JP3485122B2 - Cement composition - Google Patents
Cement compositionInfo
- Publication number
- JP3485122B2 JP3485122B2 JP03388694A JP3388694A JP3485122B2 JP 3485122 B2 JP3485122 B2 JP 3485122B2 JP 03388694 A JP03388694 A JP 03388694A JP 3388694 A JP3388694 A JP 3388694A JP 3485122 B2 JP3485122 B2 JP 3485122B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- weight
- sio
- seawater
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004568 cement Substances 0.000 title claims description 86
- 239000000203 mixture Substances 0.000 title claims description 44
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 32
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 28
- 239000002893 slag Substances 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 22
- 230000004907 flux Effects 0.000 claims description 15
- 239000010440 gypsum Substances 0.000 claims description 10
- 229910052602 gypsum Inorganic materials 0.000 claims description 10
- 239000013535 sea water Substances 0.000 description 66
- 238000012360 testing method Methods 0.000 description 19
- 239000011398 Portland cement Substances 0.000 description 15
- 239000011400 blast furnace cement Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000004567 concrete Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- 230000003628 erosive effect Effects 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 238000006703 hydration reaction Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000036571 hydration Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000006072 paste Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910021653 sulphate ion Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000010436 fluorite Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、特に海水の侵食に対し
て優れた抵抗性を有するセメントペースト、モルタル及
びコンクリート等のセメント硬化体を製造できる耐海水
性セメント組成物に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seawater-resistant cement composition for producing hardened cement paste, such as cement paste, mortar and concrete, which has excellent resistance to seawater erosion.
【0002】[0002]
【発明の背景】従来、耐海水性セメントとして、以下に
述べる組成物等が提案されている。例えば、特開昭49
−51312号公報に示される如く、セメント中の3C
aO・Al2 O3 (C3 A)量と4CaO・Al2 O3
・Fe2 O3 (C4 AF)量を制限し、そして少量のフ
ラックスを添加してセメントクリンカーを焼成する技術
がある。BACKGROUND OF THE INVENTION The following compositions have been conventionally proposed as seawater-resistant cements. For example, JP-A-49
No. 51312, 3C in cement
aO ・ Al 2 O 3 (C 3 A) amount and 4CaO ・ Al 2 O 3
There is a technique of firing the cement clinker by limiting the amount of Fe 2 O 3 (C 4 AF) and adding a small amount of flux.
【0003】又、特公昭57−10055号公報に示さ
れる如く、C3 A量とC4 AF量の制限と共に、両者の
重量比を規定し、かつ、3CaO・SiO2 (C3 S)
を60重量%以上としたセメントクリンカーに、活性シ
リカ質微粉末と多量の石膏とを加えてセメントを調製す
る技術がある。又、特公昭56−31296号公報に示
される如く、C3 Sを60〜70重量%、C3 Aを4重
量%以下含むセメントクリンカーに、高炉スラグと石膏
とを各々のセメント中の含有量が60〜70重量%及び
SO3 換算で3. 0〜4. 5重量%となるように加えて
セメントを調製する技術がある。Further, as disclosed in Japanese Examined Patent Publication (Kokoku) No. 57-10055, the weight ratio of both C 3 A and C 4 AF is regulated together with the limitation of the amount of C 3 A and 3 CaO.SiO 2 (C 3 S).
There is a technique of preparing cement by adding activated siliceous fine powder and a large amount of gypsum to a cement clinker containing 60% by weight or more of cement. Further, as disclosed in Japanese Examined Patent Publication No. 56-31296, the content of blast furnace slag and gypsum in each cement in a cement clinker containing 60 to 70% by weight of C 3 S and 4% by weight or less of C 3 A. Of 60 to 70% by weight and 3.0 to 4.5% by weight in terms of SO 3 are added to prepare cement.
【0004】ところで、上記特開昭49−51312号
公報および特公昭57−10055号公報の技術は、C
3 A量およびC4 AF量の低減に伴うクリンカー中の液
相量の減少によって生じる焼成の困難さを解決する為
に、フラックスを配合している。しかしながら、フラッ
クスとして通常用いられるCaF2 (ホタル石)の添加
は、低温度域で分解、溶融するCaO−SiO2 −Ca
F2 系化合物を生成する為、現在の焼成様式の主流であ
るニューサスペンションプレヒータ付きキルンにおいて
はプレヒータのサイクロンが閉塞し、連続安定運転に支
障を来すことが多い問題点があった。又、フラックスの
添加には、原料粉砕工程に新たな供給設備の新設が必要
である。By the way, the techniques disclosed in Japanese Patent Laid-Open No. 49-51312 and Japanese Patent Publication No. 57-10055 are C
In order to solve the difficulty of firing caused by the decrease in the amount of liquid phase in the clinker accompanying the decrease in the amounts of 3 A and C 4 AF, a flux is incorporated. However, the addition of CaF 2 (fluorite), which is usually used as a flux, decomposes and melts in the low temperature range CaO-SiO 2 -Ca.
In the kiln with the new suspension preheater, which is the mainstream of the current firing mode, the cyclone of the preheater is clogged because of the formation of the F 2 compound, which often causes a problem in continuous stable operation. In addition, the addition of flux requires the installation of new supply equipment in the raw material crushing process.
【0005】このようなことから、フラックスを使用し
ないで製造できる耐海水性セメントが望まれて来た。
又、特公昭56−31296号公報の技術は、高炉スラ
グを60〜70重量%と言ったように多量に混合したセ
メントである為、コンクリートの中性化の進行が速く、
鉄筋コンクリート構造物の鉄筋が腐食するなど耐久性の
面で問題点があった。Under these circumstances, a seawater-resistant cement which can be produced without using flux has been desired.
In addition, the technique of Japanese Patent Publication No. 56-31296 is a cement in which a large amount of blast furnace slag is mixed, such as 60 to 70% by weight, so that the progress of neutralization of concrete is fast,
There was a problem in terms of durability, such as corrosion of the reinforcing bars of reinforced concrete structures.
【0006】この為、高炉スラグを混入しないポルトラ
ンドセメント、あるいは高炉スラグ混合量の少ない高炉
セメントによる耐海水性セメントが望まれて来た。Therefore, there has been a demand for seawater-resistant cement made of Portland cement which does not contain blast furnace slag or blast furnace cement having a small amount of blast furnace slag mixed therein.
【0007】[0007]
【発明の開示】本発明の目的は、フラックスを使用せ
ず、しかも高炉スラグを混入しない、あるいは高炉スラ
グの混合量の少ない耐海水性に富むセメント組成物を提
供することである。この本発明の目的は、フラックスを
用いることなく製造されたセメントの組成物であって、
3CaO・SiO2,2CaO・SiO2,3CaO・
Al2 O3 ,4CaO・Al2 O3 ・Fe2 O3 の化合
物組成を含む(但し、4CaO・Al 2 O 3 ・Fe 2 O
3 が7重量%以下のものを除く。)ものであり、SiO
2 とAl2 O3 との重量比が8以上で、3CaO・Si
O2 ,2CaO・SiO2 ,3CaO・Al2 O3 及び
4CaO・Al2 O3 ・Fe2 O3 の総量100重量部
に対して3CaO・SiO2 が20〜45重量部、2C
aO・SiO2 が45〜72重量部の割合であることを
特徴とするセメント組成物によって達成される。DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a cement composition which is rich in seawater and does not contain flux and does not contain blast furnace slag or has a small amount of blast furnace slag. This object of the present invention is a composition of cement produced without using a flux,
3CaO · SiO 2, 2CaO · SiO 2, 3CaO ·
Al 2 O 3, comprising a compound composition of 4CaO · Al 2 O 3 · Fe 2 O 3 ( where, 4CaO · Al 2 O 3 · Fe 2 O
Excluding those in which 3 is 7% by weight or less. ) , SiO
The weight ratio of 2 and Al 2 O 3 is 8 or more, and 3CaO ・ Si
O 2, 2CaO · SiO 2, 3CaO · Al 2 O 3 and 3CaO · SiO 2 20 to 45 parts by weight per 100 parts by weight of 4CaO · Al 2 O 3 · Fe 2 O 3, 2C
Achieved by a cement composition, characterized in that the proportion of aO.SiO 2 is 45 to 72 parts by weight.
【0008】特に、3CaO・SiO2 ,2CaO・S
iO2 ,3CaO・Al2 O3 ,4CaO・Al2 O3
・Fe2 O3 の化合物組成を含むものであって、SiO
2 とAl2 O3 との重量比が8〜15であることを特徴
とするセメント組成物によって達成される。尚、このセ
メント組成物(特に、耐海水性セメント組成物)におい
て、3CaO・SiO2 ,2CaO・SiO2 ,3Ca
O・Al2 O3 及び4CaO・Al 2 O3 ・Fe2 O3
の総量を100重量部とした場合に、Fe2 O3 が2.
0〜4.2重量部の割合であることが好ましい。Particularly, 3CaO / SiO2, 2CaO ・ S
iO2, 3CaO ・ Al2O3, 4CaO / Al2O3
・ Fe2O3A compound composition of
2And Al2O3Characterized in that the weight ratio with
It is achieved by the cement composition. In addition, this
Ment composition (especially seawater resistant cement composition)
And 3CaO / SiO2, 2CaO / SiO2, 3Ca
O ・ Al2O3And 4CaO ・ Al 2O3・ Fe2O3
When the total amount of Fe is 100 parts by weight, Fe2O3Is 2.
It is preferably from 0 to 4.2 parts by weight.
【0009】そして、高炉スラグを5〜60重量%添加
したものは一層好ましいものとなる。The addition of 5 to 60% by weight of blast furnace slag becomes more preferable.
【0010】以下、本発明について詳細に説明する。セ
メント硬化体の海水による侵食には、塩素イオン(Cl
- )と硫酸イオン(SO4 2- )の作用がある。塩素イオ
ンは、C3 Sや2CaO・SiO2 (C2 S)の水和生
成物である水酸化カルシウム(Ca(OH)2 )と反応
し、溶解度の大きな塩化カルシウム(CaCl2 )を生
じる為、その溶脱によって硬化体が多孔化し、劣化させ
ると考えられている。The present invention will be described in detail below. For the erosion of hardened cement by seawater, chloride ion (Cl
- ) And sulfate ion (SO 4 2- ). Chlorine ion reacts with calcium hydroxide (Ca (OH) 2 ) which is a hydration product of C 3 S or 2CaO · SiO 2 (C 2 S) to generate calcium chloride (CaCl 2 ) having a high solubility. It is believed that the leaching causes the cured body to become porous and deteriorate.
【0011】硫酸イオンは、C3 AやC4 AFの水和物
および水酸化カルシウムと反応してエトリンガイト(C
3 A・3CaSO4 ・32H2 O)を生成させ、この時
の体積膨張によって、硬化体が膨張し、崩壊すると考え
られている。尚、C4 AFはC3 Aよりも硫酸塩抵抗性
は大きいが、海水抵抗性はC3 Aと同様に小さいという
報告が有る。Sulfate ions react with hydrates of C 3 A and C 4 AF and calcium hydroxide to react with ettringite (C).
3 A · 3CaSO 4 · 32H 2 O) to generate, by volume expansion at this time, the cured body is inflated, it is thought to disintegrate. Incidentally, C 4 AF are sulfate resistance is greater than C 3 A, seawater resistance C 3 reported that similarly small and A there.
【0012】従って、耐海水性に優れたセメント組成物
を得るには、水酸化カルシウムの生成量が少なく、C3
AやC4 AFの含有量の少ないものにすれば良いことに
なる。ところで、本発明は、連続安定運転によるクリン
カーの製造を可能とする為に、フラックスを使用せず、
かつ、コンクリート等のセメント硬化体の耐久性を向上
させることを目的として、中性化速度が遅い耐海水性セ
メント組成物の開発を行ったものである。Therefore, in order to obtain a cement composition excellent in seawater resistance, the amount of calcium hydroxide produced is small and C 3
It will be sufficient if the content of A or C 4 AF is small. By the way, the present invention does not use a flux in order to enable production of a clinker by continuous stable operation,
Moreover, for the purpose of improving the durability of hardened cement such as concrete, a seawater-resistant cement composition having a slow neutralization rate was developed.
【0013】前記特公昭57−10055号公報におい
ては、海水の侵食を受け易い化合物であるC3 AとC4
AFの合量を10重量%以下としているが、C3 Sを少
なくとも60重量%としたセメントクリンカーを耐海水
性セメントの構成成分とし、同公報の第4欄第4〜15
行目に記載されている如く、クリンカーの焼成において
CaF2 (ホタル石)に代表される無機融剤(フラック
ス)の使用が不可欠である。この技術においてフラック
スが必要な理由は、C3 AとC4 AFの含有量を低減す
ることによってクリンカー焼成における液相量が減少
し、セメント化合物、特にC3 Sの生成反応が阻害さ
れ、未反応CaOすなわち遊離CaOの増加につなが
り、良質なセメントを製造することが困難になる為、こ
れを解決する為である。In Japanese Patent Publication No. 57-10055, the compounds C 3 A and C 4 which are compounds susceptible to seawater erosion.
Although the total amount of AF is set to 10% by weight or less, a cement clinker containing at least 60% by weight of C 3 S is used as a constituent component of the seawater-resistant cement, and the fourth column, the fourth to the fifteenth columns of the publication.
As described in the first line, it is essential to use an inorganic flux (flux) represented by CaF 2 (fluorite) in firing the clinker. The reason why a flux is required in this technique is that by reducing the content of C 3 A and C 4 AF, the amount of liquid phase in the clinker firing is reduced, and the formation reaction of cement compounds, especially C 3 S is hindered. This is because the reaction CaO, that is, the amount of free CaO, increases, and it becomes difficult to produce high-quality cement.
【0014】これに対して、本発明者は、フラックスを
使用することなく耐海水性に優れたセメントを製造する
ことを目的として、C3 A及びC4 AFの含有量が少な
い処方に関して、遊離CaOが少ないクリンカーを焼成
することが出来、かつ、それを用いたセメントの耐海水
性が優れたものとなる化学組成について研究を進めた
処、セメント中の化学成分におけるSiO2 とAl2 O
3 との重量比(SiO2/Al2 O3 、活動係数)が高
いものほど目的とする物性が得られる傾向の有ることを
見出すに至った。On the other hand, the present inventor has found that the formulation containing a small amount of C 3 A and C 4 AF is used for the purpose of producing a cement excellent in seawater resistance without using a flux. As a result of research on the chemical composition that makes it possible to burn a clinker with a small amount of CaO, and the cement that uses it has excellent seawater resistance, SiO 2 and Al 2 O in the chemical components in the cement were found.
3 and the weight ratio of (SiO 2 / Al 2 O 3 , activity factor) the desired physical properties as those higher came to find that there tends to be obtained.
【0015】そして、更なる検討の結果、セメント(ポ
ルトランドセメント)の構成化合物であるC3 S,C2
S,C2 A,C4 AFの組成割合を適正化し、活動係数
を8以上、望ましくは8〜15、より望ましくは8〜1
3、特に望ましくは9〜12としたセメント(ポルトラ
ンドセメント)は耐海水性に極めて優れ、かつ、遊離C
aOの少ない良質なセメントになり得ると言うことを見
出した。As a result of further examination, C 3 S, C 2 which is a constituent compound of cement (Portland cement).
The composition ratio of S, C 2 A, C 4 AF is optimized, and the activity coefficient is 8 or more, preferably 8 to 15, more preferably 8 to 1.
3, particularly preferably 9-12 cement (Portland cement) is extremely excellent in seawater resistance and free C
It has been found that it can be a high-quality cement with low aO.
【0016】すなわち、活動係数が8未満のポルトラン
ドセメントは、海水養生によるセメント硬化体の強度低
下が大きく、耐海水性に劣るものであった。逆に、活動
係数が15を越えたポルトランドセメントは、Al2 O
3 量が少なく、クリンカー中の液相量が少なくなり、ク
リンカーが塊状にならず、細粒や粉状になり、ロータリ
ーキルンやクリンカークーラの安定運転が出来にくい傾
向が有った。That is, the Portland cement having an activity coefficient of less than 8 had a large decrease in strength of the cement hardened body due to seawater curing and was inferior in seawater resistance. Conversely, Portland cement with an activity coefficient of more than 15 is Al 2 O.
3 The amount was small, the amount of liquid phase in the clinker was small, the clinker did not become agglomerates, but became fine particles or powder, and there was a tendency that it was difficult to operate the rotary kiln and clinker cooler stably.
【0017】尚、従来のセメントにおける活動係数は、
下記の表Aに示す如く、大体2. 5〜6. 0である。
表 A
ポルトランド 化 学 成 分 (%) 活動係数
セメント種類 SiO2 Al2O3 Fe2O3 CaO SO3
普通 22.0 5.2 3.0 64.3 2.0 4.23
早強 20.9 4.8 2.8 65.1 2.8 4.35
超早強 20.0 4.9 2.7 65.3 3.6 4.08
中庸熱 23.5 4.1 4.0 63.7 1.8 5.73
耐硫酸塩 22.5 3.5 4.3 64.8 1.8 6.43
白色 23.3 4.7 0.2 66.1 2.4 4.96
ASTM規格タイプIV 24.0 4.4 3.9 61.0 1.9 5.45
更に、活動係数が8〜15の範囲内にあり、かつ、ポル
トランドセメント中の化学成分におけるFe2 O3 /
(C3 S+C2 S+C3 A+C4 AF)(以下、Fe2
O3 割合)が2.0〜4.2重量%、より望ましくは
2.2〜3.8重量%、特に望ましくは2.3〜3.5
重量%の範囲内にあることが好ましいことも判って来
た。すなわち、Fe2 O3 割合が前記の範囲を外れたも
のになると、ボーグ式で計算されるC4 AF/(C3 S
+C2 S+C3 A+C4 AF)が6重量%以下あるいは
12重量%以上となり、前者の場合はクリンカー中の遊
離CaOが1重量%以下の良質なセメントを製造するこ
とが出来ず、後者の場合は耐海水性が悪化した。The coefficient of activity of conventional cement is
As shown in Table A below, it is approximately 2.5 to 6.0. Table A Portland chemical composition (%) Activity coefficient Cement type SiO 2 Al 2 O 3 Fe 2 O 3 CaO SO 3 Normal 22.0 5.2 3.0 64.3 2.0 4.23 Early strength 20.9 4.8 2.8 65.1 2.8 4.35 Super early strength 20.0 4.9 2.7 65.3 3.6 4.08 Moderate heat 23.5 4.1 4.0 63.7 1.8 5.73 Sulfate resistant 22.5 3.5 4.3 64.8 1.8 6.43 White 23.3 4.7 0.2 66.1 2.4 4.96 ASTM standard type IV 24.0 4.4 3.9 61.0 1.9 5.45 Furthermore, the activity coefficient is in the range of 8 to 15, And Fe 2 O 3 / in the chemical composition of Portland cement
(C 3 S + C 2 S + C 3 A + C 4 AF) (hereinafter Fe 2
O 3 ratio) is from 2.0 to 4.2 wt%, more preferably 2.2 to 3.8 wt%, particularly preferably 2.3 to 3.5
It has also been found preferable to be in the range of weight percent. That is, when the Fe 2 O 3 ratio is out of the above range, C 4 AF / (C 3 S calculated by the Borg equation is used.
+ C 2 S + C 3 A + C 4 AF) is 6% by weight or less or 12% by weight or more. In the former case, it is not possible to produce a high-quality cement with free CaO in the clinker of 1% by weight or less, and in the latter case. Seawater resistance deteriorated.
【0018】そして、本発明によれば、耐海水性に優
れ、かつ、フラックスを用いることなく、遊離CaOの
少ない良質なポルトランドセメントが得られたのである
が、その理由は次のように考えられた。先ず、本発明の
セメント組成物が耐海水性に優れる理由としては、Si
O2 /Al2 O3 を通常のセメントよりも大きくするこ
とによって、SiO2 分に対するAl2 O3 が少なくな
り、耐海水性に優れる化合物であるC2 Sに対する耐海
水性に劣る化合物であるC3 AやC4 AFの比率が小さ
くなる為と理解された。又、固溶成分を多く含む化合物
であるC2 S量が多くなる為、これに固溶するAl2 O
3 とFe2 O3 の量が多くなり、C3 AおよびC4 AF
の実際の量がボーグ式で計算される量よりも少なくな
り、このことが耐海水性を更に向上させていると理解さ
れた。According to the present invention, a good quality Portland cement having excellent seawater resistance and less free CaO was obtained without using flux. The reason is considered as follows. It was First, the reason why the cement composition of the present invention has excellent seawater resistance is
By making O 2 / Al 2 O 3 larger than ordinary cement, the amount of Al 2 O 3 for SiO 2 content is reduced, and the compound is inferior in seawater resistance to C 2 S, which is a compound excellent in seawater resistance. It was understood that the ratio of C 3 A and C 4 AF was small. Also, since the amount of C 2 S, which is a compound containing a large amount of solid solution components, increases, Al 2 O which forms a solid solution with this
3 and Fe 2 O 3 content increased, and C 3 A and C 4 AF
It was understood that the actual amount of water was less than that calculated by the Borg equation, which further improved the seawater resistance.
【0019】次に、フラックスを用いることなく、遊離
CaOの少ない良質なセメントを得ることが可能となっ
た理由としては、SiO2 /Al2 O3 の高いことが、
C3Sに対するC2 Sの量が多くなる方向にあることを
挙げることが出来る。すなわち、C3 Sは液相量が少な
いと生成速度が極端に遅い化合物であるが、C2 Sは液
相が存在しなくても固相反応によって十分に生成する化
合物であり、一般的なセメントよりもC3 S量が少な
く、C2 S量が多くなることによって、C3 AおよびC
4 AFの量が少量であっても、遊離CaOの少ない良質
なクリンカーが焼成できるものと理解された。Next, the reason why it is possible to obtain a high-quality cement with a small amount of free CaO without using a flux is that SiO 2 / Al 2 O 3 is high.
It can be mentioned that the amount of C 2 S relative to C 3 S tends to increase. That is, C 3 S is a compound whose generation rate is extremely slow when the amount of liquid phase is small, but C 2 S is a compound which is sufficiently generated by solid phase reaction even in the absence of liquid phase, With less C 3 S and more C 2 S than cement, C 3 A and C
4 It was understood that a good quality clinker with a small amount of free CaO can be baked even with a small amount of AF.
【0020】又、C2 Sは、C3 Sよりも次の水和反応
式で示される如く、塩素イオンによって侵食を受ける水
酸化カルシウム(Ca(OH)2)の生成量が少なく、C
2 S量の多いセメントは、このことによっても耐海水性
に優れたものになる。
2(2CaO・SiO2 )+4H2 O→3CaO・2S
iO2 ・3H2 O+Ca(OH)2
2(3CaO・SiO2 )+6H2 O→3CaO・2S
iO2 ・3H2 O+3Ca(OH)2
次に、セメントの化合物組成において、3CaO・Si
O2 ,2CaO・SiO2 ,3CaO・Al2 O3 及び
4CaO・Al2 O3 ・Fe2 O3 の総量100重量部
に対して3CaO・SiO2 が20〜45重量部、2C
aO・SiO2が45〜72重量部の割合とした理由
は、汎用的な耐海水性セメントを製造し、実用に供する
際の強度発現性を考慮に入れた、より好ましいセメント
とする為である。C 2 S produces less calcium hydroxide (Ca (OH) 2 ) which is corroded by chloride ions than C 3 S, as shown by the following hydration reaction formula.
2 S intensive cement, becomes excellent in seawater by this. 2 (2CaO ・ SiO 2 ) + 4H 2 O → 3CaO ・ 2S
iO 2 · 3H 2 O + Ca (OH) 2 2 (3CaO · SiO 2 ) + 6H 2 O → 3CaO · 2S
iO 2 · 3H 2 O + 3Ca (OH) 2 Next, in the compound composition of cement, 3CaO · Si
O 2, 2CaO · SiO 2, 3CaO · Al 2 O 3 and 3CaO · SiO 2 20 to 45 parts by weight per 100 parts by weight of 4CaO · Al 2 O 3 · Fe 2 O 3, 2C
The reason why the ratio of aO.SiO 2 is 45 to 72 parts by weight is to make a more preferable cement in consideration of strength development when a general-purpose seawater-resistant cement is manufactured and put into practical use. .
【0021】すなわち、セメントの強度発現に寄与する
化合物は、主にC3 SとC2 Sとである。そして、活動
係数が8〜15、Fe2 O3 割合が約2〜3重量%にお
いて、C3 SとC2 Sとの量を変化させて検討した結
果、C3 S/(C3 S+C2 S+C3 A+C4 AF)
(以下、C3 S割合)が20〜45重量%、C2 S/
(C3 S+C2S+C3 A+C4 AF)(以下、C2 S
割合)が45〜72重量%となるセメントが得られるよ
うにクリンカーの化合物組成を設計すれば、遊離CaO
が1重量%以下となる良質なクリンカーが焼成でき、こ
れに石膏を添加して得られたセメントは全材齢の強度発
現性が良好で、かつ、耐海水性に極めて優れていたので
ある。That is, the compounds that contribute to the strength development of cement are mainly C 3 S and C 2 S. Then, when the activity coefficient was 8 to 15 and the Fe 2 O 3 ratio was about 2 to 3% by weight, the amount of C 3 S and C 2 S was changed and the result was examined. As a result, C 3 S / (C 3 S + C 2 S + C 3 A + C 4 AF)
(Hereinafter, C 3 S ratio) is 20 to 45% by weight, C 2 S /
(C 3 S + C 2 S + C 3 A + C 4 AF) (hereinafter C 2 S
If the clinker compound composition is designed so as to obtain cement having a ratio of 45 to 72 % by weight, free CaO
A good quality clinker having a content of 1% by weight or less could be fired, and the cement obtained by adding gypsum to this had good strength development at all ages and was extremely excellent in seawater resistance.
【0022】尚、C3 S割合が45重量%を越えて多す
ぎ、そしてC2 S割合が45重量%未満と少な過ぎる
と、液相の少ないクリンカー組成に対して反応速度の遅
いC3Sの量が過多となる為、遊離CaOが多くなり、
良質なセメントを得ることが出来難かった。又、C3 S
割合が20重量%未満と少な過ぎ、そしてC2 S割合が
72重量%を越えて多すぎると、硬化体の初期材齢の強
度が極端に低下する傾向が有った。これは、C3 Sが初
期材齢の水和活性が高く、反対にC2 Sが初期材齢の水
和活性が低い化合物の為であると考えられる。If the C 3 S content exceeds 45% by weight and is too high, and the C 2 S content is less than 45 % by weight, which is too low, the reaction rate of C 3 S is slow with respect to the clinker composition having a small liquid phase. Is too much, the amount of free CaO increases,
It was difficult to obtain good quality cement. Also, C 3 S
The proportion is too low, less than 20% by weight, and the C 2 S proportion is
If it exceeds 72 % by weight and is too large, the strength of the initial age of the cured product tends to be extremely reduced. It is considered that this is because C 3 S has a high hydration activity in the early age and, conversely, C 2 S is a compound having a low hydration activity in the early age.
【0023】そして、コンクリートの施工速度等の実用
面から、材齢3日における必要強度を50kgf/cm
2 程度とすれば、C3 S割合は20重量%以上とするこ
とが好ましい。尚、C3 S割合は、より望ましくは22
〜42重量%、特に望ましくは22〜37重量%、C2
S割合は、より望ましくは55〜72重量%とすること
が一層好ましい。From the practical aspects such as the concrete construction speed, the required strength after 3 days of age is 50 kgf / cm.
If it is about 2 , the C 3 S ratio is preferably 20% by weight or more. The C 3 S ratio is more preferably 22
-42% by weight, particularly preferably 22-37% by weight, C 2
More preferably, the S ratio is 55 to 72% by weight.
【0024】但し、施工期間を長期間に出来る場合に
は、C3 S割合が20重量%未満となり、C2 S割合が
72重量%を越えても差し支えない。特に、巨大なマス
コンクリート構造物を施工する場合には、C2 Sが水和
発熱量の小さな化合物であり、かつ、長期材齢の強度発
現性に優れる為、セメントの水和熱に起因する温度上昇
によるひび割れ発生防止の観点から好ましいケースもあ
る。However, when the construction period can be extended, the C 3 S ratio becomes less than 20% by weight, and the C 2 S ratio becomes
There is no problem even if it exceeds 72 % by weight. In particular, when constructing a huge mass concrete structure, C 2 S is a compound having a small amount of heat of hydration and is excellent in strength development in long-term age. In some cases, it is preferable from the viewpoint of preventing the occurrence of cracks due to temperature rise.
【0025】次に、上記の耐海水性セメント組成物に高
炉スラグを組み合せれば、比較的少量の高炉スラグの混
合量で、さらに耐海水性に優れ、かつ、中性化速度の遅
い高炉セメントが得られるのではないかとの発想に基づ
き実験・検討を行った。高炉セメントは、高炉スラグの
混合割合が内割表示で60〜70重量%以上になると、
中性化速度が急激に増大することが知られている。そこ
で、高炉スラグを混合後のセメントの内割表示で60重
量%以下とした高炉セメントについて検討を行った。Next, by combining the above-mentioned seawater-resistant cement composition with blast furnace slag, a relatively small amount of blast furnace slag is mixed, the seawater resistance is excellent, and the blast furnace cement with a slow neutralization rate is used. We conducted experiments and studies based on the idea that Blast furnace cement, when the mixing ratio of blast furnace slag is 60 to 70% by weight or more,
It is known that the rate of neutralization increases rapidly. Therefore, the blast furnace cement with 60% by weight or less of the cement content after mixing the blast furnace slag was examined.
【0026】従来、特公昭56−31296号公報の第
3欄第28行目〜第4欄第4行目にも記述されている通
り、セメント中の高炉スラグ混合量が多いほど、塩化物
への抵抗性が向上し、耐硫酸塩性への影響もなく、耐海
水性に優れたセメントが得られるものの、高炉スラグの
混合量が60重量%以下になると、耐硫酸塩性および耐
塩化物性が共に低下し、耐海水性が悪化すると言われて
来た。Conventionally, as described in Japanese Patent Publication No. 56-31296, column 3, line 28 to column 4, line 4, the greater the amount of blast furnace slag mixed in cement, the more chloride is formed. Although the cement has improved resistance to sulphate and has no effect on sulphate resistance and has excellent seawater resistance, when the amount of blast furnace slag mixed is less than 60% by weight, sulphate resistance and chloride resistance It has been said that the water resistance of the seawater deteriorates and the seawater resistance deteriorates.
【0027】しかしながら、本発明者の研究によれば、
60重量%以下のスラグ混合量で耐海水性に優れる高炉
セメントを得ることが出来た。この理由としては、上記
のような組成のセメント(ポルトランドセメント)にあ
っては、それ自体の耐海水性が向上している為、少量の
スラグ添加でも耐海水性に寄与する効果が相乗作用的に
現れるものと考えられた。However, according to the research by the present inventor,
A blast furnace cement excellent in seawater resistance could be obtained with a slag mixing amount of 60% by weight or less. The reason for this is that in the cement (Portland cement) having the above composition, the seawater resistance of itself is improved, so the effect of contributing to seawater resistance is synergistic even if a small amount of slag is added. Thought to appear in.
【0028】すなわち、高炉スラグの添加量を5〜60
重量%(望ましくは25〜45重量%)とした本発明の
セメント組成物は、海水中養生において、さらに高い強
度発現性を示し、耐中性化も含め、総合的な耐久性に優
れた耐海水性高炉セメントと言える。尚、本発明のセメ
ント組成物は、クリンカー、高炉スラグ及び適量の石膏
を別々に、又は適宜に組み合わせて粉砕した後、それら
を混合して製造しても良く、あるいはクリンカーと高炉
スラグに適量の石膏を加え、混合粉砕して製造しても良
い。That is, the amount of blast furnace slag added is 5 to 60.
The cement composition of the present invention, which is used in a weight percentage (desirably 25 to 45 wt%), exhibits even higher strength development in seawater curing, and has excellent overall durability including resistance to neutralization. It can be said to be seawater blast furnace cement. The cement composition of the present invention may be produced by crushing clinker, blast furnace slag and an appropriate amount of gypsum separately, or after crushing in an appropriate combination and then mixing them, or by producing an appropriate amount of clinker and blast furnace slag. It may be produced by adding gypsum and mixing and pulverizing.
【0029】本発明において、石膏をセメント中のSO
3 換算で0. 5〜4. 5重量%としたのは次の理由によ
る。石膏は、セメントの凝結、硬化を正常なものとする
為に不可欠なものであり、通常、セメント中のSO3 換
算で0. 5〜2. 5重量%となる量が添加されている。
そして、クリンカーに元来0. 5〜1. 0重量%のSO
3 分が含まれている為、セメント中のSO3 量は1. 5
〜3. 5重量%程度となっている。従って、本発明にお
いても、石膏添加量の下限値をセメント中のSO3 換算
で0. 5重量%とした。In the present invention, gypsum is mixed with SO in cement.
The reason for setting 0.5 to 4.5% by weight in terms of 3 is as follows. Gypsum is indispensable for normalizing setting and hardening of cement, and is usually added in an amount of 0.5 to 2.5% by weight in terms of SO 3 in cement.
And the clinker is originally 0.5-1.0 wt% SO.
Since 3 minutes are included, the amount of SO 3 in the cement is 1.5
It is about 3.5% by weight. Therefore, also in the present invention, the lower limit of the amount of gypsum added is set to 0.5% by weight in terms of SO 3 in cement.
【0030】これに対して、耐海水性は、セメント中の
SO3 量、すなわち石膏添加量がある程度多い方が良い
ことが知られている。本発明においては、セメント中の
SO 3 量が2重量%程度であっても、十分良好な耐海水
性を示すが、上記の理由からSO3 量が増加すれば耐海
水性がさらに向上することが予想される。しかしなが
ら、日本工業規格におけるセメント中のSO3 量の上限
値は多いものでも4. 5重量%であることから、上限値
として4. 5重量%を選定した。On the other hand, seawater resistance is
SO3It is better that the amount, that is, the amount of plaster added, is large to some extent
It is known. In the present invention,
SO 3Good enough seawater resistance, even if the amount is about 2% by weight
Shows SO, but due to the above reasons, SO3Sea resistance if the amount increases
It is expected that the water content will be further improved. But Naga
, SO in cement according to Japanese Industrial Standards3Maximum amount
Even if there are many values, it is 4.5% by weight.
Was selected as 4.5% by weight.
【0031】以下、本発明について具体的な実施例を挙
げて説明する。The present invention will be described below with reference to specific examples.
【0032】[0032]
【実施例】セメント工場の製造設備によって、石灰石、
珪石、粘土質原料、酸化鉄原料を調合用原料に用いて焼
成されたクリンカーに、石膏を添加して、粉末度325
0〜3450cm2 /gに粉砕して得られた〔表1〕の
化学成分と化合物組成(ボーグ式による)を持つポルト
ランドセメントについて海水抵抗性試験を行った。[Example] Limestone, depending on the manufacturing equipment of the cement plant,
Add gypsum to a clinker fired using silica stone, a clayey raw material, and an iron oxide raw material as a raw material for compounding, and obtain a fineness of 325.
Seawater resistance test was conducted on Portland cement having the chemical composition and the compound composition (according to Borg formula) of [Table 1] obtained by crushing to 0 to 3450 cm 2 / g.
【0033】[0033]
【表1】 [Table 1]
【0034】試験用の供試体にはJIS R 5201
「セメントの物理試験方法」に従って作製したモルタル
を用い、20℃において材齢6日間の水道水による養生
の後、〔表2〕に示すKalleの処方の人工海水によ
る養生を1年間行った。人工海水は、材齢3ケ月までは
2週間ごとに、その後は1ケ月ごとに新しく調製したも
のと交換した。JIS R 5201 is used as the test specimen for the test.
Using a mortar prepared according to the "physical test method for cement", after curing with tap water at a temperature of 20 ° C for 6 days, curing with Kalle's prescription artificial seawater shown in [Table 2] was performed for 1 year. The artificial seawater was replaced with freshly prepared seawater every 2 weeks until the age of 3 months and then every 1 month thereafter.
【0035】[0035]
【表2】 [Table 2]
【0036】海水抵抗性の評価には長い年数を要する
為、1年間の人工海水中養生以降は、20℃の人工海水
浸漬24時間と70℃の乾燥24時間を1サイクルとす
る乾・湿の繰り返しによる促進海水抵抗性試験(促進試
験)を26サイクルまで行った。尚、試験を中断する際
は、乾燥後の供試体をポリ袋中に密封し、20℃の室内
に保存し、試験は人工海水浸漬から再び継続した。又、
使用する人工海水は6サイクルごとに新しいものと交換
した。Since it takes a long period of time to evaluate the resistance to seawater, after curing the artificial seawater for one year, it is possible to dry and wet the artificial seawater soaked at 20 ° C. for 24 hours and dried at 70 ° C. for 24 hours as one cycle. Repeated accelerated seawater resistance test (accelerated test) was performed up to 26 cycles. When the test was interrupted, the dried sample was sealed in a plastic bag and stored in a room at 20 ° C., and the test was continued again from immersion in artificial seawater. or,
The artificial seawater used was replaced with new one every 6 cycles.
【0037】所定材齢における供試体の圧縮強さ試験結
果を〔表3〕に示す。Table 3 shows the results of the compressive strength test of the specimens at a predetermined material age.
【0038】[0038]
【表3】 [Table 3]
【0039】 これによれば、実施例1のポルトランド
セメントは、20℃の人工海水中養生によって材齢1年
まで強度増進が続き、その後の促進試験によっても亀裂
の発生や強度の低下がなく、優れた耐海水性を示してい
ることが判る。これに対し、比較例1の普通ポルトラン
ドセメントは、20℃の人工海水中養生材齢6ケ月以降
に強度低下を示し、促進試験13サイクルで亀裂が発生
し、耐海水性に劣るものであった。又、比較例2の耐硫
酸塩ポルトランドセメントは、20℃の人工海水中養生
材齢1年で強度低下を示し、促進試験で徐々に強度が低
下し、これも耐海水性に劣る傾向にあった。According to this, the strength of the Portland cement of Example 1 continued to increase up to one year of age by curing in artificial seawater at 20 ° C., and even after the accelerated test, there was no occurrence of cracks or reduction in strength, It can be seen that it shows excellent seawater resistance. On the other hand, the ordinary Portland cement of Comparative Example 1 showed a decrease in strength after 6 months of artificial seawater curing material at 20 ° C., cracking occurred in 13 cycles of the accelerated test, and the seawater resistance was poor. . The sulfate-resistant Portland cement of Comparative Example 2 showed a decrease in strength after one year of curing in artificial seawater at 20 ° C, and the strength gradually decreased in the accelerated test, which also tended to be inferior in seawater resistance. It was
【0040】更に、本発明品は、促進試験26サイクル
後の強度値が400kgf/cm2以上であり、比較例
のセメントよりも高強度を示し、優れた耐海水性コンク
リート構造物を建設することが出来る。又、実施例1と
同様にしてセメント工場の製造設備によって得られた、
化合物組成の異なる4種類のセメントの内訳を〔表4〕
に、JIS R 5201によるモルタル圧縮強さ試験
結果を〔表5〕に示す。Furthermore, the product of the present invention has a strength value of 400 kgf / cm 2 or more after 26 cycles of the accelerated test, shows a higher strength than the cement of the comparative example, and is capable of constructing an excellent seawater-resistant concrete structure. Can be done. Also obtained in the same manner as in Example 1, using a cement plant manufacturing facility,
Breakdown of four types of cement with different compound compositions [Table 4]
Table 5 shows the mortar compressive strength test results according to JIS R5201.
【0041】[0041]
【表4】 [Table 4]
【0042】[0042]
【表5】 [Table 5]
【0043】 これによれば、C3Sの量が多いほど、
すなわちC2Sの量が少ないほど、材齢28日までの圧
縮強さが増加する。又、実施例1のポルトランドセメン
トに市販の粉末度4520cm2/g、SO3量2.0%
の高炉スラグ粉末を、内割で25重量%および45重量
%混合して作製した高炉セメントの海水抵抗性試験結果
を〔表6〕の実施例4、実施例5として示す。比較の
為、秩父セメント(株)製の高炉セメントA種と高炉セ
メントB種の試験結果を比較例3、比較例4として示
す。供試体の作製方法、海水抵抗性の試験方法は、実施
例1,比較例1〜比較例2と同一である。According to this, as the amount of C 3 S increases,
That is, the lower the amount of C 2 S, the higher the compressive strength up to 28 days old. In addition, the Portland cement of Example 1 has a commercially available fineness of 4520 cm 2 / g and an SO 3 amount of 2.0%.
The results of seawater resistance test of blast furnace cement prepared by mixing 25 wt% and 45 wt% of the blast furnace slag powder in Table 1 are shown in Table 4 as Examples 4 and 5 . For comparison, the test results of blast furnace cement type A and blast furnace cement type B manufactured by Chichibu Cement Co., Ltd. are shown as Comparative Example 3 and Comparative Example 4. The method for producing the test piece and the test method for seawater resistance are the same as in Example 1 and Comparative Examples 1 and 2.
【0044】[0044]
【表6】 [Table 6]
【0045】これによれば、普通ポルトランドセメント
に高炉スラグを約25重量%混合した比較例3の高炉セ
メントA種は、20℃の人工海水中養生材齢1年で供試
体に亀裂が発生し、強度低下を招くと共に、促進試験に
よって徐々に強度が低下し、耐海水性に劣っていた。
又、普通ポルトランドセメントに高炉スラグを約45重
量%混合した比較例4の高炉セメントB種も、供試体に
亀裂は発生しなかったが、促進試験によって徐々に強度
が低下し、耐海水性に劣る傾向があった。According to this, in the blast furnace cement type A of Comparative Example 3 in which about 25% by weight of blast furnace slag was mixed with ordinary Portland cement, cracks were generated in the specimen at the age of one year in artificial seawater at 20 ° C. However, the strength was gradually decreased, and the strength was gradually decreased by the accelerated test, resulting in poor seawater resistance.
Further, the B type blast furnace cement B of Comparative Example 4 in which about 45% by weight of blast furnace slag was mixed with ordinary Portland cement did not cause cracks in the specimen, but the strength was gradually decreased by the accelerated test and the seawater resistance was improved. It tended to be inferior.
【0046】 これに対して、実施例4,5に示す本発
明品は、比較例3の高炉セメントA種や比較例4の高炉
セメントB種と同一の高炉スラグ混合量においても、2
0℃の人工海水中養生、その後の促進試験において強度
増進が続き、優れた耐海水性を示した。尚、実施例1と
比較しても、高炉スラグの添加によって強度がさらに増
加していることが判る。On the other hand, the products of the present invention shown in Examples 4 and 5 have the same blast furnace slag mixing amount as those of the blast furnace cement type A of the comparative example 3 and the blast furnace cement type B of the comparative example 4.
The artificial seawater was cured at 0 ° C., and the strength was continuously increased in the subsequent accelerated test, showing excellent seawater resistance. It should be noted that the strength is further increased by the addition of the blast furnace slag as compared with Example 1.
【0047】すなわら本発明品は、JIS R 521
1「高炉セメント」のA種およびB種の高炉スラグの分
量である5〜60重量%において、中性化速度が小さ
く、かつ、耐海水性に優れるコンクリート構造物を建設
することが出来る。In other words, the product of the present invention is JIS R 521.
When the amount of blast furnace slag of type A and type B of 1 "blast furnace cement" is 5 to 60% by weight, a concrete structure having a low neutralization rate and excellent seawater resistance can be constructed.
【0048】[0048]
【効果】本発明のセメント組成物を用いれば、海水の侵
食に対して優れた抵抗性を有するセメントペースト、モ
ルタルおよびコンクリート等のセメント硬化体を造るこ
とが出来、臨海ならびに海洋開発に大きく貢献すること
が出来る。[Effect] By using the cement composition of the present invention, a cement hardened product such as cement paste, mortar and concrete having excellent resistance to erosion of seawater can be produced, which greatly contributes to seaside and ocean development. You can
【0049】尚、耐海水性に優れると言うことは、硫酸
イオンや塩素イオンの侵食に対する抵抗性を有すること
であり、本発明のセメント組成物は耐硫酸塩セメントや
耐塩化物セメントとしての適用も出来る。The excellent seawater resistance means that the cement composition of the present invention has resistance to erosion of sulfate ions and chlorine ions, and the cement composition of the present invention is also applicable as a sulfate resistant cement or a chloride resistant cement. I can.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 光男 埼玉県熊谷市月見町二丁目1番1号 秩 父セメント株式会社 中央研究所内 (56)参考文献 特開 平2−120261(JP,A) 特開 平5−213653(JP,A) 特開 昭50−126023(JP,A) 特開 昭49−51312(JP,A) 特開 平7−144941(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 2/00 - 32/02 C04B 40/00 - 40/06 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Mitsuo Tanaka 2-1-1 Tsukimi-cho, Kumagaya-shi, Saitama Chichibu Cement Co., Ltd. Central Research Laboratory (56) Reference JP-A-2-120261 (JP, A) ) JP-A-5-213653 (JP, A) JP-A-50-126023 (JP, A) JP-A-49-51312 (JP, A) JP-A-7-144941 (JP, A) (58) Field (Int.Cl. 7 , DB name) C04B 2/00-32/02 C04B 40/00-40/06
Claims (6)
セメントの組成物であって、 3CaO・SiO2,2CaO・SiO2,3CaO・
Al2 O3 ,4CaO・Al2 O3 ・Fe2 O3 の化合
物組成を含む(但し、4CaO・Al 2 O 3 ・Fe 2 O
3 が7重量%以下のものを除く。)ものであり、 SiO2 とAl2 O3 との重量比が8以上で、 3CaO・SiO2 ,2CaO・SiO2 ,3CaO・
Al2 O3 及び4CaO・Al2 O3 ・Fe2 O3 の総
量100重量部に対して3CaO・SiO2 が20〜4
5重量部、2CaO・SiO2 が45〜72重量部の割
合であることを特徴とするセメント組成物。1. A composition of cement produced without using a flux, 3CaO · SiO 2, 2CaO · SiO 2, 3CaO ·
Al 2 O 3, comprising a compound composition of 4CaO · Al 2 O 3 · Fe 2 O 3 ( where, 4CaO · Al 2 O 3 · Fe 2 O
Excluding those in which 3 is 7% by weight or less. ) Are those, in a weight ratio of SiO 2 and Al 2 O 3 is 8 or more, 3CaO · SiO 2, 2CaO · SiO 2, 3CaO ·
Al 2 O 3 and 4CaO · Al 2 O 3 · Fe 2 3CaO · SiO 2 per 100 parts by weight of the sum of O 3 is from 20 to 4
5 parts by weight, 2CaO.SiO 2 in a proportion of 45 to 72 parts by weight, a cement composition.
2 ,3CaO・Al2 O3 ,4CaO・Al2 O3 ・F
e2 O3 の化合物組成を含むものであって、SiO2 と
Al2 O3 との重量比が8〜15であることを特徴とす
る請求項1のセメント組成物。 2. 3CaO.SiO 2 , 2CaO.SiO
2, 3CaO · Al 2 O 3 , 4CaO · Al 2 O 3 · F
The cement composition according to claim 1, comprising a compound composition of e 2 O 3 , wherein the weight ratio of SiO 2 and Al 2 O 3 is 8 to 15.
2 ,3CaO・Al2O3 ,4CaO・Al2 O3 ・F
e2 O3 の化合物組成を含むものであって、3CaO・
SiO2 ,2CaO・SiO2 ,3CaO・Al2 O3
及び4CaO・Al2 O3 ・Fe2 O3 の総量を100
重量部とした場合にFe2 O3 が2.0〜4.2重量部
の割合であることを特徴とする請求項1または請求項2
のセメント組成物。3. CaO.SiO 2 , 2CaO.SiO
2, 3CaO · Al 2 O 3 , 4CaO · Al 2 O 3 · F
e 2 O 3 containing a compound composition of 3CaO.
SiO 2, 2CaO · SiO 2, 3CaO · Al 2 O 3
And the total amount of 4CaO ・ Al 2 O 3・ Fe 2 O 3 is 100.
Fe 2 O 3 is 2.0 to 4.2 parts by weight in the case of parts by weight.
Cement composition.
なることを特徴とする請求項1〜請求項3いずれかのセ
メント組成物。4. The cement composition according to claim 1, wherein the blast furnace slag is added in an amount of 5 to 60% by weight.
〜4.5重量%添加されてなることを特徴とする請求項
1〜請求項4いずれかのセメント組成物。5. Gypsum is 0.5 in terms of SO 3 in cement.
~ 4.5% by weight is added, The cement composition according to any one of claims 1 to 4.
のものであることを特徴とする請求項1〜請求項5いず
れかのセメント組成物。6. A fineness of 3250 to 3450 cm 2 / g
The cement composition according to any one of claims 1 to 5, wherein the cement composition is a cement composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03388694A JP3485122B2 (en) | 1994-03-03 | 1994-03-03 | Cement composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03388694A JP3485122B2 (en) | 1994-03-03 | 1994-03-03 | Cement composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07242449A JPH07242449A (en) | 1995-09-19 |
JP3485122B2 true JP3485122B2 (en) | 2004-01-13 |
Family
ID=12399014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03388694A Expired - Lifetime JP3485122B2 (en) | 1994-03-03 | 1994-03-03 | Cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3485122B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003013060A (en) * | 2001-06-29 | 2003-01-15 | Mitsubishi Materials Corp | Cement-based setting material for improving seawater- resistant ground |
JP4834574B2 (en) * | 2007-03-06 | 2011-12-14 | 宇部興産株式会社 | Cement composition for high fluidity concrete and high fluidity concrete composition |
JP5846146B2 (en) * | 2013-03-21 | 2016-01-20 | 住友大阪セメント株式会社 | Cement composition |
JP6305737B2 (en) * | 2013-06-24 | 2018-04-04 | 株式会社トクヤマ | Powdered composition using coal ash |
JP6441086B2 (en) * | 2015-01-08 | 2018-12-19 | 株式会社トクヤマ | Effective use of coal ash |
JP6780796B1 (en) * | 2020-03-27 | 2020-11-04 | 住友大阪セメント株式会社 | Cement clinker and cement composition |
-
1994
- 1994-03-03 JP JP03388694A patent/JP3485122B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07242449A (en) | 1995-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5080714B2 (en) | Cement composition | |
CN102869633B (en) | Calcium ferroaluminate compound, cement admixture and process for producing same, and cement composition | |
Ajay et al. | Effect of micro silica on the strength of concrete with ordinary Portland cement | |
JP5818579B2 (en) | Neutralization suppression type early strong cement composition | |
WO2007053398A1 (en) | Blended cement composition | |
JP2010163360A (en) | Method of choosing air-cooled blast furnace slag powder suitably used as cement admixture | |
JP5750011B2 (en) | Blast furnace cement composition | |
JP7037879B2 (en) | Early-strength admixture for secondary products and early-strength concrete for secondary products | |
JP2004315303A (en) | Cement composition, coating material, and salt barrier method using the same | |
JP3485122B2 (en) | Cement composition | |
JP2000143326A (en) | Low-alkali hydraulic material | |
JP2597166B2 (en) | Low heat cement composition | |
JP4171173B2 (en) | Concrete using slag aggregate | |
JP7542130B2 (en) | Cement admixture, cement composition, and method for producing concrete product | |
JP6985177B2 (en) | Hydraulic composition and concrete | |
JP4107773B2 (en) | Cement admixture and cement composition | |
JP4744678B2 (en) | Cement admixture and cement composition | |
JP2007153714A (en) | Cement admixture and cement composition | |
JP2022135751A (en) | Cement admixture and cement composition | |
JP4459379B2 (en) | Cement admixture and cement composition | |
WO2005003060A1 (en) | Chemical admixture for cementitious compositions | |
JP4459380B2 (en) | Cement admixture and cement composition | |
JP2021017379A (en) | Cement admixture, expansion material, and cement composition | |
JP4514319B2 (en) | Cement admixture and cement composition | |
CN113683334B (en) | High-strength and corrosion-resistant additive, concrete, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |