[go: up one dir, main page]

JP3047725B2 - Composite material modifier and composite material - Google Patents

Composite material modifier and composite material

Info

Publication number
JP3047725B2
JP3047725B2 JP6058077A JP5807794A JP3047725B2 JP 3047725 B2 JP3047725 B2 JP 3047725B2 JP 6058077 A JP6058077 A JP 6058077A JP 5807794 A JP5807794 A JP 5807794A JP 3047725 B2 JP3047725 B2 JP 3047725B2
Authority
JP
Japan
Prior art keywords
composite material
group
inorganic reinforcing
reinforcing material
modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6058077A
Other languages
Japanese (ja)
Other versions
JPH07242771A (en
Inventor
秀好 柳澤
省二 一戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6058077A priority Critical patent/JP3047725B2/en
Publication of JPH07242771A publication Critical patent/JPH07242771A/en
Application granted granted Critical
Publication of JP3047725B2 publication Critical patent/JP3047725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガラス繊維製品、マイ
カ製品等の無機質補強材を有機樹脂で処理した複合材料
の特性、特にハンダ耐熱性、ヒートショック特性の改質
に好適な複合材料用改質剤及び複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material obtained by treating an inorganic reinforcing material such as glass fiber product and mica product with an organic resin, especially for a composite material suitable for improving solder heat resistance and heat shock characteristics. It relates to a modifier and a composite material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
無機質補強材としてガラスクロス、ガラステープ、ガラ
スマット、ガラスペーパー等のガラス繊維製品やマイカ
製品をエポキシ樹脂、フェノール樹脂、ポリイミド樹
脂、不飽和ポリエステル樹脂等の有機樹脂で処理した複
合材料が各種用途に広く使用されている。
2. Description of the Related Art
Composite materials obtained by treating glass fiber products such as glass cloth, glass tape, glass mat, glass paper and mica products with inorganic resins such as epoxy resin, phenol resin, polyimide resin and unsaturated polyester resin as inorganic reinforcing materials for various uses. Widely used.

【0003】このような複合材料から作られる積層板に
ついては、種々の物性、例えば機械的強度、電気特性、
耐水耐煮沸性、耐薬品性を改良するため、上記無機質補
強材をγ−アミノプロピルトリエトキシシラン、β−ア
ミノエチル−γ−アミノプロピルトリメトキシシラン、
γ−グリシドキシプロピルトリメトキシシラン等のシラ
ンカップリング剤で予備処理してから有機樹脂で処理す
ることで無機質補強材と樹脂との接着性を向上させる方
法が提案されている。
[0003] Laminates made from such composite materials have various physical properties, such as mechanical strength, electrical properties, and the like.
In order to improve water resistance, boiling resistance and chemical resistance, the above-mentioned inorganic reinforcing material is used as γ-aminopropyltriethoxysilane, β-aminoethyl-γ-aminopropyltrimethoxysilane,
There has been proposed a method of improving the adhesion between an inorganic reinforcing material and a resin by performing a preliminary treatment with a silane coupling agent such as γ-glycidoxypropyltrimethoxysilane and then treating with an organic resin.

【0004】一方、複合材料のうち有機樹脂としてエポ
キシ樹脂やポリイミド樹脂を使用したプリント基板用の
積層板については、配線工程時に溶融ハンダに浸漬され
る上、最近では、プリント基板用積層板の薄層化も増々
進んできている。このため、上記無機質補強材の予備処
理用としてより強い耐熱特性を有するシランカップリン
グ剤が要求されている。
On the other hand, a laminate for a printed circuit board using an epoxy resin or a polyimide resin as an organic resin in a composite material is immersed in molten solder during a wiring process. The stratification is also increasing. For this reason, a silane coupling agent having stronger heat resistance is required for pretreatment of the inorganic reinforcing material.

【0005】しかしながら、上記した従来公知のシラン
カップリング剤による処理では、無機質補強材と樹脂と
の界面に大きな硬化歪みが生じるため、ハンダ耐熱性が
悪いという欠点があった。
[0005] However, the above-mentioned treatment with the conventionally known silane coupling agent has a disadvantage that the solder heat resistance is poor because a large curing strain is generated at the interface between the inorganic reinforcing material and the resin.

【0006】更に、下記式(a)で示される化合物の塩
酸塩、或いはアニリン置換シランを使用して処理する方
法(特公昭48−20609号公報、同57−4177
1号公報参照)や、下記式(b)で示されるシラン化合
物による処理(特開平1−48832号公報参照)が提
案されているが、これらの化合物で予備処理した積層板
も、薄層化した場合はブリスター防止効果がなお十分で
はなかった。
Further, a method of treating with a hydrochloride of a compound represented by the following formula (a) or aniline-substituted silane (JP-B-48-20609, JP-B-57-4177)
No. 1) and a treatment with a silane compound represented by the following formula (b) (see Japanese Patent Application Laid-Open No. 1-48832) have been proposed. In that case, the blister prevention effect was still insufficient.

【0007】[0007]

【化3】 (但し、式中R9はメチル基又はエチル基、R10は炭素
数1〜6の2価炭化水素基であり、qは4〜8の整数で
ある。)
Embedded image (However, in the formula, R 9 is a methyl group or an ethyl group, R 10 is a divalent hydrocarbon group having 1 to 6 carbon atoms, and q is an integer of 4 to 8.)

【0008】また、従来のプリント基板用積層板につい
ては、溶融ハンダに浸漬されるときに補強板と樹脂、更
には表面に接着させた回路配線用の銅箔との熱膨張係数
の相違に基づく応力差によってそれらの結合が破壊され
るという欠点があり、このためこれら製品については、
ハンダ耐熱性に加えてヒートショック特性を改善するこ
とも求められていた。
Further, the conventional printed circuit board laminate is based on the difference in the coefficient of thermal expansion between the reinforcing plate and the resin when immersed in molten solder, and furthermore between the copper foil for circuit wiring adhered to the surface. The disadvantage is that these bonds are broken by stress differences, and for these products,
It has been required to improve heat shock characteristics in addition to solder heat resistance.

【0009】本発明は上記問題点を解決するためになさ
れたもので、複合材料の無機質補強材に対して予備処理
した場合、ハンダ耐熱性及びヒートショック特性の改善
効果に優れた複合材料用改質剤及び複合材料を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and when a pretreatment is performed on an inorganic reinforcing material of a composite material, a modification for a composite material having excellent effects of improving solder heat resistance and heat shock characteristics. It is intended to provide a filler and a composite material.

【0010】[0010]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を重ねた結果、無機質補強
材に有機樹脂を処理してなる複合材料において、下記一
般式(1)で示されるアミノ基含有シラン化合物又はそ
のハロゲン酸塩を主剤として含有してなる複合材料用改
質剤で無機質補強材を予備処理することにより、無機質
補強材と有機樹脂とが硬化歪みをもたずに強固に接着し
得、それ故、ハンダ耐熱性及びヒートショック性を同時
に改善することができる上、かかる複合材料を薄層化し
て積層板に製造した場合においても非常に良好な特性が
得られることを知見し、本発明をなすに至った。
The present inventors have made intensive studies to achieve the above object, and as a result, obtained a composite material obtained by treating an inorganic reinforcing material with an organic resin by the following general formula (1). By pre-treating the inorganic reinforcing material with a modifier for a composite material containing the amino group-containing silane compound or its halide shown as a main agent, the inorganic reinforcing material and the organic resin have no curing strain. , So that solder heat resistance and heat shock resistance can be improved at the same time, and very good properties can be obtained even when such a composite material is made into a thin-layer laminate. This has led to the achievement of the present invention.

【0011】[0011]

【化4】 (但し、式中R1,R5はそれぞれ炭素数1又は2の1価
炭化水素基、R2,R4はそれぞれ炭素数1〜10のヒド
ロキシ基を含有しない2価炭化水素基、R3は炭素数2
〜8の2価炭化水素基、R6,R7はそれぞれ水素原子、
ベンジル基又はビニルベンジル基であり、R6,R7のう
ち少なくとも1つはベンジル基又はビニルベンジル基で
ある。また、X,Yはそれぞれ炭素数1又は2の1価ア
ルコキシ基、m,n,pはそれぞれ0,1又は2であ
る。)
Embedded image (Wherein, R 1 and R 5 each represent a monovalent hydrocarbon group having 1 or 2 carbon atoms, R 2 and R 4 each represent a divalent hydrocarbon group containing 1 to 10 carbon atoms and not containing a hydroxy group, R 3 Is carbon number 2
To 8 divalent hydrocarbon groups, R 6 and R 7 are each a hydrogen atom,
A benzyl group or a vinylbenzyl group, and at least one of R 6 and R 7 is a benzyl group or a vinylbenzyl group; X and Y are each a monovalent alkoxy group having 1 or 2 carbon atoms, and m, n and p are each 0, 1 or 2. )

【0012】従って、本発明は、無機質補強材と有機樹
脂とを接着してなる複合材料における、上記無機質補強
材の表面を処理するための複合材料用改質剤であって、
上記一般式(1)で示されるアミノ基含有シラン化合物
又はそのハロゲン酸塩を主剤として含有してなることを
特徴とする複合材料用改質剤、及び無機質補強材と有機
樹脂とが接着されてなる複合材料において、上記無機質
補強材の表面が予め上記複合材料用改質剤で処理された
ものであることを特徴とする複合材料を提供する。
Accordingly, the present invention is a composite material modifier for treating the surface of the inorganic reinforcing material in a composite material obtained by bonding an inorganic reinforcing material and an organic resin,
A modifier for a composite material comprising an amino group-containing silane compound represented by the general formula (1) or a halide thereof as a main agent, and an inorganic reinforcing material and an organic resin bonded to each other. A composite material, wherein the surface of the inorganic reinforcing material is treated in advance with the composite material modifier.

【0013】以下、本発明につき更に詳細に説明する
と、本発明の複合材料用改質剤は、ガラス繊維、例えば
アルカリガラス、無アルカリガラス、低誘電ガラス、高
弾性ガラス、電気用のEガラス等を紡糸したガラスフィ
ラメントを集束したストランド(ガラス束)、不織のガ
ラスマット、ガラスペーパー、更にはヤーンを織ったガ
ラスクロス、ガラステープなどのガラス繊維製品、マイ
カ薄片を抄造した軟質又は硬質の集束マイカシートなど
のマイカ製品を無機質補強材として使用し、この無機質
補強材をエポキシ樹脂、ポリイミド樹脂、不飽和ポリエ
ステル樹脂等の有機樹脂で処理した複合材料において、
この複合材料の無機質補強材を予備処理するために使用
されるものであり、下記一般式(1)で示されるアミノ
基含有シラン化合物又はそのハロゲン酸塩を主剤として
なるものである。
Now, the present invention will be described in further detail. The modifier for a composite material according to the present invention may be a glass fiber such as an alkali glass, a non-alkali glass, a low dielectric glass, a high elastic glass, an E glass for electricity, and the like. Strands (glass bundles) obtained by bundling glass filaments, non-woven glass mats, glass papers, glass fibers woven with yarns, glass tapes and other glass fiber products, and soft or hard bundles made from mica flakes Mica products such as mica sheets are used as inorganic reinforcing materials, and in the case of composite materials in which this inorganic reinforcing material is treated with an organic resin such as an epoxy resin, a polyimide resin, and an unsaturated polyester resin,
It is used for pre-treating the inorganic reinforcing material of this composite material, and is mainly composed of an amino group-containing silane compound represented by the following general formula (1) or a halide thereof.

【0014】[0014]

【化5】 (但し、式中R1,R5はそれぞれ炭素数1又は2の1価
炭化水素基、R2,R4はそれぞれ炭素数1〜10のヒド
ロキシ基を含有しない2価炭化水素基、R3は炭素数2
〜8の2価炭化水素基、R6,R7はそれぞれ水素原子、
ベンジル基又はビニルベンジル基であり、R6,R7のう
ち少なくとも1つはベンジル基又はビニルベンジル基で
ある。また、X,Yはそれぞれ炭素数1又は2の1価ア
ルコキシ基であり、m,n,pはそれぞれ0,1又は2
である。)
Embedded image (Wherein, R 1 and R 5 each represent a monovalent hydrocarbon group having 1 or 2 carbon atoms, R 2 and R 4 each represent a divalent hydrocarbon group containing 1 to 10 carbon atoms and not containing a hydroxy group, R 3 Is carbon number 2
To 8 divalent hydrocarbon groups, R 6 and R 7 are each a hydrogen atom,
A benzyl group or a vinylbenzyl group, and at least one of R 6 and R 7 is a benzyl group or a vinylbenzyl group; X and Y are each a monovalent alkoxy group having 1 or 2 carbon atoms, and m, n and p are each 0, 1 or 2
It is. )

【0015】[0015]

【化6】 Embedded image

【0016】また、上記式(1)のアミノ基含有シラン
化合物のハロゲン酸塩としては、例えば塩酸塩、臭酸塩
等が挙げられ、塩酸塩が好適である。
The halogen salt of the amino group-containing silane compound of the above formula (1) includes, for example, hydrochloride, bromate and the like, and hydrochloride is preferred.

【0017】上記式(1)のアミノ基含有シラン化合物
として具体的には、下記化合物を例示することができ
る。
Specific examples of the amino group-containing silane compound of the above formula (1) include the following compounds.

【0018】[0018]

【化7】 Embedded image

【0019】[0019]

【化8】 Embedded image

【0020】[0020]

【化9】 Embedded image

【0021】上記式(1)のアミノ基含有シラン化合物
又はそのハロゲン酸塩は、下記一般式(2)で示される
シラン化合物と下記一般式(3)で示されるシラン化合
物と下記一般式(4)で示されるハロゲン化ベンジル及
び/又はハロゲン化メチルスチレンとを反応させること
により合成することができる。
The amino group-containing silane compound of the above formula (1) or a salt thereof is a silane compound represented by the following formula (2), a silane compound represented by the following formula (3) and a silane compound represented by the following formula (4) ) And / or methyl styrene halide.

【0022】[0022]

【化10】 (但し、式中R1、R2、R3、R4、R5、X、Y、m、
n、pはそれぞれ上記と同様であり、R8は水素原子又
はビニル基、Aはハロゲン原子であり、塩素原子、臭素
原子が好ましい。)
Embedded image (Where R 1 , R 2 , R 3 , R 4 , R 5 , X, Y, m,
n and p are respectively the same as above, R 8 is a hydrogen atom or a vinyl group, A is a halogen atom, and a chlorine atom or a bromine atom is preferable. )

【0023】この場合、各化合物の使用量は、式(2)
の化合物と式(3)の化合物と式(4)の化合物とを反
応モル比1:1:1〜1:1:(1+m)とに反応させ
ることがよい。なお、mは上記と同様の意味を示す。
In this case, the amount of each compound used is determined by the formula (2)
Is preferably reacted with the compound of the formula (3) and the compound of the formula (4) in a reaction molar ratio of 1: 1: 1-1: 1: (1 + m). Note that m has the same meaning as described above.

【0024】なお、上記反応の途中、あるいは反応終了
後にトリエチルアミン、ピリジン等の三級アミン化合物
又はソディウムメチラート、ソディウムエチラート等の
アルカリ金属アルコラートを使用し、三級アミンハロゲ
ン酸塩又はハロゲン化金属として濾過し、ハロゲン酸を
除去することもできる。
During or after the reaction, a tertiary amine compound such as triethylamine or pyridine or an alkali metal alcoholate such as sodium methylate or sodium ethylate is used to form a tertiary amine halide or a metal halide. To remove the halogen acid.

【0025】また、ハロゲン化ベンジル、ハロゲン化メ
チルスチレンを反応させる際は、両化合物のいずれか一
方を反応させても両化合物を併用して反応させてもよ
い。両化合物を併用して使用する場合は、両化合物を混
合して反応させても、いずれかを先に反応させた後、他
方を反応させてもよい。
When reacting a benzyl halide or a methyl styrene halide, either one of the two compounds may be reacted or both compounds may be used in combination. When both compounds are used in combination, both compounds may be mixed and reacted, or one may be reacted first and then the other may be reacted.

【0026】上記いずれの方法においても溶媒の使用は
任意であり、例えばメタノール、エタノール等のアルコ
ール類、テトラヒドロフラン、ジオキサン等のエーテル
類、トルエン、キシレン等の芳香族炭化水素類、ヘキサ
ン、ヘプタン、ノナン、デカン等の脂肪族炭化水素類等
を使用することができる。
In any of the above methods, the use of a solvent is optional. For example, alcohols such as methanol and ethanol, ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as toluene and xylene, hexane, heptane and nonane And aliphatic hydrocarbons such as decane.

【0027】反応条件は特に限定されないが、50〜1
50℃であり、式(2)のシラン化合物に対する式
(3)のシラン化合物の反応は2〜15時間、式(4)
のハロゲン化ベンジル、ハロゲン化メチルスチレンの反
応は2〜15時間とすることが好ましい。
The reaction conditions are not particularly limited, but may be 50 to 1
The reaction of the silane compound of the formula (3) with the silane compound of the formula (2) is carried out for 2 to 15 hours at 50 ° C.
The reaction between the benzyl halide and the methyl styrene halide is preferably performed for 2 to 15 hours.

【0028】本発明の上記式(1)のアミノ基含有シラ
ン化合物を主剤として含有する複合材料用改質剤を使用
してガラス繊維製品、マイカ製品などの複合材料用の無
機質補強材を予備処理する際には、上記複合材料用改質
剤を適宜な溶剤で薄めて処理液を調製して行うことが望
ましい。この場合、溶剤としては、水又は0.5〜2重
量%程度の濃度の酢酸水溶液が好ましく、更にメタノー
ル、エタノール等のアルコール類等を添加してもよい。
この処理液において、上記式(1)のアミノ基含有シラ
ン化合物の配合量は、全体の0.2〜3%(重量%、以
下同様)、特に0.5〜1%であることが好ましく、
0.2%に満たないと満足な改質効果が得られない場合
があり、3%を超えると処理効果は向上せず、コスト高
となる場合がある。
Pretreatment of an inorganic reinforcing material for a composite material such as a glass fiber product and a mica product using a modifier for a composite material containing the amino group-containing silane compound of the formula (1) of the present invention as a main component. In this case, it is desirable to dilute the above composite material modifier with an appropriate solvent to prepare a treatment liquid. In this case, the solvent is preferably water or an aqueous acetic acid solution having a concentration of about 0.5 to 2% by weight, and alcohols such as methanol and ethanol may be further added.
In this treatment liquid, the compounding amount of the amino group-containing silane compound of the above formula (1) is preferably 0.2 to 3% (wt%, the same applies hereinafter), particularly preferably 0.5 to 1% of the whole,
If it is less than 0.2%, a satisfactory modifying effect may not be obtained, and if it exceeds 3%, the treatment effect may not be improved and the cost may be increased.

【0029】なお、本発明の複合材料用改質剤には、そ
の他の添加剤として、必要に応じて染料、顔料、帯電防
止剤、潤滑剤や上記式(1)のアミノ基含有シラン化合
物以外のシラン化合物等を本発明の効果を妨げない範囲
で添加することができる。
The modifier for a composite material of the present invention may further contain other additives other than a dye, a pigment, an antistatic agent, a lubricant and the amino group-containing silane compound of the above formula (1), if necessary. Can be added in a range that does not impair the effects of the present invention.

【0030】また、複合材料用改質剤の無機質補強材へ
の処理方法は、補強材を複合材料用改質剤を希釈した処
理液中に浸漬すればよい。なお、その際、場合によって
はこの処理液の溶液保持率をスクイズロールなどを用い
て一定にしてもよいし、マイカシート等についてはこの
処理液をスプレー塗布するようにしてもよい。更に、処
理後は60〜120℃で5分〜2時間程度乾燥して溶媒
の除去と同時に無機質補強材表面と複合材料用改質剤中
の上記式(1)のアミノ基含有シラン化合物との化学反
応を行わせることが好ましい。
Further, the method of treating the composite material modifier into the inorganic reinforcing material may be performed by immersing the reinforcing material in a treatment liquid obtained by diluting the composite material modifier. In this case, depending on the case, the solution holding ratio of the processing liquid may be made constant using a squeeze roll or the like, or the processing liquid may be spray applied to a mica sheet or the like. Further, after the treatment, the resultant is dried at 60 to 120 ° C. for about 5 minutes to 2 hours, and simultaneously with the removal of the solvent, the surface of the inorganic reinforcing material and the amino group-containing silane compound of the above formula (1) in the composite material modifier are combined. Preferably, a chemical reaction is performed.

【0031】[0031]

【発明の効果】本発明の複合材料用改質剤は、ガラス繊
維製品、マイカ製品等の無機質補強材とエポキシ樹脂、
ポリイミド樹脂、不飽和ポリエステル樹脂等の有機樹脂
とからなる複合材料の無機質補強材に対して予備処理し
た場合、無機質補強材と有機樹脂とが硬化歪みなしに強
固に接着し、しかもその接着面は柔軟で耐水性が良好で
あり、薄層化して積層板としてもハンダ耐熱性、ヒート
ショック特性に優れた複合材料を与える。
Industrial Applicability The modifier for a composite material of the present invention comprises an inorganic reinforcing material such as a glass fiber product and a mica product and an epoxy resin,
When the inorganic reinforcing material of a composite material composed of an organic resin such as a polyimide resin and an unsaturated polyester resin is pre-treated, the inorganic reinforcing material and the organic resin are firmly bonded without curing distortion, and the bonding surface is A composite material that is flexible and has good water resistance and is excellent in solder heat resistance and heat shock characteristics even as a laminated plate when thinned.

【0032】[0032]

【実施例】以下、合成例、実施例及び比較例を示して本
発明を具体的に説明するが、本発明は下記例に制限され
るものではない。なお、各例中の部はいずれも重量部で
ある。
EXAMPLES The present invention will be specifically described below with reference to Synthesis Examples, Examples and Comparative Examples, but the present invention is not limited to the following Examples. All parts in each example are parts by weight.

【0033】〔合成例1〕1リットルのセパラブルフラ
スコに温度計、冷却器、滴下ロートを取りつけ、下記式
(5)で示されるβ−アミノエチル−γ−アミノプロピ
ルトリメトキシシラン111.0g(0.5モル)を仕
込み、これに120℃にて下記式(6)で示されるγ−
クロロプロピルトリメトキシシラン99.3g(0.5
モル)をゆっくり滴下した。滴下終了後、120℃にて
10時間攪拌し、塩素量を測定することで反応が終了し
たことを確認した。
[Synthesis Example 1] A thermometer, a cooler, and a dropping funnel were attached to a 1-liter separable flask, and 111.0 g of β-aminoethyl-γ-aminopropyltrimethoxysilane represented by the following formula (5) was added. 0.5 mol) at 120 ° C., and γ-
99.3 g of chloropropyltrimethoxysilane (0.5
Mol) was slowly added dropwise. After completion of the dropwise addition, the mixture was stirred at 120 ° C. for 10 hours, and the amount of chlorine was measured to confirm that the reaction was completed.

【0034】[0034]

【化11】 Embedded image

【0035】その後、冷却し、メタノール111.0g
を仕込み、70℃にてクロルメチルスチレン76.2g
(0.5モル)をゆっくり滴下した。滴下終了後、70
℃にて10時間攪拌を続け、この溶液の塩酸量を測定す
ることで反応が終了したことを確認した。この溶液を更
にメタノールで希釈したところ、下記式(7)で示され
るシラン化合物(I)の50%メタノール溶液が得られ
た。
Thereafter, the mixture was cooled and 111.0 g of methanol was added.
And 76.2 g of chloromethylstyrene at 70 ° C.
(0.5 mol) was slowly added dropwise. After dropping, 70
Stirring was continued at 10 ° C. for 10 hours, and it was confirmed that the reaction was completed by measuring the amount of hydrochloric acid in this solution. When this solution was further diluted with methanol, a 50% methanol solution of the silane compound (I) represented by the following formula (7) was obtained.

【0036】[0036]

【化12】 Embedded image

【0037】〔合成例2〕1リットルのセパラブルフラ
スコに温度計、冷却器、滴下ロートを取りつけ、下記式
(8)で示されるγ−アミノプロピルトリメトキシシラ
ン90.0g(0.5モル)を仕込み、これに120℃
にて上記式(6)で示されるγ−クロロプロピルトリメ
トキシシラン99.3g(0.5モル)をゆっくり滴下
した。滴下終了後、120℃にて10時間攪拌し、塩素
量を測定することで反応が終了したことを確認した。
[Synthesis Example 2] A thermometer, a cooler, and a dropping funnel were attached to a 1-liter separable flask, and 90.0 g (0.5 mol) of γ-aminopropyltrimethoxysilane represented by the following formula (8) was attached. At 120 ° C
Then, 99.3 g (0.5 mol) of γ-chloropropyltrimethoxysilane represented by the above formula (6) was slowly added dropwise. After completion of the dropwise addition, the mixture was stirred at 120 ° C. for 10 hours, and the amount of chlorine was measured to confirm that the reaction was completed.

【0038】[0038]

【化13】 Embedded image

【0039】その後、60℃に冷却し、ソディウムメチ
ラート28%メタノール溶液96.5gをゆっくり滴下
した。滴下終了後、70℃にて2時間攪拌を続けた後、
生成した塩を濾別し、再度生成物をフラスコに仕込み、
70℃にて塩化ベンジル63.2g(0.5モル)をゆ
っくり滴下した。滴下終了後、70℃にて10時間攪拌
を続け、この溶液の塩酸量を測定することで反応が終了
したことを確認した。この溶液を更にメタノールで希釈
したところ、下記式(9)で示されるシラン化合物(I
I)の50%メタノール溶液が得られた。
After cooling to 60 ° C., 96.5 g of a 28% methanol solution of sodium methylate was slowly added dropwise. After completion of dropping, stirring was continued at 70 ° C. for 2 hours.
The salt formed is filtered off, the product is again charged into the flask,
At 70 ° C., 63.2 g (0.5 mol) of benzyl chloride was slowly added dropwise. After the completion of the dropwise addition, stirring was continued at 70 ° C. for 10 hours, and it was confirmed that the reaction was completed by measuring the amount of hydrochloric acid in this solution. When this solution was further diluted with methanol, the silane compound (I) represented by the following formula (9) was obtained.
A 50% methanol solution of I) was obtained.

【0040】[0040]

【化14】 Embedded image

【0041】〔合成例3〕1リットルのセパラブルフラ
スコに温度計、冷却器、滴下ロートを取りつけ、下記式
(10)で示されるγ−(アミノメチルフェニルメチ
ル)−アミノプロピルトリメトキシシラン149.0g
(0.5モル)を仕込み、これに120℃にて上記式
(6)で示されるγ−クロロプロピルトリメトキシシラ
ン99.2g(0.5モル)をゆっくり滴下した。滴下
終了後、120℃にて10時間攪拌し、塩素量を測定す
ることで反応が終了したことを確認した。
[Synthesis Example 3] A thermometer, a cooler and a dropping funnel were attached to a 1-liter separable flask, and γ- (aminomethylphenylmethyl) -aminopropyltrimethoxysilane 149. 0g
(0.5 mol), and 99.2 g (0.5 mol) of γ-chloropropyltrimethoxysilane represented by the above formula (6) was slowly dropped at 120 ° C. After completion of the dropwise addition, the mixture was stirred at 120 ° C. for 10 hours, and the amount of chlorine was measured to confirm that the reaction was completed.

【0042】[0042]

【化15】 Embedded image

【0043】その後、冷却し、メタノール149.0g
を更に仕込み、70℃にて塩化ベンジル63.2g
(0.5モル)をゆっくり滴下した。滴下終了後、70
℃にて15時間攪拌した。このものの塩素量を測定する
ことで反応が終了したことを確認した。その後、ソディ
ウムメチラート28%メタノール溶液183.3g
(0.95モル)をゆっくり滴下した。滴下終了後、7
0℃にて1時間攪拌を続けた後、生成した塩を濾別し、
更にメタノールで希釈したところ、下記式(11)で示
されるシラン化合物(III)の50%メタノール溶液
が得られた。
After cooling, 149.0 g of methanol was added.
Was further charged, and 63.2 g of benzyl chloride was added at 70 ° C.
(0.5 mol) was slowly added dropwise. After dropping, 70
Stirred at 150C for 15 hours. It was confirmed that the reaction was completed by measuring the chlorine content of this product. Then, 183.3 g of a 28% methanol solution of sodium methylate
(0.95 mol) was slowly added dropwise. After dropping, 7
After stirring at 0 ° C. for 1 hour, the generated salt was filtered off,
Further dilution with methanol gave a 50% methanol solution of the silane compound (III) represented by the following formula (11).

【0044】[0044]

【化16】 Embedded image

【0045】〔合成例4〕アミノ基含有シラン化合物と
して下記式(12)で示される化合物1.0モル、γ−
クロロプロピルトリメトキシシランの代わりに下記式
(13)で示される化合物1.0モル、クロルメチルス
チレンの代わりに塩化ベンジル1.0モルを使用する以
外は合成例1と同様にして反応を行い、下記式(14)
で示されるシラン化合物(IV)の50%メタノール溶
液を得た。
Synthesis Example 4 As an amino group-containing silane compound, 1.0 mol of a compound represented by the following formula (12), γ-
The reaction was carried out in the same manner as in Synthesis Example 1 except that 1.0 mol of the compound represented by the following formula (13) was used instead of chloropropyltrimethoxysilane, and 1.0 mol of benzyl chloride was used instead of chloromethylstyrene. The following equation (14)
To give a 50% methanol solution of the silane compound (IV).

【0046】[0046]

【化17】 Embedded image

【0047】〔合成例5〕アミノ基含有シラン化合物と
して上記式(5)で示される化合物1.0モル、γ−ク
ロロプロピルトリメトキシシランの代わりに下記式(1
5)で示される化合物1.0モル、塩化ベンジルの代わ
りにクロルメチルスチレン2.0モルを使用する以外は
合成例2と同様にして反応を行い、下記式(16)で示
されるシラン化合物(V)の50%メタノール溶液を得
た。
[Synthesis Example 5] As the amino group-containing silane compound, 1.0 mol of the compound represented by the above formula (5) was used instead of γ-chloropropyltrimethoxysilane.
The reaction was carried out in the same manner as in Synthesis Example 2 except that 1.0 mol of the compound represented by 5) and 2.0 mol of chloromethylstyrene were used instead of benzyl chloride, and a silane compound represented by the following formula (16) ( A 50% methanol solution of V) was obtained.

【0048】[0048]

【化18】 Embedded image

【0049】〔合成例6〕アミノ基含有シラン化合物と
して下記式(17)で示される化合物1.0モル、γ−
クロロプロピルトリメトキシシランの代わりに下記式
(18)で示される化合物1.0モル、クロルメチルス
チレンの代わりに塩化ベンジル1.0モルを使用する以
外は合成例1と同様にして反応を行い、下記式(19)
で示されるシラン化合物(VI)の50%メタノール溶
液を得た。
Synthesis Example 6 As an amino group-containing silane compound, 1.0 mol of a compound represented by the following formula (17):
The reaction was carried out in the same manner as in Synthesis Example 1 except that 1.0 mol of the compound represented by the following formula (18) was used instead of chloropropyltrimethoxysilane, and 1.0 mol of benzyl chloride was used instead of chloromethylstyrene. The following equation (19)
To obtain a 50% methanol solution of the silane compound (VI).

【0050】[0050]

【化19】 Embedded image

【0051】〔合成例7〕アミノ基含有シラン化合物と
して下記式(20)で示される化合物1.0モル、γ−
クロロプロピルトリメトキシシランの代わりに下記式
(21)で示される化合物1.0モル、塩化ベンジルの
代わりにクロルメチルスチレン1.0モルを使用する以
外は合成例3と同様にして反応を行い、下記式(22)
で示されるシラン化合物(VII)の50%メタノール
溶液を得た。
[Synthesis Example 7] As an amino group-containing silane compound, 1.0 mol of a compound represented by the following formula (20):
The reaction was carried out in the same manner as in Synthesis Example 3 except that 1.0 mol of the compound represented by the following formula (21) was used instead of chloropropyltrimethoxysilane, and 1.0 mol of chloromethylstyrene was used instead of benzyl chloride. The following equation (22)
To obtain a 50% methanol solution of the silane compound (VII).

【0052】[0052]

【化20】 Embedded image

【0053】〔実施例1〕合成例1で得たシラン化合物
(I)の50%メタノール溶液を1重量%の酢酸水溶液
に10g/lとなるように溶解した処理液中に、ヒート
クリーニングで表面を清浄にしたガラスクロスWE18
K105B(日東紡績社製)を浸漬し、スクイズロール
で絞った後、110℃、15分間の条件で乾燥させた。
Example 1 A 50% methanol solution of the silane compound (I) obtained in Synthesis Example 1 was dissolved in a 1% by weight aqueous acetic acid solution to a concentration of 10 g / l in a treatment solution, and the surface was subjected to heat cleaning. Glass cloth WE18
K105B (manufactured by Nitto Boseki Co., Ltd.) was immersed, squeezed with a squeeze roll, and dried at 110 ° C. for 15 minutes.

【0054】次いで、NEMA規格G−10処方に従っ
てビスフェノール型エポキシ樹脂(エピコート100
1、油化シェルエポキシ社製)80部、ノボラック型エ
ポキシ樹脂(エピコート154、油化シェルエポキシ社
製)20部、ジシアンジアミド4.0部、ベンジルジメ
チルアミン0.2部、メチルエチルケトン20部及びメ
チルセロソルブ45部を混合した樹脂ワニスに上記シラ
ン処理したガラスクロスを含浸させた後、160℃、6
分間の条件でプリキュアーしてBステージ状態なプリプ
レグを作った。このプリプレグ8枚を重ねたものの上下
に銅箔を重ね、170℃×35kg/cm2×60分間
の条件でプレス成型して両面銅張積層板を作った。
Next, a bisphenol type epoxy resin (Epicoat 100) was used according to the NEMA standard G-10 prescription.
1, 80 parts of Yuka Shell Epoxy), 20 parts of novolak type epoxy resin (Epicoat 154, 20 parts of Yuka Shell Epoxy), 4.0 parts of dicyandiamide, 0.2 part of benzyldimethylamine, 20 parts of methyl ethyl ketone and methyl cellosolve After impregnating the silane-treated glass cloth in a resin varnish mixed with 45 parts,
Precuring was performed under the condition of minutes to prepare a B-stage prepreg. A copper foil was laid on top and bottom of the eight prepregs, and press-molded under the conditions of 170 ° C. × 35 kg / cm 2 × 60 minutes to produce a double-sided copper-clad laminate.

【0055】〔実施例2〜4、比較例1〜3〕シラン化
合物(I)の代わりに表1に示すように合成例2〜4で
得たシラン化合物(II)〜(IV)の50%メタノー
ル溶液、下記のシラン化合物(VIII)〜(X)の5
0%メタノール溶液を用いる以外は実施例1と同様にし
てシラン処理ガラスクロス及び銅張積層板を作った。な
お、シラン化合物(VIII)については、純水に可溶
であることから、酢酸水の代わりに純水を使用した。
Examples 2 to 4, Comparative Examples 1 to 3 As shown in Table 1, 50% of the silane compounds (II) to (IV) obtained in Synthesis Examples 2 to 4 in place of the silane compound (I). Methanol solution, 5 of the following silane compounds (VIII) to (X)
A silane-treated glass cloth and a copper-clad laminate were prepared in the same manner as in Example 1 except that a 0% methanol solution was used. Since the silane compound (VIII) was soluble in pure water, pure water was used instead of acetic acid water.

【0056】[0056]

【化21】 Embedded image

【0057】〔実施例5〜7、比較例4〜7〕シラン化
合物(I)の代わりに表1に示すように合成例5〜7で
得たシラン化合物(V)〜(VII)の50%メタノー
ル溶液、上記のシラン化合物(VIII)〜(X)の5
0%メタノール溶液を用いる以外は実施例1と同様にし
てシラン処理ガラスクロスを作った。
Examples 5 to 7, Comparative Examples 4 to 7 Instead of the silane compound (I), as shown in Table 1, 50% of the silane compounds (V) to (VII) obtained in Synthesis Examples 5 to 7 Methanol solution, 5 of the above silane compounds (VIII) to (X)
A silane-treated glass cloth was prepared in the same manner as in Example 1 except that a 0% methanol solution was used.

【0058】次いで、NEMA規格FR−4処法に従っ
て、臭素化エポキシ樹脂 エピコート5046−B−8
0(油化シェルエポキシ社製)100部、ノボラック型
エポキシ樹脂 エピコート154を20部、ジシアンジ
アミド4部、2−エチル−4−メチルイミダゾール0.
2部、メチルエチルケトン15部及びジメチルホルムア
ミド30部を混合して得た樹脂ワニスにこれらのシラン
処理ガラスクロスを含浸させた後、実施例1と同様に処
理して両面銅張積層板を作った。
Next, according to NEMA standard FR-4 processing method, brominated epoxy resin Epicoat 5046-B-8
100 parts (manufactured by Yuka Shell Epoxy), 20 parts of novolak type epoxy resin Epicoat 154, 4 parts of dicyandiamide, 2-ethyl-4-methylimidazole 0.1 part.
A resin varnish obtained by mixing 2 parts, 15 parts of methyl ethyl ketone and 30 parts of dimethylformamide was impregnated with these silane-treated glass cloths, and treated in the same manner as in Example 1 to produce a double-sided copper-clad laminate.

【0059】得られた銅張積層板について、煮沸吸水
率、ハンダ耐熱性、ヒートショック試験を下記方法で行
った。結果を表1,2に示す。 煮沸吸水率:JIS−C−6481の試験法に従って銅
張積層板からエッチングによって銅箔を除去した50×
50mmの試験板を切り出し、4〜14時間煮沸後の吸
水率を測定した。 ハンダ耐熱性:上記の煮沸吸水率測定後の試験板を26
0℃×30秒間ハンダ浴に浮かべた時に試験板にふくれ
が生じた部分の面積を破壊面積(%)として示した。 ヒートショック試験:銅張積層板を液体窒素に1分間浸
漬し、直ちに290℃のハンダ浴に30秒間浸漬した
後、エッチングで銅箔を取り除いた試験板の損傷を観察
し、下記の段階に分けて判断した。 ◎:良好 ○:かすかにスポット状欠陥発生 △:スポット状欠陥発生 ×:全体的に破壊発生(積層板のはがれ有り) 表1,2の結果より、本発明の複合材料用改質剤で処理
した銅張積層板は、煮沸吸水率、ハンダ耐熱性及びヒー
トショック特性に優れていることが確認された。
The obtained copper-clad laminate was subjected to boiling water absorption, solder heat resistance and heat shock tests by the following methods. The results are shown in Tables 1 and 2. Boiling water absorption: 50 × in which copper foil was removed from a copper-clad laminate by etching according to the test method of JIS-C-6481.
A 50 mm test plate was cut out and the water absorption after boiling for 4 to 14 hours was measured. Solder heat resistance: The test plate after measuring the boiling water absorption was 26
The area of the part where blisters occurred on the test plate when it was floated on a solder bath at 0 ° C. for 30 seconds was shown as a fracture area (%). Heat shock test: The copper-clad laminate was immersed in liquid nitrogen for 1 minute, immediately immersed in a solder bath at 290 ° C. for 30 seconds, and then inspected for damage on the test plate from which the copper foil was removed by etching. Decided. :: Good :: Slight spot defect generated △: Spot defect generated ×: Destruction occurred entirely (laminated plate peeled off) From the results in Tables 1 and 2, treatment with the composite material modifier of the present invention was performed. It was confirmed that the obtained copper-clad laminate was excellent in boiling water absorption, solder heat resistance and heat shock characteristics.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C03C 25/02 Z (56)参考文献 特開 平7−228587(JP,A) 特開 平5−156080(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03C 25/00 - 25/02 D06M 13/50 - 13/517 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification code FI C03C 25/02 Z (56) References JP-A-7-228587 (JP, A) JP-A 5-156080 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C03C 25/00-25/02 D06M 13/50-13/517

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 無機質補強材と有機樹脂とを接着してな
る複合材料における、上記無機質補強材の表面を処理す
るための複合材料用改質剤であって、下記一般式(1)
で示されるアミノ基含有シラン化合物又はそのハロゲン
酸塩を主剤として含有してなることを特徴とする複合材
料用改質剤。 【化1】 (但し、式中R1,R5はそれぞれ炭素数1又は2の1価
炭化水素基、R2,R4はそれぞれ炭素数1〜10のヒド
ロキシ基を含有しない2価炭化水素基、R3は炭素数2
〜8の2価炭化水素基、R6,R7はそれぞれ水素原子、
ベンジル基又はビニルベンジル基であり、R6,R7のう
ち少なくとも1つはベンジル基又はビニルベンジル基で
ある。また、X,Yはそれぞれ炭素数1又は2の1価ア
ルコキシ基であり、m,n,pはそれぞれ0,1又は2
である。)
1. A composite material modifier for treating the surface of an inorganic reinforcing material in a composite material obtained by bonding an inorganic reinforcing material and an organic resin, wherein the modifying agent has the following general formula (1):
A modifier for a composite material comprising, as a main agent, an amino group-containing silane compound represented by the formula (1) or a salt thereof. Embedded image (Wherein, R 1 and R 5 each represent a monovalent hydrocarbon group having 1 or 2 carbon atoms, R 2 and R 4 each represent a divalent hydrocarbon group containing 1 to 10 carbon atoms and not containing a hydroxy group, R 3 Is carbon number 2
To 8 divalent hydrocarbon groups, R 6 and R 7 are each a hydrogen atom,
A benzyl group or a vinylbenzyl group, and at least one of R 6 and R 7 is a benzyl group or a vinylbenzyl group; X and Y are each a monovalent alkoxy group having 1 or 2 carbon atoms, and m, n and p are each 0, 1 or 2
It is. )
【請求項2】 式(1)の化合物が、下記一般式(2)
で示される化合物と、下記一般式(3)で示されるシラ
ン化合物と、下記一般式(4)で示されるハロゲン化ベ
ンジル及び/又はハロゲン化メチルスチレンとをモル比
1:1:1〜1:1:(1+m)で反応させて得られる
ものである請求項1記載の改質剤。 【化2】 (但し、式中R1、R2、R3、R4、R5、X、Y、m、
n、pは請求項1に記載したものと同様の意味を示し、
8は水素原子又はビニル基、Aはハロゲン原子であ
る。)
2. The compound of the formula (1) is represented by the following general formula (2)
And a silane compound represented by the following general formula (3) and a benzyl halide and / or a halogenated methyl styrene represented by the following general formula (4) in a molar ratio of 1: 1: 1-1: 1: The modifier according to claim 1, which is obtained by reacting at 1: 1: (1 + m). Embedded image (Where R 1 , R 2 , R 3 , R 4 , R 5 , X, Y, m,
n and p have the same meanings as described in claim 1,
R 8 is a hydrogen atom or a vinyl group, and A is a halogen atom. )
【請求項3】 無機質補強材がガラス繊維製品又はマイ
カ製品である請求項1又は2記載の複合材料用改質剤。
3. The composite material modifier according to claim 1, wherein the inorganic reinforcing material is a glass fiber product or a mica product.
【請求項4】 無機質補強材と有機樹脂とが接着されて
なる複合材料において、上記無機質補強材の表面が予め
請求項1又は2記載の複合材料用改質剤で処理されたも
のであることを特徴とする複合材料。
4. A composite material comprising an inorganic reinforcing material and an organic resin bonded to each other, wherein the surface of the inorganic reinforcing material is previously treated with the composite material modifier according to claim 1 or 2. A composite material characterized by the above.
【請求項5】 無機質補強材がガラス繊維製品又はマイ
カ製品である請求項4記載の複合材料。
5. The composite material according to claim 4, wherein the inorganic reinforcing material is a glass fiber product or a mica product.
【請求項6】 複合材料がプリント基板用積層板である
請求項4記載の複合材料。
6. The composite material according to claim 4, wherein the composite material is a laminate for a printed circuit board.
JP6058077A 1994-03-03 1994-03-03 Composite material modifier and composite material Expired - Lifetime JP3047725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6058077A JP3047725B2 (en) 1994-03-03 1994-03-03 Composite material modifier and composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6058077A JP3047725B2 (en) 1994-03-03 1994-03-03 Composite material modifier and composite material

Publications (2)

Publication Number Publication Date
JPH07242771A JPH07242771A (en) 1995-09-19
JP3047725B2 true JP3047725B2 (en) 2000-06-05

Family

ID=13073861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6058077A Expired - Lifetime JP3047725B2 (en) 1994-03-03 1994-03-03 Composite material modifier and composite material

Country Status (1)

Country Link
JP (1) JP3047725B2 (en)

Also Published As

Publication number Publication date
JPH07242771A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
US8344262B2 (en) Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal clad laminate, printed wiring board and multilayer printed wiring board
US11195638B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed circuit board
KR20160007599A (en) Cyanate resin composition and application thereof
EP2722363A1 (en) Cyanate Ester Resin Composition, and a Prepreg, a Laminated Material and a Metal Clad Laminated Material Made Therefrom
JP2007045984A (en) Flame retardant resin composition, and prepreg and lamination board using the same
EP0368279A1 (en) Silane coupling agent and glass fiber product for laminates
US20110253434A1 (en) Epoxy resin composition, and prepreg and printed circuit board using the same
JP3047725B2 (en) Composite material modifier and composite material
EP3322268B1 (en) Method for producing printed circuit board, and resin composition
JP3427465B2 (en) Modifier for composite material, method for producing the same, and composite material
JP3812986B2 (en) Imidazole group-containing surface treatment agent and glass cloth
JP4697456B2 (en) Composite material modifier and composite material
US5126467A (en) Modifier for composite materials
JP3448902B2 (en) Silane coupling agent and method for producing silane coupling agent
JP2002194670A (en) Surface treating agent for glass cloth
JPH08325439A (en) Silane coupling agent for manufacturing glass fiber reinforced epoxy resin moldings
JP4543550B2 (en) Silane coupling agent having vinyl group and dimethylsiloxane bond
JP2920324B2 (en) Modifier for composite materials
JPH054994A (en) Silane coupling agents and glass fiber products for laminated boards
JP3089947B2 (en) Manufacturing method of metal foil clad laminate
JP2906945B2 (en) Manufacturing method of laminated board
JP3464025B2 (en) New aminosilane compounds
JP3410762B2 (en) One-part self-curing epoxy resin composition
JPH0733785A (en) Silane coupling agent and method for producing the same
JP2002194121A (en) Prepreg and metal foil clad laminated plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 13