JP3515040B2 - Road surface friction coefficient determination method - Google Patents
Road surface friction coefficient determination methodInfo
- Publication number
- JP3515040B2 JP3515040B2 JP2000064963A JP2000064963A JP3515040B2 JP 3515040 B2 JP3515040 B2 JP 3515040B2 JP 2000064963 A JP2000064963 A JP 2000064963A JP 2000064963 A JP2000064963 A JP 2000064963A JP 3515040 B2 JP3515040 B2 JP 3515040B2
- Authority
- JP
- Japan
- Prior art keywords
- road surface
- vehicle
- acceleration
- deceleration
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Regulating Braking Force (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は路面摩擦係数判定方
法に関する。さらに詳しくは、4つのタイヤ車輪の回転
情報を用いて路面とタイヤとのあいだの摩擦係数(路面
摩擦係数)を判定することにより、車両の性能および安
全性を高めることができる路面摩擦係数判定方法に関す
る。The present invention relates to relates to a road surface friction coefficient-size Sadakata <br/> method. More specifically, four by determining the coefficient of friction between the road surface and the tire (road friction coefficient) by using rotational information of the tire wheel, the road surface friction coefficient determination Priority determination that can enhance the performance and safety of the vehicle mETHODS about.
【0002】[0002]
【従来の技術】車両は、滑りやすい路面で急加速や急制
動を行なうと、タイヤがスリップを起こしスピンなどす
る危険性がある。また急な操舵を行なうと車両が横すべ
りやスピンを起こす惧れがある。2. Description of the Related Art When a vehicle is subjected to sudden acceleration or braking on a slippery road surface, there is a risk that the tires may slip and spin. In addition, sudden steering may cause the vehicle to slip or spin.
【0003】そこで、従来より、タイヤと路面とのあい
だの制動力が最大値をこえてタイヤがロック状態になる
前に、車輪に作用するブレーキトルクを低下させて車輪
のロック状態を防止し、最大制動力が得られる車輪の回
転数を制御するアンチロックブレーキ装置などが提案さ
れている(特開昭60−99757号公報、特開平1−
249559号公報など参照)。Therefore, conventionally, before the braking force between the tire and the road surface exceeds the maximum value and the tire is locked, the brake torque acting on the wheel is reduced to prevent the wheel from being locked. An anti-lock brake device and the like for controlling the rotational speed of the wheel that provides the maximum braking force have been proposed (Japanese Patent Laid-Open No. 60-99757, Japanese Patent Laid-Open No. 1-99757).
249559, etc.).
【0004】たとえば、アンチロックブレーキ装置の制
御では、車両の判定速度および検出した車輪速度(回転
速度)からスリップ率を演算したのち、該演算したスリ
ップ率が予め設定してある基準スリップ率に一致するよ
うにブレーキ力を制御することにより、最大制動力に追
従するように構成されている。For example, in the control of the anti-lock brake device, a slip ratio is calculated from the vehicle judgment speed and the detected wheel speed (rotational speed), and then the calculated slip ratio matches a preset reference slip ratio. The braking force is controlled so that the maximum braking force is followed.
【0005】このようなABS装置などの制御では、路
面の摩擦係数μが利用されている。すなわち路面摩擦係
数μ(路面μ)に応じて、たとえば高μの場合と低μの
場合とで制御内容を変更して最適な制御を行なうように
している。In the control of such an ABS device, the friction coefficient μ of the road surface is used. That is, depending on the road surface friction coefficient μ (road surface μ), for example, the control content is changed between high μ and low μ to perform optimum control.
【0006】[0006]
【発明が解決しようとする課題】前記特開昭60−99
759号公報の装置では、スリップ発生時の従動輪から
車両加速度を求め、この加速度を用いて路面μを判定し
ている。The object of the invention is to be Solved by the Japanese Akira 60-99
In the device disclosed in Japanese Patent No. 759, the vehicle acceleration is obtained from the driven wheels when the slip occurs, and the road surface μ is determined using this acceleration.
【0007】すなわち、この公報によれば、スリップ時
には車両加速度をAとし、車両重量をWとした場合、車
両の加速に要する駆動力Fは、
F=W・A/g
で求められる(gは重力加速度である)。一方、この駆
動力Fは、駆動輪と路面とのあいだの摩擦力により決ま
り、駆動輪に加わる荷重Wrと路面μを用いてF=μ・
Wrと表わすことができる。これら2つの式から路面μ
は、μ=W/Wr・g×Aとして求められる。That is, according to this publication, when the vehicle acceleration is A during slip and the vehicle weight is W, the driving force F required for accelerating the vehicle is obtained by F = W · A / g (g is Gravitational acceleration). On the other hand, the driving force F is determined by the frictional force between the driving wheel and the road surface, and F = μ · is calculated by using the load Wr applied to the driving wheel and the road surface μ.
It can be expressed as Wr. From these two formulas, the road surface μ
Is calculated as μ = W / Wr · g × A.
【0008】しかし、この式によって求められた路面μ
は、単に従動輪の回転速度を微分して求めた従動輪の加
速度を車両加速度Aに置き換え、この車両加速度Aを算
出した時点での路面μであり、実際の路面とタイヤとの
あいだの路面μであるかどうかわからず、確率的にもそ
うでない場合の可能性が圧倒的に高い。However, the road surface μ obtained by this equation
Is the road surface μ at the time when the acceleration of the driven wheel, which is simply obtained by differentiating the rotational speed of the driven wheel, is replaced with the vehicle acceleration A, and the vehicle acceleration A is calculated. The road surface between the actual road surface and the tire is There is an overwhelming possibility when it is unknown whether it is μ or not stochastically.
【0009】したがって、そのような路面μに基づいて
ABSなどの各種車両運動制御を行なうと、実際の路面
μに対応した制御ではないため、不適当な制御を実行す
る惧れがある。また、運転手に滑りやすい路面であるこ
とを警告する場合においても、前記判定した路面μで
は、誤報を発する惧れがある。さらに、路面μによって
最大制動力が得られるスリップ率が異なるため、固定さ
れた基準スリップ率で追従制御を行なった場合、逆に制
動距離が長くなったり、タイヤがロックしてしまう惧れ
がある。Therefore, if various vehicle motion controls such as ABS are performed based on such a road surface μ, there is a possibility of executing an inappropriate control because the control does not correspond to the actual road surface μ. Further, even when the driver is warned that the road surface is slippery, there is a possibility that a false alarm may be issued on the determined road surface μ. Furthermore, since the slip ratio at which the maximum braking force is obtained differs depending on the road surface μ, when the follow-up control is performed with a fixed reference slip ratio, there is a risk that the braking distance will become longer or the tire will lock up. .
【0010】この対策として、路面状態を判定し、判定
した路面μに応じて基準スリップ率を変化させる必要が
あるが、路面μを精度良く判定する技術はない。As a countermeasure against this, it is necessary to determine the road surface condition and change the reference slip ratio according to the determined road surface μ, but there is no technique for accurately determining the road surface μ.
【0011】本発明は、4つのタイヤ車輪の回転情報を
用いて路面とタイヤとのあいだの摩擦係数を判定するこ
とにより、車両の性能および安全性を高めることができ
る路面摩擦係数判定方法を提供することを目的とする。The present invention, by determining the coefficient of friction between the road surface and the tires using the rotation information of the four wheels of the road surface friction coefficient-size Sadakata method can increase the performance and safety of the vehicle The purpose is to provide.
【0012】[0012]
【課題を解決するための手段】本発明の路面摩擦係数判
定方法は、車両の4輪のタイヤの回転速度を定期的に検
出する工程と、該測定された回転速度から、スリップ比
を演算する工程と、該スリップ比と車両の加減速度との
関係式を求める工程と、該関係式の傾きと予め設定され
たしきい値を比較する工程と、当該比較の結果から路面
とタイヤとのあいだの摩擦係数を判定する工程とを備え
ており、前記スリップ比および車両の加減速度を一定時
間分のデータの平均値として、サンプリング時間ごとに
移動平均化して求め、当該移動平均されたスリップ比お
よび車両の加減速度のデータを用いて、スリップ比と車
両の加減速度との互いの1次の回帰係数と相関係数を求
め、該相関係数の値が設定値以上の場合、該回帰係数を
更新および保持し、該回帰係数の値と予め設定されたし
きい値とを比較することによりタイヤと路面との摩擦係
数を判定することを特徴とする。The road surface friction coefficient judgment method of the present invention, in order to solve the problems] includes the steps of periodically detecting rotational speeds of tires of four wheels of the vehicle, the measured rotational speed or al, slip ratio a step of calculating, the step of obtaining a relational expression between acceleration of the slip ratio and the vehicle is set in advance and the inclination of the function engagement formula
And comparing the threshold, and a step of determining the coefficient of friction between the road surface and the tires from the result of the comparison, when a constant acceleration and deceleration of the slip ratio and the vehicle
As the average value of the data for the interval, for each sampling time
The moving average is used to obtain the moving average slip ratio.
And the vehicle acceleration / deceleration data are used to determine the slip ratio and the vehicle
Obtain the first-order regression coefficient and correlation coefficient of both acceleration and deceleration.
Therefore, if the value of the correlation coefficient is greater than or equal to the set value, the regression coefficient
Update and hold the value of the regression coefficient and preset
By comparing the threshold value, the friction coefficient between the tire and the road surface
Characterized that you determine the number.
【0013】[0013]
【0014】[0014]
【発明の実施の形態】以下、添付図面に基づいて、本発
明の路面摩擦係数判定方法を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, with reference to the accompanying drawings, illustrating the road surface friction coefficient-size Sadakata method of the present invention.
【0015】図1は本発明の一実施の形態にかかわる路
面摩擦係数判定装置を示すブロック図、図2は図1にお
ける路面摩擦係数判定装置の電気的構成を示すブロック
図、図3は路面μとスリップ比との関係を示す模式図、
図4は本実施の形態にかかわるフローチャート、図5は
路面状態が異なる場合の回帰係数の経時変化を示す図で
ある。[0015] Figure 1 is a block diagram showing a road <br/> surface frictional coefficient determining equipment according to an embodiment of the present invention, FIG. 2 is a block diagram showing an electrical configuration of a road surface frictional coefficient determining unit in FIG. 1 3 is a schematic diagram showing the relationship between the road surface μ and the slip ratio,
FIG. 4 is a flow chart according to the present embodiment, and FIG. 5 is a diagram showing a change over time of the regression coefficient when the road surface condition is different.
【0016】図1に示すように、本発明の一実施の形態
にかかわる路面摩擦係数判定装置は、4輪車両のタイヤ
FLW、FRW、RLWおよびRRWにそれぞれ設けら
れた車輪タイヤの回転速度を定期的に検出する回転速度
検出手段Sを備えており、この回転速度検出手段Sの出
力は、ABSなどの制御ユニット1に伝達される。また
この制御ユニット1には、図2に示されるように、液晶
表示素子、プラズマ表示素子またはCRTなどの構成さ
れた表示手段である警報表示器2が接続されている。3
は運転者によって、操作される初期化スイッチである。As shown in FIG. 1, a road surface friction coefficient determining apparatus according to an embodiment of the present invention regularly determines the rotational speeds of wheel tires provided on tires FLW, FRW, RLW and RRW of a four-wheel vehicle. Equipped with a rotational speed detecting means S for positive detection, the output of the rotational speed detecting means S is transmitted to the control unit 1 such as ABS. Further, as shown in FIG. 2, the control unit 1 is connected with an alarm indicator 2 which is a display means constituted by a liquid crystal display element, a plasma display element, a CRT or the like. Three
Is an initialization switch operated by the driver.
【0017】前記回転速度検出手段Sとしては、電磁ピ
ックアップなどを用いて回転パルスを発生させてパルス
の数から回転速度を測定する車輪速センサまたはダイナ
モのように回転を利用して発電を行ない、この電圧から
回転速度を測定するものを含む角速度センサなどを用い
ることができる。As the rotation speed detecting means S, a rotation speed is generated using an electromagnetic pickup or the like to generate a rotation pulse and the rotation speed is measured from the number of pulses. An angular velocity sensor or the like including one that measures the rotation speed from this voltage can be used.
【0018】前記制御ユニット1は、図2に示されるよ
うに、外部装置との信号の受け渡しに必要なI/Oイン
ターフェイス1aと、演算処理の中枢として機能するC
PU1bと、該CPU1bの制御動作プログラムが格納
されたROM1cと、前記CPU1bが制御動作を行な
う際にデータなどが一時的に書き込まれたり、その書き
込まれたデータなどが読み出されるRAM1dとから構
成されている。As shown in FIG. 2, the control unit 1 has an I / O interface 1a necessary for exchanging signals with an external device, and a C functioning as a center of arithmetic processing.
It comprises a PU 1b, a ROM 1c in which a control operation program for the CPU 1b is stored, and a RAM 1d in which data and the like are temporarily written when the CPU 1b performs a control operation and the written data and the like are read. There is.
【0019】本実施の形態では、前記制御ユニット1
に、第1の解決手段として、前記回転速度検出手段Sに
よる測定値から、スリップ比(前輪タイヤの車輪速度と
後輪タイヤとの車輪速度の比)を演算する第1演算手段
と、該スリップ比と車両の加減速度との関係式を求める
第2演算手段と、該第2演算手段により求められる関係
式の傾きに基づいて、路面とタイヤとのあいだの摩擦係
数μを判定する摩擦係数判定手段とを備えている。該摩
擦係数判定手段には、前記該第2演算手段により求めら
れる関係式の傾きと予め設定されたしきい値とを比較す
る比較手段を含んでいる。In the present embodiment, the control unit 1
As a first solving means, there is provided a first calculating means for calculating a slip ratio (a ratio of a wheel speed of a front wheel tire and a wheel speed of a rear wheel tire) from a measured value by the rotation speed detecting means S, and the slip. Second calculation means for obtaining the relational expression between the ratio and the acceleration / deceleration of the vehicle, and friction coefficient determination for determining the frictional coefficient μ between the road surface and the tire based on the inclination of the relational expression obtained by the second calculation means. And means. The friction coefficient determining means includes comparing means for comparing the slope of the relational expression obtained by the second calculating means with a preset threshold value.
【0020】本実施の形態では、前記4輪のタイヤの回
転速度を0.1秒以下、好ましくは0.05秒以下で検
出する。前記車両の加減速度はGセンサで測定すること
もできるが、4輪または従動輪の平均車輪速度から演算
するのがコスト面から好ましい。In the present embodiment, the rotation speed of the tires of the four wheels is detected in 0.1 seconds or less, preferably 0.05 seconds or less. Although the acceleration / deceleration of the vehicle can be measured by the G sensor, it is preferable to calculate it from the average wheel speed of the four wheels or the driven wheels in terms of cost.
【0021】ついで前記スリップ比および車両の加減速
度を一定時間分のデータ、たとえば少なくとも0.1秒
分以上のデータの平均値として、サンプリング時間ごと
に移動平均化して求め、この移動平均された値(一定個
数のスリップ比と車両の加減速度)を元に、該スリップ
比と該車両の加減速度との関係式を求める。Next, the slip ratio and the acceleration / deceleration of the vehicle are obtained by moving averaging every sampling time as an average value of data for a certain period of time, for example, data of at least 0.1 second or more, and the moving averaged value is obtained. Based on (a fixed number of slip ratios and acceleration / deceleration of the vehicle), a relational expression between the slip ratio and the acceleration / deceleration of the vehicle is obtained.
【0022】さらに前記移動平均されたスリップ比およ
び車両の加減速度のデータ、たとえば少なくとも5個以
上のデータを用いて、スリップ比と車両の加減速度との
互いの1次の回帰係数と相関係数を求める。ここで、移
動平均して求められたスリップ比がある一定値以上の場
合または一定値以下の場合(たとえば0.07以上また
は−0.07以下の場合)は、回帰係数の演算には使用
せず、スリップ警報として警報を発してもよい。Further, using the moving averaged slip ratio and vehicle acceleration / deceleration data, for example, at least five or more data, the first-order regression coefficient and correlation coefficient of the slip ratio and the vehicle acceleration / deceleration are mutually obtained. Ask for. Here, if the slip ratio obtained by moving average is a certain value or more or a certain value or less (for example, 0.07 or more or −0.07 or less), use it for the calculation of the regression coefficient. Instead, an alarm may be issued as a slip alarm.
【0023】ついで前記相関係数の値が設定値以上の場
合、該回帰係数を更新および保持し、該回帰係数の値と
予め設定されたしきい値とを比較することによりタイヤ
と路面との摩擦係数を判定する。Then, when the value of the correlation coefficient is equal to or larger than the set value, the regression coefficient is updated and held, and the value of the regression coefficient is compared with a preset threshold value to compare the tire with the road surface. Determine the coefficient of friction.
【0024】本実施の形態では、前記路面摩擦係数判定
手段により、路面が低μであると判定された場合は、前
記警報表示器2により警報を発する。In the present embodiment, when the road surface friction coefficient determining means determines that the road surface is low μ, the alarm display 2 issues an alarm.
【0025】以下、本実施の形態の路面摩擦係数判定装
置の動作を手順〜に沿って説明する。Hereinafter, the operation of the road surface friction coefficient determining apparatus according to the present embodiment will be described in accordance with the procedure.
【0026】車両の4輪タイヤFLW、FRW、RL
WおよびRRWのそれぞれの回転速度から車輪速度(V
1n、V2n、V3n、V4n)を算出する。Vehicle four-wheel tires FLW, FRW, RL
From the respective rotation speeds of W and RRW, the wheel speed (V
1 n , V2 n , V3 n , V4 n ) are calculated.
【0027】たとえば、ABSセンサなどのセンサから
得られた車両の各車輪タイヤFLW、FRW、RLW、
RRWのある時点の車輪速データを車輪速度V1n、V
2n、V3n、V4nとする。For example, each wheel tire FLW, FRW, RLW of the vehicle obtained from a sensor such as an ABS sensor,
The wheel speed data at a certain point of RRW is used as the wheel speeds V1 n , V
Let 2 n , V3 n , and V4 n .
【0028】ついで従動輪および駆動輪の平均車輪速
度(Vf n 、Vdn)を演算する。Next, the average wheel speeds ( Vf n , Vd n ) of the driven wheels and the driving wheels are calculated.
【0029】前輪駆動の場合、ある時点の従動輪および
駆動輪の平均車輪速度Vf n 、Vdnをつぎの式(1)、
(2)により求められる。
Vfn=(V3n+V4n)/2 ・・・(1)
Vdn=(V1n+V2n)/2 ・・・(2)In the case of the front wheel drive, the average wheel speeds Vf n and Vd n of the driven wheels and the drive wheels at a certain point are expressed by the following equation (1),
It is obtained by (2). Vf n = (V3 n + V4 n ) / 2 (1) Vd n = (V1 n + V2 n ) / 2 (2)
【0030】ついで前記従動輪の平均車輪加減速度
(すなわち車両の加減速度)Afnを演算する。Next, the average wheel acceleration / deceleration (that is, vehicle acceleration / deceleration) Af n of the driven wheels is calculated.
【0031】前記従動輪の平均車輪速度Vfnより1つ
前の車輪速データから、平均車輪速度Vfn−1とする
と、従動輪の平均車輪加減速度Afnはそれぞれつぎの
式(3)で求められる。
Afn=a・(Vfn−Vfn−1)/Δt/g ・・・(3)[0031] The average single from the previous wheel speed data from the wheel speed Vf n of the following wheels and the average wheel speed V f n-1, of each of the average wheel acceleration Af n of the driven wheels following formula (3) Required by. Af n = a · (Vf n −Vf n−1 ) / Δt / g (3)
【0032】ここで、Δtは車輪速データから算出され
る車輪速度VfnとVfn-1の時間間隔(サンプリング時
間)であり、gは重力加速度であり、aは車輪速度(k
m/h)の単位と加速度(m/s)の単位を合わせるた
めの定数(1/3.6)である。前記サンプルング時間
としては、データのばらつきを小さくし、かつ短時間で
判別するためには、0.1秒以下である必要がある。よ
り好ましくは、0.05秒以下である。Here, Δt is a time interval (sampling time) between the wheel speeds Vf n and Vf n-1 calculated from the wheel speed data, g is a gravitational acceleration, and a is a wheel speed (k.
It is a constant (1 / 3.6) for matching the unit of m / h) with the unit of acceleration (m / s). The sampling time needs to be 0.1 seconds or less in order to reduce the variation in data and to make a determination in a short time. More preferably, it is 0.05 seconds or less.
【0033】ついで前記車両の加減速度Afnの値に
応じて、スリップ比を演算する。Then, the slip ratio is calculated according to the value of the acceleration / deceleration Af n of the vehicle.
【0034】まず、加速状態で、駆動輪がロック状態で
車両が滑っているとき(Vdn=0、Vfn≠0)や、減
速状態で、車両が停止状態で駆動輪がホイールスピンを
起こしているとき(Vfn=0、Vdn≠0)は、起こり
得ないものとして、スリップ比Snをつぎの式(4)、
(5)から演算する。
Afn≧0およびVdn≠0である場合、Sn=(Vfn−Vdn)/Vdn
・・・(4)
Afn<0およびVfn≠0である場合、Sn=(Vfn−Vdn)/Vfn
・・・(5)
前記以外の場合は、Sn=1とする。First, when the vehicle is slipping with the drive wheels locked in the acceleration state (Vd n = 0, Vf n ≠ 0), or in the deceleration state, the vehicle wheels are stopped and the drive wheels cause wheel spin. (Vf n = 0, Vd n ≠ 0), the slip ratio S n is calculated by the following equation (4),
Calculate from (5). When Af n ≧ 0 and Vd n ≠ 0, S n = (Vf n −Vd n ) / Vd n (4) When Af n <0 and Vf n ≠ 0, S n = (Vf n− Vd n ) / Vf n (5) In other cases, S n = 1.
【0035】ついでスリップ比および車両の加減速度
のデータをサンプリング時間ごとに移動平均化処理す
る。Then, the data of the slip ratio and the acceleration / deceleration of the vehicle are subjected to moving averaging processing every sampling time.
【0036】実際の走行中の路面μは一定ではなく、刻
々と変化するため、短時間で路面μを推定する必要があ
る。また直線回帰をする場合、一定以上のデータ数がな
ければ、得られた回帰係数の信頼性が劣る。そこで、短
時間のサンプリング時間、たとえば数十msごとにデー
タをサンプリングし、このサンプリング時間で得られた
ばらつきの大きいデータを移動平均することにより、デ
ータの数を減らさずに、データのばらつきを小さくする
ことができる。Since the road surface μ during actual traveling is not constant and changes every moment, it is necessary to estimate the road surface μ in a short time. Further, when performing linear regression, the reliability of the obtained regression coefficient is poor unless there is a certain number of data. Therefore, data is sampled at short sampling time intervals, for example, every several tens of ms, and data with large variations obtained at this sampling time is subjected to a moving average, so that the number of data can be reduced without reducing the number of data. Can be reduced.
【0037】スリップ比については、 MSn=(S1+S2+・・・+Sn)/N ・・・(6) MSn+1=(S2+S3+・・・+Sn+1)/N ・・・(7) MSn+2=(S3+S4+・・・+Sn+2)/N ・・・(8)Regarding the slip ratio, MS n = (S 1 + S 2 + ... + S n ) / N (6) MS n + 1 = (S 2 + S 3 + ... + S n + 1 ) / N ... (7) MS n + 2 = (S 3 + S 4 + ... + S n + 2 ) / N ... (8)
【0038】車両の加減速度については、 MAfn=(Af1+Af2+・・・+Afn)/N ・・・(9) MAfn+1=(Af2+Af3+・・・+Afn+1)/N ・・・(10) MAfn+2=(Af3+Af4+・・・+Afn+2)/N ・・・(11)Regarding the acceleration / deceleration of the vehicle, MAf n = (Af 1 + Af 2 + ... + Af n ) / N (9) MAf n + 1 = (Af 2 + Af 3 + ... + Af n + 1 ) / N ・ ・ ・ (10) MAf n + 2 = (Af 3 + Af 4 + ・ ・ ・ + Af n + 2 ) / N ・ ・ ・ (11)
【0039】ついでスリップ比と車両の加減速度との
互いの1次の回帰係数、すなわちスリップ比の車両の加
減速度に対する回帰係数K1と車両の加減速度のスリッ
プ比に対する回帰係数K2をそれぞれつぎの式(1
2)、(13)から求める。Next, a first-order regression coefficient of the slip ratio and the acceleration / deceleration of the vehicle, that is, a regression coefficient K1 for the acceleration / deceleration of the vehicle of the slip ratio and a regression coefficient K2 for the slip ratio of the acceleration / deceleration of the vehicle are respectively given by the following equations. (1
2), calculated from (13).
【0040】 [0040]
【0041】 [0041]
【0042】また相関係数Rは、 R=K1×K2 ・・・(14) となる。The correlation coefficient R is R = K1 × K2 (14) Becomes
【0043】この相関係数は、設定値、たとえば0.6
以上であれば、回帰係数K1の値を更新する。This correlation coefficient is a set value, for example, 0.6.
If it is above, the value of the regression coefficient K1 is updated.
【0044】ここで、スリップ比と車両の加減速度との
関係というのは、一般的なタイヤと路面のμ−s曲線と
同じことで、路面μの違い(高μ路R1、中μ路R2、
低μ路R3)により図3のようになる。そして、前記回
帰係数K1、K2とは、μ−s曲線の勾配を求めたもの
である。このμ−s曲線は、本来曲線であるが、実際の
走行時に発生するスリップ比の範囲では、ほぼ直線とな
っている。すなわち、μ−s曲線は、y=aX+bとい
う方程式で表わすことができる。このときの係数aが回
帰係数(K1、K2)で、直線の勾配を意味している。
ここで、yをスリップ比とするか、加速度とするかで、
a=K1であったりa=K2であったりする。本実施の
形態では、yをスリップ比としてK1の値で路面μを判
定している。もちろん回帰係数K2からも路面μを判定
することもできる。Here, the relationship between the slip ratio and the acceleration / deceleration of the vehicle is the same as that of a general μ-s curve of a tire and a road surface, and a difference in road surface μ (high μ road R1, medium μ road R2). ,
Due to the low μ path R3), the result is as shown in FIG. The regression coefficients K1 and K2 are obtained by calculating the slope of the μ-s curve. This μ-s curve is originally a curve, but is substantially a straight line in the range of the slip ratio that occurs during actual traveling. That is, the μ-s curve can be expressed by the equation y = aX + b. The coefficient a at this time is a regression coefficient (K1, K2), which means the slope of a straight line.
Here, whether y is the slip ratio or the acceleration,
It may be a = K1 or a = K2. In the present embodiment, the road surface μ is determined by the value of K1 with y as the slip ratio. Of course, the road surface μ can also be determined from the regression coefficient K2.
【0045】また相関係数Rを求めている理由は、得ら
れた回帰係数の値が適切であるか否かを判断するためで
ある。すなわち、相関係数Rの値が大きい場合は、スリ
ップ比と加速度のあいだに相関があり、得られた回帰係
数は適切であるが、相関係数Rの値が小さい場合は、両
者のあいだに相関がなく得られた回帰係数は不適切であ
るために、その値で路面μを判定しないようにする。The reason for obtaining the correlation coefficient R is to judge whether or not the value of the obtained regression coefficient is appropriate. That is, when the value of the correlation coefficient R is large, there is a correlation between the slip ratio and the acceleration, and the obtained regression coefficient is appropriate, but when the value of the correlation coefficient R is small, the correlation coefficient R is large. Since the regression coefficient obtained without correlation is inappropriate, the road surface μ should not be judged by its value.
【0046】ついで回帰係数K1の値により、路面μ
を推定する。Then, according to the value of the regression coefficient K1, the road surface μ
To estimate.
【0047】たとえば、 K1≦0.1 高μ路(μ=0.7以上) 0.1<K1≦0.16 中μ路(μ=0.3〜0.7) 0.16<K1 低μ路(μ=0.3以下)For example, K1 ≦ 0.1 High μ road (μ = 0.7 or more) 0.1 <K1 ≦ 0.16 Medium μ road (μ = 0.3 to 0.7) 0.16 <K1 Low μ road (μ = 0.3 or less)
【0048】この回帰係数K1のしきい値は、たとえば
今までの実験データから得ることができる。The threshold value of the regression coefficient K1 can be obtained, for example, from the experimental data obtained so far.
【0049】つぎに路面の情報(滑りやすいなど)を
運転手に警報する。Next, the driver is warned of road surface information (such as slipperiness).
【0050】さらには、路面の状態をABS装置やTR
C装置などの制御に使用する。Furthermore, the condition of the road surface can be measured by an ABS device or TR.
It is used to control the C device.
【0051】つぎに本発明を実施例に基づいて説明する
が、本発明はかかる実施例のみに限定されるものではな
い。Next, the present invention will be explained based on examples, but the present invention is not limited to such examples.
【0052】[0052]
【実施例】まず前輪駆動車の4輪タイヤとして、スタッ
ドレスタイヤ(住友ゴム工業(株)製 グラスピックD
S−1)を使用し、車両をドライアスファルト路R1、
圧雪路R2および凍結アスフャルト路R3を走行させ
た。このときの走行条件は、各路面とも50km/h前
後の走行である。車輪の車輪速度のサンプリング時間に
関し、データ数を多く、かつばらつきや測定誤差を排除
するために、たとえば1秒ではサンプリング時間が長す
ぎるため、40msとした。Example First, as a four-wheel tire for a front-wheel drive vehicle, a studless tire (Glass Pick D manufactured by Sumitomo Rubber Industries, Ltd.)
Use S-1) to drive the vehicle onto the dry asphalt road R1,
The compaction road R2 and the frozen Asfart road R3 were run. The running condition at this time is running around 50 km / h on each road surface. Regarding the sampling time of the wheel speed of the wheel, in order to eliminate the variation and the measurement error with a large number of data, for example, 1 second is too long, so the sampling time is set to 40 ms.
【0053】そして図4に示されるように、回転速度検
出手段から出力される車輪速パルスに基づいて、車輪速
度を取り込み、40msごとの従動輪の平均車輪加減速
度(車両の加減速度)および前後輪のスリップ比を計算
した(スッテプS1、S2、S3)。Then, as shown in FIG. 4, the wheel speed is taken in based on the wheel speed pulse output from the rotation speed detecting means, and the average wheel acceleration / deceleration (acceleration / deceleration of the vehicle) and the front / rear direction of the driven wheels every 40 ms. The slip ratio of the wheels was calculated (steps S1, S2, S3).
【0054】ついで、従動輪の平均車輪加減速度および
前後輪のスリップ比について、1秒分の25個のデータ
を平均化し、サンプリング時間(40ms)ごとに移動
平均値として求めた(スッテプS4、S5)。ここで、
スリップ比が0.05以上または−0.05以下となっ
た場合は、その時点でスリップ警報を発することとした
(ステップ6)。それ以外の場合は、移動平均された従
動輪の平均車輪加減速度とスリップ比の50個分のデー
タでスリップ比に対する従動輪の平均車輪加減速度の1
次の回帰係数K1を求めた(スッテプS7)。Next, about the average wheel acceleration / deceleration of the driven wheels and the slip ratios of the front and rear wheels, 25 pieces of data for 1 second were averaged and obtained as a moving average value for each sampling time (40 ms) (steps S4 and S5). ). here,
When the slip ratio is 0.05 or more or −0.05 or less, a slip alarm is issued at that time (step 6). In other cases, the average wheel acceleration / deceleration of the driven wheel and the slip ratio of the average wheel acceleration / deceleration of the driven wheel are set to 1 based on the data of 50 pieces of the average wheel acceleration / deceleration of the driven wheel and the slip ratio.
The next regression coefficient K1 was obtained (step S7).
【0055】さらに、このときの相関係数Rを求め(ス
テップ8)、この相関係数Rが0.6以上であれば回帰
係数K1の値を更新し、保持した(ステップ9)。 こ
のときのそれぞれの路面で得られた回帰係数の経時変化
を図5に示す。ドライアスファルトR1の場合、回帰係
数K1は絶えず0.12以下で推移しているのに対し、
圧雪路R2では、約0.1〜0.2のあいだで推移して
いる。また凍結アスファルト路R3では、回帰係数K1
の値が大きく変動しているのがわかる。これは、路面の
状態が一定でないためである。事実、評価を行なった路
面は、一見黒くアスファルトと思われたが、実際に車か
ら降りると、いたるところで凍結しており、非常に滑り
やすい状態であった。Further, the correlation coefficient R at this time is obtained (step 8), and if the correlation coefficient R is 0.6 or more, the value of the regression coefficient K1 is updated and held (step 9). FIG. 5 shows the change over time of the regression coefficient obtained on each road surface at this time. In the case of dry asphalt R1, while the regression coefficient K1 has been constantly below 0.12,
In the snow-covered road R2, it has been transitioning between about 0.1 and 0.2. In the frozen asphalt road R3, the regression coefficient K1
It can be seen that the value of fluctuates greatly. This is because the condition of the road surface is not constant. In fact, the road surface that was evaluated seemed black and asphalt at first glance, but when I actually got out of the car, it was frozen everywhere and was very slippery.
【0056】そして、回帰係数K1の値と予め設定され
たしきい値(0.12と0.18)を比較し、タイヤと
路面との摩擦係数μを判定する。前記回帰係数K1およ
び相関係数Rの演算は、サンプリング時間(40ms)
ごとに行ない、以下のしきい値により路面μを判定した
(ステップ10、11、12)。Then, the value of the regression coefficient K1 is compared with a preset threshold value (0.12 and 0.18) to determine the friction coefficient μ between the tire and the road surface. The calculation of the regression coefficient K1 and the correlation coefficient R is performed at a sampling time (40 ms).
The road surface μ was determined based on the following threshold values (steps 10, 11, 12).
【0057】 K1≦0.12 高μ路(警報、注意報とも発しない) 0.12<K1≦0.18 中μ路(スリップ注意報を発する) 0.18<K1 低μ路(スリップ警報を発する)[0057] K1 ≦ 0.12 High μ road (No alarm or warning is issued) 0.12 <K1 ≦ 0.18 Medium μ road (Slip warning is issued) 0.18 <K1 Low μ road (slip alarm is issued)
【0058】その結果、ドライアスファルトの場合、ス
リップ注意報およびスリップ警報とも全く発生しなかっ
た。圧雪路の場合は、ほとんど絶えずスリップ注意報が
発せられ、まれにスリップ警報も発せられた。凍結アス
ファルトでは、スリップ注意報のみならず、スリップ警
報も頻繁に発せられた。As a result, in the case of dry asphalt, neither slip warning nor slip warning occurred at all. In the case of a snow-covered road, a slip warning was issued almost constantly, and a slip warning was issued in rare cases. In frozen asphalt, not only slip warnings but also slip warnings were frequently issued.
【0059】なお、本実施例では、回帰直線を求めるデ
ータ数を50個としたが、本発明においては、これに限
られるものではない。ただ、データ数が少なすぎると信
頼性の高い結果が得られなくなるために、最低5個以上
は必要であるが、逆にデータ数を多くしすぎると、それ
だけサンプリング時間がかかり、路面の状態が次々に変
化する場合は、データがばらついてしまい相関係数が逆
に低くなって路面μを判別できない場合が増える結果と
なるので、サンプリング時間とのかねあいで決定するの
が望ましい。In the present embodiment, the number of data for obtaining the regression line is set to 50, but the present invention is not limited to this. However, if the number of data is too small, reliable results cannot be obtained, so at least 5 or more are required, but if the number of data is too large, the sampling time will increase and the road surface condition will increase. In the case of successive changes, the data will be scattered and the correlation coefficient will be low on the contrary, resulting in more cases where the road surface μ cannot be discriminated. Therefore, it is desirable to decide in consideration of the sampling time.
【0060】以上のように、本システムを用いることに
より、路面μを精度よく、かつ短時間で判別することが
可能となり、運転手に滑りやすい危険な状態であること
を伝えることができた。As described above, by using the present system, the road surface μ can be accurately determined in a short time, and the driver can be informed that the vehicle is in a slippery and dangerous state.
【0061】そして、この判定された路面μの情報をA
BS装置やTRC装置などに用いることにより、路面μ
に応じた最適な制御を行なうことができる。また、低μ
路と判定された場合、運転手に滑りやすい路面であると
注意を促すことができる。Then, the information of the determined road surface μ is set to A
By using it for BS equipment and TRC equipment, etc.
Optimal control can be performed according to Also, low μ
When the road is determined, the driver can be warned that the road surface is slippery.
【0062】[0062]
【発明の効果】以上説明したとおり、本発明によれば、
4輪の車輪回転速度情報のみで路面μを精度よく、かつ
短時間で判別できるため、車両の性能および安全性を高
めることができる。As described above, according to the present invention,
Since the road surface μ can be accurately determined in a short time based only on the wheel rotation speed information of the four wheels, the performance and safety of the vehicle can be improved.
【図1】本発明の一実施の形態にかかわる路面摩擦係数
判定装置を示すブロック図である。1 is a block diagram showing a road surface friction coefficient determination equipment according to an embodiment of the present invention.
【図2】図1における路面摩擦係数判定装置の電気的構
成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the road surface friction coefficient determination device in FIG.
【図3】路面μとスリップ比との関係を示す模式図であ
る。FIG. 3 is a schematic diagram showing a relationship between a road surface μ and a slip ratio.
【図4】本実施の形態にかかわるフローチャートであ
る。FIG. 4 is a flowchart according to the present embodiment.
【図5】路面状態が異なる場合の回帰係数の経時変化を
示す図である。FIG. 5 is a diagram showing a change over time in a regression coefficient when road surface conditions are different.
1 制御ユニット 2 警報表示器 3 初期化スイッチ FLW、FRW、RLW、RRW タイヤ 1 control unit 2 alarm indicators 3 initialization switch FLW, FRW, RLW, RRW tires
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−112659(JP,A) 特開 平6−298069(JP,A) 特開 平8−216862(JP,A) 特開 平7−192086(JP,A) 特開 平11−20649(JP,A) (58)調査した分野(Int.Cl.7,DB名) B60T 8/58 G01N 19/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-112659 (JP, A) JP-A-6-298069 (JP, A) JP-A-8-216862 (JP, A) JP-A-7- 192086 (JP, A) JP-A-11-20649 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B60T 8/58 G01N 19/02
Claims (3)
に検出する工程と、該測定された回転速度から、スリッ
プ比を演算する工程と、該スリップ比と車両の加減速度
との関係式を求める工程と、該関係式の傾きと予め設定
されたしきい値を比較する工程と、当該比較の結果から
路面とタイヤとのあいだの摩擦係数を判定する工程とを
備えており、前記スリップ比および車両の加減速度を一
定時間分のデータの平均値として、サンプリング時間ご
とに移動平均化して求め、当該移動平均されたスリップ
比および車両の加減速度のデータを用いて、スリップ比
と車両の加減速度との互いの1次の回帰係数と相関係数
を求め、該相関係数の値が設定値以上の場合、該回帰係
数を更新および保持し、該回帰係数の値と予め設定され
たしきい値とを比較することによりタイヤと路面との摩
擦係数を判定する路面摩擦係数判定方法。1. A step of periodically detecting the rotational speeds of four tires of a vehicle, a step of calculating a slip ratio from the measured rotational speeds, and a relationship between the slip ratio and the acceleration / deceleration of the vehicle. The method includes a step of obtaining an expression, a step of comparing a slope of the relational expression with a preset threshold value, and a step of determining a friction coefficient between a road surface and a tire from a result of the comparison , Adjust the slip ratio and vehicle acceleration / deceleration
As the average value of the data for a fixed time, the sampling time
And the moving average is calculated, and the moving averaged slip is calculated.
Using the ratio and vehicle acceleration / deceleration data, the slip ratio
And regression coefficient and correlation coefficient of acceleration and deceleration of vehicle
If the value of the correlation coefficient is greater than or equal to the set value, the regression coefficient
Update and hold the number, preset with the value of the regression coefficient
By comparing the threshold value with the
The road surface friction coefficient determining how to determine the friction coefficient.
秒以下で行なう請求項1記載の路面摩擦係数判定方法。2. The detection of the rotation speed is at least 0.1.
The road surface friction coefficient determination method according to claim 1, wherein performing a second.
の回転速度検出手段の測定値から演算する請求項1また
は2記載の路面摩擦係数判定方法。 3. A process according to claim 1 also <br/> 2 road surface friction coefficient determination method according to calculation from measured values of the rotational speed detecting means of the tire of the four-wheel acceleration or deceleration of the vehicle.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000064963A JP3515040B2 (en) | 2000-03-09 | 2000-03-09 | Road surface friction coefficient determination method |
TW090103519A TW486438B (en) | 2000-03-09 | 2001-02-16 | Device and method for determining coefficient of road surface friction |
KR1020010009154A KR100600466B1 (en) | 2000-03-09 | 2001-02-23 | Apparatus and method for judging road friction coefficient |
EP01302137A EP1132271A3 (en) | 2000-03-09 | 2001-03-08 | Apparatus and method for assessing condition of road surface |
CNB011113030A CN1288014C (en) | 2000-03-09 | 2001-03-09 | Device and method for determining road surface friction coefficient |
US09/801,643 US6577941B2 (en) | 2000-03-09 | 2001-03-09 | Apparatus and method for determining condition of road surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000064963A JP3515040B2 (en) | 2000-03-09 | 2000-03-09 | Road surface friction coefficient determination method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001253334A JP2001253334A (en) | 2001-09-18 |
JP3515040B2 true JP3515040B2 (en) | 2004-04-05 |
Family
ID=18584568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000064963A Expired - Fee Related JP3515040B2 (en) | 2000-03-09 | 2000-03-09 | Road surface friction coefficient determination method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3515040B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4153688B2 (en) | 2001-10-16 | 2008-09-24 | 住友ゴム工業株式会社 | Road surface condition determination method and apparatus, and road surface condition determination threshold setting program |
JP3923808B2 (en) | 2002-01-23 | 2007-06-06 | 住友ゴム工業株式会社 | Tire pressure drop warning method and apparatus, and tire decompression determination program |
DE60300521T2 (en) * | 2002-06-13 | 2006-02-23 | Société de Technologie Michelin | Stability control system of a vehicle using an invariance function characteristic of all tires |
EP1372049A1 (en) * | 2002-06-13 | 2003-12-17 | Société de Technologie Michelin | Servo method for maintaining the wheel-sliding at an optimal level in order to achieve a maximum coefficent of adherance |
DE60317290T2 (en) | 2002-11-13 | 2008-08-28 | Sumitomo Rubber Industries Ltd., Kobe | Method, device and program for determining road conditions |
JP2005138702A (en) * | 2003-11-06 | 2005-06-02 | Sumitomo Rubber Ind Ltd | Method, device and program for determining road surface state |
JP2006035928A (en) * | 2004-07-23 | 2006-02-09 | Sumitomo Rubber Ind Ltd | Road surface state determining method and device, and road surface state determining program |
JP4823642B2 (en) | 2005-10-21 | 2011-11-24 | 住友ゴム工業株式会社 | Tire pressure drop warning method and apparatus using GPS information, and tire pressure drop warning program |
FR2909946B1 (en) * | 2006-12-13 | 2010-09-17 | Soc Tech Michelin | METHOD FOR ESTIMATING A GROUND BOND FAULT RISK OF A MOTOR VEHICLE |
EP3472008B1 (en) * | 2016-06-15 | 2021-10-06 | Volvo Truck Corporation | A wheel controller for a vehicle |
DE102020113937A1 (en) * | 2019-05-27 | 2020-12-03 | Jtekt Corporation | System for determining a tire condition |
JP7434909B2 (en) * | 2020-01-10 | 2024-02-21 | 住友ゴム工業株式会社 | Road surface condition determination device, determination method, and determination program |
JP7396053B2 (en) * | 2020-01-10 | 2023-12-12 | 住友ゴム工業株式会社 | Tire slip ratio determination device, determination method, and determination program; road surface condition determination device, determination method, and determination program |
JP7396054B2 (en) * | 2020-01-10 | 2023-12-12 | 住友ゴム工業株式会社 | Tire slip ratio determination device, determination method, and determination program |
WO2021144010A1 (en) * | 2020-01-15 | 2021-07-22 | Volvo Truck Corporation | Methods for setting a heavy duty vehicle in motion |
CN113788022B (en) * | 2020-11-19 | 2023-08-11 | 北京京东乾石科技有限公司 | Vehicle control method, device, computer readable storage medium and electronic equipment |
JP2024077834A (en) | 2022-11-29 | 2024-06-10 | 住友ゴム工業株式会社 | Estimation device of water screen thickness on road surface, estimation method and estimation program |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3352497B2 (en) * | 1993-04-14 | 2002-12-03 | マツダ株式会社 | Anti-skid brake system for vehicles |
JP3409389B2 (en) * | 1993-10-18 | 2003-05-26 | 株式会社デンソー | Road surface friction coefficient estimation device |
JP3338537B2 (en) * | 1993-12-27 | 2002-10-28 | 株式会社リコー | Image tilt detector |
JPH08216862A (en) * | 1995-02-09 | 1996-08-27 | Nissan Motor Co Ltd | Antiskid controller |
JP3435625B2 (en) * | 1997-06-27 | 2003-08-11 | 株式会社豊田中央研究所 | Road surface condition calculation device |
-
2000
- 2000-03-09 JP JP2000064963A patent/JP3515040B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001253334A (en) | 2001-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100600466B1 (en) | Apparatus and method for judging road friction coefficient | |
JP3515040B2 (en) | Road surface friction coefficient determination method | |
JP3150893B2 (en) | Tire identification method and device | |
JP3418121B2 (en) | Apparatus and method for detecting tire wear state | |
US9037376B2 (en) | Road-surface condition estimating device | |
JP4153688B2 (en) | Road surface condition determination method and apparatus, and road surface condition determination threshold setting program | |
JP3409389B2 (en) | Road surface friction coefficient estimation device | |
JP3535076B2 (en) | Road surface friction coefficient determining apparatus and method | |
JP2003211925A (en) | Tire pressure drop warning method and device and program for determining tire decompression | |
JP3544149B2 (en) | Tire identification device and method | |
JP4414547B2 (en) | Road surface friction coefficient judging apparatus and method | |
JP4138283B2 (en) | Road surface state determination device and method, and road surface state determination program | |
JP2003267012A (en) | Method and apparatus for detecting decrease in tire air pressure, and program for determining tire pressure reduction | |
US6917864B2 (en) | Method and apparatus for detecting decrease in tire air-pressure, and program for judging decompression of tire | |
JP2002362345A (en) | Road surface condition determining device and method and determining program of road surface condition | |
JPH07128221A (en) | Road condition detector | |
JP2001163202A (en) | Road surface friction coefficient decision device and method therefor | |
JP2004175349A (en) | Road surface condition determining method and device, and program for determining road surface condition | |
JP4171174B2 (en) | Tire identification apparatus and method | |
JP4668571B2 (en) | Road surface state determination method and apparatus, and road surface state determination program | |
JP4425478B2 (en) | Road surface state estimation method and apparatus | |
JP2004161116A (en) | Road surface condition determination method and device thereof, and road surface condition determination program | |
JP2002221527A (en) | Wear state detection method and device for tire, and wear determination program for tire | |
JP4107988B2 (en) | Road surface state determination device and method, and road surface state determination program | |
JP2008018940A (en) | Method and device for detecting lowering of tire pressure, and program for determining reduction of tire pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3515040 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090123 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090123 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100123 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110123 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110123 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130123 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130123 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140123 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |