[go: up one dir, main page]

JP3511970B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device

Info

Publication number
JP3511970B2
JP3511970B2 JP2000067673A JP2000067673A JP3511970B2 JP 3511970 B2 JP3511970 B2 JP 3511970B2 JP 2000067673 A JP2000067673 A JP 2000067673A JP 2000067673 A JP2000067673 A JP 2000067673A JP 3511970 B2 JP3511970 B2 JP 3511970B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
substrate
electrode
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000067673A
Other languages
Japanese (ja)
Other versions
JP2000277804A (en
Inventor
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32095285&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3511970(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP14847095A external-priority patent/JP3259811B2/en
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2000067673A priority Critical patent/JP3511970B2/en
Publication of JP2000277804A publication Critical patent/JP2000277804A/en
Application granted granted Critical
Publication of JP3511970B2 publication Critical patent/JP3511970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオード、レーザ
ダイオード等の発光デバイス、又はフォトダイオード等
の受光デバイスに使用される窒化物半導体(InXAlY
Ga1-X-YN、0≦X、0≦Y、X+Y≦1)よりなる素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitride semiconductor (In X Al Y ) used for a light emitting device such as a light emitting diode or a laser diode, or a light receiving device such as a photodiode.
Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1).

【0002】[0002]

【従来の技術】窒化物半導体はそのバンドギャップエネ
ルギーが1.9eV〜6.0eVまであるので発光素
子、受光素子等の各種半導体デバイス用として注目され
ており、最近この材料を用いた青色LED、青緑色LE
Dが実用化されたばかりである。
2. Description of the Related Art Since nitride semiconductors have bandgap energies of 1.9 eV to 6.0 eV, they have attracted attention for use in various semiconductor devices such as light emitting devices and light receiving devices. Recently, blue LEDs using this material, Turquoise LE
D has just been put to practical use.

【0003】一般に窒化物半導体素子はMBE、MOV
PE等の気相成長法を用いて、基板上にn型、p型ある
いはi型等に導電型を規定した窒化物半導体を積層成長
させることによって得られる。基板には例えばサファイ
ア、スピネル、ニオブ酸リチウム、ガリウム酸ネオジウ
ム等の絶縁性基板の他、炭化ケイ素、シリコン、酸化亜
鉛、ガリウム砒素等の導電性基板が使用できることが知
られているが、窒化物半導体と完全に格子整合する基板
は未だ開発されておらず、現在のところ、格子定数が1
0%以上も異なるサファイアの上に窒化物半導体層を強
制的に成長させた青色、青緑色LED素子が実用化され
ている。
Generally, nitride semiconductor devices are MBE, MOV
It can be obtained by stacking and growing a nitride semiconductor whose conductivity type is defined as n-type, p-type, i-type or the like on a substrate using a vapor phase growth method such as PE. It is known that, for example, an insulating substrate such as sapphire, spinel, lithium niobate, and neodymium gallate, as well as a conductive substrate such as silicon carbide, silicon, zinc oxide, and gallium arsenide can be used. Substrates that are completely lattice-matched to semiconductors have not yet been developed and currently have a lattice constant of 1
Blue and blue-green LED devices in which a nitride semiconductor layer is forcibly grown on 0% or more different sapphire have been put into practical use.

【0004】図6は従来の青色LED素子の構造を示す
模式的な断面図である。従来のLED素子は、基本的に
サファイア基板61の上に窒化物半導体よりなるn型層
62と活性層63とp型層64とが順に積層されたダブ
ルへテロ構造を有している。前記のようにサファイアは
絶縁性であり基板側から電極を取り出すことができない
ので、同一窒化物半導体層表面に正電極65と負電極6
6とが設けられた、いわゆるフリップチップ方式の素子
とされている。
FIG. 6 is a schematic sectional view showing the structure of a conventional blue LED element. The conventional LED element basically has a double hetero structure in which an n-type layer 62 made of a nitride semiconductor, an active layer 63, and a p-type layer 64 are sequentially stacked on a sapphire substrate 61. As described above, since sapphire has an insulating property and the electrode cannot be taken out from the substrate side, the positive electrode 65 and the negative electrode 6 are formed on the same nitride semiconductor layer surface.
6 is a so-called flip-chip type element.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、サファ
イアを基板とする従来のフリップチップ方式の素子には
数々の問題点がある。まず第一に、同一面側から両方の
電極を取り出すためチップサイズが大きくなり多数のチ
ップがウェーハから得られない。第二に、負電極と正電
極とが水平方向に並んでいるため電流が水平方向に流
れ、その結果電流密度が局部的に高くなりチップが発熱
する。第三にサファイアという非常に硬く、劈開性のな
い基板を使用しているので、チップ化するのに高度な技
術を必要とする。さらにLDを実現しようとする際には
基板の劈開性を用いた窒化物半導体の劈開面を共振面と
できないので共振面の形成が非常に困難である。
However, the conventional flip-chip type device using sapphire as a substrate has a number of problems. First of all, since both electrodes are taken out from the same side, the chip size becomes large and many chips cannot be obtained from the wafer. Secondly, since the negative electrode and the positive electrode are arranged in the horizontal direction, a current flows in the horizontal direction, and as a result, the current density is locally increased and the chip generates heat. Thirdly, since sapphire, which is a very hard and non-cleavable substrate, is used, it requires a high level of technology to be made into chips. Further, when attempting to realize an LD, it is very difficult to form the resonance surface because the cleavage surface of the nitride semiconductor using the cleavage property of the substrate cannot be used as the resonance surface.

【0006】以上のような問題を回避するため、上記の
ように炭化ケイ素、シリコン、酸化亜鉛、ガリウム砒
素、ガリウムリン等の導電性基板の上に窒化物半導体を
成長する試みも成されているが、未だ成功したという報
告はされていない。
In order to avoid the above problems, attempts have been made to grow a nitride semiconductor on a conductive substrate of silicon carbide, silicon, zinc oxide, gallium arsenide, gallium phosphide, etc. as described above. However, there have been no reports of success.

【0007】従って本発明はこのような事情を鑑み成さ
れたものであって、その目的とするところは、主として
上下より電極を取り出せる構造を有する窒化物半導体素
子の製造方法、および窒化物半導体素子を提供すること
にある。
Therefore, the present invention has been made in view of such circumstances, and an object thereof is to mainly provide a method for manufacturing a nitride semiconductor device having a structure in which electrodes can be taken out from above and below, and a nitride semiconductor device. To provide.

【0008】[0008]

【課題を解決するための手段】本発明の窒化物半導体発
光素子は、導電性基板上に、電極を介して光の取り出し
側とする窒化物半導体が接着してなり、該窒化物半導体
の最下層はp型層であり、最上層がn型層であって、該
n型層には部分電極が設けられていることを特徴とす
る。
The nitride semiconductor light emitting device of the present invention is a device for extracting light through an electrode on a conductive substrate.
Nitride semiconductor and the side is adhered, lowermost the nitride semiconductor is p-type layer, the top layer is an n-type layer, the
The n-type layer is characterized in that a partial electrode is provided .

【0009】本発明の方法において、絶縁性基板には前
記のようにサファイア、スピネル、ニオブ酸リチウム、
ガリウム酸ネオジウム等が用いられ、好ましくはサファ
イア、スピネルの上に成長された窒化物半導体が結晶性
に優れている。一方、窒化物半導体に接着する導電性基
板には、導電性を有する基板材料であればどのようなも
のでも良く、例えばSi、SiC、GaAs、GaP、
InP、ZnSe、ZnS、ZnO等を用いることがで
きる。但し、導電性基板は窒化物半導体が積層された絶
縁性基板とほぼ同じ形状を有し、さらにほぼ同じ面積
か、あるいはそれよりも大きな面積を有するウェーハ状
の基板を選択することはいうまでもない。
In the method of the present invention, the insulating substrate is sapphire, spinel, lithium niobate,
A neodymium gallate or the like is used, and a nitride semiconductor grown on sapphire or spinel is preferably excellent in crystallinity. On the other hand, the conductive substrate adhered to the nitride semiconductor may be any substrate material having conductivity, such as Si, SiC, GaAs, GaP,
InP, ZnSe, ZnS, ZnO or the like can be used. However, it goes without saying that the conductive substrate has substantially the same shape as the insulating substrate in which the nitride semiconductors are laminated, and a wafer-shaped substrate having substantially the same area or a larger area is selected. Absent.

【0010】一方、窒化物半導体層が積層されたウェー
ハの絶縁性基板を除去するには、例えば研磨、エッチン
グ等の技術を用いる。通常絶縁性基板の厚さは数百μm
あり、窒化物半導体層は厚くても20μm以下であるの
で、研磨により基板を除去する際に研磨厚が制御しにく
い場合は、最初研磨で大まかな部分を除去し、その後エ
ッチングで細かい部分を除去して、電極を形成するのに
必要とする窒化物半導体面を露出させても良い。また例
えばレーザ素子のように絶縁物を電流狭窄層として窒化
物半導体層表面に必要とする素子を作製する場合には、
絶縁性基板全てを除去せずに、選択エッチングにより窒
化物半導体層を露出させるのに必要な部分のみを除去す
ることも可能である。
On the other hand, in order to remove the insulating substrate of the wafer on which the nitride semiconductor layer is laminated, techniques such as polishing and etching are used. The thickness of the insulating substrate is usually several hundred μm
However, since the nitride semiconductor layer has a thickness of 20 μm or less even when it is thick, if it is difficult to control the polishing thickness when removing the substrate by polishing, first remove the rough portion by polishing and then remove the fine portion by etching. Then, the nitride semiconductor surface required for forming the electrode may be exposed. Further, for example, in the case of manufacturing an element such as a laser element that requires an insulator as a current confinement layer on the surface of the nitride semiconductor layer,
It is also possible to remove only the portion necessary for exposing the nitride semiconductor layer by selective etching without removing all the insulating substrate.

【0011】さらに本発明の方法及び素子において、窒
化物半導体層に接着する導電性基板は劈開性を有するこ
とを特徴とする。この劈開性を有する導電性基板には、
例えばGaAs、GaP、InP、SiC等を好ましく
用いることができる。
Further, in the method and device of the present invention, the conductive substrate adhered to the nitride semiconductor layer is cleavable. The conductive substrate having this cleavability,
For example, GaAs, GaP, InP, SiC or the like can be preferably used.

【0012】次に本発明の方法及び素子は窒化物半導体
層面と導電性基板とを電極、又は導電性材料を介して接
着することを特徴とする。この方法は導電性基板に劈開
性のある基板を使用しても同様に適用可能である。接着
する方法には、導電性基板の接着面と、窒化物半導体層
面とを鏡面として、それら鏡面同士を張り合わせた後、
熱圧着するいわゆるウェーハ接着の手法を用いてもよい
が、電極又は導電性材料を介することにより簡単に接着
することができる。導電性材料は窒化物半導体と導電性
基板を接着できる材料であればどのようなものでも良
く、例えばIn、Au、ハンダ、銀ペースト等の材料を
使用することができる。
Next, the method and device of the present invention are characterized in that the surface of the nitride semiconductor layer and the conductive substrate are bonded to each other via an electrode or a conductive material. This method can be similarly applied even if a cleavable substrate is used as the conductive substrate. The method of bonding, the bonding surface of the conductive substrate, and the nitride semiconductor layer surface as a mirror surface, after bonding these mirror surfaces,
A so-called wafer bonding method of thermocompression bonding may be used, but bonding can be easily performed by interposing an electrode or a conductive material. The conductive material may be any material as long as it can bond the nitride semiconductor and the conductive substrate, and for example, materials such as In, Au, solder and silver paste can be used.

【0013】また前記接着手法において、電極は窒化物
半導体層表面に形成されたオーミック電極及び/又は導
電性基板表面に形成されたオーミック電極を含むことを
特徴とする。なお、オーミック電極とは、一般に窒化物
半導体表面に形成される膜厚の薄いオーミック電極と、
その電極の上に付けられた膜厚の厚い接着用の金属、例
えばAu、In、Al等の金属を含んで本明細書ではオ
ーミック電極と定義する。窒化物半導体層表面に形成す
るオーミック電極材料としては、n型層が接着面であれ
ば例えば特開平5−291621号公報に示されたA
l、Cr、Ti、Inの内の少なくとも一種の材料、特
に好ましくはTiをn型層と接する側とした電極、また
特開平7−45867号公報に示されたTi−Alを含
む材料を挙げることができる。また接着面がp型層であ
れば同じく特開平5−291621号公報に示されたA
u、Pt、Ag、Niの内の少なくとも一種の材料、特
に好ましくはNiをp型層と接する側とした電極を挙げ
ることができる。
Further, in the above-mentioned bonding method, the electrodes include an ohmic electrode formed on the surface of the nitride semiconductor layer and / or an ohmic electrode formed on the surface of the conductive substrate. Note that the ohmic electrode is generally a thin ohmic electrode formed on the surface of a nitride semiconductor,
In the present specification, an ohmic electrode is defined to include a metal for adhesion having a large film thickness attached on the electrode, for example, a metal such as Au, In, or Al. As the ohmic electrode material formed on the surface of the nitride semiconductor layer, if the n-type layer is an adhesive surface, for example, A disclosed in JP-A-5-291621
At least one material selected from the group consisting of 1, Cr, Ti, and In, particularly preferably an electrode having Ti on the side in contact with the n-type layer, and a material containing Ti—Al disclosed in JP-A-7-45867. be able to. If the adhesive surface is a p-type layer, A shown in JP-A-5-291621 is also used.
An electrode having at least one material selected from u, Pt, Ag, and Ni, particularly preferably Ni on the side in contact with the p-type layer can be mentioned.

【0014】窒化物半導体はp型層が得られにくく、p
型層を得るため例えば特開平3−218625号公報に
開示されるような電子線照射、また特開平5−1831
89号公報に開示されるような熱的アニーリング処理が
成長後に行われ、最表面のp型層が低抵抗化される。こ
のため窒化物半導体ウェーハは最上層がp型層になって
いることが多い。そこで、この窒化物半導体ウェーハと
導電性基板を接着する際には、p型層に形成されたオー
ミック電極を介してp型の導電性基板とを接着すること
が特に望ましい。
Since it is difficult to obtain a p-type layer in a nitride semiconductor,
In order to obtain a mold layer, for example, electron beam irradiation as disclosed in JP-A-3-218625, and JP-A-5-1831.
The thermal annealing treatment as disclosed in Japanese Patent Publication No. 89 is performed after the growth to reduce the resistance of the p-type layer on the outermost surface. Therefore, the uppermost layer of the nitride semiconductor wafer is often a p-type layer. Therefore, when the nitride semiconductor wafer and the conductive substrate are bonded together, it is particularly desirable to bond the p-type conductive substrate through the ohmic electrode formed in the p-type layer.

【0015】一方、もう片方の接着面の導電性基板に形
成するオーミック電極としては例えば導電性基板がn型
GaAsであれば、Ag−Sn、In−Sn、Ni−S
n、Au−Sn、Au−Si、Au−Ge等を用いるこ
とができ、p型GaAsであれば、Au−Zn、Ag−
Zn、Ag−In等を用いることができる。その他Si
C、Si等についても公知のオーミック電極材料を用い
ることができるが前記のようにp型の導電性基板をその
導電性基板のオーミック電極を介して接着することが特
に望ましい。
On the other hand, as the ohmic electrode formed on the conductive substrate on the other adhesive surface, for example, when the conductive substrate is n-type GaAs, Ag-Sn, In-Sn, Ni-S.
n, Au—Sn, Au—Si, Au—Ge, or the like can be used, and in the case of p-type GaAs, Au—Zn, Ag—
Zn, Ag-In, or the like can be used. Other Si
Although a known ohmic electrode material can be used for C, Si, etc., it is particularly desirable to bond the p-type conductive substrate via the ohmic electrode of the conductive substrate as described above.

【0016】[0016]

【作用】本発明の方法及び素子では窒化物半導体層に導
電性基板を接着している。つまり、窒化物半導体が絶縁
性基板の上に成長されたウェーハでは、窒化物半導体よ
り得られる各種素子はフリップチップ形式とならざるを
得ないが、導電性基板をウェーハ最上層の窒化物半導体
層に接着することにより、導電性基板が電極を形成する
基板となる。その後、絶縁性基板を除去すると窒化物半
導体層が露出するので、露出した窒化物半導体層面にも
う一方の電極を形成することができ、従来のような電極
が水平方向に並んだ素子ではなく、互いの電極が対向し
た素子を作製することができる。
In the method and device of the present invention, the conductive substrate is adhered to the nitride semiconductor layer. In other words, in a wafer in which a nitride semiconductor is grown on an insulating substrate, various elements obtained from the nitride semiconductor must be of the flip-chip type, but the conductive substrate is used as a nitride semiconductor layer on the uppermost layer of the wafer. The conductive substrate becomes a substrate on which the electrodes are formed by being bonded to. After that, since the nitride semiconductor layer is exposed when the insulating substrate is removed, the other electrode can be formed on the exposed nitride semiconductor layer surface, and the conventional electrode is not an element in which the electrodes are horizontally arranged, It is possible to fabricate a device in which the electrodes are opposed to each other.

【0017】次に接着する導電性基板に劈開性のある材
料を選択すると、劈開性のない絶縁性基板の上に成長さ
れた窒化物半導体でも、接着された導電性基板の劈開性
を利用してチップ状に分割できる。このためチップサイ
ズの小さい素子が得られやすくなり、さらに窒化物半導
体の劈開面を光共振面とするレーザ素子が作製できるよ
うになる。
Next, when a material having a cleavability is selected for the conductive substrate to be bonded next, even a nitride semiconductor grown on an insulating substrate having no cleavability can utilize the cleavability of the bonded conductive substrate. Can be divided into chips. Therefore, an element having a small chip size can be easily obtained, and further, a laser element having the cleavage plane of the nitride semiconductor as an optical resonance plane can be manufactured.

【0018】また窒化物半導体層面と導電性基板とは一
般にウェーハ接着と呼ばれる技術で接着する方法もある
が、特に窒化物半導体層の電極、若しくは導電性基板の
電極、又は導電性材料を介して接着すると導電性基板と
窒化物半導体層との間の電気的特性も安定化するため好
ましい。さらにこの導電性材料としてAu、Al、Ag
等の窒化物半導体の発光波長を反射できる材料を選択す
れば、発光素子を作製した際、これらの導電性材料が接
着した導電性基板に来る光を反射して、窒化物半導体層
の側に戻す作用があるので発光素子の発光効率が向上す
る。
There is also a method of adhering the surface of the nitride semiconductor layer and the conductive substrate by a technique generally referred to as wafer bonding, but in particular, an electrode of the nitride semiconductor layer, an electrode of the conductive substrate, or a conductive material is used. Adhesion is preferable because it also stabilizes the electrical characteristics between the conductive substrate and the nitride semiconductor layer. Further, as the conductive material, Au, Al, Ag
If a material capable of reflecting the emission wavelength of the nitride semiconductor such as is selected, the light coming to the conductive substrate to which these conductive materials are bonded is reflected when the light emitting element is manufactured, and the light is emitted to the side of the nitride semiconductor layer. Since there is a returning action, the luminous efficiency of the light emitting element is improved.

【0019】特に接着材料として、窒化物半導体層表面
に形成されたオーミック電極及び/又は導電性基板表面
に形成されたオーミック電極を含めば、例えば発光素子
のような発光デバイスを作製すると、抵抗値が低くなり
デバイスのVfを低下させる作用がある。
In particular, when the ohmic electrode formed on the surface of the nitride semiconductor layer and / or the ohmic electrode formed on the surface of the conductive substrate is included as the adhesive material, when a light emitting device such as a light emitting device is manufactured, the resistance value is increased. Has the effect of lowering the Vf of the device.

【0020】[0020]

【実施例】以下、実施例で本発明を詳説する。図1乃至
図3は本発明の方法の一工程を説明するウェーハ及び導
電性基板の模式的な断面図であり、図4は実施例1によ
り得られた窒化物半導体発光素子の構造を示す模式的な
断面図であり、以下これらの図を元に実施例1を述べ
る。
EXAMPLES The present invention will be described in detail below with reference to examples. 1 to 3 are schematic cross-sectional views of a wafer and a conductive substrate for explaining one step of the method of the present invention, and FIG. 4 is a schematic diagram showing the structure of the nitride semiconductor light emitting device obtained in Example 1. FIG. 3 is a schematic sectional view, and Embodiment 1 will be described below based on these drawings.

【0021】[実施例1]サファイア基板1の表面に窒
化物半導体層2が積層されたウェーハを用意する。なお
窒化物半導体層2はサファイア基板1から順にドナー不
純物がドープされたAlXGa1-XN(0≦X≦1)より
なるn型層21と、InYGa1-YN(0<Y<1)より
なる活性層22と、アクセプター不純物がドープされた
AlXGa1-XN(0≦X≦1)よりなるp型層23とを
少なくとも有するダブルへテロ構造を有している。なお
最上層のp型層23は400℃以上のアニーリングによ
り低抵抗化されている。
Example 1 A wafer in which a nitride semiconductor layer 2 is laminated on the surface of a sapphire substrate 1 is prepared. The nitride semiconductor layer 2 is an n-type layer 21 made of AlXGa1-XN (0≤X≤1) doped with donor impurities in order from the sapphire substrate 1 and an active layer made of InYGa1-YN (0 <Y <1). 22 and a p-type layer 23 made of AlXGa1-XN (0≤X≤1) doped with acceptor impurities. The uppermost p-type layer 23 has a low resistance by annealing at 400 ° C. or higher.

【0022】次に図1に示すように窒化物半導体層2の
表面のほぼ全面にNiとAuを含むオーミック電極30
を500オングストロームの膜厚で形成する。つまり窒
化物半導体層2の最上層のp型層のほぼ全面にp型層と
好ましいオーミックが得られる第一のオーミック電極3
0を形成する。さらにそのオーミック電極30の上にに
接着性を良くするためにAu薄膜を0.1μm形成す
る。
Next, as shown in FIG. 1, an ohmic electrode 30 containing Ni and Au is formed on almost the entire surface of the nitride semiconductor layer 2.
With a film thickness of 500 angstrom. That is, the first ohmic electrode 3 capable of obtaining a preferable ohmic contact with the p-type layer on almost the entire surface of the uppermost p-type layer of the nitride semiconductor layer 2.
Form 0. Further, an Au thin film of 0.1 μm is formed on the ohmic electrode 30 in order to improve the adhesiveness.

【0023】一方、導電性基板として、サファイア基板
1とほぼ同じ大きさを有するp型GaAs基板50を用
意し、このp型GaAs基板50の表面にAu−Znよ
りなる第二のオーミック電極40を500オングストロ
ームの膜厚で形成する。さらにその第二のオーミック電
極40の上に接着性を良くするためにAu薄膜を0.1
μm形成する。
On the other hand, a p-type GaAs substrate 50 having substantially the same size as the sapphire substrate 1 is prepared as a conductive substrate, and a second ohmic electrode 40 made of Au--Zn is formed on the surface of the p-type GaAs substrate 50. It is formed with a film thickness of 500 Å. Further, an Au thin film is formed on the second ohmic electrode 40 by 0.1 μm in order to improve adhesion.
μm is formed.

【0024】次に、図2に示すように第一のオーミック
電極30を有する窒化物半導体ウェーハと、第二のオー
ミック電極40を有するp型GaAs基板50とのオー
ミック電極同士を貼り合わせ、加熱により圧着する。但
し、圧着時ウェーハのサファイア基板1とp型GaAs
基板50とは平行となるようにする。平行でないと次の
サファイア基板を除去する工程において、露出される窒
化物半導体層の水平面が出ないからである。また第一の
オーミック電極30と第二のオーミック電極40とを接
着するためにAuを使用したが、この他電極30と40
との間にインジウム、錫、ハンダ、銀ペースト等の導電
性材料を介して接着することも可能である。なおp型G
aAs基板50を接着する際に窒化物半導体層の劈開性
と、基板50との劈開方向を合わせて接着してあること
は言うまでもない。
Next, as shown in FIG. 2, ohmic electrodes of the nitride semiconductor wafer having the first ohmic electrode 30 and the p-type GaAs substrate 50 having the second ohmic electrode 40 are bonded to each other and heated. Crimp. However, the sapphire substrate 1 and the p-type GaAs of the wafer during pressure bonding
It should be parallel to the substrate 50. This is because if they are not parallel to each other, the exposed horizontal surface of the nitride semiconductor layer does not appear in the subsequent step of removing the sapphire substrate. Further, Au was used to bond the first ohmic electrode 30 and the second ohmic electrode 40, but other electrodes 30 and 40
It is also possible to bond them with a conductive material such as indium, tin, solder or silver paste. P-type G
It is needless to say that when the aAs substrate 50 is bonded, the cleavage property of the nitride semiconductor layer and the cleavage direction with the substrate 50 are matched.

【0025】次にp型GaAs基板50を接着したウェ
ーハを研磨器に設置し、サファイア基板1のラッピング
を行い、サファイア基板を除去して、窒化物半導体層2
のn型層21を露出させる。なおこの工程において、例
えばサファイア基板1を数μm程度の厚さが残るように
ラッピングした後、さらに残ったサファイア基板をエッ
チングにより除去することも可能である。サファイア基
板1除去後のウェーハの構造を図3に示す。
Next, the wafer to which the p-type GaAs substrate 50 is bonded is set in a polisher, the sapphire substrate 1 is lapped, the sapphire substrate is removed, and the nitride semiconductor layer 2 is removed.
The n-type layer 21 is exposed. In this step, for example, after the sapphire substrate 1 is lapped so that a thickness of about several μm remains, the remaining sapphire substrate can be removed by etching. The structure of the wafer after removing the sapphire substrate 1 is shown in FIG.

【0026】最後に露出したn型層21の表面をポリシ
ングした後、n型層にオーミック用の電極としてTi−
Alよりなる負電極25を形成し、一方p型GaAs基
板50には同じくオーミック電極としてAu−Znより
なる正電極55を全面に形成する。
After polishing the surface of the finally exposed n-type layer 21, Ti-- serves as an ohmic electrode on the n-type layer 21.
A negative electrode 25 made of Al is formed, while a positive electrode 55 made of Au—Zn is also formed on the entire surface of the p-type GaAs substrate 50 as an ohmic electrode.

【0027】以上のようにして正電極および負電極が形
成されたウェーハを、p型GaAs基板の劈開性を利用
して200μm角の発光チップに分離する。分離後の発
光チップの構造を示す模式的な断面図を図4に示す。こ
の発光チップは電極25と55間に通電することによ
り、活性層22が発光するLED素子の構造を示してい
る。この発光素子は活性層22の発光が第一のオーミッ
ク電極30とp型層23との界面で反射され、p型Ga
As基板50に吸収されることがないので、従来の発光
素子に比べて発光出力が50%以上増大した。
The wafer on which the positive electrode and the negative electrode are formed as described above is separated into 200 μm square light emitting chips by utilizing the cleavage property of the p-type GaAs substrate. A schematic cross-sectional view showing the structure of the light emitting chip after separation is shown in FIG. This light emitting chip shows a structure of an LED element in which the active layer 22 emits light when electricity is applied between the electrodes 25 and 55. In this light emitting device, the light emitted from the active layer 22 is reflected at the interface between the first ohmic electrode 30 and the p-type layer 23, and the p-type Ga
Since it was not absorbed by the As substrate 50, the light emission output increased by 50% or more as compared with the conventional light emitting device.

【0028】またこの例は絶縁性基板がサファイア、導
電性基板がp型GaAsについて説明したが、絶縁性基
板にはサファイアの他に例えば前記したスピネル、ネオ
ジウムガレートのような絶縁性基板を用いても良く、ま
た導電性基板にはSi、ZnOのような基板を用いても
良い。
In this example, the insulating substrate is sapphire and the conductive substrate is p-type GaAs. However, in addition to sapphire, an insulating substrate such as spinel or neodymium gallate is used as the insulating substrate. Alternatively, a substrate such as Si or ZnO may be used as the conductive substrate.

【0029】[実施例2]実施例1においてサファイア
基板1をラッピングする際、サファイア基板1が5μm
の膜厚で残るようにラッピングする。次に残ったサファ
イア基板1の表面に電流狭窄層が形成できるような形状
のマスクを形成し、エッチング装置でマスク開口部のサ
ファイア基板1をエッチングにより除去し、n型層21
の一部を露出させる。露出後同様にしてn型層に負電極
25とp型GaAs基板50に正電極55を形成する。
Example 2 When lapping the sapphire substrate 1 in Example 1, the sapphire substrate 1 was 5 μm.
Lapping so that the remaining film thickness remains. Next, a mask having a shape capable of forming a current confinement layer is formed on the surface of the remaining sapphire substrate 1, and the sapphire substrate 1 in the mask opening is removed by etching with an etching device.
Expose part of. After exposure, the negative electrode 25 is formed on the n-type layer and the positive electrode 55 is formed on the p-type GaAs substrate 50 in the same manner.

【0030】次にp型GaAs基板50の劈開性を用い
て、チップ状に分離してレーザ素子とする。図5はその
レーザ素子の構造を示す模式的な断面図であり、故意に
残したサファイア基板1がレーザ素子の電流狭窄層とし
て作用している。この例は電流狭窄層としてサファイア
基板を残す例を示したが、この他にレーザ素子の電流狭
窄層を形成するには実施例1のようにサファイア基板1
を全部除去してから、例えばSiO2、TiO2のような
絶縁膜を露出した窒化物半導体層の上に形成しても良
い。
Next, using the cleavage property of the p-type GaAs substrate 50, it is separated into chips to form a laser device. FIG. 5 is a schematic cross-sectional view showing the structure of the laser element, and the sapphire substrate 1 left intentionally acts as a current confinement layer of the laser element. This example shows an example in which the sapphire substrate is left as the current confinement layer, but in addition to this, the sapphire substrate 1 can be formed as in Example 1 to form the current confinement layer of the laser device.
After removing all of them, an insulating film such as SiO 2 or TiO 2 may be formed on the exposed nitride semiconductor layer.

【0031】[0031]

【発明の効果】以上説明したように、本発明の方法によ
ると導電性基板を有する窒化物半導体素子が実現できる
ので、チップサイズの小さい素子を提供することができ
る。また素子に形成した電極同士が対向しているので、
電流が窒化物半導体層に均一に流れ発熱量が小さくな
り、レーザ素子を実現することも可能となる。さらに容
易に窒化物半導体の劈開が可能となり、その劈開面を共
振器とできるためレーザ素子の作製が容易となる。さら
にまた発光デバイスを実現すると、窒化物半導体層と導
電性基板とを接着した電極により、窒化物半導体層の発
光が電極表面で反射されるので発光出力も増大させるこ
とができる。
As described above, according to the method of the present invention, a nitride semiconductor device having a conductive substrate can be realized, so that a device having a small chip size can be provided. Also, since the electrodes formed on the element are facing each other,
An electric current flows evenly through the nitride semiconductor layer, the amount of heat generated is reduced, and it is possible to realize a laser device. Further, the nitride semiconductor can be cleaved easily, and the cleaved surface can be used as a resonator, so that the laser device can be easily manufactured. Further, when the light emitting device is realized, the light emission of the nitride semiconductor layer is reflected on the electrode surface by the electrode to which the nitride semiconductor layer and the conductive substrate are adhered, so that the light emission output can be increased.

【0032】従来の窒化物半導体LEDは図6に示すよ
うにp型層64の表面のほぼ全面に光を透過する正電極
65が形成されていた。これはp型層の電流が広がりに
くいことによる。この正電極65により発光する光の5
0%以上が吸収されていた。しかし本発明の素子による
と図4および図5に示すように低抵抗なn型層21が最
上層となるので、従来のように全面電極を設ける必要が
なくなり、小さな部分電極でよい。従って窒化物半導体
層側からの光の取り出し効率が飛躍的に向上し発光出力
が向上する。このように本発明は窒化物半導体を用いた
デバイスを実現する上で産業上の利用価値は非常に大き
い。
In the conventional nitride semiconductor LED, as shown in FIG. 6, a positive electrode 65 which transmits light is formed on almost the entire surface of the p-type layer 64. This is because it is difficult for the current in the p-type layer to spread. 5 of the light emitted by this positive electrode 65
0% or more was absorbed. However, according to the device of the present invention, the n-type layer 21 having a low resistance is the uppermost layer as shown in FIGS. Therefore, the light extraction efficiency from the nitride semiconductor layer side is dramatically improved, and the light emission output is improved. Thus, the present invention has a great industrial utility value in realizing a device using a nitride semiconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法の一工程を説明する窒化物半導
体ウェーハの模式断面図。
FIG. 1 is a schematic cross-sectional view of a nitride semiconductor wafer explaining one step of the method of the present invention.

【図2】 本発明の方法の一工程を説明する窒化物半導
体ウェーハの模式断面図。
FIG. 2 is a schematic cross-sectional view of a nitride semiconductor wafer explaining one step of the method of the present invention.

【図3】 本発明の方法の一工程を説明する窒化物半導
体ウェーハの模式断面図。
FIG. 3 is a schematic cross-sectional view of a nitride semiconductor wafer explaining one step of the method of the present invention.

【図4】 本発明の一実施例に係る窒化物半導体素子の
構造を示す模式断面図。
FIG. 4 is a schematic cross-sectional view showing the structure of a nitride semiconductor device according to an example of the present invention.

【図5】 本発明の他の実施例に係る窒化物半導体素子
の構造を示す模式断面図。
FIG. 5 is a schematic cross-sectional view showing the structure of a nitride semiconductor device according to another embodiment of the present invention.

【図6】 従来の窒化物半導体発光素子の構造を示す模
式断面図。
FIG. 6 is a schematic cross-sectional view showing the structure of a conventional nitride semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1・・・・サファイア基板 2・・・・窒化物半導体層 21・・・・n型層 22・・・・活性層 23・・・・p型層 30・・・・第一のオーミック電極 40・・・・第二のオーミック電極 50・・・・p型GaAs基板 25・・・・負電極 55・・・・正電極 1 ... Sapphire substrate 2 ··· Nitride semiconductor layer 21 ... N-type layer 22 ... Active layer 23 ... P-type layer 30 ... First ohmic electrode 40 ... Second ohmic electrode 50 ... P-type GaAs substrate 25 ... Negative electrode 55 ・ ・ ・ ・ Positive electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 33/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性基板上に、電極を介して光の取り
出し側とする窒化物半導体が接着してなり、該窒化物半
導体の最下層はp型層であり、最上層がn型層であっ
て、該n型層には部分電極が設けられていることを特徴
とする窒化物半導体発光素子。
1. A method of collecting light through an electrode on a conductive substrate.
Nitride semiconductor and out side is adhered, lowermost the nitride semiconductor is p-type layer, the top layer is a n-type layer
Te, nitride semiconductor light emitting element characterized in that the partial electrodes on the n-type layer is provided.
【請求項2】 前記電極が、窒化物半導体表面に形成さ
れたオーミック電極及び/又は導電性基板表面に形成さ
れたオーミック電極を含むことを特徴とする請求項1に
記載の窒化物半導体発光素子。
2. The nitride semiconductor light emitting device according to claim 1, wherein the electrode includes an ohmic electrode formed on the surface of the nitride semiconductor and / or an ohmic electrode formed on the surface of the conductive substrate. .
【請求項3】 前記導電性基板を接着する窒化物半導体
層面が、前記p型層であり、前記電極及び/又は導電性
材料が、p型層のほぼ全面に形成されていることを特徴
とする請求項1又は2に記載の窒化物半導体発光素子。
3. The nitride semiconductor layer surface to which the conductive substrate is adhered is the p-type layer, and the electrode and / or the conductive material is formed on almost the entire surface of the p-type layer. The nitride semiconductor light emitting device according to claim 1 or 2.
【請求項4】 前記電極が導電性材料を多層構造に積層
されたことを特徴とする請求項1に記載の窒化物半導体
発光素子。
4. The nitride semiconductor according to claim 1, wherein the electrode is formed by laminating a conductive material in a multilayer structure.
Light emitting element.
【請求項5】 前記電極及び/又は導電性材料が、窒化
物半導体の発光波長を反射できることを特徴とする請求
項1乃至4のいずれかに記載の窒化物半導体発光素子。
5. The nitride semiconductor light emitting device according to claim 1, wherein the electrode and / or the conductive material can reflect the emission wavelength of the nitride semiconductor .
JP2000067673A 1995-06-15 2000-03-10 Nitride semiconductor light emitting device Expired - Lifetime JP3511970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067673A JP3511970B2 (en) 1995-06-15 2000-03-10 Nitride semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14847095A JP3259811B2 (en) 1995-06-15 1995-06-15 Method for manufacturing nitride semiconductor device and nitride semiconductor device
JP2000067673A JP3511970B2 (en) 1995-06-15 2000-03-10 Nitride semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14847095A Division JP3259811B2 (en) 1995-06-15 1995-06-15 Method for manufacturing nitride semiconductor device and nitride semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003170766A Division JP4371714B2 (en) 2003-06-16 2003-06-16 Nitride semiconductor laser device

Publications (2)

Publication Number Publication Date
JP2000277804A JP2000277804A (en) 2000-10-06
JP3511970B2 true JP3511970B2 (en) 2004-03-29

Family

ID=32095285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067673A Expired - Lifetime JP3511970B2 (en) 1995-06-15 2000-03-10 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3511970B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032546A1 (en) * 2005-09-16 2007-03-22 Showa Denko K.K. Production method for nitride semiconductor light emitting device
US7786489B2 (en) 2005-09-13 2010-08-31 Showa Denko K.K. Nitride semiconductor light emitting device and production method thereof
US7821018B2 (en) 2006-02-16 2010-10-26 Showa Denko K.K. GaN-based semiconductor light-emitting device and method for the fabrication thereof
US7939845B2 (en) 2005-09-20 2011-05-10 Showa Denko K.K. Nitride semiconductor light-emitting device and production method thereof
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8552465B2 (en) 2011-11-09 2013-10-08 Toshiba Techno Center Inc. Method for reducing stress in epitaxial growth
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664747B2 (en) 2008-04-28 2014-03-04 Toshiba Techno Center Inc. Trenched substrate for crystal growth and wafer bonding
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
CN104409588A (en) * 2007-04-16 2015-03-11 罗姆股份有限公司 Semiconductor light emitting device
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9246059B2 (en) 2012-09-18 2016-01-26 Ushio Denki Kabushiki Kaisha LED element, and production method therefor
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003034508A1 (en) 2001-10-12 2005-02-03 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
US6455340B1 (en) * 2001-12-21 2002-09-24 Xerox Corporation Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
KR101030068B1 (en) 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 Nitride semiconductor device manufacturing method and nitride semiconductor device
JP4766845B2 (en) 2003-07-25 2011-09-07 シャープ株式会社 Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
US8034643B2 (en) 2003-09-19 2011-10-11 Tinggi Technologies Private Limited Method for fabrication of a semiconductor device
ATE533187T1 (en) 2004-03-15 2011-11-15 Tinggi Technologies Private Ltd FABRICATION OF SEMICONDUCTOR COMPONENTS
WO2005098974A1 (en) 2004-04-07 2005-10-20 Tinggi Technologies Private Limited Fabrication of reflective layer on semiconductor light emitting diodes
KR100595884B1 (en) * 2004-05-18 2006-07-03 엘지전자 주식회사 Nitride semiconductor device manufacturing method
KR100638730B1 (en) * 2005-04-14 2006-10-30 삼성전기주식회사 Manufacturing method of vertical group III nitride light emitting device
SG130975A1 (en) 2005-09-29 2007-04-26 Tinggi Tech Private Ltd Fabrication of semiconductor devices for light emission
SG131803A1 (en) 2005-10-19 2007-05-28 Tinggi Tech Private Ltd Fabrication of transistors
CN101312905B (en) 2005-10-21 2015-07-22 泰勒生物质能有限责任公司 Process and system for gasification with in-situ tar removal
SG133432A1 (en) 2005-12-20 2007-07-30 Tinggi Tech Private Ltd Localized annealing during semiconductor device fabrication
JP5126875B2 (en) 2006-08-11 2013-01-23 シャープ株式会社 Manufacturing method of nitride semiconductor light emitting device
SG140473A1 (en) 2006-08-16 2008-03-28 Tinggi Tech Private Ltd Improvements in external light efficiency of light emitting diodes
SG140512A1 (en) 2006-09-04 2008-03-28 Tinggi Tech Private Ltd Electrical current distribution in light emitting devices
US7569886B2 (en) * 2007-03-08 2009-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacture method thereof
JP2009049371A (en) * 2007-07-26 2009-03-05 Sharp Corp Nitride-based compound semiconductor light emitting element, and method of manufacturing the same
US7898067B2 (en) * 2008-10-31 2011-03-01 Fairchild Semiconductor Corporaton Pre-molded, clip-bonded multi-die semiconductor package
JP5526712B2 (en) * 2009-11-05 2014-06-18 豊田合成株式会社 Semiconductor light emitting device
US8664067B2 (en) * 2010-11-18 2014-03-04 Monolithic Power Systems, Inc. CMOS devices with reduced short channel effects
CN102683544B (en) * 2011-03-17 2015-07-08 展晶科技(深圳)有限公司 Paster type light-emitting diode
TWI497677B (en) * 2011-11-08 2015-08-21 Inotera Memories Inc Semiconductor structure having lateral through silicon via and manufacturing method thereof
KR102544673B1 (en) * 2020-10-29 2023-06-20 웨이브로드 주식회사 Light emitting device and method of manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145234B2 (en) * 1973-12-12 1976-12-02
JPS617671A (en) * 1984-06-21 1986-01-14 Matsushita Electric Ind Co Ltd Gallium nitride semiconductor device
JPS6159886A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Manufacture of photosemiconductor device
JPH0638536B2 (en) * 1985-02-08 1994-05-18 株式会社東芝 Method for manufacturing semiconductor laser
JPS61183986A (en) * 1985-02-08 1986-08-16 Toshiba Corp Manufacture of semiconductor light emitting device
JP2809692B2 (en) * 1989-04-28 1998-10-15 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
JPH0429374A (en) * 1990-05-24 1992-01-31 Omron Corp Surface-emission type semiconductor light-emitting element and manufacture thereof
JPH05251739A (en) * 1992-03-06 1993-09-28 Toshiba Corp Semiconductor light emitting device
JPH0738147A (en) * 1993-07-23 1995-02-07 Victor Co Of Japan Ltd Semiconductor light emitting device
JPH07202265A (en) * 1993-12-27 1995-08-04 Toyoda Gosei Co Ltd Method for manufacturing group III nitride semiconductor

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7786489B2 (en) 2005-09-13 2010-08-31 Showa Denko K.K. Nitride semiconductor light emitting device and production method thereof
US7939351B2 (en) 2005-09-16 2011-05-10 Showa Denko K.K. Production method for nitride semiconductor light emitting device
WO2007032546A1 (en) * 2005-09-16 2007-03-22 Showa Denko K.K. Production method for nitride semiconductor light emitting device
US7939845B2 (en) 2005-09-20 2011-05-10 Showa Denko K.K. Nitride semiconductor light-emitting device and production method thereof
US7821018B2 (en) 2006-02-16 2010-10-26 Showa Denko K.K. GaN-based semiconductor light-emitting device and method for the fabrication thereof
CN104409588B (en) * 2007-04-16 2017-05-31 罗姆股份有限公司 Semiconductor light-emitting elements
CN104409588A (en) * 2007-04-16 2015-03-11 罗姆股份有限公司 Semiconductor light emitting device
US8664747B2 (en) 2008-04-28 2014-03-04 Toshiba Techno Center Inc. Trenched substrate for crystal growth and wafer bonding
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8546832B2 (en) 2009-06-10 2013-10-01 Toshiba Techno Center Inc. Thin-film LED with p and n contacts electrically isolated from the substrate
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US8552465B2 (en) 2011-11-09 2013-10-08 Toshiba Techno Center Inc. Method for reducing stress in epitaxial growth
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US9246059B2 (en) 2012-09-18 2016-01-26 Ushio Denki Kabushiki Kaisha LED element, and production method therefor

Also Published As

Publication number Publication date
JP2000277804A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP3511970B2 (en) Nitride semiconductor light emitting device
JP3259811B2 (en) Method for manufacturing nitride semiconductor device and nitride semiconductor device
US7268372B2 (en) Vertical GaN light emitting diode and method for manufacturing the same
US6818531B1 (en) Method for manufacturing vertical GaN light emitting diodes
TWI399865B (en) Aluminum indium gallium phosphate light emitting diode with reduced temperature dependence
US7023026B2 (en) Light emitting device of III-V group compound semiconductor and fabrication method therefor
US6838704B2 (en) Light emitting diode and method of making the same
US7129527B2 (en) Light emitting diode and method of making the same
US7439551B2 (en) Nitride-based compound semiconductor light emitting device
KR101470020B1 (en) epitaxial semiconductor thin-film transfer using sandwich-structured wafer bonding and photon-beam
US7554124B2 (en) Nitride-based compound semiconductor light emitting device, structural unit thereof, and fabricating method thereof
WO2006082687A1 (en) GaN LIGHT EMITTING DIODE AND LIGHT EMITTING DEVICE
US7495261B2 (en) Group III nitride semiconductor light-emitting device and method of producing the same
US20050116309A1 (en) Semiconductor light-emitting element, manufacturing method therefor and semiconductor device
JP4597796B2 (en) Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
JP4371714B2 (en) Nitride semiconductor laser device
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP4313478B2 (en) AlGaInP light emitting diode
CN115148870B (en) Vertical light emitting diode and method for preparing the same
JP3495853B2 (en) Nitride semiconductor laser
KR100564303B1 (en) AlGaInP Light Emitting Diode and Manufacturing Method Thereof
CN110581201A (en) Light-emitting component and method for manufacturing the light-emitting component
JP4286983B2 (en) AlGaInP light emitting diode
JP4288947B2 (en) Manufacturing method of nitride semiconductor light emitting device
KR101550913B1 (en) 3 fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term