JP3518310B2 - Capacitive load drive circuit - Google Patents
Capacitive load drive circuitInfo
- Publication number
- JP3518310B2 JP3518310B2 JP02295698A JP2295698A JP3518310B2 JP 3518310 B2 JP3518310 B2 JP 3518310B2 JP 02295698 A JP02295698 A JP 02295698A JP 2295698 A JP2295698 A JP 2295698A JP 3518310 B2 JP3518310 B2 JP 3518310B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- field effect
- effect transistor
- semiconductor device
- mos field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of Gas Discharge Display Tubes (AREA)
- Electronic Switches (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、容量性負荷の駆動
回路に関し、特にプラズマディスプレイパネル等のフラ
ットパネルディスプレイの駆動回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive circuit for a capacitive load, and more particularly to a drive circuit for a flat panel display such as a plasma display panel.
【0002】[0002]
【従来の技術】図4に示すような従来技術のフラットパ
ネルディスプレイの駆動回路は、例えば3〜5V程度の
低振幅レベルの信号を例えば50V〜200Vの高振幅
レベルに変換するためのレベルシフト回路と、このレベ
ルシフト回路の出力に基づいて、ディスプレイに高電圧
を印加するための高電圧出力回路とで構成される。この
ような従来技術のパネルディスプレイ駆動回路が、特開
平5−249916 号公報に記載されている。図4に示す従来
技術の駆動回路では、Pチャンネル型MOS電界効果ト
ランジスタ(以下、P−MOSFET と呼ぶ)とNチャンネル
型MOS電界効果トランジスタ(以下、N−MOSFET と呼
ぶ)の相補型MOSトランジスタを用いた駆動回路を備
えている。この回路の駆動について以下に説明する。2. Description of the Related Art A conventional flat panel display driving circuit as shown in FIG . 4 is a level shift circuit for converting a low amplitude level signal of, for example, 3 to 5 V into a high amplitude level of, for example, 50 V to 200 V. If, based on the output of the level shift circuit, and a high voltage output circuit for applying a high voltage to the display. this
Prior art panel display driving circuit as is described in JP-A-5-249916. Conventional shown in FIG.
In the driving circuit technology, P-channel type MOS field effect transistor (hereinafter, referred to as P-MOSFET) and N-channel type MOS field effect transistor (hereinafter, referred to as N-MOSFET) and a driver circuit including a complementary MOS transistor Equipment
I am . The driving of this circuit will be described below.
【0003】入力信号INが(例えば5Vの)ハイレベル
の場合、N−MOSFET.MN1がオフ、N−MOSFET.MN2がオン、
N−MOSFET.MN3がオフされる。また、P−MOSFET.MP1がオ
ン、P−MOSFET.MP2がオフ、P−MOSFET.MP3がオンする。
この時、出力信号OUTは高電位側電源HVまで上昇す
る。また、P−MOSFET.MP2 のゲート電極には高電位側電
源HVの電圧が印加されることになる。When the input signal IN is at a high level (for example, 5V), N-MOSFET.MN1 is off, N-MOSFET.MN2 is on,
N-MOSFET.MN3 is turned off. Also, P-MOSFET.MP1 is turned on, P-MOSFET.MP2 is turned off, and P-MOSFET.MP3 is turned on.
At this time, the output signal OUT rises to the high potential side power supply HV. Further, the voltage of the high potential side power source HV is applied to the gate electrode of the P-MOSFET.MP2.
【0004】入力信号INがGNDレベルの場合、N−M
OSFET.MN1がオン、N−MOSFET.MN2がオフ、N−MOSFET.MN
3がオンされる。また、P−MOSFET.MP1はオフ、P−MOSFE
T.MP2はオン、P−MOSFET.MP3はオフする。よって、出力
信号OUTはGNDレベルとなる。この時、P−MOSFET.
MP1及びP−MOSFET.MP3のゲート電極には高電位側電源H
Vの電圧が印加される。When the input signal IN is at the GND level, NM
OSFET.MN1 is on, N-MOSFET.MN2 is off, N-MOSFET.MN
3 is turned on. In addition, P-MOSFET.MP1 is off, P-MOSFE
T.MP2 turns on and P-MOSFET.MP3 turns off. Therefore, the output signal OUT becomes the GND level. At this time, P-MOSFET.
MP1 and P-MOSFET. The high potential side power supply H is applied to the gate electrode of MP3.
A voltage of V is applied.
【0005】上述したとおり、この回路の動作をまとめ
ると、入力信号INはレベルシフトされ、高電圧出力回
路のP−MOSFET.MP3及びN−MOSFET.MN3を制御することで
パネルディスプレイを駆動する。As described above, the operation of this circuit can be summarized as follows: the input signal IN is level-shifted and the high voltage output circuit is
Driving a <br/> panel display by controlling the P-MOSFET.MP3 and N-MOSFET.MN3 tracts.
【0006】このような相補型MOSトランジスタを用
いた回路では、MOSトランジスタのリ−クが無いとし
た場合、直流的には消費電流が0で、低消費電力回路が
可能となる。前記の相補型回路を得るためには、上記の
とおり、P−MOSFET のゲート電極に高電位側電源HVの
電圧が印加されるため、その電圧に耐える高ゲート耐圧
構造のP−MOSFET が必要となる。この高ゲート耐圧構造
を持つためのゲート酸化膜厚の必要条件は例えば高電位
側電源HVが50V〜200Vでは150nm〜600
nm程度のゲート酸化膜厚が必要となると考えられる。
これは、ゲート印加電圧が例えば3〜5Vで、ゲート酸
化膜の厚さが15〜30nm程度のN−MOSFETと比較し
て、10倍以上の酸化膜厚が必要ということになる。In a circuit using such complementary MOS transistors, if there is no leakage of the MOS transistors, the current consumption is 0 in terms of direct current and a low power consumption circuit becomes possible. As described above, in order to obtain the complementary circuit, since the voltage of the high-potential side power supply HV is applied to the gate electrode of the P-MOSFET, a P-MOSFET having a high gate breakdown voltage structure that can withstand the voltage is required. Become. The necessary condition for the gate oxide film thickness to have this high gate breakdown voltage structure is, for example, 150 nm to 600 when the high potential side power supply HV is 50 V to 200 V.
It is considered that a gate oxide film thickness of about nm is required.
This means that the gate applied voltage is, for example, 3 to 5 V, and the oxide film thickness is 10 times or more as compared with the N-MOSFET having the gate oxide film thickness of about 15 to 30 nm.
【0007】この高耐圧ゲート構造のP−MOSFET をソー
ス側出力に用いた回路では、出力電流特性が高電位側電
源電流に依存する。これは、ソース出力P−MOSFET のゲ
ート電圧が高電位側電源HVに等しいためである。一般
にプラズマディスプレイパネルに代表されるディスプレ
イにおいては、パネルの構造・画面サイズにより、その
駆動電圧・電流(駆動条件)に最適値が存在する。ま
た、同一の構造・サイズであっても、製造バラツキを考
慮した駆動条件の設定が必要である。上記高ゲート耐圧
P−MOSFET をソース出力に用いた駆動回路では、電流特
性が電源電圧に依存するため、幅広い種類のパネルに対
して駆動回路の共用化を図るためには、耐圧は最高使用
電圧側で規定され、電流特性は最低使用電圧側で規定さ
れることなり、両者を満足させた設計を行うと、集積回
路にしたときにはチップ面積の増大につながることにな
る。さらに、高ゲート耐圧構造のP−MOSFET は、低振幅
レベルのゲート電圧駆動であるN−MOSFET に比べて、し
きい値電圧が高いため、低電圧域での電流能力が低く、
オン抵抗が高い。In the circuit using the P-MOSFET having the high breakdown voltage gate structure for the output on the source side, the output current characteristic depends on the power source current on the high potential side. This is because the gate voltage of the source output P-MOSFET is equal to the high potential side power supply HV. Generally, in a display represented by a plasma display panel, there are optimum values for driving voltage / current (driving condition) depending on the panel structure and screen size. Further, even with the same structure and size, it is necessary to set the driving conditions in consideration of manufacturing variations. High gate breakdown voltage
In a drive circuit that uses a P-MOSFET for the source output, the current characteristics depend on the power supply voltage.Therefore, in order to share the drive circuit with a wide variety of panels, the breakdown voltage is specified on the maximum operating voltage side. The current characteristics are specified on the minimum operating voltage side, and if a design satisfying both requirements is made, it will lead to an increase in the chip area in the case of an integrated circuit. Furthermore, the high gate breakdown voltage P-MOSFET has a higher threshold voltage than the N-MOSFET that drives the gate voltage at a low amplitude level.
High on-resistance.
【0008】[0008]
【発明が解決しようとする課題】上記のような従来技術
の駆動回路では、高圧出力回路上側のP−MOSFET.MP3
が、高ゲート耐圧構造となり、ゲート印加電圧が高電位
側電圧となる。それ故、駆動電圧の変動により駆動電流
能力が変わってしまう。一方、駆動電圧変動の最大電圧
に合わせP−MOSFET.MP3を形成すると、ゲート酸化膜が
厚くなり駆動電流能力低下する。それを補う為にはサイ
ズを大きくしなければならず、図5に示すような集積回
路にした時にチップ面積が増大することになる。また、
高ゲート耐圧構造のP−MOSFET.MP3 はゲート電圧が低い
電圧領域では電流能力が低く、出力信号電圧の立ち上が
り時間が増加したり、高電位側電源からLC回路を使っ
た無効電力回収を行ったときの電力損失が大きくなる。
本発明は、上記の点を考慮してなされたものであり、回
路の構成素子の標準化,集積回路のチップ面積縮小,低
消費電力化を実現する。In the drive circuit of the prior art as described above, the P-MOSFET .MP3 on the upper side of the high voltage output circuit is
However, the gate has a high gate breakdown voltage structure, and the voltage applied to the gate becomes the high-potential side voltage. Therefore, the driving current capability changes due to the fluctuation of the driving voltage. On the other hand, when the P-MOSFET .MP3 is formed according to the maximum voltage of the fluctuation of the driving voltage, the gate oxide film becomes thick and the driving current capability deteriorates. In order to compensate for this, the size must be increased, and the chip area will increase when the integrated circuit as shown in FIG. 5 is formed . Also,
P-MOSFET .MP3 high gate breakdown voltage structure has low current capability in <br/> voltage region a gate voltage is not low, or an increase in the rise time of the output signal voltage, disabled using LC circuits from the high-potential power supply The power loss becomes large when the power is recovered.
The present invention has been made in consideration of the above points, and realizes standardization of circuit constituent elements, reduction of a chip area of an integrated circuit, and reduction of power consumption.
【0009】[0009]
【課題を解決するための手段】本発明のディスプレイ駆
動回路は電圧駆動型半導体装置を用いて負荷を駆動する
回路であって、電源を印加する電源端子と、負荷を接続
する出力端子と、基準電位となる基準端子と、前記電源
端子に接続された第1Pチャンネル型MOS電界効果ト
ランジスタと前記基準端子に接続された第1Nチャンネ
ル型MOS電界効果トランジスタとの直列接続回路と、
前記電源端子に接続された第2Pチャンネル型MOS電
界効果トランジスタと、第1の主電極、第2の主電極及
び絶縁ゲート電極を有する第1半導体装置との直列接続
回路と、第1Pチャンネル型MOS電界効果トランジス
タと第1Nチャンネル型MOS電界効果トランジスタと
の直列接続箇所が第2Pチャンネル型MOS電界効果ト
ランジスタのゲート電極に接続され、第2Pチャンネル
MOS電界効果トランジスタと第1半導体装置との直列
接続箇所が第1Pチャンネル型MOS電界効果トランジ
スタの絶縁ゲート電極と接続され、さらに、第3主電
極、第4主電極及び絶縁ゲート電極を有し、第3主電極
が前記電源端子に接続し、第4主電極が前記出力端子に
接続して、該絶縁ゲート電極が第2Pチャンネル型MO
S電界効果トランジスタと第1半導体装置との直列接続
箇所に接続した第2半導体装置と、第2の半導体装置の
絶縁ゲート電極と前記出力端子との間に接続したダイオ
ード素子とを備え、駆動制御入力信号の反転された信号
を前記第1Nチャンネル型MOS電界効果トランジスタ
の絶縁ゲート電極に入力し、前記駆動制御入力信号を前
記第1半導体装置の絶縁ゲート電極に入力する。 A display driving circuit of the present invention In order to achieve the above object, according to a circuit for driving a load using a voltage drive type semiconductor device, connected to a power supply terminal for applying a power supply, the load
An output terminal for a reference terminal as a reference potential, and a series circuit of the first 1P channel type MOS field effect transistor and the 1N-channel MOS field effect transistor connected to the reference terminal connected to said power supply terminal ,
A series connection circuit of a second P-channel type MOS field effect transistor connected to the power supply terminal and a first semiconductor device having a first main electrode, a second main electrode and an insulated gate electrode, and a first P-channel type MOS A serial connection portion of the field effect transistor and the first N-channel MOS field effect transistor is connected to the gate electrode of the second P-channel MOS field effect transistor, and the second P-channel MOS field effect transistor and the first semiconductor device are connected. Is connected to the insulated gate electrode of the first P-channel MOS field effect transistor , and further has a third main electrode, a fourth main electrode and an insulated gate electrode, and the third main electrode is connected to the power supply terminal. and, in the fourth main electrode connected to said output terminal, said insulated gate electrode is first 2P channel type MO
A second semiconductor device connected in series connecting portion between the S field effect transistor and the first semiconductor device, diodes <br/> over de element connected between the insulated gate electrode and the output terminal of the second semiconductor device e Bei the door, inverted signal of the drive control input signal
The first N-channel type MOS field effect transistor
Input to the insulated gate electrode of the
Input to the insulated gate electrode of the first semiconductor device.
【0010】本発明の容量性負荷駆動回路において、同
一の半導体基体に、上で述べた本発明の駆動回路を形成
する。In the capacitive load drive circuit of the present invention, the drive circuit of the present invention described above is formed on the same semiconductor substrate.
【0011】上記の半導体回路によれば、第2の半導体
装置の絶縁ゲート電極に印加される電圧が低振幅レベル
であるので、第2の半導体装置が低振幅レベルのゲート
電圧で駆動できる。これにより、高電圧出力回路の第2
の半導体装置のゲート酸化膜厚は薄くでき、ゲート印加
電圧は電源端子からの電源電圧には依存しない。[0011] According to the semiconductor circuit, the voltage applied to the insulated gate electrode of the second semiconductor device is a low amplitude level, a second semiconductor device can be driven by the gate voltage of the low amplitude level. As a result, the second high voltage output circuit
The gate oxide film thickness of the semiconductor device can be made thin, and the voltage applied to the gate does not depend on the power supply voltage from the power supply terminal.
【0012】つまり、容量性負荷の種類によって駆動電
圧が変化しても、半導体装置は同じゲート酸化膜厚にで
き、同じ容量性負荷駆動能力をもつことができるので、
最適な半導体装置の構造及びサイズにでき、チップ面積
の最適化を図れる。また、ゲート印加電圧が低振幅レベ
ルでも電流能力が高ゲート耐圧構造の半導体装置に比べ
高く、スイッチング時の電力損失が低減できる。That is, even if the drive voltage changes depending on the type of capacitive load, the semiconductor device can have the same gate oxide film thickness and the same capacitive load drive capability .
Can the structure and size of the optimum semiconductor device, FIG is to optimize the chip area. Further, the current capability is higher than that of a semiconductor device having a high gate breakdown voltage structure even when the gate applied voltage is at a low amplitude level, and power loss during switching can be reduced.
【0013】[0013]
【発明の実施の形態】図1には、本発明の1実施例であ
るパネルディスプレイ駆動回路が示される。駆動回路に
は低振幅レベルの信号を高振幅レベルの信号に変換する
ためのレベルシフト回路10と、このレベルシフト回路
10の出力に基づいて外部負荷に高電圧を印加するため
の高電圧出力回路20とを含む。FIG. 1 shows a panel display driving circuit according to an embodiment of the present invention. The drive circuit includes a level shift circuit 10 for converting a signal with a low amplitude level into a signal with a high amplitude level, and a high voltage output circuit for applying a high voltage to an external load based on the output of the level shift circuit 10. 20 and.
【0014】本実施例は、レベルシフト回路10とそれ
の後段に配置された高電圧出力回路20とが結合されて
なり、構成素子としてはMOSFETが適用されている。レベ
ルシフト回路10は、高電位側電源HVとソース電極が
接続された高ゲート耐圧のP−MOSFET.MP1と、グランド
GNDとソース電極が接続されたN−MOSFET.MN1との直
列接続回路と、高電位側電源HVとソース電極が接続さ
れた高ゲート耐圧のP−MOSFET.MP2と、グランドGND
とソース電極が接続されたN−MOSFET.MN2との直列接続
回路と、入力信号INを反転するためのインバータIN
Vとを含んで構成されて成る。MOSFET.MP1,MN1の直列接
続箇所がMOSFET.MP2のゲート電極に接続され、MOSFET.M
P2,MN2の直列接続箇所がMOSFET.MP1のゲート電極に接続
される。入力信号INは、インバータINVを介してMO
SFET.MP2のゲート電極に結合されると同時に、直接MN
2のゲート電極に結合される。In this embodiment, the level shift circuit 10 and a high voltage output circuit 20 arranged at the subsequent stage of the level shift circuit 10 are coupled to each other, and a MOSFET is applied as a constituent element. The level shift circuit 10 is a series connection circuit of a high gate breakdown voltage P-MOSFET.MP1 having a high-potential power supply HV and a source electrode connected thereto, and a series connection circuit of an N-MOSFET.MN1 having a ground GND and a source electrode connected thereto. High-gate withstand voltage P-MOSFET.MP2 with high-potential power supply HV and source electrode connected, and ground GND
And a series connection circuit of N-MOSFET.MN2 to which the source electrode is connected, and an inverter IN for inverting the input signal IN
And V. The series connection of MOSFET.MP1 and MN1 is connected to the gate electrode of MOSFET.MP2, and MOSFET.M
The series connection point of P2 and MN2 is connected to the gate electrode of MOSFET.MP1. The input signal IN is sent to the MO via the inverter INV.
Directly coupled to the gate electrode of SFET.MP2 and directly
2 gate electrodes.
【0015】高電圧出力回路20は、高電位側電源HV
に結合されたN−MOSFET.MO1 と、ツェナーダイオードZ
1と、レベルシフト回路を構成しているグランドGND
とソース電極が接続されたMOSFET.MN2とを含んで構成さ
れている。MOSFET.MP2,MN2の直列接続箇所及びMOSFET.M
O1のゲート電極がツェナーダイオードのカソード電極に
接続され、MOSFET.MO1のソース電極がツェナーダイオー
ドZ1のアノード電極に接続される。この接続箇所が高
電圧出力回路20の出力OUTノードとされ、この出力
ノードにパネルディスプレイなどの負荷CLが接続され
る。The high voltage output circuit 20 has a high potential side power source HV.
N-MOSFET.MO1 coupled to the zener diode Z
1 and the ground GND forming the level shift circuit
And MOSFET.MN2 to which the source electrode is connected. Series connection of MOSFET.MP2 and MN2 and MOSFET.M
The gate electrode of O1 is connected to the cathode electrode of the Zener diode, and the source electrode of MOSFET.MO1 is connected to the anode electrode of Zener diode Z1. This connection point serves as an output OUT node of the high voltage output circuit 20, and a load CL such as a panel display is connected to this output node.
【0016】入力信号INがローレベルの場合、MOSFE
T.MN2がオフされ、MOSFET.MN1がオンされる。また、MOS
FET.MN1のドレイン電極がローレベルとなるので、MOSFE
T.MP2がオンする。MOSFET.MN2のドレイン電極が高電位
側電源HVの電圧レベルであるので、MOSFET.MO1はオン
する。そのため出力信号OUTは高電位側電源HVレベ
ルまで上昇する。ただし、MOSFET.MO1のゲート、ドレイ
ン間電位はツェナーダイオードZ1のツェナー電圧によ
りクランプされる。それに対し、入力信号INがハイレ
ベルの場合、MOSFET.MN2がオンされ、MOSFET.MN1がオフ
される。この時、MOSFET.MN2のドレイン電極がローレベ
ルとなるため、MOSFET.MP1がオン、MOSFET.MO1はオフす
る。またMOSFET.MP1がオンするため、MOSFET.MP2はオフ
する。そのため、出力信号OUTはローレベルとされ
る。このように、低振幅レベルの入力信号INがレベル
変更され、高電圧出力回路から出力信号OUTが制御で
きる。入力信号INのレベルは特に制限されないが3〜
5Vとされる。つまり、ハイレベルがグランドGNDを
基準として+3〜+5、ローレベルがグランドGNDと
される。When the input signal IN is low level, the MOSFE
T.MN2 is turned off and MOSFET.MN1 is turned on. Also, MOS
Since the drain electrode of FET.MN1 becomes low level, MOSFE
T.MP2 turns on. Since the drain electrode of the MOSFET.MN2 is at the voltage level of the high potential side power supply HV, the MOSFET.MO1 is turned on. Therefore, the output signal OUT rises to the high-potential-side power supply HV level. However, the potential between the gate and drain of MOSFET.MO1 is clamped by the Zener voltage of Zener diode Z1. On the other hand, when the input signal IN is at high level, the MOSFET.MN2 is turned on and the MOSFET.MN1 is turned off. At this time, the drain electrode of MOSFET.MN2 becomes low level, so that MOSFET.MP1 is turned on and MOSFET.MO1 is turned off. Moreover, since MOSFET.MP1 is turned on, MOSFET.MP2 is turned off. Therefore, the output signal OUT is at low level. In this way, the input signal IN having a low amplitude level is changed in level, and the output signal OUT can be controlled from the high voltage output circuit. The level of the input signal IN is not particularly limited, but is 3 to
It is set to 5V. That is, the high level is +3 to +5 with reference to the ground GND, and the low level is the ground GND.
【0017】本実施例では、パネルディスプレイの駆動
回路に含まれる半導体素子数も少なく、高電圧出力回路
に含まれるMOSFET.MO1はNチャンネル型MOSFETであり、
ゲート印加電圧は低振幅レベルであるため出力電圧の高
電位側電源電圧依存性は小さく、構造,サイズを標準化
でき、集積回路に適用すればチップサイズを最適化でき
る。これは、多出力の集積回路ほど有効ある。また、相
補型のMOSFETを用いているため、直流動作的には消費電
流はほぼ0に等しく、電力損失が小さい。In this embodiment, the number of semiconductor elements included in the drive circuit of the panel display is small, and MOSFET.MO1 included in the high voltage output circuit is an N-channel MOSFET.
Since the gate applied voltage has a low amplitude level, the dependency of the output voltage on the high-potential side power supply voltage is small, the structure and size can be standardized, and the chip size can be optimized by applying it to an integrated circuit. This is more effective for multi-output integrated circuits. Further, since complementary MOSFETs are used, in terms of direct current operation, current consumption is almost equal to 0 and power loss is small.
【0018】次に本発明の他の実施例を図2に示す。本
実施例では、図1に示す回路に出力信号OUT端子にダ
イオードD1のカソード側、グランドGND端子にダイ
オードD1のアノード側を接続している。この場合、グ
ランドGND側から出力信号OUT側に電荷を引き抜く
ことができる。つまり、電荷回収することにより電力損
失を低減することができる。Next, another embodiment of the present invention is shown in FIG. In the present embodiment, the output signal OUT terminal is connected to the cathode side of the diode D1 and the ground GND terminal is connected to the anode side of the diode D1 in the circuit shown in FIG. In this case, charges can be extracted from the ground GND side to the output signal OUT side. That is, the electric power loss can be reduced by recovering the charges.
【0019】次に本発明の他の実施例を図3に示す。本
実施例では、図1に示す回路でP−MOSFET.MP2とN−MOSF
ET.MN2の直列接続箇所を高ゲート耐圧のP−MOSFET.MP3
のゲート電極に接続し、高電位側電源HVとソース電極
が接続されたP−MOSFET.MP3と、グランドGNDとソー
ス電極が接続されたN−MOSFET.MN3 との直列接続回路を
接続し、前記接続箇所がN−MOSFET.MO1 のゲート電極に
接続している。また、前記接続箇所と出力端子OUT間
に抵抗Rが接続されている。この場合、シンク側出力及
びソース側出力の同時OFFを保証することもできる。
つまり、ハイ・インピーダンス状態が可能である。Next, another embodiment of the present invention is shown in FIG. In this embodiment, the circuit shown in FIG. 1 is used for P-MOSFET.MP2 and N-MOSF.
Connect the ET.MN2 series connection part with a high gate withstand voltage P-MOSFET.MP3
And a series connection circuit of a P-MOSFET.MP3 connected to the high potential side power source HV and the source electrode and an N-MOSFET.MN3 connected to the ground GND and the source electrode are connected. The connection point is connected to the gate electrode of N-MOSFET.MO1. A resistor R is connected between the connection point and the output terminal OUT. In this case, it is possible to guarantee that the sink-side output and the source-side output are simultaneously turned off.
That is, a high impedance state is possible.
【0020】以上本発明を実施例に基づいて具体的に説
明したが、それに限定されるものではなく、その要旨を
逸脱しない範囲において種々変更可能であることは言う
までもない。Although the present invention has been specifically described based on the embodiments, it is needless to say that the invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention.
【0021】[0021]
【発明の効果】以上説明したように本発明は、パネルデ
ィスプレイ駆動回路を少ない半導体素子数で、標準化し
た半導体素子で構成でき、駆動回路の最適化が可能で、
半導体集積回路にした場合チップ面積を縮小できる効果
がある。消費電流も極めて少ない。また、高電圧出力回
路は低振幅レベルのゲート印加電圧駆動型半導体装置の
ため、駆動電流能力も高くなる。As described above, according to the present invention, the panel display drive circuit can be configured with a small number of semiconductor elements and standardized semiconductor elements, and the drive circuit can be optimized.
In the case of a semiconductor integrated circuit, there is an effect that the chip area can be reduced. The current consumption is also extremely low. Further, since the high voltage output circuit is a gate applied voltage drive type semiconductor device having a low amplitude level, the drive current capability is also high.
【図1】本発明の実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.
【図2】本発明の他の実施例を示す回路図である。FIG. 2 is a circuit diagram showing another embodiment of the present invention.
【図3】本発明の他の実施例を示す回路図である。FIG. 3 is a circuit diagram showing another embodiment of the present invention.
【図4】従来のディスプレイ駆動回路の回路図である。FIG. 4 is a circuit diagram of a conventional display drive circuit.
【図5】半導体集積回路ディスプレイ駆動回路のブロッ
ク図である。FIG. 5 is a block diagram of a semiconductor integrated circuit display drive circuit.
1,3,61…P−MOSFET、2,4,5,62…N−MOSF
ET、6…ツェナーダイオード、7…保護ダイオード、8
…インバーター、10…レベルシフト回路、20…高電
圧出力回路、30…入力端子、31…出力端子、32…
高電位側電源、33…グランドレベル端子、51…パネ
ルディスプレイ駆動回路、52…ロジック回路、53…
ドライバIC、63…抵抗。1, 3, 61 ... P-MOSFET, 2, 4, 5, 62 ... N-MOSF
ET, 6 ... Zener diode, 7 ... Protection diode, 8
... inverter, 10 ... level shift circuit, 20 ... high voltage output circuit, 30 ... input terminal, 31 ... output terminal, 32 ...
High potential side power source, 33 ... Ground level terminal, 51 ... Panel display drive circuit, 52 ... Logic circuit, 53 ...
Driver IC, 63 ... Resistance.
フロントページの続き (56)参考文献 特開 平2−291719(JP,A) 特開 平2−92111(JP,A) 特開 平2−61696(JP,A) 特開 平8−106267(JP,A) (58)調査した分野(Int.Cl.7,DB名) H03K 17/687 G09G 3/20 G09G 3/28 H03K 17/10 Continuation of front page (56) Reference JP-A-2-291719 (JP, A) JP-A-2-92111 (JP, A) JP-A-2-61696 (JP, A) JP-A-8-106267 (JP , A) (58) Fields surveyed (Int.Cl. 7 , DB name) H03K 17/687 G09G 3/20 G09G 3/28 H03K 17/10
Claims (4)
ト回路と、高電圧出力回路とを備えた容量性負荷の駆動
回路において、 電源が印加される電源端子と、 負荷が接続される出力端子と、 基準電位となる基準端子と、 前記電源端子に接続された第1Pチャンネル型MOS電
界効果トランジスタと前記基準端子に接続された第1N
チャンネル型MOS電界効果トランジスタとの直列接続
回路と、前記電源端子に接続された第2Pチャンネル型
MOS電界効果トランジスタと、第1の主電極、第2の
主電極及び絶縁ゲート電極を有するNチャンネル型MO
S電界効果トランジスタである第1半導体装置との直列
接続回路と、前記 第1Pチャンネル型MOS電界効果トランジスタ
と、前記第1Nチャンネル型MOS電界効果トランジス
タの直列接続箇所を前記第2Pチャンネル型MOS電界
効果トランジスタのゲート電極に接続し、前記第2Pチ
ャンネルMOS電界効果トランジスタと前記第1半導体
装置の直列接続箇所を前記第1Pチャンネル型MOS電
界効果トランジスタの絶縁ゲート電極に接続し、さら
に、第3主電極、第4主電極及び絶縁ゲート電極を有
し、該第3主電極が前記電源端子に接続され、該第4主
電極が前記出力端子に接続され、該絶縁ゲート電極が前
記第2Pチャンネル型MOS電界効果トランジスタと前
記第1半導体装置との直列接続箇所に接続したNチャン
ネル型MOS電界効果トランジスタである第2半導体装
置と、該 第2の半導体装置の絶縁ゲート電極と前記出力端子と
の間に接続したツェナーダイオード素子とを備え、 前記レベルシフト回路が前記第1Pチャンネル型MOS
電界効果トランジスタと、第1Nチャンネル型MOS電
界効果トランジスタと、第2Pチャンネル型MOS電界
効果トランジスタと、第1半導体装置とを含み、 前記高電圧出力回路が前記第1半導体装置と第2半導体
装置とを含み、 駆動制御入力信号の反転された信号を前記第1Nチャン
ネル型MOS電界効果トランジスタの絶縁ゲート電極に
入力し、前記駆動制御入力信号を前記第1半導体装置の
絶縁ゲートゲート電極に入力することを特徴とする 容量
性負荷の駆動回路。1. A level shifter using a voltage-driven semiconductor device.
And DOO circuit, driving the capacitive load and a high voltage output circuit
In the circuit , a power supply terminal to which a power supply is applied, an output terminal to which a load is connected, a reference terminal serving as a reference potential, a first P-channel type MOS field effect transistor connected to the power supply terminal, and the reference terminal The first N
N-channel type circuit having a series connection circuit with a channel type MOS field effect transistor, a second P-channel type MOS field effect transistor connected to the power supply terminal, a first main electrode , a second main electrode and an insulated gate electrode MO
A series connection circuit of the first semiconductor device is a S field effect transistor, said a second 1P channel type MOS field effect transistor, said third 1N channel MOS field effect series connection point of said first 2P channel MOS field effect transistor connected to the gate electrode of the transistor, connecting the series connection portion of said first 2P channel MOS field effect transistor and the first semiconductor device to the insulated gate electrode of the first 1P channel type MOS field effect transistors, further, the third main electrode , a fourth main electrode and the insulated gate electrode, said third main electrode connected to said power supply terminal, said fourth main electrode connected to said output terminal, said insulated gate electrode is pre
Note 2nd P-channel MOS field effect transistor and before
Note N channel connected to the serial connection point with the first semiconductor device
A second semiconductor device which is a channel MOS field effect transistor ; and a zener diode element connected between the insulated gate electrode of the second semiconductor device and the output terminal , wherein the level shift circuit has the first P channel Type MOS
A field effect transistor and a first N-channel MOS transistor.
Field effect transistor and second P-channel MOS electric field
An effect transistor and a first semiconductor device, wherein the high-voltage output circuit includes the first semiconductor device and the second semiconductor device.
And a device for inverting the drive control input signal to the first N channel.
Insulated gate electrode of a nell-type MOS field effect transistor
And input the drive control input signal to the first semiconductor device.
Insulated gate A drive circuit for a capacitive load that inputs to the gate electrode .
回路がプラズマディスプレイを負荷とすることを特徴とThe circuit features a plasma display as a load
する容量性負荷の駆動回路。Drive circuit for capacitive load.
て、複数の前記容量性負荷の駆動回路が半導体集積回路A plurality of the capacitive load driving circuits are semiconductor integrated circuits.
に搭載されていることを特徴とする容量性負荷の駆動回Drive circuit for capacitive load characterized by being mounted on
路。Road.
回路の電源端子に50〜200Vを印加し、前記駆動制Applying 50-200V to the power supply terminal of the circuit,
御入力信号が5V以下であることを特徴とする容量性負Capacitive negative characterized by input signal less than 5V
荷の駆動回路。Load drive circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02295698A JP3518310B2 (en) | 1998-02-04 | 1998-02-04 | Capacitive load drive circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02295698A JP3518310B2 (en) | 1998-02-04 | 1998-02-04 | Capacitive load drive circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11225054A JPH11225054A (en) | 1999-08-17 |
JP3518310B2 true JP3518310B2 (en) | 2004-04-12 |
Family
ID=12097071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02295698A Expired - Fee Related JP3518310B2 (en) | 1998-02-04 | 1998-02-04 | Capacitive load drive circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3518310B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6496044B1 (en) * | 2001-12-13 | 2002-12-17 | Xilinx, Inc. | High-speed output circuit with low voltage capability |
JP2006140928A (en) * | 2004-11-15 | 2006-06-01 | Toshiba Corp | Semiconductor device |
JP2006343453A (en) * | 2005-06-08 | 2006-12-21 | Fuji Electric Device Technology Co Ltd | Display drive device |
JP2009017276A (en) | 2007-07-05 | 2009-01-22 | Nec Electronics Corp | Semiconductor device |
JP2009231443A (en) * | 2008-03-21 | 2009-10-08 | Oki Semiconductor Co Ltd | High-breakdown voltage semiconductor device and method for manufacturing the same |
-
1998
- 1998-02-04 JP JP02295698A patent/JP3518310B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11225054A (en) | 1999-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100696719B1 (en) | Bootstrap Diode Emulator with Dynamic Backgate Biasing | |
US7606082B2 (en) | Semiconductor circuit, inverter circuit, semiconductor apparatus, and manufacturing method thereof | |
US7759987B2 (en) | Multi-channel semiconductor integrated circuit | |
JP3902111B2 (en) | Switch semiconductor integrated circuit | |
US20050110556A1 (en) | Bootstrap driver | |
US6844769B2 (en) | Drive circuit | |
JPH1168540A (en) | Output stage circuit of high voltage power IC | |
JPH11205123A (en) | High withstand voltage power integrated circuit | |
JP3518310B2 (en) | Capacitive load drive circuit | |
US20060044051A1 (en) | Bootstrap diode emulator with dynamic back-gate biasing and short-circuit protection | |
EP0068892B1 (en) | Inverter circuit | |
JP2000286687A (en) | Level shifting circuit and inverter device | |
US10707870B2 (en) | High-side driver circuit | |
WO2021024643A1 (en) | Semiconductor device | |
JP5332112B2 (en) | High voltage lateral MOSFET | |
US7102416B2 (en) | High side switching circuit | |
JP4085512B2 (en) | High side switch circuit | |
US8928368B2 (en) | Gate driving circuit | |
JP2978346B2 (en) | Input circuit of semiconductor integrated circuit device | |
JP4362973B2 (en) | Voltage level conversion circuit | |
JP3635953B2 (en) | High voltage power integrated circuit | |
JP3681731B2 (en) | Drive circuit | |
JPH07105709B2 (en) | Voltage conversion circuit | |
US20240267046A1 (en) | Driver circuitry and electronic circuitry | |
JP2003338740A (en) | High breakdown voltage switching circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |