JP2004175349A - Road surface condition determining method and device, and program for determining road surface condition - Google Patents
Road surface condition determining method and device, and program for determining road surface condition Download PDFInfo
- Publication number
- JP2004175349A JP2004175349A JP2003374265A JP2003374265A JP2004175349A JP 2004175349 A JP2004175349 A JP 2004175349A JP 2003374265 A JP2003374265 A JP 2003374265A JP 2003374265 A JP2003374265 A JP 2003374265A JP 2004175349 A JP2004175349 A JP 2004175349A
- Authority
- JP
- Japan
- Prior art keywords
- road surface
- speed
- vehicle
- information
- calculated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000001133 acceleration Effects 0.000 claims abstract description 33
- 238000001514 detection method Methods 0.000 claims abstract description 23
- 238000012545 processing Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
本発明は路面状態判定方法および装置、ならびに路面状態判定のプログラムに関する。さらに詳しくは、とくに4輪駆動車において、走行中の路面の状態を判定することができる路面状態判定方法および装置、ならびに路面状態判定のプログラムに関する。 The present invention relates to a method and a device for determining a road surface condition and a program for determining a road surface condition. More specifically, the present invention relates to a road surface state determination method and apparatus that can determine the road surface state during traveling, particularly in a four-wheel drive vehicle, and a road surface state determination program.
従来より、タイヤと路面とのあいだの制動力が最大値をこえてタイヤがロック状態になる前に、車輪に作用するブレーキトルクを低下させて車輪のロック状態を防止し、最大制動力が得られる車輪の回転数を制御するアンチロックブレーキ装置などが提案されている。このアンチロックブレーキ装置には、たとえば車両の加速度とスリップ比との関係式を求めたのち、該関係式の傾きと予め設定されたしきい値を比較して、当該比較の結果から路面とタイヤとのあいだの摩擦係数を判定する路面摩擦係数判定方法を用いることができる(特許文献1参照)。 Conventionally, before the braking force between the tire and the road surface exceeds the maximum value and the tire is locked, the brake torque acting on the wheel is reduced to prevent the wheel from being locked, and the maximum braking force is obtained. For example, an anti-lock brake device that controls the number of rotations of a driven wheel has been proposed. The antilock brake device calculates a relational expression between, for example, vehicle acceleration and a slip ratio, compares the slope of the relational expression with a preset threshold value, and obtains a road surface and a tire from the result of the comparison. (Refer to Patent Document 1).
しかしながら、前記路面摩擦係数判定方法における車両の加速度とスリップ比との関係では、従動輪の回転速度から求められる車両の加速度を用いて、路面とタイヤのμ−s曲線の勾配を求め、路面の滑りやすさを判定しているため、4輪駆動車には適用できないという問題がある。 However, in the relationship between the vehicle acceleration and the slip ratio in the road surface friction coefficient determination method, the gradient of the μ-s curve between the road surface and the tire is obtained using the vehicle acceleration obtained from the rotation speed of the driven wheel, and the road surface Since the slipperiness is determined, there is a problem that the method cannot be applied to a four-wheel drive vehicle.
本発明は、叙上の事情に鑑み、4輪駆動車であっても、走行中の路面の状態を判定することができる路面状態判定方法および装置、ならびに路面状態判定のプログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a road surface state determination method and apparatus that can determine the state of a running road surface even in a four-wheel drive vehicle, and a program for road surface state determination. Aim.
本発明の路面状態判定方法は、4輪車両が走行している路面の状態を判定する路面状態判定方法であって、車輪速検出手段から得られる走行中の4輪車両の駆動輪の車輪速回転情報と、GPS電波を受信し、算出される位置情報との関係から、走行中の路面の状態を判定することを特徴とする。 The road surface state determination method of the present invention is a road surface state determination method for determining a state of a road surface on which a four-wheeled vehicle is traveling, wherein a wheel speed of a driving wheel of a traveling four-wheeled vehicle obtained from wheel speed detection means. The state of the road surface during traveling is determined from the relationship between the rotation information and the position information calculated by receiving the GPS radio wave.
また、本発明の路面状態判定装置は、4輪車両が走行している路面の状態を判定する路面状態判定装置であって、車両の駆動輪のタイヤの車輪速回転情報を検出する車輪速検出手段と、GPS電波を受信し、位置情報を算出するGPS装置と、車輪速回転情報と位置情報との関係から、走行中の路面の状態を判定する路面状態判定手段とを備えることを特徴とする。 Further, the road surface state determination device of the present invention is a road surface state determination device that determines a state of a road surface on which a four-wheel vehicle is traveling, and detects wheel speed rotation information of tires of driving wheels of the vehicle. Means, a GPS device that receives GPS radio waves and calculates position information, and a road surface state determination unit that determines the state of the road surface during traveling from the relationship between the wheel speed rotation information and the position information. I do.
また、本発明の路面状態判定のプログラムは、路面の状態を判定するためにコンピュータを、車輪速検出手段から得られる車両の駆動輪のタイヤの車輪速回転情報と、GPS電波を受信し、位置情報を算出するGPS装置から得られる車両の位置情報との関係から、走行中の路面の状態を判定する路面状態判定手段として機能させることを特徴とする。 Further, the road surface condition determination program according to the present invention receives the wheel speed rotation information of the tires of the driving wheels of the vehicle obtained from the wheel speed detection means and the GPS radio wave to determine the road surface condition. It is characterized by functioning as road surface state determination means for determining a road surface state during traveling from a relationship with vehicle position information obtained from a GPS device that calculates information.
さらに本発明の路面状態判定方法は、4輪車両が走行している路面の状態を判定する路面状態判定方法であって、車輪速検出手段から得られる走行中の4輪車両の駆動輪の車輪速回転情報と、GPS電波を受信し、算出される車両の速度情報との関係から、走行中の路面の状態を判定することを特徴とする。 Further, the road surface condition determination method according to the present invention is a road surface condition determination method for determining the state of a road surface on which a four-wheel vehicle is traveling, wherein the driving wheel wheels of the traveling four-wheel vehicle obtained from the wheel speed detection means are provided. It is characterized in that the state of the running road surface is determined from the relationship between the speed rotation information and the speed information of the vehicle calculated by receiving the GPS radio wave.
また、本発明の路面状態判定装置は、4輪車両が走行している路面の状態を判定する路面状態判定装置であって、車両の駆動輪のタイヤの車輪速回転情報を検出する車輪速検出手段と、GPS電波を受信し、車両の速度情報を算出するGPS装置と、車輪速回転情報と車両の速度情報との関係から、走行中の路面の状態を判定する路面状態判定手段とを備えることを特徴とする。 Further, the road surface state determination device of the present invention is a road surface state determination device that determines a state of a road surface on which a four-wheel vehicle is traveling, and detects wheel speed rotation information of tires of driving wheels of the vehicle. Means, a GPS device that receives GPS radio waves and calculates vehicle speed information, and a road surface state determining unit that determines a state of a running road surface from a relationship between wheel speed rotation information and vehicle speed information. It is characterized by the following.
また、本発明の路面状態判定のプログラムは、車輪速検出手段から得られる車両の駆動輪のタイヤの車輪速回転情報と、GPS電波を受信するGPS装置から得られる車両の速度情報との関係から、走行中の路面の状態を判定する路面状態判定手段として機能させることを特徴とする。 Further, the program for determining the road surface condition of the present invention is based on the relationship between the wheel speed rotation information of the tires of the driving wheels of the vehicle obtained from the wheel speed detecting means and the speed information of the vehicle obtained from a GPS device that receives GPS radio waves. The present invention is characterized by functioning as road surface state determination means for determining a road surface state during traveling.
本発明によれば、4輪駆動車における走行中の路面の状態を精度よく判定することができる。また、本発明は、2輪駆動車にも適用することができる。 ADVANTAGE OF THE INVENTION According to this invention, the state of the road surface at the time of driving | running | working in a four-wheel drive vehicle can be determined accurately. Further, the present invention can be applied to a two-wheel drive vehicle.
さらにGPSの位置情報と容易にリンクできるため、路面状況付の道路マップの作製を行なうことができる。 Furthermore, since it can be easily linked to GPS position information, a road map with road surface conditions can be created.
以下、添付図面に基づいて、本発明の路面状態判定方法および装置、ならびに路面状態判定のプログラムを説明する。 Hereinafter, a road surface state determination method and apparatus and a road surface state determination program according to the present invention will be described with reference to the accompanying drawings.
図1〜2に示されるように、本発明の一実施の形態にかかわる路面状態判定装置は、4輪車両に備えられた4つのタイヤFL、FR、RLおよびRRの車輪速回転情報から走行中の路面の状態を判定するもので、各タイヤにそれぞれ関連して設けられた通常の車輪速検出手段1を備えている。 As shown in FIGS. 1 and 2, a road surface condition determination device according to one embodiment of the present invention is running on the basis of wheel speed rotation information of four tires FL, FR, RL, and RR provided in a four-wheeled vehicle. And a normal wheel speed detecting means 1 provided in association with each tire.
前記車輪速検出手段1としては、電磁ピックアップなどを用いて回転パルスを発生させてパルスの数から車輪速回転情報を測定する車輪速センサまたはダイナモのように回転を利用して発電を行ない、この電圧から車輪速回転情報を測定するものを含む角速度センサなどを用いることができる。前記車輪速検出手段1の出力はABSなどのコンピュータである制御ユニット2に与えられる。この制御ユニット2には、GPSアンテナ3aからGPS電波を受信し、走行中の車両の位置と速度の位置情報を算出するGPS装置3が接続されている。また、路面の状態(高μ路、中μ路、低μ路)のうち、低μ路をドライバーに知らせる低μ路警報表示器4、たとえば液晶表示素子、プラズマ表示素子またはCRTなどから構成された表示手段が接続されている。
The wheel speed detecting means 1 generates a rotation pulse by using an electromagnetic pickup or the like and measures the wheel speed rotation information from the number of pulses. An angular velocity sensor including one that measures wheel speed rotation information from a voltage can be used. The output of the wheel speed detecting means 1 is given to a
制御ユニット2は、図2に示されるように、外部装置との信号の受け渡しに必要なI/Oインターフェイス2aと、演算処理の中枢として機能するCPU2bと、該CPU2bの制御動作プログラムが格納されたROM2cと、前記CPU2bが制御動作を行なう際にデータなどが一時的に書き込まれたり、その書き込まれたデータなどが読み出されるRAM2dとから構成されている。
As shown in FIG. 2, the
前記車輪速検出手段1では、タイヤの回転数に対応したパルス信号(以下、車輪速パルスという)が出力される。またCPU2bでは、車輪速検出手段1から出力された車輪速パルスに基づき、所定のサンプリング周期ΔT(sec)、たとえばΔT=1秒ごとに各タイヤの回転角速度Fiが算出される。
The wheel speed detecting means 1 outputs a pulse signal (hereinafter referred to as a wheel speed pulse) corresponding to the number of rotations of the tire. Further, the
ここで、タイヤは、規格内でのばらつき(初期差異)が含まれて製造されるため、各タイヤの有効転がり半径(一回転により進んだ距離を2πで割った値)は、すべてのタイヤがたとえ正常空気圧であっても、同一とは限らない。そのため、各タイヤの回転角速度Fiはばらつくことになる。そこで、初期差異によるばらつきを打ち消すために補正した回転角速度F1iを算出する。具体的には、
F11=F1
F12=mF2
F13=F3
F14=nF4
と補正される。前記補正係数m、nは、たとえば車両が直線走行していることを条件として回転角速度Fiを算出し、この算出された回転角速度Fiに基づいて、m=F1/F2、n=F3/F4として得られる。そして、前記車輪速回転情報は、車輪速検出手段1の車輪速パルスの周期とパルス数を所定の時間間隔ごとに読み込み、算出される回転速度であり、前記F1iに基づき、各車輪のタイヤの回転速度Viを算出する。
Here, since the tires are manufactured by including the variation (initial difference) within the standard, the effective rolling radius of each tire (the value obtained by dividing the distance traveled by one revolution by 2π) is equal to that of all the tires. Even at normal air pressures, they are not always the same. Therefore, the rotational angular velocities F i of the respective tires vary. Therefore, the rotational angular velocity F1 i corrected to cancel the variation due to the initial difference is calculated. In particular,
F1 1 = F 1
F1 2 = mF 2
F1 3 = F 3
F1 4 = nF 4
Is corrected. The correction factor m, n, for example the vehicle calculates the rotational angular velocity F i under the condition that it is traveling straight, based on the rotational angular velocities F i The calculated, m = F 1 / F 2 , n = Obtained as F 3 / F 4 . Then, the wheel speed rotational information, the period and number of pulses of the wheel speed pulses of the wheel speed detecting means 1 reads the predetermined time intervals, a rotational speed calculated based on the F1 i, tires of the wheels Is calculated.
従来より、カーナビゲーションに代表されるように、車両の位置測定については全地球測位システム(GPS)を利用した側位が一般的に知られている。民間利用が許されている周波数帯における位置精度の向上について、多くの研究がなされており、その中で、各衛星から送られてくる情報の搬送波の位相を測定することでその精度を向上させる技術が電子情報通信学会誌(Vol.82 No.12)に紹介されている。 2. Description of the Related Art Conventionally, as represented by car navigation, a side position using a global positioning system (GPS) is generally known for position measurement of a vehicle. Much research has been done on improving the position accuracy in the frequency band where civil use is allowed. Among them, the accuracy is improved by measuring the phase of the carrier wave of the information sent from each satellite. The technology is introduced in the Journal of the Institute of Electronics, Information and Communication Engineers (Vol. 82 No. 12).
本発明は、GPSによる車両の情報(位置情報、車速情報など)を高精度に取得し、車両が走行している路面の状態を判定する。そして、この路面の状態により走行中の路面の滑りやすさを検知し、低μ路である場合、ドライバーに警報を発する。 The present invention acquires vehicle information (position information, vehicle speed information, and the like) by GPS with high accuracy, and determines the state of the road surface on which the vehicle is traveling. Then, the slipperiness of the running road surface is detected based on the state of the road surface, and if the road is a low μ road, an alarm is issued to the driver.
本実施の形態では、前記車輪速検出手段1と、GPS装置3と、回転速度と位置情報との関係から、走行中の路面の状態を判定する路面状態判定手段とから構成されている。
In the present embodiment, the vehicle includes the wheel speed detecting means 1, the
GPS装置3としては、たとえばレースロジック(RACELOGIC)社製のVBOX(商品名)を用いることができる。このVBOXは、衛星電波の搬送波の位相差を利用して補正するKinematic GPSという位置特定方法を採用しているため、高精度に位置を特定することができる。なお、GPS装置において、搬送波のドップラー効果を用いて、高精度に車両の速度を算出することができる場合、直接該車両の速度情報から路面状態を判定することもできる。
As the
以下、本実施の形態では、速度を直接算出することができないGPS装置について、位置情報から路面状態を判定する例について説明する。 Hereinafter, in the present embodiment, an example in which a road surface state is determined from position information for a GPS device that cannot directly calculate a speed will be described.
本実施の形態におけるGPS装置3は、回転速度を算出する速度検知の時間間隔に同期して前記位置情報を読み込み、ついで該位置情報から車両の移動距離を算出する距離演算手段と、該移動距離から車両速度と車両の加速度を算出する車両情報演算手段とからなる。また、本実施の形態では、前記回転速度と車両速度からスリップ率を演算するスリップ率演算手段を備えており、判定手段により、該スリップ率とGPS装置により算出された加速度との関係を用いて、走行中の路面の状態を判定する。ここで、スリップ率と加速度との関係というのは、一般的なタイヤと路面のμ−s曲線と同じことであり、高μ路、中μ路、低μ路により勾配が変わる。
The
さらに一定時間間隔ごとに読み込んだ回転速度と車両の速度または加速度に、所定の個数の移動平均処理を施す移動平均処理手段を備えるのが好ましい。 Further, it is preferable to include moving average processing means for performing a predetermined number of moving average processes on the rotational speed and the speed or acceleration of the vehicle read at regular time intervals.
また、本実施の形態の路面状態判定のプログラムは、制御ユニット2を、車輪速検出手段1から得られる車両の駆動輪のタイヤの回転速度と、GPS装置3から得られる車両の位置情報との関係から、走行中の路面の状態を判定する路面状態判定手段として機能させる。また、制御ユニット2を、回転速度を算出する速度検知の時間間隔に同期して前記位置情報を読み込み、ついで該位置情報から算出される車両の移動距離から算出される車両速度と前記回転速度とから、スリップ率を演算するスリップ率演算手段、該スリップ率とGPS装置により算出された加速度との関係を用いて、走行中の路面の状態を判定する判定手段として機能させる。さらに一定時間間隔ごとに読み込んだ回転速度と車両の速度または加速度に、所定の個数の移動平均処理を施す移動平均処理手段として機能させる。
In addition, the program for determining the road surface condition according to the present embodiment controls the
以下、本実施の形態の路面状態判定装置の動作の一例を手順(1)〜(6)に沿って説明する。 Hereinafter, an example of the operation of the road surface condition determination device of the present embodiment will be described along procedures (1) to (6).
(1)車両の4輪タイヤのそれぞれの回転速度(V1n、V2n、V3n、V4n)を算出する。
たとえば、ABSセンサなどのセンサから得られた車両の各車輪タイヤのある時点の車輪速データを回転速度V1n、V2n、V3n、V4nとする。
(1) The rotational speeds (V1 n , V2 n , V3 n , V4 n ) of the four-wheel tires of the vehicle are calculated.
For example, the wheel speed data at a certain point in time for each wheel tire of the vehicle obtained from a sensor such as an ABS sensor is defined as rotation speeds V1 n , V2 n , V3 n and V4 n .
(2)ついで車両の駆動輪の回転速度Tを演算する。たとえば2輪駆動車の場合、駆動輪の平均回転速度とし、4輪駆動車の場合、4輪の平均回転速度とすることができる。また、2または4駆動輪のうちの1輪の回転速度とすることもできる。 (2) Then, the rotational speed T of the drive wheels of the vehicle is calculated. For example, in the case of a two-wheel drive vehicle, the average rotational speed of the drive wheels can be used, and in the case of a four-wheel drive vehicle, the average rotational speed of the four wheels can be used. Alternatively, the rotation speed may be one of the two or four drive wheels.
(3)GPS装置を利用して算出される走行中の車両の位置情報から、車両の移動距離を算出したのち、車両速度Vfnを求める。なお、前述したように、直接速度が算出されるGPS装置の場合は、位置情報から演算しなくても車両速度Vfnを入力することができる。 (3) from the position information of the vehicle during traveling is calculated by using the GPS device, after calculating the moving distance of the vehicle, obtaining the vehicle speed Vf n. As described above, in the case of a GPS device that calculates the speed directly, the vehicle speed Vf n can be input without calculating from the position information.
(4)前記車両速度Vfnより1つ前の車両速度データから、車両速度Vfn-1とすると、車両の加速度Vafnはつぎの式(1)で求められる。
Vafn=(Vfn−Vfn-1)/Δt/G ・・・(1)
(4) from the
Vaf n = (Vf n -Vf n-1 ) / Δt / G (1)
ここで、Δtは前記回転速度のサンプリングと同期する、車両速度データから算出される平均車両速度VfnとVfn-1の時間間隔(サンプリング時間)であり、Gは重力加速度である。前記サンプリング時間としては、データのばらつきを小さくし、かつ短時間で判別するためには、0.1秒以下である必要がある。より好ましくは、0.05秒以下である。 Here, Δt is a time interval (sampling time) between the average vehicle speeds Vf n and Vf n−1 calculated from the vehicle speed data, which is synchronized with the sampling of the rotation speed, and G is a gravitational acceleration. The sampling time needs to be 0.1 second or less in order to reduce data variation and determine in a short time. More preferably, the time is 0.05 seconds or less.
(5)走行中の車両のスリップ率Sをつぎの式(2)で定義する。ここで、Tは前記駆動輪の回転速度であり、Vは前記車両速度である。
S=(T−V)/T ・・・(2)
(5) The slip ratio S of the running vehicle is defined by the following equation (2). Here, T is the rotation speed of the drive wheel, and V is the vehicle speed.
S = (T−V) / T (2)
(6)ついで車両の駆動輪のスリップ率と車両の加速度の関係を求める。 (6) Next, the relationship between the slip ratio of the drive wheels of the vehicle and the acceleration of the vehicle is determined.
ここで、このスリップ率と加速度を求めるために、
(1)路面の凹凸による外乱の影響を除くため、サンプリング時間ごとに得られた所定の個数のデータ、たとえば50個のデータを移動平均処理する。
データの数を減らさずに、データのばらつきを小さくするために、短時間のサンプリング時間、たとえば数十msごとにデータをサンプリングし、このサンプリング時間で得られたばらつきの大きいデータを移動平均する。この移動平均処理は、回転速度や車両の速度の車速データにも適用することができる。
(2)ついでスリップ率と加速度の1次式の関係を得るために、所定の個数、たとえば20個ごとの最小自乗近似法による直線近似を行ない、この処理をサンプリング時間ごとに移動計算する。
Here, in order to determine the slip rate and the acceleration,
(1) In order to eliminate the influence of disturbance due to unevenness of the road surface, a predetermined number of data obtained for each sampling time, for example, 50 data are subjected to a moving average process.
In order to reduce the variation in data without reducing the number of data, data is sampled every short sampling time, for example, every several tens of ms, and the data having large variation obtained in this sampling time is moving averaged. This moving average processing can be applied to the vehicle speed data of the rotation speed and the vehicle speed.
(2) Then, in order to obtain a linear relationship between the slip rate and the acceleration, linear approximation is performed by a least squares approximation method every predetermined number, for example, every 20 pieces, and this process is moved and calculated every sampling time.
この結果、サンプリング時間ごとに求まった直線近似式の勾配が路面の滑りやすさに応じた値となる。 As a result, the gradient of the straight-line approximation obtained for each sampling time is a value corresponding to the slipperiness of the road surface.
つぎに本発明を実施例に基づいて説明するが、本発明はかかる実施例のみに限定されるものではない。 Next, the present invention will be described based on examples, but the present invention is not limited to only these examples.
車両として、4輪駆動車(排気量2.0L)を用意した。タイヤのサイズは205/55R16である。また、車両の走行条件としては、住友ゴム工業株式会社の岡山トラックコースにおいて、セラミックタイル、ドルセットペブルおよびウェットコンクリートの路面μを変えた路面を採用した。また、車両に搭載したGPSセンサは、RACELOGIC社製のVBOX PROである。サンプリング周波数は50Hzである。 A four-wheel drive vehicle (displacement 2.0 L) was prepared as a vehicle. The size of the tire is 205 / 55R16. In addition, as a running condition of the vehicle, a road surface in which the road surface μ of ceramic tile, dolset pebble and wet concrete was changed in Okayama truck course of Sumitomo Rubber Industries, Ltd. was adopted. The GPS sensor mounted on the vehicle is VBOX PRO manufactured by RACELOGIC. The sampling frequency is 50 Hz.
ついで前記各種の路面を約10秒間走行した。本実施の形態にかかわる路面状態判定のプログラムを格納した路面状態判定装置を用いて、プロットしたスリップ率と加速度との関係を図3に示す。図3から、路面ごとにその線形近似式の勾配が異なり、低μ路ほど勾配が大きいことがわかる。 Next, the vehicle traveled on the various road surfaces for about 10 seconds. FIG. 3 shows the relationship between the slip ratio and the acceleration plotted using the road surface condition determination device that stores the road surface condition determination program according to the present embodiment. From FIG. 3, it can be seen that the gradient of the linear approximation equation differs for each road surface, and that the gradient increases as the μ road becomes lower.
したがって、車両が走行中の路面の状態を判定して、これを自動変速機の変速制御情報、タイヤ空気圧低下検出装置(DWS)や路面状態判定システムに用いることにより、走行性能および走行安全性を向上させることができる。 Therefore, by determining the state of the road surface while the vehicle is traveling, and using this information for the shift control information of the automatic transmission, the tire pressure drop detection device (DWS) and the road surface state determination system, the traveling performance and traveling safety are improved. Can be improved.
1 車輪速検出手段
2 制御ユニット
3 GPS装置
3a GPSアンテナ
4 警報表示器
DESCRIPTION OF
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003374265A JP2004175349A (en) | 2002-11-13 | 2003-11-04 | Road surface condition determining method and device, and program for determining road surface condition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002329278 | 2002-11-13 | ||
JP2003374265A JP2004175349A (en) | 2002-11-13 | 2003-11-04 | Road surface condition determining method and device, and program for determining road surface condition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004175349A true JP2004175349A (en) | 2004-06-24 |
Family
ID=32716183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003374265A Pending JP2004175349A (en) | 2002-11-13 | 2003-11-04 | Road surface condition determining method and device, and program for determining road surface condition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004175349A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007106169A (en) * | 2005-10-11 | 2007-04-26 | Sumitomo Rubber Ind Ltd | Road surface condition presuming device and method, and program for presuming road surface condition |
JP2007106297A (en) * | 2005-10-14 | 2007-04-26 | Sumitomo Rubber Ind Ltd | Road surface condition presuming device and method, and program for presuming road surface condition |
JP2007163157A (en) * | 2005-12-09 | 2007-06-28 | Sumitomo Rubber Ind Ltd | Method, apparatus, and program for estimating vehicle load |
US7451642B2 (en) | 2004-09-14 | 2008-11-18 | Bridgestone Corporation | System and method for quantitative analysis of cause of tire trouble |
US7856870B2 (en) | 2005-10-21 | 2010-12-28 | Sumitomo Rubber Industries, Ltd. | Method for alarming inner pressure lowering of tires using GPS information and device thereof, and program for alarming inner pressure lowering of tires |
US7885765B2 (en) | 2006-07-26 | 2011-02-08 | Denso Corporation | Method and apparatus for estimating behaviors of vehicle using GPS signals |
US20120283944A1 (en) * | 2009-12-03 | 2012-11-08 | Teconer Oy | Method and system for mapping road conditions by means of terminals |
KR102294792B1 (en) * | 2020-05-27 | 2021-08-30 | 넥센타이어 주식회사 | A testing apparatus for a tire |
-
2003
- 2003-11-04 JP JP2003374265A patent/JP2004175349A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7451642B2 (en) | 2004-09-14 | 2008-11-18 | Bridgestone Corporation | System and method for quantitative analysis of cause of tire trouble |
JP2007106169A (en) * | 2005-10-11 | 2007-04-26 | Sumitomo Rubber Ind Ltd | Road surface condition presuming device and method, and program for presuming road surface condition |
JP2007106297A (en) * | 2005-10-14 | 2007-04-26 | Sumitomo Rubber Ind Ltd | Road surface condition presuming device and method, and program for presuming road surface condition |
US7856870B2 (en) | 2005-10-21 | 2010-12-28 | Sumitomo Rubber Industries, Ltd. | Method for alarming inner pressure lowering of tires using GPS information and device thereof, and program for alarming inner pressure lowering of tires |
JP2007163157A (en) * | 2005-12-09 | 2007-06-28 | Sumitomo Rubber Ind Ltd | Method, apparatus, and program for estimating vehicle load |
US7885765B2 (en) | 2006-07-26 | 2011-02-08 | Denso Corporation | Method and apparatus for estimating behaviors of vehicle using GPS signals |
US8170797B2 (en) | 2006-07-26 | 2012-05-01 | Denso Corporation | Method and apparatus for estimating behaviors of vehicle using GPS signals |
US20120283944A1 (en) * | 2009-12-03 | 2012-11-08 | Teconer Oy | Method and system for mapping road conditions by means of terminals |
US8855923B2 (en) * | 2009-12-03 | 2014-10-07 | Teconer Oy | Method and system for mapping road conditions by means of terminals |
KR102294792B1 (en) * | 2020-05-27 | 2021-08-30 | 넥센타이어 주식회사 | A testing apparatus for a tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7389170B2 (en) | Method and apparatus for judging road surface conditions and program for judging road surface conditions | |
JPH1178442A (en) | Apparatus and method for detecting tire wear state | |
JP2008247126A (en) | Tire wear warning method | |
KR100875405B1 (en) | A method and apparatus for detecting a decompression of a tire, and a computer-readable recording medium having recorded thereon a program for determining a decompression of a tire. | |
JP3515040B2 (en) | Road surface friction coefficient determination method | |
JPH09249010A (en) | Initial correction coefficient calculation device and device using the same | |
JP3811366B2 (en) | Road surface information distribution system, vehicle information aggregation and distribution system, vehicle information transmission device, and vehicle control program | |
JPH10297228A (en) | Tire pneumatic pressure alarm device | |
JP2007112334A (en) | Method and device for warning reduction in tire internal pressure using global positioning system information, and alarm program for reduction in tire internal pressure | |
JP2004175349A (en) | Road surface condition determining method and device, and program for determining road surface condition | |
JP3535076B2 (en) | Road surface friction coefficient determining apparatus and method | |
JP3544149B2 (en) | Tire identification device and method | |
EP0970823A2 (en) | Apparatus for identifying tyres and method thereof | |
JP5183275B2 (en) | Road surface state determination device and method, and road surface state determination program | |
JP2003267012A (en) | Method and apparatus for detecting decrease in tire air pressure, and program for determining tire pressure reduction | |
JP4028842B2 (en) | Tire pressure drop detection method and apparatus, and tire decompression determination program | |
JP4668571B2 (en) | Road surface state determination method and apparatus, and road surface state determination program | |
JP4672333B2 (en) | Tire identification apparatus and method | |
JP4636991B2 (en) | Road surface state estimation device and method, and road surface state estimation program | |
JP2002221527A (en) | Wear state detection method and device for tire, and wear determination program for tire | |
JP3167278B2 (en) | Method and apparatus for detecting decrease in tire air pressure | |
JP4086763B2 (en) | Tire pressure drop detection method and apparatus, and tire decompression determination program | |
JP2008247243A (en) | Threshold setting method in method for judging lowering of internal pressure of tire | |
JP2002181669A (en) | Tire distinguishing device and method | |
JP2004142555A (en) | Method, device and program for determining road surface friction coefficient |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090901 |