[go: up one dir, main page]

JP3427465B2 - Modifier for composite material, method for producing the same, and composite material - Google Patents

Modifier for composite material, method for producing the same, and composite material

Info

Publication number
JP3427465B2
JP3427465B2 JP04194994A JP4194994A JP3427465B2 JP 3427465 B2 JP3427465 B2 JP 3427465B2 JP 04194994 A JP04194994 A JP 04194994A JP 4194994 A JP4194994 A JP 4194994A JP 3427465 B2 JP3427465 B2 JP 3427465B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
chemical
composite material
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04194994A
Other languages
Japanese (ja)
Other versions
JPH07228587A (en
Inventor
秀好 柳澤
省二 一戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP04194994A priority Critical patent/JP3427465B2/en
Publication of JPH07228587A publication Critical patent/JPH07228587A/en
Application granted granted Critical
Publication of JP3427465B2 publication Critical patent/JP3427465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス繊維製品、マイ
カ製品等の無機質補強材を有機樹脂で処理した複合材料
の特性、特にハンダ耐熱性、ヒートショック特性の改質
に好適な複合材料用改質剤及びその製造方法並びに複合
材料に関する。
TECHNICAL FIELD The present invention relates to a composite material suitable for improving the characteristics of a composite material obtained by treating an inorganic reinforcing material such as a glass fiber product and a mica product with an organic resin, particularly solder heat resistance and heat shock characteristics. The present invention relates to a modifier, a method for producing the same, and a composite material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
無機質補強材としてガラスクロス、ガラステープ、ガラ
スマット、ガラスペーパー等のガラス繊維製品やマイカ
製品をエポキシ樹脂、フェノール樹脂、ポリイミド樹
脂、不飽和ポリエステル樹脂等の有機樹脂で処理した複
合材料が各種用途に広く使用されている。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
Inorganic reinforcing materials such as glass cloth, glass tape, glass mat, glass paper, and other glass fiber products and mica products treated with epoxy resins, phenol resins, polyimide resins, unsaturated polyester resins and other organic resins are used in various applications. Widely used.

【0003】このような複合材料から作られる積層板に
ついては、種々の物性、例えば機械的強度、電気特性、
耐水耐煮沸性、耐薬品性を改良するため、上記無機質補
強材をγ−アミノプロピルトリエトキシシラン、β−ア
ミノエチル−γ−アミノプロピルトリメトキシシラン、
γ−グリシドキシプロピルトリメトキシシラン等のシラ
ンカップリング剤で予備処理してから有機樹脂で処理す
ることで無機質補強材と樹脂との接着性を向上させる方
法が提案されている。
Laminates made from such composite materials have various physical properties such as mechanical strength, electrical properties,
In order to improve water resistance to boiling and resistance to chemicals, the inorganic reinforcing material is γ-aminopropyltriethoxysilane, β-aminoethyl-γ-aminopropyltrimethoxysilane,
A method has been proposed in which the adhesion between the inorganic reinforcing material and the resin is improved by pretreatment with a silane coupling agent such as γ-glycidoxypropyltrimethoxysilane and then treatment with an organic resin.

【0004】一方、複合材料のうち有機樹脂としてエポ
キシ樹脂やポリイミド樹脂を使用したプリント基板用の
積層板については、配線工程時に溶融ハンダに浸漬され
る上、最近では、プリント基板用積層板の薄層化も増々
進んできている。このため、上記無機質補強材の予備処
理用としてより強い耐熱特性を有するシランカップリン
グ剤が要求されている。
On the other hand, a laminated board for a printed circuit board, which uses an epoxy resin or a polyimide resin as an organic resin among the composite materials, is immersed in molten solder during the wiring process, and recently, a laminated board for a printed circuit board is thin. Stratification is also increasing. Therefore, a silane coupling agent having stronger heat resistance is required for the pretreatment of the inorganic reinforcing material.

【0005】しかしながら、上記した従来公知のシラン
カップリング剤による処理では、無機質補強材と樹脂と
の界面に大きな硬化歪みが生じるため、ハンダ耐熱性が
悪いという欠点があった。
However, the treatment with the above-mentioned conventionally known silane coupling agent has a drawback that the heat resistance of the solder is poor because a large curing strain occurs at the interface between the inorganic reinforcing material and the resin.

【0006】更に、下記式(4)で示される化合物の塩
酸塩、或いはアニリン置換シランを使用して処理する方
法(特公昭48−20609号公報、同57−4177
1号公報参照)や、下記式(5)で示されるシラン化合
物による処理(特開平1−48832号公報参照)が提
案されているが、これらの化合物で予備処理した積層板
も、薄層化した場合はブリスター防止効果がなお十分で
はなかった。
Further, a method of treating with a hydrochloride of a compound represented by the following formula (4) or an aniline-substituted silane (Japanese Patent Publication Nos. 48-20609 and 57-4177).
No. 1) or treatment with a silane compound represented by the following formula (5) (see Japanese Patent Laid-Open No. 1-48832) is proposed, but a laminate pretreated with these compounds is also thinned. In that case, the blister prevention effect was still insufficient.

【0007】[0007]

【化6】 (但し、式中R10はメチル基又はエチル基、R11は炭素
数1〜6の2価炭化水素基であり、nは4〜8の整数で
ある。)
[Chemical 6] (However, in the formula, R 10 is a methyl group or an ethyl group, R 11 is a divalent hydrocarbon group having 1 to 6 carbon atoms, and n is an integer of 4 to 8.)

【0008】また、従来のプリント基板用積層板につい
ては、溶融ハンダに浸漬されるときに補強板と樹脂、更
には表面に接着させた回路配線用の銅箔との熱膨張係数
の相違に基づく応力差によってそれらの結合が破壊され
るという欠点があり、このためこれらの製品について
は、ハンダ耐熱性に加えてヒートショック特性を改善す
ることも求められている。
Further, regarding the conventional printed circuit board laminated plate, it is based on the difference in the coefficient of thermal expansion between the reinforcing plate and the resin when immersed in the molten solder, and further the copper foil for circuit wiring adhered to the surface. The disadvantage is that their bond is broken by the stress difference, which is why these products are also required to have improved heat shock properties in addition to solder heat resistance.

【0009】本発明は上記問題点を解決するためになさ
れたもので、複合材料の無機質補強材に対して予備処理
した場合、ハンダ耐熱性及びヒートショック特性の改善
効果に優れた複合材料用改質剤及びその製造方法並びに
複合材料を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and when the inorganic reinforcing material of the composite material is pretreated, it is improved for the composite material, which is excellent in improving the heat resistance of solder and the heat shock property. An object is to provide a substance, a method for producing the same, and a composite material.

【0010】[0010]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を重ねた結果、無機質補強
材に有機樹脂を処理してなる複合材料において、下記一
般式(2)で示されるシラン化合物と、下記一般式
(3)で示されるシラン化合物とハロゲン化ベンジル及
び/又はハロゲン化ビニルベンジルとを反応させること
により得られる下記一般式(1)で示されるアミノ基含
有シラン化合物又はそのハロゲン酸塩を主剤として含有
してなる複合材料用改質剤で無機質補強材を予備処理す
ることにより、無機質補強材と有機樹脂とが硬化歪みを
もたずに強固に接着し得、それ故、ハンダ耐熱性及びヒ
ートショック性を同時に改善することができる上、かか
る複合材料を薄層化して積層板に製造した場合において
も非常に良好な特性が得られることを知見し、本発明を
なすに至った。
Means and Actions for Solving the Problems As a result of intensive studies to achieve the above object, the present inventor has found that in a composite material obtained by treating an inorganic resin with an organic resin, the following general formula (2) is used. The amino group-containing silane compound represented by the following general formula (1) obtained by reacting the silane compound represented by the following with the silane compound represented by the following general formula (3) and benzyl halide and / or vinylbenzyl halide. Or by pre-treating the inorganic reinforcing material with a composite material modifier containing the halogenate as a main agent, the inorganic reinforcing material and the organic resin can be firmly bonded without curing strain, Therefore, it is possible to improve the solder heat resistance and the heat shock resistance at the same time, and it is possible to obtain very good characteristics even when the composite material is made into a thin layer to produce a laminated board. And it found that is, the present invention has been accomplished.

【0011】[0011]

【化7】 〔但し、式中R1は炭素数1又は2の1価炭化水素基、
2は炭素数1〜10の2価炭化水素基、R3は炭素数2
〜8の2価炭化水素基、Xは炭素数1又は2の1価アル
コキシ基であり、m、nはそれぞれ0、1又は2であ
る。)
[Chemical 7] [Wherein R 1 is a monovalent hydrocarbon group having 1 or 2 carbon atoms,
R 2 is a divalent hydrocarbon group having 1 to 10 carbon atoms, R 3 is 2 carbon atoms
To 8 are divalent hydrocarbon groups, X is a monovalent alkoxy group having 1 or 2 carbon atoms, and m and n are 0, 1 or 2, respectively. )

【0012】[0012]

【化8】 〔但し、式中R7は炭素数1又は2の1価炭化水素基、
9は酸素原子を含んでいてもよい2価炭化水素基、Y
は炭素数1又は2の1価アルコキシ基であり、pは0、
1又は2である。)
[Chemical 8] [Wherein R 7 is a monovalent hydrocarbon group having 1 or 2 carbon atoms,
R 9 is a divalent hydrocarbon group which may contain an oxygen atom, Y
Is a monovalent alkoxy group having 1 or 2 carbon atoms, p is 0,
1 or 2. )

【0013】[0013]

【化9】 〔但し、式中R1、R2、R3、X、m、nはそれぞれ上
記と同様であり、R4、R5、R6はそれぞれ水素原子、
ベンジル基、ビニルベンジル基又は
[Chemical 9] [Wherein R 1 , R 2 , R 3 , X, m and n are the same as defined above, R 4 , R 5 and R 6 are hydrogen atoms,
Benzyl group, vinylbenzyl group or

【0014】[0014]

【化10】 で示されるヒドロキシ基含有基(R7、Y、pは上記と
同様であり、R8はヒドロキシ基を有する酸素原子を含
んでいてもよい2価炭化水素基である。)であり、
4、R5、R6のうち少なくとも1つは
[Chemical 10] Is a hydroxy group-containing group (R 7 , Y and p are the same as defined above, and R 8 is a divalent hydrocarbon group optionally having an oxygen atom having a hydroxy group),
At least one of R 4 , R 5 and R 6 is

【0015】[0015]

【化11】 で示されるヒドロキシ基含有基でかつ少なくとも1つは
ベンジル基又はビニルベンジル基である。
[Chemical 11] And at least one is a benzyl group or a vinylbenzyl group.

【0016】従って、本発明は、上記一般式(1)で示
されるアミノ基含有シラン化合物又はそのハロゲン酸塩
を主剤として含有してなることを特徴とする複合材料用
改質剤、上記一般式(2)で示されるシラン化合物と下
記一般式(3)で示されるシラン化合物とハロゲン化ベ
ンジル及び/又はハロゲン化ビニルベンジルとを反応さ
せて上記一般式(1)のアミノ基含有シラン化合物又は
そのハロゲン酸塩を得る複合材料用改質剤の製造方法、
及び無機質補強材に有機樹脂を処理してなる複合材料に
おいて、該無機質補強材をこの複合材料用改質剤で予備
処理した複合材料を提供する。
Therefore, the present invention is a modifier for a composite material, characterized by containing an amino group-containing silane compound represented by the above general formula (1) or a halogenate thereof as a main agent, and the above general formula. The silane compound represented by the formula (2) is reacted with the silane compound represented by the following general formula (3) with benzyl halide and / or vinylbenzyl halide, or the amino group-containing silane compound represented by the general formula (1) or a compound thereof. A method for producing a modifier for a composite material for obtaining a halogenate,
And a composite material obtained by treating an inorganic reinforcing material with an organic resin, wherein the inorganic reinforcing material is pretreated with the modifier for a composite material.

【0017】以下、本発明につき更に詳細に説明する
と、本発明の複合材料用改質剤は、ガラス繊維、例えば
アルカリガラス、無アルカリガラス、低誘電ガラス、高
弾性ガラス、電気用のEガラス等を紡糸したガラスフィ
ラメントを集束したストランド(ガラス束)、不織のガ
ラスマット、ガラスペーパー、更にはヤーンを織ったガ
ラスクロス、ガラステープなどのガラス繊維製品、マイ
カ薄片を抄造した軟質又は硬質の集束マイカシートなど
のマイカ製品を無機質補強材として使用し、この無機質
補強材をエポキシ樹脂、ポリイミド樹脂、不飽和ポリエ
ステル樹脂等の有機樹脂で処理した複合材料において、
この複合材料の無機質補強材予備処理するために使用さ
れるものであり、下記一般式(1)で示されるアミノ基
含有シラン化合物又はそのハロゲン酸塩を主剤としてな
るものである。
The present invention will be described in more detail below. The modifier for a composite material of the present invention is a glass fiber such as alkali glass, non-alkali glass, low dielectric glass, high elasticity glass, and E glass for electrical use. Strands (glass bundles) of spun glass filaments, non-woven glass mats, glass paper, and glass fiber products such as woven glass cloth and glass tape, and soft or hard bundles made from mica flakes. Using a mica product such as mica sheet as an inorganic reinforcing material, in the composite material obtained by treating the inorganic reinforcing material with an organic resin such as epoxy resin, polyimide resin, unsaturated polyester resin,
It is used for pretreatment of the inorganic reinforcing material of this composite material, and is mainly composed of an amino group-containing silane compound represented by the following general formula (1) or a halogenate thereof.

【0018】[0018]

【化12】 〔但し、式中R1は炭素数1又は2の1価炭化水素基、
2は炭素数1〜10の2価炭化水素基、R3は炭素数2
〜8の2価炭化水素基、R4、R5、R6はそれぞれ水素
原子、ベンジル基、ビニルベンジル基又は
[Chemical 12] [Wherein R 1 is a monovalent hydrocarbon group having 1 or 2 carbon atoms,
R 2 is a divalent hydrocarbon group having 1 to 10 carbon atoms, R 3 is 2 carbon atoms
~ 8 divalent hydrocarbon group, R 4 , R 5 and R 6 are each a hydrogen atom, a benzyl group, a vinylbenzyl group or

【0019】[0019]

【化13】 で示されるヒドロキシ基含有基(R7は炭素数1又は2
の1価炭化水素基、R8はヒドロキシ基を有する酸素原
子を含んでいてもよい2価炭化水素基、Yは炭素数1又
は2の1価アルコキシ基、pは0、1又は2である。)
であり、R4、R5 、R6のうち少なくとも1つは
[Chemical 13] A hydroxy group-containing group (R7Has 1 or 2 carbon atoms
Monovalent hydrocarbon group of R8Is an oxygen source having a hydroxy group
A divalent hydrocarbon group which may contain a child, Y has 1 or more carbon atoms
Is a monovalent alkoxy group of 2 and p is 0, 1 or 2. )
And RFour, RFive , R6At least one of

【0020】[0020]

【化14】 で示されるヒドロキシ基含有基でかつ少なくとも1つは
ベンジル基又はビニルベンジル基である。また、Xは炭
素数1又は2の1価アルコキシ基であり、m、nはそれ
ぞれ0、1又は2である。)ここで、R1は例えばCH3
−、CH3CH 2−であり、R2は、アルキレン基、アリ
ーレン基、アリーレン基が介在したアルキレン基が挙げ
られ、例えば
[Chemical 14] A hydroxy group-containing group represented by and at least one is
A benzyl group or a vinylbenzyl group. Also, X is charcoal
It is a monovalent alkoxy group having a prime number of 1 or 2, and m and n are
0, 1 or 2 respectively. ) Where R1Is for example CH3
-, CH3CH 2− And R2Is an alkylene group, ant
Examples of the alkylene group include an arylene group and an arylene group
For example,

【0021】[0021]

【化15】 である。R3は、アルキレン基、アリーレン基、アリー
レン基が介在したアルキレン基が挙げられ、例えば
[Chemical 15] Is. Examples of R 3 include an alkylene group, an arylene group, and an alkylene group in which an arylene group is present.

【0022】[0022]

【化16】 である。また、R4、R5、R6はそれぞれ水素原子、[Chemical 16] Is. R 4 , R 5 and R 6 are each a hydrogen atom,

【0023】[0023]

【化17】 で示されるビニルベンジル基又は[Chemical 17] A vinylbenzyl group represented by or

【0024】[0024]

【化18】 で示されるヒドロキシ基含有基(R7は例えばCH3−、
CH3CH2−、R8は好ましくは炭素数4〜14、特に
6〜10を有し、例えば
[Chemical 18] A hydroxy group-containing group represented by (R 7 is, for example, CH 3 —,
CH 3 CH 2 -, R 8 preferably has 4 to 14 carbon atoms, especially 6 to 10, e.g.

【0025】[0025]

【化19】 YはCH3O−,CH3CH2O−であり、pは0,1又
は2である。)である。なお、R4、R5、R6のうち少
なくとも1つは
[Chemical 19] Y is CH 3 O-, CH 3 CH 2 are O-, p is 0, 1 or 2. ). At least one of R 4 , R 5 and R 6 is

【0026】[0026]

【化20】 で示されるヒドロキシ基含有基でかつ少なくとも1つは
ベンジル基又はビニルベンジル基である。また、Xは炭
素数1又は2の1価アルコキシ基であり、m、nはそれ
ぞれ0、1又は2である。
[Chemical 20] And at least one is a benzyl group or a vinylbenzyl group. Further, X is a monovalent alkoxy group having 1 or 2 carbon atoms, and m and n are 0, 1 or 2, respectively.

【0027】また、上記式(1)のアミノ基含有シラン
化合物のハロゲン酸塩としては、例えば塩酸塩、臭酸
塩、よう素酸塩等が挙げられ、塩酸塩が好適である。
Examples of the halogen salt of the amino group-containing silane compound represented by the above formula (1) include hydrochloride, hydrobromide, and iodine salt, and the hydrochloride is preferred.

【0028】上記式(1)のアミノ基含有シラン化合物
又はそのハロゲン酸塩として具体的には、下記化合物を
例示することができる。
Specific examples of the amino group-containing silane compound of the above formula (1) or its halogen salt thereof include the following compounds.

【0029】[0029]

【化21】 [Chemical 21]

【0030】[0030]

【化22】 [Chemical formula 22]

【0031】[0031]

【化23】 [Chemical formula 23]

【0032】[0032]

【化24】 [Chemical formula 24]

【0033】上記式(1)のアミノ基含有シラン化合物
又はそのハロゲン酸塩は、下記一般式(2)で示される
シラン化合物と、下記一般式(3)で示されるシラン化
合物とハロゲン化ベンジル及び/又はハロゲン化ビニル
ベンジルとを反応させることにより合成することができ
る。
The amino group-containing silane compound of the above formula (1) or its halogenate is a silane compound represented by the following general formula (2), a silane compound represented by the following general formula (3), a benzyl halide, and And / or vinylbenzyl halide.

【0034】[0034]

【化25】 〔但し、式中R1、R2、R3、R7、X、Y、p、m、n
はそれぞれ上記と同様であり、R9は酸素原子を含んで
いてもよい2価炭化水素基、好ましくは炭素数2〜1
2、特に4〜8であり、例えば
[Chemical 25] [However, in the formula, R 1 , R 2 , R 3 , R 7 , X, Y, p, m, n
Are the same as above, respectively, and R 9 is a divalent hydrocarbon group which may contain an oxygen atom, preferably having 2 to 1 carbon atoms.
2, especially 4-8, for example

【0035】[0035]

【化26】 である。)[Chemical formula 26] Is. )

【0036】上記式(2)のシラン化合物、上記式
(3)のシラン化合物として具体的には、下記化合物を
例示することができる。
Specific examples of the silane compound of the above formula (2) and the silane compound of the above formula (3) include the following compounds.

【0037】[0037]

【化27】 [Chemical 27]

【0038】[0038]

【化28】 [Chemical 28]

【0039】この場合、上記反応においては、上記式
(2)のシラン化合物と上記式(3)のシラン化合物と
を反応させた後、ハロゲン化ベンジル及び/又はハロゲ
ン化ビニルベンジルを反応させるか(反応1)、あるい
は上記式(2)のシラン化合物とハロゲン化ベンジル及
び/又はハロゲン化ビニルベンジルを反応させた後、上
記式(3)のシラン化合物を反応させる(反応2)こと
ができる。
In this case, in the above reaction, after reacting the silane compound of the above formula (2) and the silane compound of the above formula (3), a benzyl halide and / or a vinylbenzyl halide is reacted ( After the reaction 1) or the silane compound of the above formula (2) is reacted with benzyl halide and / or vinylbenzyl halide, the silane compound of the above formula (3) can be reacted (reaction 2).

【0040】各化合物の使用量は、上記反応1において
は、上記式(2)のシラン化合物1モルに対して、上記
式(3)の化合物を式(2)中のnが0の場合は1モ
ル、nが1の場合は1〜2モル、nが2の場合は1〜3
モル使用し、かつハロゲン化ベンジル及び/又はハロゲ
ン化ビニルベンジルを前記反応で残存する窒素原子上の
水素原子のモル数以下となるように使用することが好ま
しい。また、上記反応2においては、上記式(2)のシ
ラン化合物1モルに対して、ハロゲン化ベンジル及び/
又はハロゲン化ビニルベンジルを式(2)中のnが0の
場合は1モル、nが1の場合は1〜2モル、nが2の場
合と1〜3モル使用し、かつ上記式(3)の化合物を前
記反応で残存する窒素原子上の水素原子のモル数以下と
なるように使用することが好ましい。
The amount of each compound used in the above reaction 1 is 1 mol of the silane compound of the above formula (2) when the compound of the above formula (3) is 0 in the formula (2). 1 mol, 1-2 mol when n is 1, 1-3 when n is 2
It is preferable to use a molar amount of benzyl halide and / or vinylbenzyl halide so that the number of hydrogen atoms on the nitrogen atom remaining in the above reaction is not more than the number of moles. Further, in the above Reaction 2, for 1 mol of the silane compound of the above formula (2), benzyl halide and //
Alternatively, vinylbenzyl halide is used in the formula (2) in an amount of 1 mol when n is 0, 1 to 2 mol when n is 1, and 1 to 3 mol when n is 2, and the formula (3) above. It is preferable to use the compound (1) such that the number of moles of hydrogen atoms on the nitrogen atom remaining in the above reaction is not more than the number of moles.

【0041】更に、上記反応の際、あるいは反応終了後
にトリエチルアミン、ピリジン等の三級アミン化合物又
はソディウムメチラート、ソディウムエチラート等の金
属アルコラートを使用し、三級アミンハロゲン酸塩又は
ハロゲン化金属として濾過し、ハロゲン酸を除去するこ
ともできる。
Further, during or after the reaction, a tertiary amine compound such as triethylamine or pyridine or a metal alcoholate such as sodium methylate or sodium ethylate is used as a tertiary amine halogenate or a metal halide. It is also possible to remove the halogen acid by filtering.

【0042】なお、ハロゲン化ベンジル、ハロゲン化ビ
ニルベンジルを反応させる際は、両化合物のいずれか一
方を反応させても両化合物を併用して反応させてもよ
い。両化合物を併用して使用する場合は、両化合物を混
合して反応させても、いずれかを先に反応させた後、両
方を反応させてもよい。
When reacting benzyl halide or vinyl benzyl halide, either one of the two compounds may be reacted or both compounds may be used in combination. When both compounds are used in combination, both compounds may be mixed and reacted, or either compound may be reacted first and then both compounds may be reacted.

【0043】上記いずれの方法においても溶媒の使用は
任意であり、例えばメタノール、エタノール等のアルコ
ール類、テトラヒドロフラン、ジオキサン等のエーテル
類、トルエン、キシレン等の芳香族炭化水素類、ヘキサ
ン、ヘプタン、ノナン、デカン等の脂肪族炭化水素類等
を使用することができる。
In any of the above methods, the use of a solvent is optional, for example, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as toluene and xylene, hexane, heptane and nonane. , And aliphatic hydrocarbons such as decane can be used.

【0044】反応条件は特に限定さないが、60〜12
0℃であり、式(2)のシラン化合物に対する式(3)
のシラン化合物の反応は2〜15時間、ハロゲン化ベン
ジル、ハロゲン化ビニルベンジルの反応は2〜100時
間とすることが好ましい。
The reaction conditions are not particularly limited, but are 60 to 12
0 ° C., the formula (3) for the silane compound of the formula (2)
The reaction of the silane compound is preferably for 2 to 15 hours, and the reaction of the benzyl halide and vinylbenzyl halide is preferably for 2 to 100 hours.

【0045】本発明の上記式(1)のアミノ基含有シラ
ン化合物を主剤として含有する複合材料用改質剤を使用
してガラス繊維製品、マイカ製品などの複合材料用の無
機質補強材を予備処理する際には、上記複合材料用改質
剤を適宜な溶剤で薄めて処理液を調製して行うことが望
ましい。この場合、溶剤としては、水又は0.5〜3重
量%程度の濃度の酢酸水溶液が好ましく、更にメタノー
ル、エタノール等のアルコール類等を添加してもよい。
この処理液において、上記式(1)のアミノ基含有シラ
ン化合物の配合量は、全体の0.1〜3%(重量%、以
下同様)、特に0.5〜1%であることが好ましく、
0.1%に満たないと満足な改質効果が得られない場合
があり、3%を超えても処理効果は向上せずコスト的に
不利である。
Pretreatment of inorganic reinforcing materials for composite materials such as glass fiber products and mica products using the modifier for composite materials containing the amino group-containing silane compound of the above formula (1) of the present invention as a main component. In this case, it is preferable to dilute the composite material modifier with an appropriate solvent to prepare a treatment liquid. In this case, the solvent is preferably water or an acetic acid aqueous solution having a concentration of about 0.5 to 3% by weight, and alcohols such as methanol and ethanol may be added.
In this treatment liquid, the compounding amount of the amino group-containing silane compound of the above formula (1) is preferably 0.1 to 3% (% by weight, the same hereinafter) of the whole, particularly preferably 0.5 to 1%.
If it is less than 0.1%, a satisfactory modifying effect may not be obtained, and if it exceeds 3%, the treatment effect is not improved and it is disadvantageous in terms of cost.

【0046】なお、本発明の複合材料用改質剤には、そ
の他の添加剤として、必要に応じて染料、顔料、帯電防
止剤、潤滑剤や上記式(1)のアミノ基含有シラン化合
物以外のシラン化合物等を本発明の効果を妨げない範囲
で添加することができる。
The composite material modifier of the present invention may contain other additives, other than dyes, pigments, antistatic agents, lubricants and amino group-containing silane compounds of the above formula (1), if necessary. The silane compound and the like can be added within a range that does not impair the effects of the present invention.

【0047】また、複合材料用改質剤の無機質補強材へ
の処理方法は、補強材を複合材料用改質剤を希釈した処
理液中に浸漬すればよい。なお、その際、場合によって
はこの処理液の溶媒保持率をスクイズロールなどを用い
て一定にしてもよいし、マイカシート等についてはこの
処理液をスプレー塗布するようにしてもよい。更に、処
理後は60〜120℃で1分〜1時間程度乾燥して溶媒
の除去と同時に無機質補強材表面と複合材料用改質剤中
の上記式(1)のアミノ基含有シラン化合物との化学反
応を行わせることが好ましい。
As a method of treating the inorganic reinforcing material with the composite material modifying agent, the reinforcing material may be dipped in a treatment liquid in which the composite material modifying agent is diluted. At this time, depending on the case, the solvent retention rate of the treatment liquid may be made constant by using a squeeze roll or the like, or the treatment liquid may be spray-coated on the mica sheet or the like. Further, after the treatment, the solvent is removed by drying at 60 to 120 ° C. for about 1 minute to 1 hour, and at the same time, the surface of the inorganic reinforcing material and the amino group-containing silane compound of the above formula (1) in the modifier for composite material are removed. It is preferable to carry out a chemical reaction.

【0048】[0048]

【発明の効果】本発明の複合材料用改質剤は、ガラス繊
維製品、マイカ製品等の無機質補強材とエポキシ樹脂、
ポリイミド樹脂、不飽和ポリエステル樹脂等の有機樹脂
とからなる複合材料の無機質補強材に対して予備処理し
た場合、無機質補強材と有機樹脂とが硬化歪みなしに強
固に接着し、しかもその接着面は柔軟で耐水性が良好で
あり、薄層化して積層板としてもハンダ耐熱性、ヒート
ショック特性に優れた複合材料を与える。
Industrial Applicability The modifier for composite materials of the present invention is an inorganic reinforcing material such as glass fiber products and mica products, and an epoxy resin,
When pretreatment is applied to the inorganic reinforcing material of the composite material consisting of polyimide resin and organic resin such as unsaturated polyester resin, the inorganic reinforcing material and the organic resin are firmly adhered to each other without curing strain, and the adhesion surface is A composite material that is flexible and has good water resistance, and has a thin layer and is excellent in solder heat resistance and heat shock characteristics even as a laminated plate.

【0049】[0049]

【実施例】以下、合成例、実施例及び比較例を示して本
発明を具体的に説明するが、本発明は下記例に制限され
るものではない。なお、各例中の部はいずれも重量部で
ある。 〔合成例1〕1リットルのセパラブルフラスコに温度
計、冷却器、滴下ロートを取りつけ、下記式(6)で示
されるβ−アミノエチル−γ−アミノプロピルトリメト
キシシラン111.0g(0.5モル)を仕込み、これ
に135℃にて下記式(7)で示されるγ−グリシジロ
キシプロピルトリメトキシシラン118.0g(0.5
モル)をゆっくり滴下した。滴下終了後、140℃にて
4時間攪拌し、ガスクロマトグラフ分析によりγ−グリ
シジロキシプロピルトリメトキシシランの消失を確認し
た時点で反応の終点とした。
EXAMPLES The present invention will be specifically described below by showing synthesis examples, examples and comparative examples, but the present invention is not limited to the following examples. All parts in each example are parts by weight. [Synthesis Example 1] A thermometer, a cooler, and a dropping funnel were attached to a 1-liter separable flask, and 111.0 g (0.5) of β-aminoethyl-γ-aminopropyltrimethoxysilane represented by the following formula (6). Mol), and at 1350 g, γ-glycidyloxypropyltrimethoxysilane represented by the following formula (7) 118.0 g (0.5
Mol) was slowly added dropwise. After completion of the dropwise addition, the mixture was stirred at 140 ° C. for 4 hours, and when the disappearance of γ-glycidyloxypropyltrimethoxysilane was confirmed by gas chromatographic analysis, the reaction was regarded as the end point.

【0050】[0050]

【化29】 [Chemical 29]

【0051】その後、冷却し、メタノール50gを仕込
み、80℃にてクロルメチルスチレン76.2g(0.
5モル)をゆっくり滴下した。滴下終了後、80℃にて
28時間攪拌を続け、この溶液の塩酸量を測定すること
で反応が終了したことを確認した。この溶液を更にメタ
ノールで希釈したところ、下記式(8)で示されるシラ
ン化合物(I)の50%メタノール溶液が得られた。
Then, the mixture was cooled and charged with 50 g of methanol, and at 80 ° C., 76.2 g of chloromethylstyrene (0.
5 mol) was slowly added dropwise. After the dropping was completed, stirring was continued at 80 ° C. for 28 hours, and the amount of hydrochloric acid in this solution was measured to confirm that the reaction was completed. When this solution was further diluted with methanol, a 50% methanol solution of the silane compound (I) represented by the following formula (8) was obtained.

【0052】[0052]

【化30】 [Chemical 30]

【0053】〔合成例2〕合成例1と同様に合成を行な
い、反応が終了したことを確認した後、ソディウムメチ
ラート28%のメタノール溶液91.7g(0.48モ
ル)を60℃にてゆっくり滴下した。滴下終了後、60
%にて1時間攪拌を続け、生じた塩を濾別した後、メタ
ノールで希釈したところ、下記式(9)で示されるシラ
ン化合物(II)の50%メタノール溶液が得られた。
[Synthesis Example 2] Synthesis was carried out in the same manner as in Synthesis Example 1 and, after confirming that the reaction was completed, 91.7 g (0.48 mol) of a methanol solution of 28% sodium methylate was added at 60 ° C. It was dripped slowly. After dropping, 60
%, The resulting salt was filtered off and then diluted with methanol to obtain a 50% methanol solution of a silane compound (II) represented by the following formula (9).

【0054】[0054]

【化31】 [Chemical 31]

【0055】〔合成例3〕クロルメチルスチレン滴下量
を106.8g(0.7モル)とする以外は合成例1と
同様にして反応を行い、下記式(10)で示されるシラ
ン化合物(III)の50%メタノール溶液を得た。
[Synthesis Example 3] The reaction was performed in the same manner as in Synthesis Example 1 except that the amount of chloromethylstyrene dropped was 106.8 g (0.7 mol), and the silane compound (III) represented by the following formula (10) was used. A 50% methanol solution of () was obtained.

【0056】[0056]

【化32】 [Chemical 32]

【0057】〔合成例4〕γ−グリシジロキシプロピル
トリメトキシシランの代わりに下記式(11)で示され
る9,10−エポキシデシルトリメトキシシラン13
8.0g(0.5モル)を使用する以外は合成例1と同
様にして反応を行い、下記式(12)で示されるシラン
化合物(IV)の50%メタノール溶液を得た。
[Synthesis Example 4] 9,10-epoxydecyltrimethoxysilane 13 represented by the following formula (11) instead of γ-glycidyloxypropyltrimethoxysilane 13
The reaction was performed in the same manner as in Synthesis Example 1 except that 8.0 g (0.5 mol) was used to obtain a 50% methanol solution of the silane compound (IV) represented by the following formula (12).

【0058】[0058]

【化33】 [Chemical 33]

【0059】〔合成例5〕β−アミノエチル−γ−アミ
ノプロピルトリメトキシシランの代わりに下記式(1
3)で示されるβ−アミノエチル−β−アミノエチル−
γ−アミノプロピルトリメトキシシラン132.5g
(0.5モル)を使用し、クロルメチルスチレン滴下量
を106.8g(0.7モル)とする以外は合成例2と
同様にして反応を行い、下記式(14)で示されるシラ
ン化合物(V)の50%メタノール溶液を得た。
[Synthesis Example 5] Instead of β-aminoethyl-γ-aminopropyltrimethoxysilane, the following formula (1)
3) β-aminoethyl-β-aminoethyl-
γ-aminopropyltrimethoxysilane 132.5 g
(0.5 mol) was used, and the reaction was performed in the same manner as in Synthesis Example 2 except that the amount of chloromethylstyrene added was 106.8 g (0.7 mol), and the silane compound represented by the following formula (14) was used. A 50% methanol solution of (V) was obtained.

【0060】[0060]

【化34】 [Chemical 34]

【0061】〔合成例6〕β−アミノエチル−γ−アミ
ノプロピルトリメトキシシランの代わりにγ−アミノプ
ロピルトリメトキシシラン89.5g(0.5モル)を
使用し、クロルメチルスチレン滴下量を61.0g
(0.4モル)とする以外は合成例1と同様にして反応
を行い、下記式(15)で示されるシラン化合物(V
I)と下記式(16)で表わされる化合物の混合物の5
0%メタノール溶液を得た。
[Synthesis Example 6] 89.5 g (0.5 mol) of γ-aminopropyltrimethoxysilane was used in place of β-aminoethyl-γ-aminopropyltrimethoxysilane, and the amount of chloromethylstyrene dropped was 61. 0.0 g
The reaction was performed in the same manner as in Synthesis Example 1 except that the amount was (0.4 mol), and the silane compound represented by the following formula (15) (V
5 of a mixture of I) and a compound represented by the following formula (16)
A 0% methanol solution was obtained.

【0062】[0062]

【化35】 [Chemical 35]

【0063】〔合成例7〕クロルメチルスチレンの代わ
りに塩化ベンジル88.6g(0.7モル)を滴下する
以外は合成例3と同様にして反応を行い、下記式(1
7)で示されるシラン化合物(VII)の50%メタノ
ール溶液を得た。
[Synthesis Example 7] The reaction was carried out in the same manner as in Synthesis Example 3 except that 88.6 g (0.7 mol) of benzyl chloride was added dropwise instead of chloromethylstyrene, and the following formula (1)
A 50% methanol solution of the silane compound (VII) represented by 7) was obtained.

【0064】[0064]

【化36】 [Chemical 36]

【0065】〔合成例8〕β−アミノエチル−γ−アミ
ノプロピルトリメトキシシランの代わりにω−アミノヘ
キシル−γ−アミノプロピルトリメトキシシラン13
9.0g(0.5モル)を使用し、クロルメチルスチレ
ンの代わりに塩化ベンジル63.3g(0.5モル)を
滴下する以外は合成例1と同様にして反応を行い、下記
式(18)で示されるシラン化合物(VIII)の50
%メタノール溶液を得た。
[Synthesis Example 8] ω-aminohexyl-γ-aminopropyltrimethoxysilane 13 instead of β-aminoethyl-γ-aminopropyltrimethoxysilane 13
The reaction was carried out in the same manner as in Synthesis Example 1 except that 9.0 g (0.5 mol) was used and 63.3 g (0.5 mol) of benzyl chloride was added dropwise instead of chloromethylstyrene. ) 50 of the silane compound (VIII)
% Methanol solution was obtained.

【0066】[0066]

【化37】 [Chemical 37]

【0067】〔実施例1〕合成例1で得たシラン化合物
(I)の50%メタノール溶液を1重量%の酢酸水溶液
に10g/1となるように溶解した処理液中に、ヒート
クリーニングで表面を清浄にしたガラスクロスWE18
K105B(日東紡績社製)を浸漬し、スクイズロール
で絞った後、110℃、15分間の条件で乾燥させた。
[Example 1] A surface of the silane compound (I) obtained in Synthesis Example 1 was heat-cleaned in a treatment solution prepared by dissolving 50% methanol solution of silane compound (I) in 1% by weight of acetic acid solution at a concentration of 10 g / 1. Cleaned glass cloth WE18
K105B (manufactured by Nitto Boseki Co., Ltd.) was dipped, squeezed with a squeeze roll, and dried at 110 ° C. for 15 minutes.

【0068】次いで、NEMA規格G−10処方に従っ
てビスフェノール型エポキシ樹脂(エピコート100
1、油化シェルエポキシ社製)80部、ノボラック型エ
ポキシ樹脂(エピコート154、油化シェルエポキシ社
製)20部、ジシアンジアミド4.0部、ベンジルジメ
チルアミン0.2部、メチルエチルケトン20部及びメ
チルセロソルブ45部を混合した樹脂ワニスに上記シラ
ン処理したガラスクロスを含浸させた後、160℃、6
分間の条件でプリキュアーしてBステージ状態なプリプ
レグを作った。このプリプレグ8枚を重ねたものの上下
に銅箔を重ね、170℃×35kg/cm2×60分間
の条件でプレス成型して両面銅張積層板を作った。
Then, a bisphenol type epoxy resin (Epicoat 100 was used according to the NEMA standard G-10 prescription.
80 parts, Novolak type epoxy resin (Epicoat 154, manufactured by Yuka Shell Epoxy Co., Ltd.), 4.0 parts of dicyandiamide, 0.2 part of benzyldimethylamine, 20 parts of methyl ethyl ketone and methyl cellosolve. A resin varnish mixed with 45 parts was impregnated with the above-mentioned silane-treated glass cloth, then,
Pre-cured under the condition of 1 minute to make a prepreg in the B stage. A copper foil was laminated on the upper and lower sides of a stack of 8 sheets of this prepreg and press-molded under the conditions of 170 ° C. × 35 kg / cm 2 × 60 minutes to prepare a double-sided copper-clad laminate.

【0069】〔実施例2〜8〕シラン化合物(I)の代
わりに表1に示すように合成例2〜8で得たシラン化合
物(II)〜(VIII)の50%メタノール溶液を用
いる以外は実施例1と同様にしてシラン処理ガラスクロ
ス及び銅張積層板を作った。
Examples 2 to 8 A 50% methanol solution of the silane compounds (II) to (VIII) obtained in Synthesis Examples 2 to 8 as shown in Table 1 was used instead of the silane compound (I). A silane-treated glass cloth and a copper clad laminate were prepared in the same manner as in Example 1.

【0070】〔比較例1〜3〕シラン化合物(I)の代
わりに表1に示すように下記のシラン化合物(IX)〜
(XI)の50%メタノール溶液を用いる以外は実施例
1と同様にしてシラン処理ガラスクロス及び銅張積層板
を作った。なお、シラン化合物(IX)については、純
水に可溶であることから、酢酸水の代わりに純水を使用
した。
[Comparative Examples 1 to 3] Instead of the silane compound (I), as shown in Table 1, the following silane compounds (IX) to
A silane-treated glass cloth and a copper clad laminate were produced in the same manner as in Example 1 except that a 50% methanol solution of (XI) was used. Since the silane compound (IX) was soluble in pure water, pure water was used instead of acetic acid water.

【0071】[0071]

【化38】 [Chemical 38]

【0072】得られた銅張積層板について、ラミネート
のガラス含有率、煮沸吸水率、ハンダ耐熱性、シートシ
ョック試験を下記方法で行った。結果を表1に示す。 煮沸吸水率:JIS−C−6481の試験法に従って銅
張積層板からエッチングによって銅箔を除去した50×
50mmの試験板を切り出し、4〜16時間煮沸後の吸
水率を測定した。 ハンダ耐熱性:上記の煮沸吸水率測定後の試験板を26
0℃×30秒間ハンダ浴に浮かべた時に試験板にふくれ
が生じた部分の面積を破壊面積(%)として示した。 ヒートショック試験:銅張積層板を液体窒素に1分間浸
漬し、直ちに290℃のハンダ浴に30秒間浸漬した
後、エッチングで銅箔を取り除いた試験板の損傷を観察
し、下記の段階に分けて判断した。 ◎:良好 ○:かすかにスポット状欠陥発生 △:スポット状欠陥発生 ×:全体的に破壊発生(積層板のはがれ有り)
With respect to the obtained copper-clad laminate, the glass content of the laminate, the boiling water absorption rate, the solder heat resistance, and the sheet shock test were conducted by the following methods. The results are shown in Table 1. Boiled water absorption: The copper foil was removed from the copper clad laminate by etching according to the test method of JIS-C-6481 50 ×
A 50 mm test plate was cut out and the water absorption after boiling for 4 to 16 hours was measured. Solder heat resistance: 26 test plates after the above boiling water absorption measurement
The area of the portion where the test plate blistered when floated in a solder bath at 0 ° C. for 30 seconds was shown as a fracture area (%). Heat shock test: The copper clad laminate was immersed in liquid nitrogen for 1 minute, immediately immersed in a solder bath at 290 ° C for 30 seconds, and the copper foil removed by etching was observed for damage. I judged it. ⊚: Good ○: Slight spot-like defect occurrence △: Spot-like defect occurrence ×: Overall breakage (lamination plate peeled)

【0073】[0073]

【表1】 [Table 1]

【0074】表1の結果より、本発明の複合材料用改質
材剤で処理した銅張積層板は、煮沸吸水率、ハンダ耐性
及びヒートショック特性に優れていることが確認され
た。
From the results shown in Table 1, it was confirmed that the copper clad laminate treated with the composite material modifier of the present invention was excellent in boiling water absorption, solder resistance and heat shock characteristics.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−184985(JP,A) 米国特許3621047(US,A) (58)調査した分野(Int.Cl.7,DB名) C07F 7/18 CA(STN) CAOLD(STN) REGISTRY(STN)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-184985 (JP, A) US Patent 3621047 (US, A) (58) Fields investigated (Int.Cl. 7 , DB name) C07F 7 / 18 CA (STN) CAOLD (STN) REGISTRY (STN)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式(1)で示されるアミノ基含
有シラン化合物又はそのハロゲン酸塩を主剤として含有
してなることを特徴とする複合材料用改質剤。 【化1】 〔但し、式中R1は炭素数1又は2の1価炭化水素基、
2は炭素数1〜10の2価炭化水素基、R3は炭素数2
〜8の2価炭化水素基、R4、R5、R6はそれぞれ水素
原子、ベンジル基、ビニルベンジル基又は 【化2】 で示されるヒドロキシ基含有基(R7は炭素数1又は2
の1価炭化水素基、R8はヒドロキシ基を有する酸素原
子を含んでいてもよい2価炭化水素基、Yは炭素数1又
は2の1価アルコキシ基、pは0、1又は2である。)
であり、R4、R5 、R6のうち少なくとも1つは 【化3】 で示されるヒドロキシ基含有基でかつ少なくとも1つは
ベンジル基又はビニルベンジル基である。また、Xは炭
素数1又は2の1価アルコキシ基であり、m、nはそれ
ぞれ0,1又は2である。)
1. An amino group-containing compound represented by the following general formula (1):
Contains a silane compound or its halogenate as the main agent
A modifier for a composite material, characterized by comprising: [Chemical 1] [However, in the formula R1Is a monovalent hydrocarbon group having 1 or 2 carbon atoms,
R2Is a divalent hydrocarbon group having 1 to 10 carbon atoms, R3Has 2 carbon atoms
~ 8 divalent hydrocarbon groups, RFour, RFive, R6Are each hydrogen
Atom, benzyl group, vinylbenzyl group or [Chemical 2] A hydroxy group-containing group (R7Has 1 or 2 carbon atoms
Monovalent hydrocarbon group of R8Is an oxygen source having a hydroxy group
A divalent hydrocarbon group which may contain a child, Y has 1 or more carbon atoms
Is a monovalent alkoxy group of 2 and p is 0, 1 or 2. )
And RFour, RFive , R6At least one of [Chemical 3] A hydroxy group-containing group represented by and at least one is
A benzyl group or a vinylbenzyl group. Also, X is charcoal
It is a monovalent alkoxy group having a prime number of 1 or 2, and m and n are
It is 0, 1 or 2, respectively. )
【請求項2】 下記一般式(2)で示されるシラン化合
物と、下記一般式(3)で示されるシラン化合物とハロ
ゲン化ベンジル及び/又はハロゲン化ビニルベンジルと
を反応させて、請求項1記載の一般式(1)で示される
アミノ基含有シラン化合物又はそのハロゲン酸塩を得る
請求項1記載の複合材料用改質剤の製造方法。 【化4】 〔但し、式中R1は炭素数1又は2の1価炭化水素基、
2は炭素数1〜10の2価炭化水素基、R3は炭素数2
〜8の2価炭化水素基、Xは炭素数1又は2の1価アル
コキシ基であり、m、nはそれぞれ0,1又は2であ
る。) 【化5】 〔但し、式中R7は炭素数1又は2の1価炭化水素基、
9は酸素原子を含んでいてもよい2価炭化水素基、Y
は炭素数1又は2の1価アルコキシ基であり、pは0、
1又は2である。)
2. The silane compound represented by the following general formula (2) is reacted with the silane compound represented by the following general formula (3) with benzyl halide and / or vinylbenzyl halide, and The method for producing a modifier for a composite material according to claim 1, wherein the amino group-containing silane compound represented by the general formula (1) or a halogenate thereof is obtained. [Chemical 4] [Wherein R 1 is a monovalent hydrocarbon group having 1 or 2 carbon atoms,
R 2 is a divalent hydrocarbon group having 1 to 10 carbon atoms, R 3 is 2 carbon atoms
To 8 are divalent hydrocarbon groups, X is a monovalent alkoxy group having 1 or 2 carbon atoms, and m and n are 0, 1 or 2, respectively. ) [Chemical 5] [Wherein R 7 is a monovalent hydrocarbon group having 1 or 2 carbon atoms,
R 9 is a divalent hydrocarbon group which may contain an oxygen atom, Y
Is a monovalent alkoxy group having 1 or 2 carbon atoms, p is 0,
1 or 2. )
【請求項3】 無機質補強材に有機樹脂を処理してなる
複合材料において、該無機質補強材を請求項1記載の複
合材料用改質剤で予備処理した複合材料。
3. A composite material obtained by treating an inorganic reinforcing material with an organic resin, wherein the inorganic reinforcing material is pretreated with the modifier for a composite material according to claim 1.
JP04194994A 1994-02-16 1994-02-16 Modifier for composite material, method for producing the same, and composite material Expired - Fee Related JP3427465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04194994A JP3427465B2 (en) 1994-02-16 1994-02-16 Modifier for composite material, method for producing the same, and composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04194994A JP3427465B2 (en) 1994-02-16 1994-02-16 Modifier for composite material, method for producing the same, and composite material

Publications (2)

Publication Number Publication Date
JPH07228587A JPH07228587A (en) 1995-08-29
JP3427465B2 true JP3427465B2 (en) 2003-07-14

Family

ID=12622463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04194994A Expired - Fee Related JP3427465B2 (en) 1994-02-16 1994-02-16 Modifier for composite material, method for producing the same, and composite material

Country Status (1)

Country Link
JP (1) JP3427465B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883454B (en) * 2017-03-20 2019-05-17 北京化工大学 Rubber with white carbon black chemical isolation structure/white carbon black rubber master batch preparation method
CN106883453B (en) * 2017-03-20 2019-05-17 北京化工大学 The preparation method of modified white carbon black with chemical isolation structure

Also Published As

Publication number Publication date
JPH07228587A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
US6215011B1 (en) Silane compositions
KR102075195B1 (en) Insulating layer for printed wire board, and printed wire board
EP0368279B1 (en) Silane coupling agent and glass fiber product for laminates
CN107849361B (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
CN102911502A (en) Cyanate resin composition and prepregs, laminates and metal foil-clad laminates produced therefrom
JP3427465B2 (en) Modifier for composite material, method for producing the same, and composite material
JP4697456B2 (en) Composite material modifier and composite material
JP3047725B2 (en) Composite material modifier and composite material
JP3021795B2 (en) Silane coupling agents and glass fiber products for laminates
US5126467A (en) Modifier for composite materials
JP3448902B2 (en) Silane coupling agent and method for producing silane coupling agent
JP2003012892A (en) Resin composition and flame-retardant laminate board and printed wiring board using the composition
JP4543550B2 (en) Silane coupling agent having vinyl group and dimethylsiloxane bond
US5149839A (en) Silane coupling agent and glass fiber product for laminates
JP2003183982A (en) Glass fiber fabric treated to prevent misalignment
JP2920324B2 (en) Modifier for composite materials
JP3464025B2 (en) New aminosilane compounds
JPH05156080A (en) Modifier for composite materials
JPH0525219A (en) Silane coupling agents and glass fiber products for laminated boards
JP2577753B2 (en) Water-soluble silane composition
JP2906945B2 (en) Manufacturing method of laminated board
JPH0733785A (en) Silane coupling agent and method for producing the same
JPH07258415A (en) Silane composition
JPH093770A (en) Surface-treated glass cloth
JPH0830123B2 (en) A cloth-like or mat-like substrate for an electric insulating material impregnated with an epoxy resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees