[go: up one dir, main page]

JP4459380B2 - Cement admixture and cement composition - Google Patents

Cement admixture and cement composition Download PDF

Info

Publication number
JP4459380B2
JP4459380B2 JP2000135021A JP2000135021A JP4459380B2 JP 4459380 B2 JP4459380 B2 JP 4459380B2 JP 2000135021 A JP2000135021 A JP 2000135021A JP 2000135021 A JP2000135021 A JP 2000135021A JP 4459380 B2 JP4459380 B2 JP 4459380B2
Authority
JP
Japan
Prior art keywords
cement
raw material
fine powder
parts
cement admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000135021A
Other languages
Japanese (ja)
Other versions
JP2001322849A (en
Inventor
隆行 樋口
実 盛岡
康宏 中島
光男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000135021A priority Critical patent/JP4459380B2/en
Publication of JP2001322849A publication Critical patent/JP2001322849A/en
Application granted granted Critical
Publication of JP4459380B2 publication Critical patent/JP4459380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/008Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、土木・建築分野において使用されるセメント混和材及びセメント組成物に関する。
【0002】
【従来の技術】
セメントは安価であり、かつ大きなコンクリ−ト構造物を任意の形に造ることが可能な優れた材料である。また、セメントに各種セメント混和材を併用することにより、構造物の強度や耐久性を向上させることが可能である。これまでにセメント混和材は数多く提案されているが、コンクリ−ト構造物の信頼性、耐久性、美観などの観点から、膨張性を付与するセメント混和材のさらなる技術の進展が望まれている。コンクリ−ト構造物に膨張性を付与するセメント混和材としては、例えば、遊離石灰−アウイン−無水セッコウ系膨張材(特公昭42-21840号公報)や遊離石灰−カルシウムシリケ−ト−無水セッコウ系膨張材(特公昭53-31170号公報)等がある。
【0003】
【発明が解決しようとする課題】
しかしながら、生コンプラントのミキサにセメント混和材を開袋投入する際、セメント混和材が充分混練されないとコンクリートに均一に分散せずに塊状になっている場合があり、硬化後のコンクリ−トにおいて局所的に異常膨張する、いわゆるポップアウト現象を引き起こすことがある。ポップアウト現象を防止する方法としては、膨張材に予め不活性な無機粉末等を混和しておき、セメント混和材が充分に混練されなくても、膨張材成分同士が凝集して塊にならず、ある程度の分散が期待できるようにしておく方法が考えられるが、不活性な無機粉末を混和することにより膨張成分が希釈されるため、要求性能を満足するためには、セメント混和材の配合量を増加しなければならない問題が生じる。さらに、コンクリ−トに防水性を与えるセメント混和材も求められている。なお、本発明においてコンクリートとは、セメントペースト、モルタル及びコンクリートを総称するものである。
そこで、本発明者らはこのような状況を顧て種々検討した結果、特定の膨張材と、シリカ質微粉末および/又は石灰石微粉末とを配合することによって前記課題を解消できるセメント混和材が得られるとの知見を得て、本発明を完成するに至った。
【0004】
【課題を解決するための手段】
即ち、本発明は、CaO原料、Al 原料、Fe 原料及びCaSO 原料を熱処理して、遊離石灰、カルシウムアルミノフェライト、カルシウムフェライト及び無水セッコウからなるクリンカ−を合成して製造される膨張材と、シリカ質微粉末及び/又は石灰石微粉末とを含有してなるセメント混和材であり、セメントと、該セメント混和材とを含有してなるセメント組成物である。
【0005】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
【0006】
本発明の膨張材は、遊離石灰、カルシウムアルミノフェライト、カルシウムフェライト及び無水セッコウを主要な構成化合物とするものである。その組成割合については、特に限定されるものではないが、膨張材100部中、遊離石灰は30〜70部が好ましく、40〜60部がより好ましい。カルシウムアルミノフェライトは5〜22.5部が好ましく、10〜15部がより好ましい。カルシウムフェライトは5〜22.5部が好ましく、10〜15部がより好ましい。さらに、無水セッコウは5〜30部が好ましく、10〜30部がより好ましい。セメント混和材中の各化合物の組成割合が前記範囲にないと、優れた膨張性能及び流動性の保持性能が得られない場合がある。なお、本発明で用いる部、%は質量単位を表す。
【0007】
本発明の遊離石灰とは、通常、f−CaOと呼ばれるものである。
本発明のカルシウムアルミノフェライトとは、CaO−Al23−Fe23系を総称するものであり、特に限定されるものではないが、一般的に、CaOをC、Al23をA、Fe23をFとすると、C4AF、C62F、C6AF2等の化合物がよく知られているが、通常はC4AFとして存在していると考えて良い。また、本発明のカルシウムフェライトとは、CaO−Fe23系を総称するものであり、特に限定されるものではないが、C2Fがよく知られている。以下、本発明では、カルシウムアルミノフェライトをC4AF、カルシウムフェライトをC2Fと略記する。
【0008】
本発明の膨張材を製造する際、CaO原料、Al23原料、Fe23原料及びCaSO4原料を熱処理して、遊離石灰、C4AF、C2F及び無水セッコウからなるクリンカ−を合成して製造する。遊離石灰、C4AF、C2F及び無水セッコウを別々に合成してから、それらを混合したものでは本発明の効果は得られない。CaO原料、Al23原料、Fe23原料及びCaSO4原料を熱処理して、遊離石灰、C4AF、C2F及び無水セッコウからなるクリンカ−を合成したかどうかは、例えば、粉砕物中の100μm以上の粗粒子の顕微鏡観察を行い、その粒子中に遊離石灰、C4AF、C2F及び無水セッコウが混在していることを確認することによって判別できる。
【0009】
本発明の製造する際の熱処理方法としては、特に限定されるものではないが、電気炉やキルン等を用いて、1100〜1600℃の温度範囲で焼成することが好ましく、1200〜1500℃の温度範囲がより好ましい。1100℃未満では、得られたセメント混和材の膨張性能が十分でなく、1600℃を超えると無水セッコウが分解する恐れがある。
【0010】
CaO原料としては、石灰石や消石灰が挙げられ、Al23原料としては、ボ−キサイトやアルミ残灰等が挙げられ、Fe23原料としては、銅カラミ、鉄粉、市販の酸化鉄等が挙げられ、CaSO4原料としては、二水セッコウ、半水セッコウ及び無水セッコウ等が挙げられる。これら原料中には各種の不純物が存在し、その具体例としては、SiO2、MgO、TiO2、P25、Na2O、K2O等が挙げられ、本発明の目的を実質的に阻害しない範囲では特に問題とはならないが、これらのうちで特にSiO2は珪酸率で0.5未満の範囲であることが好ましい。珪酸率が0.5以上では優れた膨張性能が得られない場合がある。本発明でいう珪酸率とは、クリンカー中のSiO2量、Al23量及びFe23量より次式から算出される。
珪酸率=SiO2/(Al23+Fe23
また、クリンカー中のSiO2量は、5.0%以下が好ましく、3.0%以下がより好ましい。具体的には、5.0%を超えると優れた膨張性能が得られない場合がある。
【0011】
本発明の膨張材の粒度は、特に限定されるものではないが、通常、ブレ−ン比表面積で1500〜6000cm2/gが好ましく、2500〜4000cm2/gがより好ましい。1500cm2/g未満では、強度発現性が悪くなる場合があり、6000cm2/gを超えると優れた膨張性能が得られない場合がある。
【0012】
本発明に使用されるシリカ質微粉末とは、特に限定されるものではないが、シリカフュ−ム、高炉スラグ、フライアッシュ、ケイソウ土や溶融シリカ等のシリカダスト等を総称するものである。シリカ質微粉末は、ポップアウト現象の抑制効果の他に、コンクリ−トの防水性を向上させる効果も奏する。
【0013】
本発明に使用される石灰石微粉末とは、特に限定されるものではないが、天然に産出する炭酸カルシウムを主成分とする鉱石を総称するものである。石灰石微粉末は、シリカ質微粉末のように防水性を向上させる効果は有しないが、ポップアウト現象の抑制効果は充分に有し、さらに地域によっては安価に入手できるという利点がある。
【0014】
本発明に使用されるシリカ質微粉末及び/又は石灰石微粉末の粒度は、特に限定されるものではないが、通常、ブレ−ン比表面積で3000cm2/g以上が好ましい。3000cm2/g未満では、充分なポップアウト抑制効果が得られない場合がある。
【0015】
本発明の膨張材と、シリカ質微粉末及び/又は石灰石微粉末の配合割合は、特に限定されるものではないが、通常、セメント混和材100部中、膨張材は50〜95部が好ましく、60〜90部がより好ましい。膨張材が50部未満では、充分な膨張性能が得られない場合があり、95部を超えると充分なポップアウト現象の抑制効果や、防水性の向上効果が得られない場合がある。シリカ質微粉末及び/又は石灰石微粉末は、5〜50部が好ましく、10〜40部がより好ましい。5部未満では、充分なポップアウト現象の抑制効果や、防水性の向上効果が得られない場合があり、50部を超えると充分な膨張性能が得られない場合がある。
【0016】
本発明のセメント混和材の配合量は、特に限定されるものではないが、通常、セメントとセメント混和材からなるセメント組成物100部中、5〜15部が好ましく、7〜13部がより好ましい。5部未満では本発明の効果が充分に得られない場合があり、15部を超えて使用すると強度発現性が悪くなる場合がある。
【0017】
本発明のセメントとしては、普通セメント、早強、超早強、低熱及び中庸熱等各種ポルトランドセメントと、これらセメントに、高炉スラグ、フライアッシュ及びシリカを混合した各種混合セメント、石灰石粉末等を混合したフィラーセメント、 並びにアルミナセメント等が挙げられ、これらのうちの1種又は2種以上が使用可能である。
【0018】
本発明のセメント混和材及びセメント組成物に、砂、砂利等の骨材の他、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン及び凝結調整剤、並びにセメント急硬材、セメント膨張材、ベントナイトやゼオライト等の粘土鉱物、ハイドロタルサイト等のアニオン交換体等のうちの1種又は2種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。
【0019】
本発明では、各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、予めその一部、或いは全部を混合しておいても差し支えない。混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ及びナウタミキサ等が挙げられる。
【0020】
【実施例】
以下、実施例により本発明を詳細に説明する。
【0021】
実施例1
CaO原料、Al23原料、Fe23原料及びCaSO4原料を配合し、混合粉砕した後、電気炉を用い1350℃で2時間熱処理して、表1に示す種々の化合物組成の膨張材を製造し、ブレ−ン比表面積3500±200cm2/gに粉砕した。これら膨張材を75部、石灰石微粉末を25部の割合で混合してセメント混和材とし、セメントとセメント混和材からなるセメント組成物100部中、セメント混和材を10部配合し、単位セメント組成物量が300kg/m3、水/セメント組成物比=62%、s/a=45%のコンクリートを調製し、長さ変化率、スランプ減少量の測定及びポップアウト試験を行った。結果を表1に併記する。
製造した膨張材を粉末X線回折装置(XRD)により同定し、遊離石灰、C4AF、C2F及び無水セッコウを主要な構成化合物とすることを確認した。また、化学組成は化学分析により求め、化合物組成は化学分析値を基に、計算により求めた。なお、膨張材Rは、遊離石灰、C4AF、C2F及び無水セッコウを別々に合成した後に混合して調製したものである。
【0022】
<使用材料>
セメント:市販普通ポルトランドセメント
石灰石微粉末:新潟県青海鉱山産石灰石をブレ−ン比表面積5000cm2/gに粉砕したもの。
水:水道水
砂:新潟県姫川産、比重2.62
砂利:新潟県姫川産、比重2.64
CaO原料:試薬1級炭酸カルシウム
Al23原料:試薬1級酸化アルミニウム
Fe23原料:試薬1級酸化鉄
CaSO4原料:試薬1級無水セッコウ
【0023】
<測定方法>
化学分析:JIS R 5202に準じて測定。
化合物組成:遊離石灰含有量をJIS R 5202に準じて測定し、それ以外の化合物については計算により求めた。即ち、Al23量からC4AF量を算出し、残りのFe23量からC2F量を算出し、次いでSO3量から無水セッコウ量を算出した。
長さ変化率:JIS A 6202 Bに準じて測定。
スランプ減少量:JIS A 1101に準じてスランプを測定し、練り上がり直後のスランプ値から60分後のスランプ値を引いた値で表示。なお、環境温度は30℃とした。
ポップアウト試験:セメント混和材を添加しないで予めコンクリートを調製しておき、傾胴ミキサにコンクリ−トを投入し、12回転/分の速さでミキサをアジテ−トしながらセメント混和材を後添加し、10分後に排出して、縦1m、横50cm、高さ10cmの型枠内へ打設しポップアウト現象を確認した。なお、環境温度は20℃とした。
【0024】
【表1】

Figure 0004459380
【0025】
表1より、本発明のセメント混和材及びセメント組成物は、コンクリートに優れた膨張性能や流動性の保持性能を付与し、しかもポップアウト現象を防止していることが分かる。
【0026】
実施例2
工業原料であるCaO原料、Al23原料、Fe23原料及びCaSO4原料を配合し、ロータリーキルンを用いて1400℃で熱処理することで、表2に示す組成の膨張材を製造したこと以外は、実施例1と同様に行った。表3に化学組成から算出した化合物組成、表4に測定結果を示す。なお、比較のために市販の2種類の膨張材についても同様の実験を行った。
【0027】
<使用材料>
CaO原料:新潟県青海鉱山産石灰石
Al23原料:中国産ボ−キサイト
Fe23原料:工業用酸化鉄
CaSO4原料:タイ産天然無水セッコウ
市販膨張材A:カルシウムサルホアルミネ−ト系膨張材
市販膨張材B:石灰系膨張材
【0028】
【表2】
Figure 0004459380
【0029】
【表3】
Figure 0004459380
【0030】
【表4】
Figure 0004459380
【0031】
表4より、本発明のセメント混和材及びセメント組成物は、コンクリートに優れた膨張性能や流動性の保持性能を付与し、しかもポップアウト現象を防止していることが分かる。
【0032】
実施例3
実施例2の本発明の膨張材を使用し、表5に示すシリカ質微粉末の種類と量を変えてセメント混和材としたこと以外は、実施例2と同様に行った。なお、防水性試験も併せて実施した。結果を表5に併記する。
【0033】
<使用材料>
シリカ質微粉末▲1▼:市販の高炉スラグをブレ−ン比表面積5000cm2/gに粉砕したもの。
シリカ質微粉末▲2▼:市販のシリカフュ−ム、ブレ−ン比表面積200000cm2/g。
シリカ質微粉末▲3▼:市販のフライアッシュをブレ−ン比表面積5000cm2/gに粉砕したもの。
シリカ質微粉末▲4▼:市販のケイソウ土をブレ−ン比表面積5000cm2/gに粉砕したもの。
シリカ質微粉末▲5▼:シリカ質微粉末▲1▼とシリカ質微粉末▲2▼の等量混合物、ブレ−ン比表面積102500cm2/g。
シリカ質微粉末▲6▼:シリカ質微粉末▲2▼と石灰石微粉末の等量混合物、ブレ−ン比表面積102500cm2/g。
【0034】
<測定方法>
防水性試験:φ15×30cm、中心孔の直径2.0cmの円空供試体を作成し、材齢1日で脱型後、材齢7日までの6日間水中養生を施した後、透水性試験を実施した。試験方法はアウトプット方式とし、試験体外側から水圧10kg/cm2を48時間加え、中心孔から出る水量を測定し、セメント混和材を配合していないコンクリ−トの透水量を100とした時の相対値を透水比として表した。
【0035】
【表5】
Figure 0004459380
【0036】
表5より、本発明のセメント混和材及びセメント組成物は、コンクリートに優れた膨張性能を付与すると共に、ポップアウト現象を防止し、防水性を高めることが分かる。
【0037】
実施例4
実施例2の本発明の膨張材を75部、シリカ質微粉末▲2▼を25部の割合で混合したセメント混和材を使用し、セメント組成物中のセメント混和材の配合量を表6に示すように変えたこと以外は、実施例2と同様に行った。また、材齢28日の圧縮強度を測定した。結果を表6に併記する。
【0038】
<測定方法>
圧縮強度:JIS A 1108に準じて測定。
【0039】
【表6】
Figure 0004459380
【0040】
表6より、本発明のセメント混和材は、その配合量が増加するにつれて、コンクリートの長さ変化率が大きくなる優れた膨張性能を付与すると共に、ポップアウト現象を防止し、防水性を高めることが分かる。
【0041】
【発明の効果】
本発明のセメント混和材は配合量が少なくても、コンクリートに優れた膨張性能及び流動性の保持性能を付与し、且つ、ポップアウト現象の防止及び防水性の向上が可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a cement admixture and a cement composition used in the field of civil engineering and construction.
[0002]
[Prior art]
Cement is an excellent material that is inexpensive and capable of forming large concrete structures in any shape. Moreover, it is possible to improve the strength and durability of the structure by using various cement admixtures in combination with cement. Many cement admixtures have been proposed so far, but from the viewpoints of reliability, durability, aesthetics, etc. of concrete structures, further development of cement admixtures that impart expansibility is desired. . Concrete - The cement admixture that imparts the inflatable Doo structures, for example, free lime - Auin - anhydrous gypsum-based expansive (Sho 42 - 21840 JP) and free lime - calcium silicate are - DOO - anhydrous gypsum it is - (31170 JP Sho 53), etc. system expansion material.
[0003]
[Problems to be solved by the invention]
However, when the cement admixture is unpacked into the mixer of a green plant, the cement admixture may not be uniformly dispersed in the concrete and may be agglomerated unless it is sufficiently kneaded. This may cause a so-called pop-out phenomenon that causes abnormal expansion. As a method of preventing the pop-out phenomenon, inactive inorganic powder or the like is mixed in advance in the expansion material, and even if the cement admixture is not sufficiently kneaded, the expansion material components do not aggregate and become a lump. In order to satisfy the required performance, the amount of the cement admixture must be blended so that a certain degree of dispersion can be expected, but the expansion component is diluted by mixing inert inorganic powder. The problem arises that must be increased. There is also a need for a cement admixture that provides waterproofing to the concrete. In the present invention, concrete is a general term for cement paste, mortar, and concrete.
Therefore, as a result of various studies in view of such a situation, the present inventors have found a cement admixture that can solve the above-mentioned problems by blending a specific expansion material with fine siliceous powder and / or fine limestone powder. Obtaining knowledge that it can be obtained, the present invention has been completed.
[0004]
[Means for Solving the Problems]
That is, the present invention is manufactured by heat treating CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material and CaSO 4 raw material to synthesize a clinker made of free lime, calcium aluminoferrite, calcium ferrite and anhydrous gypsum. A cement admixture containing the expanded material and siliceous fine powder and / or limestone fine powder, and a cement composition containing cement and the cement admixture.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0006]
The expandable material of the present invention comprises free lime, calcium aluminoferrite, calcium ferrite and anhydrous gypsum as main constituent compounds. About the composition ratio, although it does not specifically limit, 30-70 parts of free lime are preferable in 100 parts of expansion | swelling materials, and 40-60 parts are more preferable. The calcium aluminoferrite is preferably 5 to 22.5 parts, more preferably 10 to 15 parts. The calcium ferrite is preferably 5 to 22.5 parts, more preferably 10 to 15 parts. Furthermore, 5-30 parts are preferable and, as for anhydrous gypsum, 10-30 parts are more preferable. If the composition ratio of each compound in the cement admixture is not within the above range, excellent expansion performance and fluidity retention performance may not be obtained. In addition, the part used by this invention and% represent a mass unit.
[0007]
The free lime of the present invention is usually called f-CaO.
The calcium aluminoferrite of the present invention is a generic term for the CaO—Al 2 O 3 —Fe 2 O 3 system and is not particularly limited, but in general, CaO is C, and Al 2 O 3 is When A and Fe 2 O 3 are F, compounds such as C 4 AF, C 6 A 2 F, and C 6 AF 2 are well known, but it may be considered that they are usually present as C 4 AF. . The calcium ferrite of the present invention is a generic term for CaO—Fe 2 O 3 system and is not particularly limited, but C 2 F is well known. Hereinafter, in the present invention, calcium aluminoferrite is abbreviated as C 4 AF, and calcium ferrite is abbreviated as C 2 F.
[0008]
When producing the expandable material of the present invention, the CaO raw material, the Al 2 O 3 raw material, the Fe 2 O 3 raw material and the CaSO 4 raw material are heat-treated to form a clinker made of free lime, C 4 AF, C 2 F and anhydrous gypsum. Is synthesized and manufactured. The effects of the present invention cannot be obtained when free lime, C 4 AF, C 2 F and anhydrous gypsum are synthesized separately and then mixed. Whether the clinker made of free lime, C 4 AF, C 2 F and anhydrous gypsum was synthesized by heat-treating the CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material and CaSO 4 raw material is, for example, pulverized performed microscopy of 100μm or more coarse particles in the object can be determined by confirming that free lime, C 4 AF, the C 2 F and anhydrous gypsum are mixed in the particles.
[0009]
Although it does not specifically limit as the heat processing method at the time of manufacture of this invention, It is preferable to bake in the temperature range of 1100-1600 degreeC using an electric furnace, a kiln, etc., and the temperature of 1200-1500 degreeC is preferable. A range is more preferred. If it is less than 1100 degreeC, the expansion | swelling performance of the obtained cement admixture is not enough, and when it exceeds 1600 degreeC, there exists a possibility that an anhydrous gypsum may decompose | disassemble.
[0010]
Examples of the CaO raw material include limestone and slaked lime. Examples of the Al 2 O 3 raw material include bauxite and aluminum residual ash. Examples of the Fe 2 O 3 raw material include copper calami, iron powder, and commercially available iron oxide. Examples of the CaSO 4 raw material include dihydrate gypsum, half water gypsum and anhydrous gypsum. Various impurities are present in these raw materials, and specific examples thereof include SiO 2 , MgO, TiO 2 , P 2 O 5 , Na 2 O, K 2 O and the like. However, SiO 2 is particularly preferably in the range of less than 0.5 in terms of silicic acid. If the silicic acid ratio is 0.5 or more, an excellent expansion performance may not be obtained. The silicic acid ratio as used in the present invention is calculated from the following formula from the amount of SiO 2, the amount of Al 2 O 3 and the amount of Fe 2 O 3 in the clinker.
Silicic acid ratio = SiO 2 / (Al 2 O 3 + Fe 2 O 3 )
Further, the amount of SiO 2 in the clinker is preferably 5.0% or less, and more preferably 3.0% or less. Specifically, if it exceeds 5.0%, an excellent expansion performance may not be obtained.
[0011]
The particle size of the expanded material of the present invention is not particularly limited, usually, blurring - is preferably 1500~6000cm 2 / g in down specific surface area, 2500~4000cm 2 / g is more preferable. If it is less than 1500 cm < 2 > / g, strength development may worsen, and if it exceeds 6000 cm < 2 > / g, an excellent expansion performance may not be obtained.
[0012]
The siliceous fine powder used in the present invention is not particularly limited, but is a general term for silica fume, blast furnace slag, fly ash, silica dust such as diatomaceous earth and fused silica, and the like. The siliceous fine powder has the effect of improving the waterproof property of the concrete in addition to the effect of suppressing the pop-out phenomenon.
[0013]
The fine limestone powder used in the present invention is not particularly limited, but is a general term for ores composed mainly of calcium carbonate produced in nature. Limestone fine powder does not have the effect of improving waterproofness like siliceous fine powder, but has a sufficient effect of suppressing the pop-out phenomenon, and has an advantage that it can be obtained at a low cost depending on the region.
[0014]
The particle size of the siliceous fine powder and / or limestone fine powder used in the present invention is not particularly limited, but is usually preferably 3000 cm 2 / g or more in terms of the specific surface area of the brain. If it is less than 3000 cm 2 / g, a sufficient pop-out suppressing effect may not be obtained.
[0015]
The blending ratio of the expandable material of the present invention and the siliceous fine powder and / or limestone fine powder is not particularly limited, but usually the expandable material is preferably 50 to 95 parts in 100 parts of the cement admixture, 60 to 90 parts are more preferred. If the expansion material is less than 50 parts, sufficient expansion performance may not be obtained, and if it exceeds 95 parts, a sufficient pop-out phenomenon suppressing effect or waterproof improvement effect may not be obtained. The siliceous fine powder and / or limestone fine powder is preferably 5 to 50 parts, more preferably 10 to 40 parts. If it is less than 5 parts, there may be a case where a sufficient pop-out phenomenon suppressing effect and a waterproof effect cannot be obtained, and if it exceeds 50 parts, sufficient expansion performance may not be obtained.
[0016]
The blending amount of the cement admixture of the present invention is not particularly limited, but is usually preferably 5 to 15 parts, more preferably 7 to 13 parts in 100 parts of a cement composition composed of cement and a cement admixture. . If the amount is less than 5 parts, the effects of the present invention may not be sufficiently obtained. If the amount exceeds 15 parts, strength development may be deteriorated.
[0017]
As the cement of the present invention, various cements such as ordinary cement, early strength, very early strength, low heat and moderate heat, and mixed cement mixed with blast furnace slag, fly ash and silica, limestone powder, etc. are mixed. Filler cement, alumina cement, and the like, and one or more of these can be used.
[0018]
In addition to aggregates such as sand and gravel, the cement admixture and cement composition of the present invention, water reducing agent, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent, fluidizing agent, antifoaming agent, thickening agent. Agents, rust inhibitors, antifreeze agents, shrinkage reducing agents, polymer emulsions and setting modifiers, cement hardeners, cement expansion materials, clay minerals such as bentonite and zeolite, anion exchangers such as hydrotalcite, etc. It is possible to use 1 type (s) or 2 or more types in the range which does not substantially inhibit the objective of this invention.
[0019]
In this invention, the mixing method of each material is not specifically limited, Each material may be mixed at the time of construction, and the part or all may be mixed beforehand. Any existing apparatus can be used as the mixing apparatus, and examples thereof include a tilting cylinder mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer.
[0020]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
[0021]
Example 1
The CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material and CaSO 4 raw material were blended, mixed and pulverized, and then heat treated at 1350 ° C. for 2 hours using an electric furnace to expand various compound compositions shown in Table 1. A material was produced and ground to a brain specific surface area of 3500 ± 200 cm 2 / g. 75 parts of these expansion materials and 25 parts of limestone fine powder are mixed to form a cement admixture, and 10 parts of the cement admixture are blended in 100 parts of a cement composition composed of cement and cement admixture. Concrete having an amount of 300 kg / m 3 , a water / cement composition ratio = 62%, and s / a = 45% was prepared, and the length change rate, the slump reduction amount, and the pop-out test were performed. The results are also shown in Table 1.
The produced expanded material was identified by a powder X-ray diffractometer (XRD), and it was confirmed that free lime, C 4 AF, C 2 F and anhydrous gypsum were the main constituent compounds. The chemical composition was determined by chemical analysis, and the compound composition was determined by calculation based on the chemical analysis values. The expansion material R is prepared by separately synthesizing free lime, C 4 AF, C 2 F and anhydrous gypsum, and then mixing them.
[0022]
<Materials used>
Cement: Commercially available ordinary Portland cement limestone fine powder: pulverized limestone from Aomi mine, Niigata Prefecture, to a specific surface area of 5000 cm 2 / g.
Water: tap water sand: produced in Himekawa, Niigata Prefecture, specific gravity 2.62
Gravel: Niigata prefecture Himekawa production, specific gravity 2.64
CaO raw material: Reagent primary calcium carbonate Al 2 O 3 raw material: Reagent primary aluminum oxide Fe 2 O 3 raw material: Reagent primary iron oxide CaSO 4 raw material: Reagent primary anhydrous gypsum
<Measurement method>
Chemical analysis: Measured according to JIS R 5202.
Compound composition: Free lime content was measured according to JIS R 5202, and other compounds were calculated. That is, the C 4 AF amount was calculated from the Al 2 O 3 amount, the C 2 F amount was calculated from the remaining Fe 2 O 3 amount, and then the anhydrous gypsum amount was calculated from the SO 3 amount.
Length change rate: Measured according to JIS A 6202 B.
Slump reduction: Measures slump according to JIS A 1101, and displays it as the value obtained by subtracting the slump value after 60 minutes from the slump value immediately after kneading. The environmental temperature was 30 ° C.
Pop-out test: Concrete is prepared in advance without adding cement admixture, concrete is put into the tilting mixer, and the cement admixture is moved while agitating the mixer at a speed of 12 revolutions / minute. It was added, discharged 10 minutes later, and placed in a mold having a length of 1 m, a width of 50 cm, and a height of 10 cm, and a pop-out phenomenon was confirmed. The ambient temperature was 20 ° C.
[0024]
[Table 1]
Figure 0004459380
[0025]
From Table 1, it can be seen that the cement admixture and the cement composition of the present invention impart excellent expansion performance and fluidity retention performance to concrete and prevent pop-out phenomenon.
[0026]
Example 2
An industrial material, CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, and CaSO 4 raw material were blended and heat-treated at 1400 ° C. using a rotary kiln to produce an expansion material having the composition shown in Table 2. Except for this, the same procedure as in Example 1 was performed. Table 3 shows the compound composition calculated from the chemical composition, and Table 4 shows the measurement results. For comparison, the same experiment was performed on two types of commercially available expansion materials.
[0027]
<Materials used>
CaO raw material: Limestone Al 2 O 3 raw material from Aomi mine, Niigata Prefecture: Chinese bauxite Fe 2 O 3 raw material: Industrial iron oxide CaSO 4 raw material: Thai natural anhydrous gypsum commercial expansion material A: Calcium sulfoaluminate Expandable material Commercially expanded material B: Lime-based expanded material [0028]
[Table 2]
Figure 0004459380
[0029]
[Table 3]
Figure 0004459380
[0030]
[Table 4]
Figure 0004459380
[0031]
From Table 4, it can be seen that the cement admixture and cement composition of the present invention impart excellent expansion performance and fluidity retention performance to concrete, and prevent pop-out phenomenon.
[0032]
Example 3
The same procedure as in Example 2 was performed except that the expansion material of the present invention of Example 2 was used and the cement admixture was changed by changing the type and amount of the siliceous fine powder shown in Table 5. A waterproof test was also conducted. The results are also shown in Table 5.
[0033]
<Materials used>
Siliceous fine powder (1): Commercially available blast furnace slag ground to a specific surface area of 5000 cm 2 / g.
Siliceous fine powder (2): Commercially available silica fume, brain specific surface area of 200,000 cm 2 / g.
Silica fine powder (3): Commercially available fly ash ground to a specific surface area of 5000 cm 2 / g.
Siliceous fine powder (4): A commercially available diatomaceous earth ground to a brain specific surface area of 5000 cm 2 / g.
Siliceous fine powder (5): A mixture of equal amounts of siliceous fine powder (1) and siliceous fine powder (2), brain specific surface area of 102500 cm 2 / g.
Siliceous fine powder (6): Silica fine powder (2) and an equivalent mixture of limestone fine powder, brain specific surface area of 102500 cm 2 / g.
[0034]
<Measurement method>
Waterproof test: A circular empty specimen with a diameter of 15 x 30 cm and a center hole diameter of 2.0 cm was prepared. After demolding at a material age of 1 day, it was subjected to underwater curing for 6 days until the material age of 7 days, and then water permeability The test was conducted. When the test method is an output method, water pressure of 10 kg / cm 2 is applied from the outside of the specimen for 48 hours, the amount of water coming out from the center hole is measured, and the water permeability of the concrete containing no cement admixture is 100 The relative value was expressed as a water permeability ratio.
[0035]
[Table 5]
Figure 0004459380
[0036]
From Table 5, it can be seen that the cement admixture and the cement composition of the present invention impart excellent expansion performance to concrete, prevent pop-out phenomenon, and improve waterproofness.
[0037]
Example 4
A cement admixture prepared by mixing 75 parts of the expansion material of the present invention of Example 2 and 25 parts of siliceous fine powder (2) was used. Table 6 shows the blending amount of the cement admixture in the cement composition. The procedure was the same as in Example 2 except that the changes were made as shown. Further, the compressive strength at the age of 28 days was measured. The results are also shown in Table 6.
[0038]
<Measurement method>
Compressive strength: Measured according to JIS A 1108.
[0039]
[Table 6]
Figure 0004459380
[0040]
From Table 6, the cement admixture of the present invention gives an excellent expansion performance in which the rate of change in the length of the concrete increases as the blending amount increases, and prevents pop-out phenomenon and enhances waterproofness. I understand.
[0041]
【The invention's effect】
The cement admixture of the present invention imparts excellent expansion performance and fluidity retention performance to concrete even when the blending amount is small, and can prevent pop-out phenomenon and improve waterproofness.

Claims (2)

CaO原料、Al 原料、Fe 原料及びCaSO 原料を熱処理して、遊離石灰、カルシウムアルミノフェライト、カルシウムフェライト及び無水セッコウからなるクリンカ−を合成して製造される膨張材と、シリカ質微粉末及び/又は石灰石微粉末とを含有してなるセメント混和材。 An expansion material produced by heat-treating a CaO raw material, an Al 2 O 3 raw material, an Fe 2 O 3 raw material and a CaSO 4 raw material to synthesize a clinker made of free lime, calcium aluminoferrite, calcium ferrite and anhydrous gypsum; A cement admixture containing siliceous fine powder and / or limestone fine powder. セメントと、請求項1に記載のセメント混和材とを含有してなるセメント組成物。  A cement composition comprising cement and the cement admixture according to claim 1.
JP2000135021A 2000-05-08 2000-05-08 Cement admixture and cement composition Expired - Lifetime JP4459380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135021A JP4459380B2 (en) 2000-05-08 2000-05-08 Cement admixture and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135021A JP4459380B2 (en) 2000-05-08 2000-05-08 Cement admixture and cement composition

Publications (2)

Publication Number Publication Date
JP2001322849A JP2001322849A (en) 2001-11-20
JP4459380B2 true JP4459380B2 (en) 2010-04-28

Family

ID=18643186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135021A Expired - Lifetime JP4459380B2 (en) 2000-05-08 2000-05-08 Cement admixture and cement composition

Country Status (1)

Country Link
JP (1) JP4459380B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776426B2 (en) * 2006-04-28 2011-09-21 株式会社デイ・シイ Cement admixture and low expansion cement composition using the cement admixture
JP5165873B2 (en) * 2006-10-13 2013-03-21 電気化学工業株式会社 Reinforcement joint filling method using filler for reinforcing steel joints
FR2912130B1 (en) * 2007-02-07 2010-02-19 Sicab Carmeuse France ADDITIVE, IN PARTICULAR FOR THE MANUFACTURE OF HYDRAULIC BONDER, CONCRETE OR MORTAR, HYDRAULIC BINDER, CONCRETE OR MORTAR COMPOSITION AND PROCESS FOR THE PRODUCTION OF SUCH MORTAR OR CONCRETE

Also Published As

Publication number Publication date
JP2001322849A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
JP3894780B2 (en) Cement grout composition
JP3390078B2 (en) Cement admixture and cement composition for grout
JP3960718B2 (en) Cement admixture and cement composition
JP3818802B2 (en) Cement admixture and cement composition
WO2021215509A1 (en) Cement admixture, expansion material, and cement composition
JP4744678B2 (en) Cement admixture and cement composition
JP3960717B2 (en) Cement admixture and cement composition
JP4459379B2 (en) Cement admixture and cement composition
JP4459380B2 (en) Cement admixture and cement composition
JP4244261B2 (en) Cement admixture and cement composition
JP4606632B2 (en) Cement admixture and cement composition
JP4107773B2 (en) Cement admixture and cement composition
JP3390082B2 (en) Cement admixture and cement composition for grout
JP4606631B2 (en) Cement admixture and cement composition
JP3818808B2 (en) Cement admixture and cement composition
JP4606546B2 (en) Grout cement admixture and cement composition
JP3390076B2 (en) Cement admixture and cement composition
JP4514319B2 (en) Cement admixture and cement composition
JP4244262B2 (en) Cement admixture and cement composition
JP4498555B2 (en) Cement admixture and cement composition
JP3818805B2 (en) Cement admixture and cement composition
JP4527269B2 (en) Cement admixture and cement composition
JP3390075B2 (en) Cement admixture and cement composition
JP4335424B2 (en) Cement admixture and cement composition
JP3853121B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

EXPY Cancellation because of completion of term