さいので、被覆後の導電剤の比表面積の
過大防止がなされ、電極化において剥がれや欠け等を防
止できる。As a result, the capacity under low load can be improved by the first conductive agent, and at the time of high load, the conductive path of electrons is secured by the second conductive agent interposed between the metal oxide particles. Since the active material (metal oxide) around it is used, utilization efficiency can be improved and good capacity can be realized. Further, the second conductive agent has a first specific surface area
Since it is smaller than the conductive agent of No. 3, the specific surface area of the conductive agent after coating can be prevented from becoming excessive, and peeling or chipping can be prevented in forming an electrode.
【0016】従って、本発明によれば、低負荷時及び高
負荷時において良好な容量を両立するとともに、良好に
電極化可能な二次電池の正極活物質を提供することがで
きる。さらに、上記した効果をより安定して実現するた
め、請求項1に係る発明では、第1の導電剤の金属酸化
物に対する添加量Awt%および両導電剤の金属酸化物
に対する合計添加量Bwt%が、0.5wt%≦A≦
4.5wt%、2.5wt%≦B≦14.0wt%の関
係にあり、かつ0.5wt%≦A≦1.5wt%のとき
2.5wt%≦B≦14.0wt%、1.5wt%<A
≦2.5wt%のとき3.5wt%≦B≦14.0wt
%、2.5wt%<A≦3.5wt%のとき4.0wt
%≦B≦14.0wt%、3.5wt%<A≦4.5w
t%のとき4.5wt%≦B≦14.0wt%、の関係
にある二次電池の正極活物質であって、金属酸化物と、
比表面積が250m 2 /g〜1500m 2 /gの前記第1
の導電剤とを混合して複数の粒子を機械的エネルギーに
よる表面融合させることにより、前記金属酸化物の各粒
子表面が前記第1の導電剤によって被覆されたものとな
っていることを特徴とする。請求項2に係る発明では、
請求項1に記載の二次電池の正極活物質において、第2
の導電剤は、比表面積が1m2/g〜200m2/gであ
ることを特徴とする。請求項3に係る発明では、請求項
2に記載の二次電池の正極活物質において、第2の導電
剤は、比表面積が1m2/g〜25m2/であることを特
徴とする。請求項4に係る発明では、請求項1ないし3
のいずれか1つに記載の二次電池の正極活物質におい
て、第1の導電剤で被覆された前記金属酸化物の粒子の
比表面積が40m2/g以下であることを特徴とする。Therefore, according to the present invention, it is possible to provide a positive electrode active material for a secondary battery, which has good capacity at low load and high load, and which can be favorably made into an electrode. Furthermore, in order to achieve the above effect more stably, in the invention according to claim 1, the addition amount Awt% of the first conductive agent to the metal oxide and the total addition amount Bwt% of both conductive agents to the metal oxide are provided. Is 0.5 wt% ≦ A ≦
4.5 wt%, 2.5 wt% ≤ B ≤ 14.0 wt%, and when 0.5 wt% ≤ A ≤ 1.5 wt%, 2.5 wt% ≤ B ≤ 14.0 wt%, 1.5 wt % <A
When ≦ 2.5 wt%, 3.5 wt% ≦ B ≦ 14.0 wt
%, 2.5 wt% <A ≤ 3.5 wt% 4.0 wt
% ≦ B ≦ 14.0 wt%, 3.5 wt% <A ≦ 4.5 w
A positive electrode active material of a secondary battery having a relationship of 4.5 wt% ≦ B ≦ 14.0 wt% at t% , comprising a metal oxide,
The specific surface area of 250m 2 / g~1500m 2 / g first
Multiple conductive particles are mixed to convert multiple particles into mechanical energy.
Each particle of the metal oxide is formed by surface fusion according to
It is assumed that the child surface is covered with the first conductive agent.
It is characterized by In the invention according to claim 2 ,
The positive electrode active material of the secondary battery according to claim 1 , wherein the second
Of the conductive agent has a specific surface area, characterized in that a 1m 2 / g~200m 2 / g. In the invention according to claim 3, claim
In a positive electrode active material for a secondary battery according to 2, the second conductive agent has a specific surface area, characterized in that 1m 2 / g~25m 2 / a is. In the invention according to claim 4 , claims 1 to 3
In the positive electrode active material of the secondary battery according to any one of the above, the specific surface area of the particles of the metal oxide coated with the first conductive agent is 40 m 2 / g or less.
【0017】[0017]
【0018】[0018]
【0019】[0019]
【0020】[0020]
【0021】また、請求項5記載の発明のように、請求
項1ないし4のいずれか1つに記載の正極活物質を備え
た二次電池とすれば、低負荷時及び高負荷時において良
好な容量を両立するとともに、剥がれや欠け等の発生し
にくい正極を有する二次電池を提供することができる。Further, as in the invention described in claim 5, the secondary battery provided with the positive electrode active material according to any one of claims 1 to 4 is excellent at low load and high load. It is possible to provide a secondary battery having a positive electrode that is compatible with various capacities and is less likely to cause peeling or chipping.
【0022】[0022]
【発明の実施の形態】以下、本実施形態では、二次電池
としてLi二次電池としたものについて述べる。本実施
形態では、正極活物質本体を構成する金属酸化物として
リチウムマンガン酸化物、リチウムニッケル酸化物、リ
チウムコバルト酸化物及び酸化マンガン等を用いること
ができる。BEST MODE FOR CARRYING OUT THE INVENTION In the present embodiment, a Li secondary battery will be described below as a secondary battery. In this embodiment, lithium manganese oxide, lithium nickel oxide, lithium cobalt oxide, manganese oxide, or the like can be used as the metal oxide forming the positive electrode active material body.
【0023】金属酸化物の各粒子表面を被覆し、金属酸
化物において電子の導電性を均一化する被覆導電剤(第
1の導電剤)としては、比表面積が250m2 /g〜1
500m2 /gであるケッチェエンブラックやアセチレ
ンブラック等を用いることができる。なお、より容量を
向上するためには比表面積が1000m2 /g〜150
0m2 /gであることがより好ましい(特開平9−92
265号公報の図4参照)。The coating conductive agent (first conductive agent) for coating the surface of each particle of the metal oxide to make the conductivity of electrons uniform in the metal oxide has a specific surface area of 250 m 2 / g to 1
It is possible to use Ketjenen black or acetylene black, which is 500 m 2 / g. In order to further improve the capacity, the specific surface area is 1000 m 2 / g to 150
It is more preferably 0 m 2 / g (JP-A-9-92).
(See FIG. 4 of Japanese Patent No. 265).
【0024】また、被覆された金属酸化物に対して更に
添加され、金属酸化物の各粒子間に介在し電子の導電経
路を形成する比表面積が被覆導電剤(第1の導電剤)よ
りも小さい添加導電剤(第2の導電剤)としては比表面
積が1m2 /g〜200m2/gである炭素粉末等を用
いることができる。なお、電極密度の向上のためには、
比表面積が1m2 /g〜25m2 /g程度であることが
より好ましい。Further, the specific surface area which is further added to the coated metal oxide and is present between the particles of the metal oxide to form a conductive path of electrons is higher than that of the coated conductive agent (first conductive agent). as small additive conductive agent (second conductive agent) can be used carbon powder or the like is specific surface area of 1 m 2 / g to 200 m 2 / g. In order to improve the electrode density,
And more preferably a specific surface area of 1m 2 / g~25m 2 / g approximately.
【0025】以下、正極活物質の一例として、金属酸化
物としてLiMn2 O4 (平均粒径7μm)を用い、被
覆導電剤として平均粒径0.03μm、比表面積127
0m 2 /gのライオン製ケッチェエンブラック(以下、
KBと略す)を用い、添加導電剤としてロンザジャパン
製KS−6(平均粒径3.4μm、比表面積21.3m
2 /g)、および同社製KS−15(平均粒径7.5μ
m、比表面積12.8m2 /g)を用いたものを述べ
る。本実施形態は本例に限定されるものではない。Hereinafter, as an example of the positive electrode active material, metal oxide
LiMn as a product2OFour(Average particle size 7 μm)
Average particle size of 0.03 μm and specific surface area of 127 as a covering conductive agent
0m 2/ G lion made Ketchen black (hereinafter,
(Abbreviated as KB) as an additive conductive agent
KS-6 (average particle size 3.4 μm, specific surface area 21.3 m)
2/ G), and KS-15 manufactured by the same company (average particle size 7.5μ)
m, specific surface area 12.8 m2/ G)
It The present embodiment is not limited to this example.
【0026】LiMn2 O4 の各粒子表面上にKBを被
覆するメカノ処理は、LiMn2 O 4 に所定量のKBを
混合した混合粉を図1に示す皮膜形成装置を用いて行っ
た。この皮膜形成装置は、内部空間10を持つ回転ドラ
ム1と、この回転ドラム1内部の固定軸2に固定された
回転ドラム1の内周面近くにまで延びる半円形状の押圧
剪断ヘッド3を持つ第1アーム4と、この第1アーム4
の回転後方に所定角度を隔てて固定軸2に固定され回転
ドラム1の内周面近くにまで延びる爪5を持つ第2アー
ム6とで構成されている。LiMn2OFourOn the surface of each particle of
The mechano treatment to cover is LiMn2O FourA certain amount of KB
The mixed powder was mixed using the film forming device shown in FIG.
It was This film forming device has a rotary drive with an internal space 10.
And a fixed shaft 2 inside the rotary drum 1.
Semi-circular pressing extending near the inner peripheral surface of the rotating drum 1.
A first arm 4 having a shearing head 3 and the first arm 4
It is fixed to the fixed shaft 2 at a predetermined angle behind the rotation of the
A second arm having a claw 5 extending near the inner peripheral surface of the drum 1.
It is composed of 6 and.
【0027】この皮膜形成装置の内部空間に、上記混合
粉を入れ、回転ドラム1を所定回転数で所定時間(処理
時間)回転させ、回転ドラム1の内周面と押圧剪断ヘッ
ド3との間で押圧剪断力を加え、その後爪5で掻き落と
して混合することでLiMn 2 O4 の各粒子表面上にK
Bを被覆した。以上のメカノ処理にて得られたKBで被
覆されたLiMn2 O4 に、KS−6もしくはKS−1
5を結着剤であるPVDF(ポリフッ化ビニリデン)と
ともに加え、さらに溶剤(N−メチル−2−ピロリドン
等)を加えて混練しペースト状とした。ここで、結着剤
は数%(例えば3%程度)とした。The above mixture is placed in the internal space of the film forming apparatus.
Put the powder, and rotate the rotary drum 1 at a predetermined rotation speed for a predetermined time (processing
Time) to rotate the inner peripheral surface of the rotating drum 1 and the pressing shear head.
A pressing shearing force is applied to the blade 3 and then scraped off with the nail 5.
And then mixed to form LiMn 2OFourK on each particle surface of
B was coated. With the KB obtained by the above mechano-processing,
Capped LiMn2OFour, KS-6 or KS-1
5 as a binder PVDF (polyvinylidene fluoride)
Added together, and further solvent (N-methyl-2-pyrrolidone
Etc.) and kneaded to form a paste. Where the binder
Is set to several% (for example, about 3%).
【0028】得られたペーストをドクターブレード法に
より、Al箔集電体上にコーティングし、その後乾燥、
プレス成形を行って電極(正極)を作成した。この電極
を円板状に打ち抜き、さらに真空乾燥し、その後ドライ
ボックス中に搬入してコイン型電池の製作を行った。対
極(負極)には大阪ガス製MCMB(メソフェーズカー
ボンマイクロビーズ)、セパレータに東燃化学製タピル
ス25μm、電解液に1MのLiPF6 /EC(50)
DME(50)を、すなわちEC(エチレンカーボネー
ト)とDME(ジメトキシエタン)を各々50容量%混
合した溶媒にLiPF6 を1M溶解した電解液を用い
た。The obtained paste was coated on an Al foil current collector by a doctor blade method, and then dried,
The electrode (positive electrode) was created by press molding. This electrode was punched into a disc shape, further vacuum dried, and then carried into a dry box to manufacture a coin battery. MCMB (mesophase carbon microbeads) made by Osaka Gas is used as the counter electrode (negative electrode), Tapirus 25 μm made by Tonen Kagaku is used as the separator, and 1 M LiPF 6 / EC (50) is used as the electrolytic solution.
An electrolytic solution was used in which 1M LiPF 6 was dissolved in a solvent in which DME (50), that is, EC (ethylene carbonate) and DME (dimethoxyethane) were mixed by 50% by volume.
【0029】評価条件は、充電が4.2V×5h、1.
0mA/cm2 、CC/CVの条件で、放電が3.0V
カット、CCとした。図2の表に、放電電流密度4.0
mA/cm2 の場合すなわち高負荷時での本例の種々の
正極活物質における正極容量比(以下、容量比という)
を示す。図2の図表は、LiMn2 O4 に対するKB
量、KS−15またはKS−6を添加した時の全導電剤
量(各々wt%)を種々変えたものについて、容量比を
示したものである。ここで、上記KB量は、被覆導電剤
(第1の導電剤)の金属酸化物に対する添加量Awt%
に相当し、上記全導電剤量は、両導電剤の金属酸化物に
対する合計添加量Bwt%に相当する。The evaluation conditions were that charging was 4.2 V × 5 h, and 1.
Discharge is 3.0V under conditions of 0mA / cm 2 and CC / CV
Cut and CC. The discharge current density of 4.0 is shown in the table of FIG.
In the case of mA / cm 2 , that is, at the time of high load, the positive electrode capacity ratio in various positive electrode active materials of the present example (hereinafter, referred to as capacity ratio)
Indicates. The chart in FIG. 2 shows the KB for LiMn 2 O 4 .
The amount ratio and the total amount of the conductive agent when KS-15 or KS-6 is added (each wt%) are variously changed, and the capacity ratio is shown. Here, the above KB amount is the addition amount Awt% of the coating conductive agent (first conductive agent) to the metal oxide.
And the total amount of the above conductive agents corresponds to the total amount Bwt% of both conductive agents added to the metal oxide.
【0030】上記KB量は、LiMn2 O4 量とKB量
との総和を100wt%としたときの、KB量であり、
図表中の最左列に0wt%、0.5wt%、1.5wt
%、2.5wt%、3.5wt%、4.5wt%と示し
てある。また、上記全導電剤量は、LiMn2 O4 量と
KB量とKS−15量(又はKS−6量)と結着剤(P
VDF)との総和を100wt%としたときの、KB量
とKS−15量(又はKS−6量)との合計添加量であ
り、図表中の最上段に1.5wt%〜10.0wt%ま
でを示してある。The above KB amount is the KB amount when the total of the LiMn 2 O 4 amount and the KB amount is 100 wt%,
0 wt%, 0.5 wt%, 1.5 wt in the leftmost column of the chart
%, 2.5 wt%, 3.5 wt%, 4. It is shown as 5 wt%. The total amount of the conductive agent is the amount of LiMn 2 O 4, the amount of KB, the amount of KS-15 (or the amount of KS-6), and the binder (P
VDF) is the total addition amount of KB amount and KS-15 amount (or KS-6 amount) when the total sum with VDF) is 100 wt%, and is 1.5 wt% to 10.0 wt% at the top of the chart. Are shown up to .
【0031】ここで、容量比は、KB量が0wt%、K
S−15またはKS−6を10wt%添加した時の容量
が良好な容量であったため、この時の容量を1として示
してある。そして、例えば、KB量が1.5wt%、全
導電剤量が2.5wt%の場合(つまりKS−15量は
1.0wt%)の容量比は1.04と表されている。こ
の図表から、良好な容量を示すもの、すなわち容量比1
以上となるもの(図2中、破線で囲んだ値)は、KB量
(A)が、0.5wt%≦A、全導電剤量(B)が、
2.5wt%≦B、さらに、全導電剤量(B)からKB
量(A)を差し引いた値B−Aが、B−A≧0.5wt
%のものとなることがわかる。ちなみに、B−A<0.
5wt%の場合、すなわちKS−15又はKS−6の量
が少ない場合には、良好な容量比が得られなかった。Here, the capacity ratio is such that the KB amount is 0 wt%, K
Since the capacity when 10 wt% of S-15 or KS-6 was added was a good capacity, the capacity at this time is shown as 1. Then, for example, when the amount of KB is 1.5 wt% and the total amount of conductive agent is 2.5 wt% (that is, the amount of KS-15 is 1.0 wt%), the capacity ratio is expressed as 1.04. From this chart, the one showing good capacity, ie, capacity ratio 1
The above (value surrounded by a broken line in FIG. 2) has a KB amount (A) of 0.5 wt% ≦ A and a total conductive agent amount (B) of
2.5 wt% ≦ B, further, from the total amount of conductive agent (B) to KB
The value B-A obtained by subtracting the amount (A) is B-A ≧ 0.5 wt.
It turns out that it becomes a thing of%. By the way, B-A <0.
In the case of 5 wt%, that is, when the amount of KS-15 or KS-6 was small, a good capacity ratio could not be obtained.
【0032】また、低負荷時(0.5mA/cm2 )に
ついても容量を調べると、被覆および添加導電剤の合計
量が15wt%以上であるとLiMn2 O4 の量が低下
し、低負荷時の容量が減少するため好ましくないことが
わかった。従って、被覆および添加導電剤の合計量(全
導電剤量Bwt%)は、2.5wt%≦B≦14.0w
t%とするのが望ましい。Also, when the capacity was examined at a low load (0.5 mA / cm 2 ), when the total amount of the coating and the added conductive agent was 15 wt% or more, the amount of LiMn 2 O 4 decreased and the low load. It was found that this is not preferable because the capacity at that time decreases. Therefore, the total amount of the coating and the added conductive agent (total conductive agent amount Bwt%) is 2.5wt% ≦ B ≦ 14.0w.
It is desirable to be t%.
【0033】また、解決手段の欄にて述べた図3に示す
様に、電極化のためには被覆導電剤すなわちKB(被覆
導電剤)の添加量が5.0wt%以下であることが望ま
しい。なお、図3中、横軸の処理時間は上記メカノ処理
時間(単位:分)であり、縦軸はLiMn2 O4 にKB
を被覆した後の混合粉の比表面積(単位:m2 /g)で
あり、各プロットマークは、KBの各添加量に対応す
る。そして、KBの添加量が5.0wt%より大きい
と、比表面積が40m2 /gより大きくなるため、電極
に剥がれや欠け等が生じやくなる。Further, as shown in FIG. 3 mentioned in the section of the solving means, it is desirable that the added amount of the coating conductive agent, that is, KB (coating conductive agent) is 5.0 wt% or less for forming an electrode. . In FIG. 3, the processing time on the horizontal axis is the mechano processing time (unit: minutes), and the vertical axis is LiMn 2 O 4 in KB.
Is a specific surface area (unit: m 2 / g) of the mixed powder after coating with, and each plot mark corresponds to each addition amount of KB. When the amount of KB added is larger than 5.0 wt%, the specific surface area becomes larger than 40 m 2 / g, so that peeling or chipping of the electrode easily occurs.
【0034】これら各導電剤の添加量についての知見に
基づけば、次のようなことがいえる。すなわち、KB
(被覆導電剤)については、LiMn2 O4 に対する添
加量(KB量Awt%)が0.5wt%≦A≦5.0w
t%であることが好ましく、被覆および添加導電剤の合
計添加量(全導電剤量Bwt%)が2.5wt%≦B≦
14.0wt%であることが好ましい。The following can be said based on the knowledge about the amount of each conductive agent added. That is, KB
Regarding (coating conductive agent), the addition amount (KB amount Awt%) to LiMn 2 O 4 is 0.5 wt% ≦ A ≦ 5.0 w
t% is preferable, and the total amount of the coating and the added conductive agent (total conductive agent amount Bwt%) is 2.5 wt% ≦ B ≦.
It is preferably 14.0 wt%.
【0035】このように、正極活物質として、活物質本
体を構成する多数の金属酸化物の粒子と、金属酸化物の
各粒子表面を被覆し金属酸化物において電子の導電性を
均一化する被覆導電剤と、金属酸化物の各粒子間に介在
し高負荷時に電子の導電経路を形成する比表面積が被覆
導電剤よりも小さい添加導電剤とを含むものを用いたこ
とで、低負荷時及び高負荷時において良好な容量を両立
するとともに、良好に電極化可能なLi二次電池の正極
活物質を提供することができる。As described above, as the positive electrode active material, a large number of particles of metal oxide constituting the active material body and the surface of each particle of the metal oxide are coated to uniformize the conductivity of electrons in the metal oxide. By using a conductive agent and an added conductive agent which is present between the particles of the metal oxide and has a specific surface area which forms a conductive path of electrons at high load and is smaller than the coating conductive agent, at low load and It is possible to provide a positive electrode active material of a Li secondary battery that has good capacity at the time of high load and that can be preferably formed into an electrode.
【0036】ここで、低負荷時及び高負荷時において良
好な容量を両立できるメカニズムは以下のようであると
推定できる。図4の正極における導電剤の作用説明図を
参照して述べる。図4中、20は添加導電剤、21は被
覆導電剤、22は正極活物質粒子(以下、活物質とい
う)、23は集電体を示す。そして(a)は添加導電剤
20のみ活物質22に含まれる場合、(b)は被覆導電
剤21のみ活物質22に含まれる場合、(c)は被覆お
よび添加導電剤20、21両方が活物質22に含まれる
場合である。Here, it can be presumed that the mechanism capable of achieving both good capacity under low load and high load is as follows. The operation of the conductive agent in the positive electrode of FIG. 4 will be described with reference to FIG. In FIG. 4, 20 is an added conductive agent, 21 is a coated conductive agent, 22 is a positive electrode active material particle (hereinafter referred to as active material), and 23 is a current collector. Further, (a) shows the case where only the added conductive agent 20 is contained in the active material 22, (b) shows the case where only the coated conductive agent 21 is contained in the active material 22, and (c) shows the case where both the coating and the added conductive agents 20 and 21 are active. This is the case when it is contained in the substance 22.
【0037】低負荷時では、(a)の電極では、活物質
22間に隙間が多く存在するため、導電性の取れていな
い活物質22があり、容量が充分に出ない。(b)の電
極では、被覆導電剤21により均一に導電性が取れてい
るため、活物質22の利用効率が良く容量が高くなる。
高負荷時では、(a)の電極では、添加導電剤20が局
在しているので、その部分に大変導電性の良い電子の導
電経路が形成され、その近傍の活物質22が使われる。
従って、容量が高くなる。(b)の電極では、個々の活
物質22間に界面が存在するため、これら界面が抵抗と
なって利用効率が下がり、容量が低くなると考えられ
る。At the time of low load, in the electrode of (a), since there are many gaps between the active materials 22, there is an active material 22 which is not conductive, and the capacity is not sufficient. In the electrode of (b), since the coating conductive agent 21 provides uniform conductivity, the utilization efficiency of the active material 22 is good and the capacity is high.
At the time of high load, in the electrode of (a), since the added conductive agent 20 is localized, a conductive path of electrons having very good conductivity is formed in that portion, and the active material 22 in the vicinity thereof is used.
Therefore, the capacity is high. In the electrode of (b), since there are interfaces between the individual active materials 22, it is considered that these interfaces serve as resistance to lower the utilization efficiency and lower the capacity.
【0038】一方(c)の電極では、上記(a)および
(b)の電極の組合せとなっているので、低負荷および
高負荷時において、活物質22の利用効率を大きく出
来、良好な容量を両立できる。ところで、上記図2の図
表の配合比を変えた各正極活物質について、粉体抵抗を
調べたところ、図5に示すような結果が得られた。On the other hand, since the electrode of (c) is a combination of the electrodes of (a) and (b), the utilization efficiency of the active material 22 can be increased at low load and high load, and good capacity can be obtained. Can achieve both. By the way, when the powder resistance was examined for each of the positive electrode active materials in which the compounding ratio in the diagram of FIG. 2 was changed, the results shown in FIG. 5 were obtained.
【0039】図5は、正極活物質における被覆および添
加導電剤の合計添加量(合計導電剤量)と正極活物質の
粉体抵抗との関係を示すグラフである。縦軸に粉体抵抗
(Ω)を示してある。また、横軸を合計導電剤量(wt
%)としているが、左から順に10.0wt%、2.5
wt%、4.5wt%、6.5wt%の4つ場合に点線
で縦に区切っている。FIG. 5 is a graph showing the relationship between the total amount of coating and additive conductive agent added to the positive electrode active material (total amount of conductive agent) and the powder resistance of the positive electrode active material. The vertical axis indicates the powder resistance (Ω). The horizontal axis represents the total amount of conductive agent (wt
%), But from the left, 10.0 wt%, 2.5
The four cases of wt%, 4.5 wt% and 6.5 wt% are vertically separated by dotted lines.
【0040】そして、各合計導電剤量の領域において、
グラフ内に示した数値はKB量(wt%)であり、KB
量の少ないものから多くなるように順に左から右へプロ
ットしてある。なお、合計導電剤量10.0wt%領域
のプロットはKB量0wt%、すなわちメカノ未処理の
ものである。また、図中、□はKS−6とKBとが含ま
れるもの、◇はKS−15とKBとが含まれるものを示
す。従って、例えば、合計導電剤量6.5wt%の領域
において一番左の□は粉体抵抗がおよそ1.0×102
Ωであるが、これは、KBが0.5wt%で、KS−6
が6.0wt%である。Then, in the area of each total amount of conductive agent,
The value shown in the graph is the amount of KB (wt%)
The plots are plotted from left to right in order of increasing volume from the least. The plot of the total conductive agent amount of 10.0 wt% region is the KB amount of 0 wt%, that is, the mechano-unprocessed one. Further, in the figure, □ indicates that KS-6 and KB are included, and ⋄ indicates that KS-15 and KB are included. Therefore, for example, in the region where the total amount of conductive agent is 6.5 wt%, the leftmost square has a powder resistance of about 1.0 × 10 2.
Ω, which is 0.5 wt% of KB and is KS-6.
Is 6.0 wt%.
【0041】図5から、図2の図表において良好な容量
を示すものは、粉体抵抗が1.0×102 Ω以下となる
領域にあることがわかる。換言すれば、粉体抵抗が1.
0×102 Ω以下であれば、負荷特性が向上している。
これは、活物質の電子導電性が向上したためと考えられ
る。以上、本実施形態について、上記例を基に述べてき
たが、本実施形態に上記した各金属酸化物、被覆導電
剤、添加導電剤であれば、本例と同等の効果を得ること
ができる。From FIG. 5, it can be seen that those having good capacity in the chart of FIG. 2 are in the region where the powder resistance is 1.0 × 10 2 Ω or less. In other words, the powder resistance is 1.
If it is 0 × 10 2 Ω or less, the load characteristics are improved.
It is considered that this is because the electronic conductivity of the active material was improved. As described above, the present embodiment has been described based on the above example. However, if each metal oxide, coating conductive agent, and added conductive agent described above in the present embodiment, the same effect as this example can be obtained. .
【図1】本発明の実施形態に係る皮膜形成装置の構成を
示す概略断面図である。FIG. 1 is a schematic sectional view showing a configuration of a film forming apparatus according to an embodiment of the present invention.
【図2】正極活物質中の導電剤における種々の添加量に
対する容量比を示す図表である。FIG. 2 is a table showing capacity ratios for various addition amounts of a conductive agent in a positive electrode active material.
【図3】メカノ処理における金属酸化物への被覆導電剤
添加量に対する被覆後の混合粉の比表面積の推移を示す
グラフである。FIG. 3 is a graph showing changes in the specific surface area of the mixed powder after coating with respect to the amount of the coating conductive agent added to the metal oxide in the mechano treatment.
【図4】正極における導電剤の作用を示す説明図であ
る。FIG. 4 is an explanatory view showing the action of a conductive agent in the positive electrode.
【図5】導電剤の添加量と正極活物質の粉体抵抗との関
係を示すグラフである。FIG. 5 is a graph showing the relationship between the amount of conductive agent added and the powder resistance of the positive electrode active material.
1…回転ドラム、2…固定軸、3…押圧剪断ヘッド、4
…第1アーム、5…爪、6…第2アーム、10…内部空
間、20…添加導電剤、21…被覆導電剤、22…正極
活物質粒子、23…集電体。DESCRIPTION OF SYMBOLS 1 ... Rotating drum, 2 ... Fixed shaft, 3 ... Press shearing head, 4
... 1st arm, 5 ... Claw, 6 ... 2nd arm, 10 ... Internal space, 20 ... Additive conductive agent, 21 ... Coating conductive agent, 22 ... Positive electrode active material particle, 23 ... Current collector.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−262243(JP,A) 特開 平9−92265(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-2-262243 (JP, A) JP-A-9-92265 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/62 H01M 10/40
Claims (5)
の粒子と、 前記金属酸化物の各粒子表面を被覆する第1の導電剤
と、 前記金属酸化物の各粒子間に介在し、比表面積が前記第
1の導電剤よりも小さい第2の導電剤とを含むリチウム
二次電池の正極活物質であって、 前記第1の導電剤の前記金属酸化物に対する添加重Aw
t%および前記両導電剤の前記金属酸化物に対する合計
添加量Bwt%が、 0.5wt%≦A≦4.5wt%、2.5wt%≦B≦
14.0wt%の関係にあり、かつ 0.5wt%≦A≦1.5wt%のとき2.5wt%≦
B≦14.0wt%、 1.5wt%<A≦2.5wt%のとき3.5wt%≦
B≦14.0wt%、 2.5wt%<A≦3.5wt%のとき4.0wt%≦
B≦14.0wt%、 3.5wt%<A≦4.5wt%のとき4.5wt%≦
B≦14.0wt%、 の関係にある二次電池の正極活物質であって、 前記金属酸化物と、比表面積が250m 2 /g〜150
0m 2 /gの前記第1の導電剤とを混合して複数の粒子
を機械的エネルギーによる表面融合させることにより、
前記金属酸化物の各粒子表面が前記第1の導電剤によっ
て被覆されたものとなっている ことを特徴とする二次電
池の正極活物質。1. A large number of metal oxide particles constituting an active material main body, a first conductive agent coating the surface of each particle of the metal oxide, and a metal oxide interposed between the particles of the metal oxide, A positive electrode active material for a lithium secondary battery, comprising a second conductive agent having a specific surface area smaller than that of the first conductive agent, wherein the added weight Aw of the first conductive agent to the metal oxide is
t% and the total addition amount Bwt% of the both conductive agents to the metal oxide are 0.5 wt% ≦ A ≦ 4.5 wt% and 2.5 wt% ≦ B ≦
If the relationship is 14.0 wt% and 0.5 wt% ≤ A ≤ 1.5 wt%, 2.5 wt% ≤
When B ≦ 14.0 wt%, 1.5 wt% <A ≦ 2.5 wt%, 3.5 wt% ≦
When B ≦ 14.0 wt%, 2.5 wt% <A ≦ 3.5 wt%, 4.0 wt% ≦
When B ≦ 14.0 wt%, 3.5 wt% <A ≦ 4.5 wt%, 4.5 wt% ≦
B ≦ 14.0 wt%, which is a positive electrode active material for a secondary battery having a specific surface area of 250 m 2 / g to 150 with the metal oxide.
A plurality of particles mixed with 0 m 2 / g of the first conductive agent
By surface fusion with mechanical energy,
The surface of each particle of the metal oxide is protected by the first conductive agent.
A positive electrode active material for a secondary battery, which is characterized by being coated with
/g〜200m2/gであることを特徴とする請求項1
に記載の二次電池の正極活物質。2. The second conductive agent has a specific surface area of 1 m 2
/ G to 200 m according to claim 1, characterized in that the 2 / g
The positive electrode active material of the secondary battery according to.
/g〜25m2/であることを特徴とする請求項2に記
載の二次電池の正極活物質。3. The specific surface area of the second conductive agent is 1 m 2
/ G ~ 25m < 2 > /, The positive electrode active material of the secondary battery according to claim 2 .
酸化物の粒子の比表面積が40m2/g以下であること
を特徴とする請求項1ないし3のいずれか1つに記載の
二次電池の正極活物質。4. The specific surface area of the particles of the metal oxide coated with the first conductive agent is 40 m 2 / g or less, according to any one of claims 1 to 3 . Positive electrode active material for secondary batteries.
の正極活物質を備えていることを特徴とする二次電池。5. A secondary battery comprising the positive electrode active material according to any one of claims 1 to 4 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31858897A JP3525710B2 (en) | 1997-11-19 | 1997-11-19 | Secondary battery and its positive electrode active material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31858897A JP3525710B2 (en) | 1997-11-19 | 1997-11-19 | Secondary battery and its positive electrode active material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11154515A JPH11154515A (en) | 1999-06-08 |
JP3525710B2 true JP3525710B2 (en) | 2004-05-10 |
Family
ID=18100824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31858897A Expired - Fee Related JP3525710B2 (en) | 1997-11-19 | 1997-11-19 | Secondary battery and its positive electrode active material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3525710B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003103076A1 (en) * | 2002-06-04 | 2003-12-11 | 伊藤忠商事株式会社 | Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material |
JP3975923B2 (en) | 2003-01-20 | 2007-09-12 | ソニー株式会社 | Non-aqueous electrolyte battery |
EP1711971B1 (en) | 2004-02-07 | 2017-04-19 | LG Chem, Ltd. | Electrode additives coated with electro conductive material and lithium secondary comprising the same |
JP4748948B2 (en) * | 2004-03-31 | 2011-08-17 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
KR100599602B1 (en) | 2004-10-28 | 2006-07-13 | 삼성에스디아이 주식회사 | Positive electrode for lithium secondary battery and lithium secondary battery comprising same |
JP5119570B2 (en) * | 2004-12-24 | 2013-01-16 | 日産自動車株式会社 | Method for manufacturing battery electrode |
DE102009020832A1 (en) * | 2009-05-11 | 2010-11-25 | Süd-Chemie AG | Composite material containing a mixed lithium metal oxide |
WO2012039563A2 (en) * | 2010-09-20 | 2012-03-29 | 주식회사 엘지화학 | Positive electrode active material comprising lithium manganese oxide and non-aqueous electrolyte secondary battery |
WO2012127548A1 (en) * | 2011-03-18 | 2012-09-27 | パナソニック株式会社 | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
KR101452029B1 (en) * | 2011-09-20 | 2014-10-23 | 주식회사 엘지화학 | Cathode active material with high capacity and lithium secondary battery comprising thereof |
WO2014038001A1 (en) * | 2012-09-04 | 2014-03-13 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP7238253B2 (en) * | 2017-01-25 | 2023-03-14 | 住友金属鉱山株式会社 | Positive electrode mixture paste for non-aqueous electrolyte secondary battery and manufacturing method thereof, positive electrode for non-aqueous electrolyte secondary battery and manufacturing method thereof, and non-aqueous electrolyte secondary battery |
KR20210044117A (en) * | 2019-10-14 | 2021-04-22 | 주식회사 엘지화학 | Method for preparing positive electrode active material for lithium secondary battery and positive electrode active material prepared thereby |
-
1997
- 1997-11-19 JP JP31858897A patent/JP3525710B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11154515A (en) | 1999-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3601124B2 (en) | A positive electrode active material of a secondary battery using a non-aqueous solution, and a positive electrode. | |
JP3525710B2 (en) | Secondary battery and its positive electrode active material | |
JP2019106286A (en) | Positive electrode mixture, positive electrode active material layer, all-solid battery and method for manufacturing positive electrode active material layer | |
CN1290209C (en) | Dispersion of lithium metal in anode of secondarycell | |
WO2021161752A1 (en) | Coated positive electrode active substance, positive electrode material, battery, and method for producing coated positive electrode active substance | |
JPH11265716A (en) | Negative electrode active material for lithium secondary battery and its manufacture | |
JP2009514164A (en) | Secondary battery electrode active material | |
EP4131489A1 (en) | Coated positive electrode active material and battery using same | |
JP7207265B2 (en) | Method for manufacturing all-solid-state battery | |
JP2010027458A (en) | Secondary battery positive electrode material and its manufacturing method | |
JP3577907B2 (en) | Method for producing positive electrode for non-aqueous electrolyte secondary battery | |
JP2007173134A (en) | Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery | |
JPH11283623A (en) | Lithium ion battery and its manufacture | |
JP3456354B2 (en) | Method for producing electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the electrode | |
JP3399614B2 (en) | Positive electrode mixture and battery using the same | |
JP7218751B2 (en) | All-solid battery | |
JP3409956B2 (en) | Method for producing electrode for lithium ion battery and lithium ion battery using the electrode | |
JP7484790B2 (en) | All-solid-state battery | |
JP2020087597A (en) | electrode | |
JP2004014519A (en) | Positive active material for secondary battery using nonaqueous solution as electrolyte, method of manufacturing positive electrode, and secondaey battery | |
JP2022170351A (en) | Slurry composition, electrode, method for manufacturing electrode, secondary battery, battery pack and vehicle | |
JP2001223031A (en) | Lithium secondary battery | |
CN101378124A (en) | Secondary battery and anode active substance | |
JPH02207464A (en) | secondary battery | |
JP7331873B2 (en) | All-solid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040209 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140227 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |