JP3402907B2 - Laser reflector - Google Patents
Laser reflectorInfo
- Publication number
- JP3402907B2 JP3402907B2 JP05401696A JP5401696A JP3402907B2 JP 3402907 B2 JP3402907 B2 JP 3402907B2 JP 05401696 A JP05401696 A JP 05401696A JP 5401696 A JP5401696 A JP 5401696A JP 3402907 B2 JP3402907 B2 JP 3402907B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- refractive index
- laser
- high refractive
- reflecting mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010410 layer Substances 0.000 claims description 80
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 64
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 56
- 239000000463 material Substances 0.000 claims description 51
- 239000002184 metal Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 40
- 230000005684 electric field Effects 0.000 claims description 39
- 239000002356 single layer Substances 0.000 claims description 27
- 229910005690 GdF 3 Inorganic materials 0.000 claims description 16
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 16
- 229910016569 AlF 3 Inorganic materials 0.000 claims description 6
- 229910004379 HoF 3 Inorganic materials 0.000 claims description 6
- 229910017768 LaF 3 Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims 3
- 239000010931 gold Substances 0.000 claims 3
- 229910052802 copper Inorganic materials 0.000 claims 2
- 229910052709 silver Inorganic materials 0.000 claims 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 229910052697 platinum Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 description 461
- 230000006378 damage Effects 0.000 description 37
- 230000003287 optical effect Effects 0.000 description 19
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- 238000002310 reflectometry Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 5
- 239000012788 optical film Substances 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910018404 Al2 O3 Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 244000081841 Malus domestica Species 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Landscapes
- Optical Filters (AREA)
- Optical Elements Other Than Lenses (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は紫外域から赤外域に
およぶ波長領域のレーザ光に適したレーザ用反射鏡に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser reflecting mirror suitable for laser light in a wavelength range from the ultraviolet region to the infrared region.
【0002】[0002]
【従来の技術】一般的に、高屈折率材料のλ/4膜(高
屈折率膜)と低屈折率材料のλ/4膜(低屈折率膜)を
交互に積層した誘電体多層膜からなる反射鏡は、高屈折
率材料と低屈折率材料の屈折率の差が大きいほど、少な
い層数で必要な反射率を得ることができるうえに高反射
率帯域幅も拡大し、より光学性能のすぐれた安価な反射
鏡を実現できることが知られている。ところが、高屈折
率材料の中では屈折率の高い高屈折率材料ほどレーザ耐
力(レーザ損傷閾値:レーザ光を照射して膜破壊を起こ
すレーザエネルギーの閾値)が低いことが知られてい
る。2. Description of the Related Art Generally, a dielectric multilayer film in which a λ / 4 film (high refractive index film) of a high refractive index material and a λ / 4 film (low refractive index film) of a low refractive index material are alternately laminated The larger the difference in the refractive index between the high-refractive index material and the low-refractive index material, the more effective the reflection mirror becomes, the more the required reflectance can be obtained with a smaller number of layers, and the higher the reflectance band width, and the higher the optical performance. It is known that an excellent and inexpensive reflector can be realized. However, among high refractive index materials, it is known that the higher the refractive index material, the higher the laser resistance (laser damage threshold value: the threshold value of laser energy that causes laser irradiation to cause film destruction).
【0003】そこで、必要層数が少なくて従って安価で
あり、しかもレーザ耐力の高いレーザ用反射鏡を得るた
めに様々な工夫がなされている。例えば、屈折率の異な
る2種類の高屈折率材料を用いて、屈折率が低くて吸収
の小さい方の高屈折率材料によってレーザ光の入射側の
高屈折率膜を成膜し、屈折率が高くて吸収の大きい方の
高屈折率材料によって基板側の高屈折率膜を成膜したも
の(米国特許第3853386号明細書参照)や、λ/
4膜ではレーザ光の入射側の膜の境界面に膜内電界強度
のピークが生じるために、各膜の膜厚をλ/4(1/4
波長光学膜厚)からずらして高屈折率膜の膜内電界強度
を低く抑える膜構成のもの(J.H.Apfel Ap
pl.Opt.16,p1880(1977)、米国特
許第4147409号明細書参照)等が開発されてい
る。Therefore, various measures have been taken in order to obtain a reflecting mirror for a laser which requires a small number of layers and is therefore inexpensive and has high laser resistance. For example, by using two kinds of high refractive index materials having different refractive indexes, a high refractive index film on the incident side of laser light is formed by a high refractive index material having a lower refractive index and smaller absorption, A high refractive index material having a high absorption and a high refractive index film formed on the substrate side (see US Pat. No. 3,853,386), and λ /
In the four films, a peak of the electric field intensity in the film occurs at the boundary surface of the films on the laser light incident side. Therefore, the film thickness of each film is λ / 4 (1/4).
Of a high refractive index film that suppresses the electric field strength in the film to a low value by shifting the wavelength optical film thickness (JH ApfeL Ap).
pl. Opt. 16, p1880 (1977), U.S. Pat. No. 4,147,409) and the like have been developed.
【0004】また、特開平2−204702号公報や特
開平4−145677号公報には、レーザ光の入射側に
屈折率の低い高屈折率膜を用いる膜構成、例えば、「空
気/(ZrO2 /SiO2 )m /(TiO2 /SiO
2 )n /基板」や、「空気/(Al2 O3 /SiO2 )
m /(HfO2 /SiO2 )n /基板」の膜構成等にお
いて、屈折率の高い方の高屈折率膜を有するペア数mを
必要反射率や各高屈折率膜のレーザ耐力に基づいて選定
することが開示されている。さらに、誘電体多層膜のみ
ではピーク反射率を高くしたり高反射率帯域幅を広くす
るのが難しい場合は、誘電体多層膜に金属膜を組み合わ
せて必要層数を低減する方法も開発されており(米国特
許第4714306号明細書参照)、また、レーザ波長
に誘電体多層膜の中心波長を合わせるとともにアライメ
ント光やランプ光等のエネルギーの低い光に対しては金
属膜の反射率を利用したもの、金属膜の反射率を補うた
めに増反射膜として誘電体多層膜を積層したもの、ある
いは、エキシマレーザ用等の反射鏡として、アルミニウ
ムの金属膜上に誘電体多層膜を積層したもの等も開発さ
れている(特開昭63−208801号公報、特開昭6
4−76788号公報、米国特許第4856019号明
細書参照)Further, in Japanese Patent Laid-Open No. 2-204702 and Japanese Patent Laid-Open No. 4-145677, a film structure using a high refractive index film having a low refractive index on the incident side of laser light, for example, "air / (ZrO 2 / SiO 2 ) m / (TiO 2 / SiO
2 ) n / substrate ”or“ air / (Al 2 O 3 / SiO 2 ).
m / (HfO 2 / SiO 2 ) n / substrate ”, the number of pairs m having the higher refractive index film with the higher refractive index is determined based on the required reflectance and the laser resistance of each high refractive index film. Selection is disclosed. Furthermore, if it is difficult to increase the peak reflectivity or widen the high reflectivity bandwidth only with a dielectric multilayer film, a method has been developed to reduce the number of layers required by combining a metal film with the dielectric multilayer film. (See US Pat. No. 4,714,306), and the center wavelength of the dielectric multilayer film is adjusted to the laser wavelength, and the reflectance of the metal film is used for light with low energy such as alignment light and lamp light. A multilayered dielectric film as a reflection enhancing film to compensate for the reflectance of a metal film, or a reflective mirror for an excimer laser or the like, which has a dielectric multilayer film laminated on an aluminum metal film. Have also been developed (Japanese Patent Laid-Open Nos. Sho 63-208801 and Sho 6).
(See 4-76788, U.S. Pat. No. 4,856,019)
【0005】[0005]
【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、誘電体多層膜のレーザ耐力を向上させ
るために屈折率の低い高屈折率膜のみを用いた場合には
必要な光学特性を得るための全体の層数が増えてレーザ
用反射鏡の高価格化を招き、必要層数を少なくするため
に屈折率の高い高屈折率膜と屈折率の低い高屈折率膜を
組み合わせると良好な光学特性を得るのが難しくなる。
すなわち、屈折率の異なる2種類の高屈折率材料を用い
た場合は、屈折率の高い高屈折率膜のみの膜構成に比べ
てレーザ耐力は向上するものの高反射率帯域幅が著しく
縮小する等光学特性が大幅に低下する傾向がある。従っ
て、レーザ耐力が高く安価でしかも光学特性のすぐれた
膜構成を見つけるのは極めて困難である。However, according to the above-mentioned conventional technique, in order to improve the laser resistance of the dielectric multilayer film, the optical characteristics required when only the high refractive index film having a low refractive index is used. To increase the total number of layers to obtain the laser reflection mirror, it is preferable to combine a high refractive index film with a high refractive index and a high refractive index film with a low refractive index to reduce the required number of layers. It becomes difficult to obtain good optical characteristics.
That is, when two kinds of high-refractive index materials having different refractive indexes are used, the laser resistance is improved but the high-reflectance bandwidth is remarkably reduced as compared with a film structure having only a high-refractive index film having a high refractive index. Optical properties tend to be significantly reduced. Therefore, it is extremely difficult to find a film structure that has high laser resistance, is inexpensive, and has excellent optical characteristics.
【0006】また、誘電体多層膜に金属膜を組み合わせ
た反射鏡の場合には、誘電体多層膜の層数を多くすれ
ば、光学特性もレーザ耐力も向上するが、層数が増加し
た分だけ製造コストが高くなる。このように、金属膜を
組み合わせた場合でも少ない層数で必要なレーザ耐力や
光学特性を有する反射鏡を得るのは極めて困難である。Further, in the case of a reflecting mirror in which a dielectric multilayer film is combined with a metal film, if the number of layers of the dielectric multilayer film is increased, the optical characteristics and the laser resistance are improved, but the number of layers is increased. Only the manufacturing cost becomes high. As described above, it is extremely difficult to obtain a reflecting mirror having the required laser resistance and optical characteristics with a small number of layers even when a metal film is combined.
【0007】本発明は、上記従来の技術の有する未解決
の課題に鑑みてなされたものであって、すぐれた光学特
性と充分なレーザ耐力を有し、しかも全体の層数が少な
くて製造コストの低いレーザ用反射鏡を提供することを
目的とするものである。The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and has excellent optical characteristics and sufficient laser resistance, and the total number of layers is small, so that the manufacturing cost is low. It is an object of the present invention to provide a low-reflectance mirror for a laser.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本発明のレーザ用反射鏡は、基板と、その表面に積
層された誘電体多層膜を有し、該誘電体多層膜は空気側
の第1の部分と基板側の第2の部分から構成され、前記
第1の部分は高耐力である複数の第1の高屈折率膜と複
数の低屈折率膜とが交互に積層されてなり、前記第2の
部分は前記第1の高屈折率膜より屈折率の高い複数の第
2の高屈折率膜と複数の低屈折率膜とが交互に積層され
てなり、前記第1の高屈折率膜の膜内電界強度の最大値
E1 と前記第2の高屈折率膜の膜内電界強度の最大値E
2 の間に以下の関係が成立するように構成されているこ
とを特徴とする。In order to achieve the above object, a laser reflecting mirror of the present invention has a substrate and a dielectric multilayer film laminated on the surface thereof, and the dielectric multilayer film is on the air side.
And a second portion on the substrate side,
The first part is the first high refractive index film and a double of multiple a high yield strength
A plurality of low refractive index films are alternately laminated,
In the portion, a plurality of second high refractive index films having a higher refractive index than the first high refractive index film and a plurality of low refractive index films are alternately laminated.
Te Do Ri, the first high refractive index film in the film field strength of the maximum value E 1 and the maximum value E of the film in an electric field intensity of the second high refractive index film
It is characterized in that the following relationship is established between the two .
【0009】
E2 <0.20・E1 ・T2 /T1
ここで、T1 :前記第1の高屈折率膜の単層膜レーザ耐力
T2 :前記第2の高屈折率膜の単層膜レーザ耐力
また、基板の表面に成膜された金属膜と、その上に設け
られた誘電体多層膜を有し、該誘電体多層膜は複数の高
屈折率膜と複数の低屈折率膜とが交互に積層されてな
り、前記高屈折率膜の膜内電界強度の最大値E3 と前記
金属膜の膜内電界強度の最大値E4 の間に以下の関係が
成立するように構成されていることを特徴とするもので
もよい。[0009]
E2<0.20 · E1・ T2/ T1
Where T1: Single layer laser proof stress of the first high refractive index film
T2: Single layer film laser resistance of the second high refractive index film
In addition, the metal film formed on the surface of the substrate and the metal film formed on the metal film
Having a dielectric multilayer filmIs multipleHigh
With refractive index filmpluralLow refractive index filmAnd are stacked alternately
The maximum value E of the in-film electric field strength of the high refractive index film3And the above
Maximum value E of the electric field strength in the film of the metal filmFourThe following relationship between
It is characterized by being configured to hold
Good.
【0010】E4 <E3 ・T4 /T3 ここで、T3 :前記高屈折率膜の単層膜レーザ耐力 T4 :前記金属膜の単層膜レーザ耐力E 4 <E 3 · T 4 / T 3 where T 3 is the monolayer film laser proof strength of the high refractive index film T 4 is the monolayer film laser proof strength of the metal film.
【0011】[0011]
【作用】誘電体多層膜にレーザ光を照射したときの第1
の高屈折率膜の膜内電界強度の最大値E1 と第2の高屈
折率膜の膜内電界強度の最大値E2 の間に上記の関係が
成立するように第1の高屈折率膜の層数を設定した膜構
成であれば、レーザ光による膜の損傷が高耐力である第
1の高屈折率膜内で始まるために誘電体多層膜全体のレ
ーザ耐力が高く、レーザ用反射鏡として充分な耐久性を
確保することができる。従って、このような膜構成のな
かから第1の高屈折率膜の層数が少ないものを選ぶこと
で、一般的に屈折率が低く高耐力である第1の高屈折率
膜を用いることによって避けることのできない光学特性
の低下や誘電体多層膜全体の層数の増加を抑制すれば、
すぐれた光学特性と高いレーザ耐力を有し、しかも安価
であるレーザ用反射鏡を実現できる。[Operation] The first when the dielectric multilayer film is irradiated with laser light
Of the first high refractive index film so that the above-mentioned relationship is established between the maximum value E 1 of the in-film electric field strength of the high refractive index film and the maximum value E 2 of the in-film electric field strength of the second high refractive index film. With a film structure in which the number of layers of the film is set, the damage of the film by the laser beam starts within the first high refractive index film, which has a high yield strength. It is possible to secure sufficient durability as a mirror. Therefore, by selecting one having a small number of layers of the first high refractive index film from such a film structure, by using the first high refractive index film having a low refractive index and a high yield strength in general, By suppressing the unavoidable deterioration of optical characteristics and increase in the number of layers of the entire dielectric multilayer film,
It is possible to realize an inexpensive laser reflecting mirror having excellent optical characteristics and high laser resistance.
【0012】また、金属膜と誘電体多層膜からなるレー
ザ用反射鏡の場合は、これにレーザ光を照射したときの
高屈折率膜の膜内電界強度の最大値E3 と金属膜の膜内
電界強度の最大値E4 の間に上記の関係が成立するよう
に誘電体多層膜のペア数を設定した膜構成であれば、レ
ーザ光による膜構成の損傷が誘電体多層膜内で始まるた
めに全体のレーザ耐力が高く、レーザ用反射鏡として充
分な耐久性を確保することができる。Further, in the case of a laser reflecting mirror composed of a metal film and a dielectric multilayer film, the maximum value E 3 of the in-film electric field strength of the high refractive index film and the film of the metal film when the laser reflecting mirror is irradiated with laser light. If the film structure is such that the number of pairs of the dielectric multilayer film is set so that the above relationship is established between the maximum value E 4 of the internal electric field strength, the damage of the film structure by the laser beam starts in the dielectric multilayer film. Therefore, the overall laser proof strength is high, and sufficient durability as a laser reflecting mirror can be secured.
【0013】従って、このような膜構成のなかから、誘
電体多層膜のペア数の少ないものを選ぶことで、レーザ
耐力が高くしかも製造コストの低いレーザ用反射鏡を実
現できる。Therefore, by selecting a dielectric multilayer film having a small number of pairs from such a film structure, it is possible to realize a laser reflecting mirror having high laser resistance and low manufacturing cost.
【0014】[0014]
【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.
【0015】図1は第1実施例によるレーザ用反射鏡M
1 の膜構成を示すもので、これは、ピーク反射率98.
5%以上で高耐力のNd:YAGレーザの3倍高調波
(355nm)用の反射鏡である。FIG. 1 shows a laser reflecting mirror M according to the first embodiment.
1 shows a film structure of No. 1 , which has a peak reflectance of 98.
It is a reflecting mirror for the third harmonic (355 nm) of an Nd: YAG laser having a high yield strength of 5% or more.
【0016】レーザ用反射鏡M1 は、基板1の表面に低
屈折率膜であるSiO2 膜2と第2の高屈折率膜である
ZrO2 膜3を6ペア積層し、その上に、低屈折率膜で
あるSiO2 膜4と、ZrO2 膜3より屈折率が低く高
耐力である第1の高屈折率膜であるAl2 O3 膜5を9
ペア積層した高反射膜である誘電体多層膜を有し、各膜
はλ/4膜であり全体の膜構成は「空気/(Al2 O3
/SiO2 )9 /(ZrO2 /SiO2 )6 /基板」で
表わされる。この膜構成は、すべての高屈折率膜がZr
O2 膜である場合に比べてレーザ耐力が高く、しかもす
べての高屈折率膜がAl2 O3 膜である場合に比べてピ
ーク反射率98.5%の反射鏡にするための必要層数が
少なくて反射率95%以上の高反射率帯域幅が広く、従
って、すぐれた光学特性を有し、かつ、レーザ耐力も充
分である安価なレーザ用反射鏡を実現するものである。The reflecting mirror M 1 for laser is formed by laminating 6 pairs of a SiO 2 film 2 which is a low refractive index film and a ZrO 2 film 3 which is a second high refractive index film on the surface of the substrate 1, and further, a SiO 2 film 4 is low refractive index film, an Al 2 O 3 film 5 which is the first high-refractive index film refractive index than the ZrO 2 film 3 is a high strength low 9
It has a dielectric multilayer film which is a highly reflective film laminated in pairs, each film is a λ / 4 film, and the overall film structure is “air / (Al 2 O 3
/ SiO 2 ) 9 / (ZrO 2 / SiO 2 ) 6 / substrate ". In this film structure, all high refractive index films have Zr
Laser resistance is higher than that of an O 2 film, and the number of layers required to make a reflecting mirror with a peak reflectance of 98.5% compared to when all high refractive index films are Al 2 O 3 films The present invention realizes an inexpensive reflecting mirror for a laser, which has a high reflectance and a wide bandwidth of a reflectance of 95% or more, has excellent optical characteristics, and has sufficient laser resistance.
【0017】図2は、B.E.Newnam:NBS
Spec.Pub.372,p123(1972)に示
されているような公知の方法でレーザ用反射鏡M 1 の膜
内電界強度を算出した結果を示すグラフである。この図
から解るように、図1の膜構成であれば誘電体多層膜の
Al2 O3 膜5の最大膜内電界強度E1 とZrO2 膜3
の最大膜内電界強度E2 の間に以下の関係が成立する。FIG. E. Newnam: NBS
Spec. Pub. 19 is a graph showing the results of calculating the in-film electric field intensity of the laser reflection mirror M 1 by a known method as shown in 372, p123 (1972). As can be seen from this figure, with the film structure shown in FIG. 1, the maximum in-film electric field strength E 1 of the Al 2 O 3 film 5 of the dielectric multilayer film and the ZrO 2 film 3 are formed.
The following relationship holds between the maximum in-film electric field strength E 2 of
【0018】
E2 <0.20・E1 ・T2 /T1 =e・・・(1)
ここで、T1 :各Al2 O3 膜5の単層膜レーザ耐力
T2 :各ZrO2 膜3の単層膜レーザ耐力屈
折率が高いがレーザ耐力の低いZrO2 膜等の高屈折
率膜の最大膜内電界強度E2 が式(1)に示す値eより
大きくなると反射鏡のレーザ耐力が著しく低下すること
が後述する実験によって解明している。これは、レーザ
光の照射による損傷が屈折率の低いAl2 O3 膜等の高
耐力の高屈折率膜内で始まる膜構成であれば誘電体多層
膜全体のレーザ耐力が高く、屈折率の高いZrO2 膜等
の高屈折率膜内で始まる膜構成になると誘電体多層膜全
体のレーザ耐力が著しく低下する傾向があり、ZrO2
膜等の低耐力高屈折率膜内の膜内電界強度の最大値E2
が式(1)に示す値eを越えると、レーザ光による損傷
が低耐力高屈折率膜(ZrO2 膜等)内の最上層で始ま
るためであると推測される。E 2 <0.20 · E 1 · T 2 / T 1 = e (1) where, T 1 : single layer film laser resistance of each Al 2 O 3 film 5 T 2 : each ZrO Single-layer film of 2 film 3 If the maximum in-film electric field strength E 2 of a high-refractive index film such as a ZrO 2 film having a high laser resistance bending rate but a low laser resistance becomes larger than the value e shown in equation (1), It has been clarified by the experiments described later that the laser resistance of the laser is significantly reduced. This is because if the film structure in which damage due to laser light irradiation starts within a high-refractive-index film having a high refractive index such as an Al 2 O 3 film having a low refractive index, the entire dielectric multilayer film has a high laser-resistant strength and a high refractive index. There is a high tendency that becomes a film structure that begins with the ZrO 2 film high-refractive-index film, such as a dielectric multilayer film overall laser damage threshold is significantly decreased, ZrO 2
Low yield strength of film, etc. Maximum value of electric field strength E 2 in film in high refractive index film
It is presumed that when the value e exceeds the value e shown in the formula (1), the damage due to the laser beam starts at the uppermost layer in the low proof stress high refractive index film (ZrO 2 film or the like).
【0019】従って、式(1)に示す条件を満足するよ
うにAl2 O3 膜等の高耐力高屈折率膜の層数を設定す
れば、反射鏡のレーザ耐力を強化するうえでは充分であ
る。そこで、式(1)を満足する膜構成のうちでAl2
O3 膜等の高耐力高屈折率膜の層数が最小値あるいはこ
れよりわずかに大きい膜構成を見積もることで、レーザ
耐力の低いZrO2 膜等に替えてレーザ耐力の高いAl
2 O3 膜等を用いることで避けることのできない光学特
性の劣化と必要層数の増加を抑制して、レーザ耐力が高
く、しかも安価で光学特性にすぐれたレーザ用反射鏡を
得ることができる。次に実験例を説明する。Therefore, if the number of layers of high yield strength and high refractive index films such as Al 2 O 3 film is set so as to satisfy the condition shown in the equation (1), it is sufficient to enhance the laser yield strength of the reflecting mirror. is there. Therefore, in the film constitution satisfying the formula (1), Al 2
By estimating a film configuration in which the number of layers of a high proof stress and high refractive index film such as an O 3 film is a minimum value or slightly larger than this, an Al having a high laser proof strength can be used instead of a ZrO 2 film having a low laser proof strength.
By using a 2 O 3 film or the like, it is possible to obtain a laser reflecting mirror having high laser resistance, low cost and excellent optical characteristics, by suppressing the deterioration of optical characteristics and the increase in the number of necessary layers which cannot be avoided. . Next, an experimental example will be described.
【0020】(第1実験例)まず、吸収が少ない膜材料
を選びそれぞれの単層膜の状態のレーザ耐力(単層膜レ
ーザ耐力)および屈折率を測定した。表1に膜材料とレ
ーザ耐力および屈折率の関係を測定した結果を示す。パ
ルス幅は0.5ns、1ショット毎に未照射部にエネル
ギーを変えて照射し、膜が破壊するときのレーザ光の閾
値エネルギーを測定した。(First Experimental Example) First, a film material having a small absorption was selected, and the laser resistance (single-layer film laser resistance) and the refractive index of each single-layer film state were measured. Table 1 shows the results of measuring the relationship between the film material and the laser proof strength and refractive index. The pulse width was 0.5 ns, and the unirradiated portion was irradiated with different energy for each shot, and the threshold energy of the laser light when the film was broken was measured.
【0021】[0021]
【表1】
表1から、レーザ耐力の高い高屈折率膜であるAl2 O
3 膜と、低屈折率膜であるSiO2 膜の交互層で誘電体
多層膜を製作すると高耐力な反射鏡が製作されることが
推察される。しかし、SiO2 の屈折率が1.477、
Al2 O3 の屈折率が1.623であり、ZrO2 膜と
SiO2 膜を組み合わせた場合に比べて屈折率差が小さ
いために反射率98.5%以上にするためには48層程
度となる。また、ZrO2 膜とSiO2 膜の交互多層膜
であれば18層で98.5%以上になるが、レーザ耐力
はZrO2 膜の影響で低くなることが推測される。[Table 1] From Table 1, Al 2 O, which is a high refractive index film with high laser resistance
It is speculated that when a dielectric multilayer film is manufactured by alternating layers of three films and a SiO 2 film which is a low refractive index film, a reflecting mirror with high durability is manufactured. However, the refractive index of SiO 2 is 1.477,
Since the refractive index of Al 2 O 3 is 1.623, and the difference in refractive index is smaller than that in the case of combining the ZrO 2 film and the SiO 2 film, about 48 layers are required to make the reflectance 98.5% or more. Becomes Further, in the case of an alternate multilayer film of ZrO 2 film and SiO 2 film, 18 layers have a content of 98.5% or more, but it is presumed that the laser proof strength becomes low due to the influence of the ZrO 2 film.
【0022】そこで、レーザ耐力が高く、必要層数が少
なく、かつピーク反射率が98.5%以上で高反射率帯
域幅の広い高反射膜の膜構成を求めるため、
空気/(Al2 O3 /SiO2 )m /(ZrO2 /Si
O2 )n /基板
の膜構成のm,nを変化させ、光学特性とレーザ耐力の
測定を行なった。レーザ光の入射角は0度、膜厚はすべ
て1/4波長光学膜厚とした。Therefore, in order to obtain a film structure of a highly reflective film having a high laser resistance, a small number of required layers, a peak reflectance of 98.5% or more and a wide bandwidth of a high reflectance, air / (Al 2 O 3 3 / SiO 2 ) m / (ZrO 2 / Si
O 2 ) n / m and n of the film structure of the substrate were changed, and the optical characteristics and laser proof strength were measured. The incident angle of the laser light was 0 degree, and the film thicknesses were all 1/4 wavelength optical film thicknesses.
【0023】まず、m,n値は、ピーク反射率が98.
5以上となるようシミュレーションで求めた。表2に、
シミュレーションにより、ピーク反射率98.5%以上
となる膜構成のm,n値と95%反射率帯域幅Δλ(R
=95%)および各膜構成におけるAl2 O3 膜および
ZrO2 膜のそれぞれの膜内電界強度の最大値E1 ,E
2 を計算した結果を示す。First, regarding the m and n values, the peak reflectance is 98.
It was determined by simulation so that it would be 5 or more. In Table 2,
According to the simulation, the m and n values of the film structure having the peak reflectance of 98.5% or more and the 95% reflectance bandwidth Δλ (R
= 95%) and the maximum values of the in-film electric field strengths E 1 and E of the Al 2 O 3 film and the ZrO 2 film in the respective film configurations.
The result of calculating 2 is shown.
【0024】膜内電界強度の計算は、前述のように、
B.E.Newnam:NBS Spec.Pub.3
72,p123(1972)が示すように公知の資料を
もとに計算した。The calculation of the electric field strength in the film is performed as described above.
B. E. Newnam: NBS Spec. Pub. Three
72, p123 (1972), calculated based on known materials.
【0025】図3は、表2の結果をもとに横軸を全ペア
数に対する(ZrO2 /SiO2 )ペア数nの比として
グラフ化したものである。FIG. 3 is a graph in which the horizontal axis is based on the results of Table 2 as a ratio of the number of (ZrO 2 / SiO 2 ) pairs to the total number of pairs.
【0026】[0026]
【表2】
表2、図3に示すシミュレーション結果が示すように
(ZrO2 /SiO2 )のペア数nが増えると、必要層
数が減り、高反射率帯域幅が拡大して光学特性が向上す
るが、ZrO2 膜の膜内電界強度が増大して式(1)に
示す値eを越えるとレーザ耐力の低いZrO2 膜で損傷
が生じ、その結果、誘電体多層膜全体のレーザ耐力が著
しく減少する。[Table 2] As shown in the simulation results shown in Table 2 and FIG. 3, when the number of pairs (ZrO 2 / SiO 2 ) n increases, the number of required layers decreases, the high reflectance bandwidth expands, and the optical characteristics improve. When the electric field strength in the ZrO 2 film increases and exceeds the value e shown in the formula (1), the ZrO 2 film having low laser resistance is damaged, and as a result, the laser resistance of the entire dielectric multilayer film is significantly reduced. .
【0027】そこで、実際にこれらの膜構成の高反射膜
(誘電体多層膜)を製作し、その高反射率帯域幅Δλ
(R=95%)とレーザ耐力を測定した。レーザ耐力の
測定は、表1の単層膜レーザ耐力と同様にYAGレーザ
の3倍高調波(波長355nm、パルス幅0.5ns)
を用いて照射毎に膜面の新しい面にエネルギーを変えて
照射し、損傷が生じる閾値エネルギーを測定した。ま
た、損傷部をノマルスキー顕微鏡により詳細に観察し
た。Therefore, a high reflection film (dielectric multilayer film) having these film structures is actually manufactured, and its high reflectance bandwidth Δλ is obtained.
(R = 95%) and laser resistance were measured. The laser proof strength was measured in the same manner as the single layer laser proof strength shown in Table 1. The third harmonic of the YAG laser (wavelength 355 nm, pulse width 0.5 ns)
Was used to change the energy on a new surface of the film for each irradiation, and the threshold energy at which damage occurred was measured. In addition, the damaged part was observed in detail with a Nomarski microscope.
【0028】測定結果を図4に示す。この図から、膜構
成「空気/(Al2 O3 /SiO2)m /(ZrO2 /
SiO2 )n /基板」において(Al2 O3 /SiO
2 )ペア数mが24から9までの膜構成ではレーザ耐力
はほとんど変わらずmが9より小さくなると急激に低下
していることがわかる。ノマルスキー顕微鏡による損傷
部観察から、mが24から9までは誘電体多層膜の表面
で損傷が生じていることが確認され、最上層のAl2 O
3 膜で損傷が生じていた。また、mが9より小さくな
り、(ZrO2 /SiO2 )ペア数nが6より大きくな
ると膜内部で損傷が生じていることが確認され、最上層
のZrO2 膜で初めに損傷が生じていると思われる。The measurement results are shown in FIG. From this figure, the film structure "air / (Al 2 O 3 / SiO 2 ) m / (ZrO 2 /
SiO 2 ) n / substrate ”(Al 2 O 3 / SiO 2
2 ) It can be seen that in the film structure in which the number of pairs m is 24 to 9, the laser proof strength remains almost unchanged and decreases sharply when m becomes smaller than 9. From the observation of the damaged portion with a Nomarski microscope, it was confirmed that the surface of the dielectric multilayer film was damaged when m was 24 to 9, and the uppermost layer of Al 2 O
There was damage on the three membranes. Also, it was confirmed that when m was smaller than 9 and the number of (ZrO 2 / SiO 2 ) pairs n was larger than 6, damage was generated inside the film, and damage was first generated in the uppermost ZrO 2 film. It seems that
【0029】このようにして、Al2 O3 層で損傷が初
めに生じる膜構成ではレーザ耐力が高いが、ZrO2 層
で損傷が生じ始める膜構成ではレーザ耐力が低下するこ
とが明らかとなった。In this way, it was clarified that the laser resistance is high in the film structure in which damage is first caused in the Al 2 O 3 layer, but the laser resistance is lowered in the film structure in which damage is started in the ZrO 2 layer. .
【0030】そこで、レーザ耐力が高く、層数が少な
く、しかも高反射率帯域幅が広くて製造誤差による不良
品の発生率の低い高反射膜の膜構成は、損傷が初めに生
じる層がAl2 O3 層からZrO2 層へ移る境界の膜構
成よりAl2 O3 層の層数がやや多い膜構成が最適であ
ることが判明した。Therefore, in the film structure of the high reflection film, which has a high laser resistance, a small number of layers, a wide bandwidth of high reflectance, and a low incidence of defective products due to manufacturing errors, the layer in which damage occurs first is Al. It has been found that a film structure having a slightly larger number of Al 2 O 3 layers is more optimal than a film structure at the boundary where the 2 O 3 layer moves to the ZrO 2 layer.
【0031】すなわち、Nd:YAGレーザの3倍高調
波(355nm)用の反射鏡であってレーザ耐力が高
く、層数が少なく、製造誤差による不良が少ないように
高反射率帯域幅が広い高耐力反射鏡の最適膜構成は、
空気/(Al2 O3 /SiO2 )9 /(ZrO2 /Si
O2 )6 /基板
の膜構成であり、これよりAl2 O3 /SiO2 ペア数
が多い膜構成であればレーザ耐力は充分であることが明
らかとなった。That is, it is a reflecting mirror for the third harmonic (355 nm) of an Nd: YAG laser, has a high laser resistance, has a small number of layers, and has a wide high reflectance bandwidth so that there are few defects due to manufacturing errors. The optimal film structure of the load-bearing mirror is air / (Al 2 O 3 / SiO 2 ) 9 / (ZrO 2 / Si
It has been clarified that the laser resistance is sufficient if the film structure is O 2 ) 6 / substrate, and the film structure having a large number of Al 2 O 3 / SiO 2 pairs is sufficient.
【0032】また、図3および表2から、損傷が初めに
生じる層がAl2 O3 層からZrO 2 層へ移る境界の膜
構成においては、ZrO2 膜の最大電界強度E2 と、A
l2O3 ,ZrO2 膜の単層膜レーザ耐力T1 ,T2
と、Al2 O3 膜の最大電界強度をE1 の間に以下の関
係があることが判明した。従って、前述のように、高反
射膜の膜内電界強度を調べて式(1)の関係を満足する
ようにAl2 O3 膜の層数を設定することで上記と同じ
最適膜構成を見積もることができる。Further, from FIG. 3 and Table 2, the damage is first
The resulting layer is Al2 O3 Layer to ZrO 2 Boundary membrane moving to layers
In the structure, ZrO2 Maximum electric field strength E of the film2 And A
l2O3 , ZrO2 Single layer film laser resistance T of film1 , T2
And Al2 O3 The maximum electric field strength of the film is E1 Between the following functions
It turned out to be involved. Therefore, as described above,
Satisfies the relationship of formula (1) by examining the electric field strength in the film of the film.
Like Al2 O3 Same as above by setting the number of membrane layers
The optimal membrane configuration can be estimated.
【0033】E2 =0.20・E1 ・T1 /T2 =e
(第2実験例)レーザ耐力が高く、層数が少なくて、製
造誤差による不良品が少ないように高反射率帯域幅が広
く、ピーク反射率が95.8%以上のKrFエキシマレ
ーザ(波長248nm)用高反射膜の最適膜構成を検討
した。E 2 = 0.20 · E 1 · T 1 / T 2 = e (Second Experimental Example) High reflectivity band so that laser resistance is high, the number of layers is small, and there are few defective products due to manufacturing errors. The optimum film configuration of the high reflection film for a KrF excimer laser (wavelength 248 nm) having a wide width and a peak reflectance of 95.8% or more was examined.
【0034】KrFエキシマレーザ波長で使用可能な膜
材料の単層膜のレーザ耐力をパルス幅20nsのKrF
エキシマレーザを用いて測定した。表3にその測定結果
を示す。KrF excimer laser resistance of a single layer film of a film material that can be used at a wavelength is set to KrF with a pulse width of 20 ns.
It was measured using an excimer laser. Table 3 shows the measurement results.
【0035】[0035]
【表3】
この結果から、「空気/(Al2 O3 /SiO2 )m /
(HfO2 /SiO2)n /基板」の膜構成のm,n値
を式(1)の条件を満足するように求めたところ、レー
ザ光照射により損傷が生じ始める層がAl2 O3 層から
HfO2 層に移る境界の膜構成は、
空気/(Al2 O3 /SiO2 )12/(HfO2 /Si
O2 )5 基板
と見積もられた。[Table 3] From this result, “air / (Al 2 O 3 / SiO 2 ) m /
When the m and n values of the film structure of “(HfO 2 / SiO 2 ) n / substrate” were determined so as to satisfy the condition of the formula (1), the layer where damage started to occur by laser light irradiation was an Al 2 O 3 layer. The film composition of the boundary from the HfO 2 layer to the HfO 2 layer is air / (Al 2 O 3 / SiO 2 ) 12 / (HfO 2 / Si
It was estimated to be an O 2 ) 5 substrate.
【0036】そこで、実際に次の3種類の膜構成の高反
射膜を製作し、そのレーザ耐力をパルス幅20nsのK
rFエキシマレーザを用いて測定した。入射角0度、各
層の膜厚はすべて1/4波長光学膜厚とした。Therefore, a high-reflection film having the following three types of film constitution was actually manufactured, and the laser resistance thereof was set to K with a pulse width of 20 ns.
It measured using the rF excimer laser. The incident angle was 0 degree, and the film thickness of each layer was ¼ wavelength optical film thickness.
【0037】
空気/(Al2 O3 /SiO2 )24/基板
空気/(Al2 O3 /SiO2 )12/(HfO2 /
SiO2 )5 /基板
空気/(HfO2 /SiO2 )9 /基板
レーザ耐力の測定結果は、5.0J/cm2 ,4.
8J/cm2 ,2.0J/cm2 であり、との膜
構成ではレーザ耐力はほとんど変わらず、従って、の
膜構成の方が層数が少なくかつ高反射率帯域幅が広く製
造し易いことは明らかである。Air / (Al 2 O 3 / SiO 2 ) 24 / Substrate Air / (Al 2 O 3 / SiO 2 ) 12 / (HfO 2 /
The measurement result of SiO 2 ) 5 / substrate air / (HfO 2 / SiO 2 ) 9 / substrate laser proof strength was 5.0 J / cm 2 , 4.
8 J / cm 2, was 2.0 J / cm 2, the laser strength hardly changes, therefore, be easily manufactured widely reduced and high reflectivity bandwidth the number of layers towards the film structure is a film structure of the Is clear.
【0038】また、HfO2 膜の替わりに、レーザ耐
力、屈折率がほとんど変わらないSc2 O3 膜を用いて
も同様の結果が得られた。Similar results were obtained by using a Sc 2 O 3 film having almost the same laser resistance and refractive index instead of the HfO 2 film.
【0039】(第3実験例)レーザ耐力が高く、必要層
数が少なくて、製造誤差による不良品が少ないように高
反射率帯域幅が広く、ピーク反射率が99%以上のAr
Fエキシマレーザ(波長193nm)用の高耐力高反射
膜を開発した。(Third Experimental Example) Ar having a high laser resistance, a small number of layers required, a wide high reflectance bandwidth so that there are few defective products due to manufacturing errors, and a peak reflectance of 99% or more.
We have developed a high yield strength and high reflection film for F excimer laser (wavelength 193nm).
【0040】実験による開発手順は、まず、吸収が少な
い膜材料を選びこれらの単層膜のレーザ耐力および屈折
率を測定した。表4に膜材料とレーザ耐力および屈折率
を測定した結果を示す。In the experimental development procedure, first, a film material having a small absorption was selected, and the laser resistance and the refractive index of these single layer films were measured. Table 4 shows the results of measuring the film material, the laser proof stress, and the refractive index.
【0041】パルス幅は20ns、1ショット毎に膜面
の未照射部にエネルギーを変えて照射し、膜が破壊する
ときのレーザ光の閾値エネルギーを測定した。The pulse width was 20 ns, and the non-irradiated portion of the film surface was irradiated with different energy for each shot, and the threshold energy of the laser beam when the film was broken was measured.
【0042】[0042]
【表4】
この結果から、レーザ耐力の高い高屈折率材料GdF
3 ,NdF3 ,LaF3HoF3 の中から選ばれた膜と
低屈折率材料SiO2 ,MgF2 ,AlF3 の中から選
ばれた膜の交互層で高反射膜を製作するとレーザ光の照
射に対して高耐力な膜が製作されることが推測される。[Table 4] From this result, high refractive index material GdF with high laser resistance
When a high reflection film is manufactured by alternate layers of a film selected from 3 , NdF 3 and LaF 3 HoF 3 and a film selected from low refractive index materials SiO 2 , MgF 2 and AlF 3 , laser light irradiation is performed. It is speculated that a film with high yield strength will be manufactured.
【0043】ところが、低屈折率膜としてMgF2 を用
いると、膜応力が大きく膜割れの問題が生じ、AlF3
膜を用いるとGdF3 ,NdF3 ,LaF3 ,HoF3
等の高屈折率膜の屈折率が1.60〜1.66であるた
め反射率99%以上の反射鏡にするためには70層程度
となる。[0043] However, the use of MgF 2 as a low refractive index film, film stress occurs is large film cracking problems, AlF 3
If a film is used, GdF 3 , NdF 3 , LaF 3 , HoF 3
Since the refractive index of the high refractive index film such as 1.60 is 1.60 to 1.66, about 70 layers are required to form a reflecting mirror having a reflectance of 99% or more.
【0044】また、屈折率の高いAl2 O3 膜とSiO
2 膜の交互多層膜であれば40層で99%以上になる
が、レーザ耐力はAl2 O3 膜の影響で低くなることが
推測される。Further, the Al 2 O 3 film having a high refractive index and SiO
In the case of an alternating multi-layer film of two films, the number of 40 layers is 99% or more, but it is presumed that the laser proof strength becomes low due to the influence of the Al 2 O 3 film.
【0045】そこで、レーザ耐力が高く、層数が少な
く、かつ高反射率帯域幅の広い高反射膜(誘電体多層
膜)の膜構成を求めるため、
空気/(GdF3 /SiO2 )m /(Al2 O3 /Si
O2 )n /基板
の膜構成のm,nを変化させ、光学特性とレーザ耐力の
測定を行なった。レーザ光の入射角は0度、膜厚はすべ
て1/4波長光学膜厚とした。Therefore, in order to obtain a film structure of a high reflection film (dielectric multilayer film) having a high laser resistance, a small number of layers, and a wide high reflectance band width, air / (GdF 3 / SiO 2 ) m / (Al 2 O 3 / Si
O 2 ) n / m and n of the film structure of the substrate were changed, and the optical characteristics and laser proof strength were measured. The incident angle of the laser light was 0 degree, and the film thicknesses were all 1/4 wavelength optical film thicknesses.
【0046】まず、m,n値は、ピーク反射率が99.
5%以上となるようシミュレーションで求めた。表5
に、シミュレーションにより、ピーク反射率99%以上
となる膜構成のm,n値と95%反射率帯域幅△λ(R
=95%)および各膜構成における膜内電界強度のGd
F3 膜内およびAl2 O3 膜内の最大値E1 ,E2 を計
算した結果を示す。First, for the m and n values, the peak reflectance is 99.
It was calculated by simulation so as to be 5% or more. Table 5
Further, by simulation, the m and n values of the film structure having the peak reflectance of 99% or more and the 95% reflectance bandwidth Δλ (R
= 95%) and Gd of the electric field strength in the film in each film constitution.
The results of calculating the maximum values E 1 and E 2 in the F 3 film and the Al 2 O 3 film are shown.
【0047】[0047]
【表5】
表5のシミュレーション結果が示すように(Al2 O3
/SiO2 )ペア数が増えると、必要層数が減り、高反
射率帯域幅が増えて製作上有利となるが、Al2 O3 膜
内の最大電界強度が増え、レーザ耐力の低いAl2 O3
膜で損傷が生じやすくなることが考えられる。[Table 5] As shown in the simulation result of Table 5, (Al 2 O 3
/ SiO 2 ) When the number of pairs increases, the number of required layers decreases and the high reflectance bandwidth increases, which is advantageous in manufacturing, but the maximum electric field strength in the Al 2 O 3 film increases, and Al 2 with low laser resistance O 3
It is considered that the film is likely to be damaged.
【0048】そこで、実際にこれらの膜構成の高反射膜
を製作し、その95%反射率帯域幅△λ(R=95%)
とレーザ耐力を測定した。レーザ耐力の測定は、ArF
エキシマレーザ(波長193nm,パルス幅20ns)
を用い照射毎に膜面の新しい面にエネルギーを変えて照
射し、損傷が生じる閾値エネルギーを測定した。また、
損傷部をノマルスキー顕微鏡により詳細に観察した。測
定結果を表6に示す。Therefore, a high reflection film having such a film structure was actually manufactured and its 95% reflectance bandwidth Δλ (R = 95%)
And the laser proof strength was measured. Laser resistance is measured by ArF
Excimer laser (wavelength 193 nm, pulse width 20 ns)
The threshold energy for damage was measured by changing the energy on a new surface of the film with each irradiation. Also,
The damaged part was observed in detail with a Nomarski microscope. The measurement results are shown in Table 6.
【0049】[0049]
【表6】
この結果から、「空気(GdF3 /SiO2 )m /(A
l2 O3 /SiO2 )n /基板」膜構成の(GdF3 /
SiO2 )ペア数mが35から23ではレーザ耐力はほ
とんど変わらずmが18より小さくなると急激に低下し
ていることがわかる。ノマルスキー顕微鏡による損傷部
観察では、mが24を境に反射膜の表面の損傷から膜内
部の損傷に変わっていることが確認され、損傷が生じ始
める膜がGdF3 膜からAl2 O3 膜に変化したと思わ
れる。[Table 6] From this result, "air (GdF 3 / SiO 2 ) m / (A
l 2 O 3 / SiO 2 ) n / substrate ”film structure (GdF 3 /
It can be seen that when the number of pairs of SiO 2 ) m is 35 to 23, the laser proof strength hardly changes, and when m becomes smaller than 18, it sharply decreases. In the observation of the damaged portion with a Nomarski microscope, it was confirmed that the m changed from 24 to the internal damage of the reflective film at the boundary of 24, and the film where the damage started to occur was changed from the GdF 3 film to the Al 2 O 3 film. It seems to have changed.
【0050】すなわち、GdF3 層で損傷が初めに生じ
ている膜構成ではレーザ耐力が高いが、Al2 O3 層で
損傷が初めに生じる膜構成ではレーザ耐力が低下するこ
とがArFエキシマレーザの場合でも同様であり、従っ
て、レーザ耐力が高く、層数が少なく、製造誤差による
不良が少ないように高反射率帯域幅が広い高反射膜の膜
構成は、損傷が初めに生じる層がGdF3 層からAl2
O3 層へ移る境界の膜構成よりGdF3 層がやや多い膜
構成が最適であることが判明した。That is, the laser resistance is high in the film structure in which the damage is first generated in the GdF 3 layer, but the laser resistance is lowered in the film structure in which the damage is first generated in the Al 2 O 3 layer. The same applies to the case, and therefore, the film structure of the high-reflection film having a high laser resistance, a small number of layers, and a wide high-reflectance bandwidth so that there are few defects due to manufacturing errors is such that the layer in which damage first occurs is GdF 3 Layer from Al 2
It was found that the film structure having a slightly larger number of GdF 3 layers was more suitable than the film structure at the boundary where the O 3 layer was transferred.
【0051】このように、損傷が初めに生じる層がGd
F3 層からAl2 O3 層へ移る境界の膜構成は、以下に
示す通りであり、これは、式(1)の条件を満足する膜
構成のなかで最も(GdF3 /SiO2 )ペア数の少な
いものである。Thus, the layer in which damage first occurs is Gd.
The film structure of the boundary from the F 3 layer to the Al 2 O 3 layer is as shown below. This is the most (GdF 3 / SiO 2 ) pair among the film structures satisfying the condition of the formula (1). There are few.
【0052】空気/(GdF3 /SiO2 )23/(Al
2 O3 /SiO2 )7 /基板
(第4実験例)レーザ耐力が高く、層数が少なく、製造
誤差による不良が少ないように高反射率帯域幅が広く、
ピーク反射率99.5%以上のNd:YAGレーザ(1
064nm)用の高耐力高反射膜を開発した。Air / (GdF 3 / SiO 2 ) 23 / (Al
2 O 3 / SiO 2 ) 7 / Substrate (fourth experimental example) Laser reflectivity is high, the number of layers is small, and the high reflectance bandwidth is wide so that there are few defects due to manufacturing errors.
Nd: YAG laser with a peak reflectance of 99.5% or more (1
We have developed a high yield strength and high reflective film for 064 nm).
【0053】開発手順は、まず、吸収が少ない膜材料を
選びこれらの単層膜レーザ耐力および屈折率を測定し
た。表7に膜材料とレーザ耐力および屈折率を測定した
結果を示す。パルス幅は1ns、1ショット毎に膜面の
未照射部にエネルギーを変えて照射し、膜が破壊するレ
ーザ光の閾値エネルギーを測定した。In the development procedure, first, a film material having a small absorption was selected and the single layer film laser proof strength and the refractive index thereof were measured. Table 7 shows the results of measuring the film material, the laser proof stress, and the refractive index. The pulse width was 1 ns, and the unirradiated portion of the film surface was irradiated with different energy for each shot, and the threshold energy of laser light at which the film was broken was measured.
【0054】[0054]
【表7】
この結果から、レーザ耐力の高い高屈折率材料Al2 O
3 ,ZrO2 の中から選ばれた膜と低屈折率材料SiO
2 ,MgF2 の中から選ばれた膜の交互層で高反射膜を
製作するとレーザ光の照射に対して高耐力な高反射膜が
製作されることが推測される。[Table 7] From this result, a high refractive index material Al 2 O having high laser resistance
3 , a film selected from ZrO 2 and a low refractive index material SiO
It is presumed that if a high-reflection film is made of alternating layers of films selected from 2 and MgF 2 , a high-reflection film with high resistance to laser light irradiation is produced.
【0055】ところが、低屈折率膜としてMgF2 を用
いると、膜応力が大きく膜割れの問題が生じるという問
題があった。そこで低屈折率膜としてSiO2 を用い、
レーザ耐力のほぼ同じZrO2 とAl2 O3 の高屈折率
膜では屈折率が大きいZrO2 膜を選択した。ZrO2
膜とSiO2 膜の交互多層膜でピーク反射率99.5%
以上になる層数は26層であった。However, when MgF 2 is used as the low refractive index film, there is a problem that the film stress is large and the problem of film cracking occurs. Therefore, using SiO 2 as the low refractive index film,
For the high refractive index films of ZrO 2 and Al 2 O 3 having almost the same laser resistance, a ZrO 2 film having a large refractive index was selected. ZrO 2
Peak reflectivity of 99.5% in alternate multilayer film of SiO 2 film and SiO 2 film
The number of layers as described above was 26 layers.
【0056】また、屈折率の高いTiO2 膜とSiO2
膜の交互多層膜であれば16層で99.5%以上になる
が、レーザ耐力はTiO2 膜の影響で低くなることが推
測される。Further, the TiO 2 film having a high refractive index and the SiO 2 film are
In the case of alternating multi-layer films, 16 layers have 99.5% or more, but it is presumed that the laser proof strength is lowered due to the influence of the TiO 2 film.
【0057】そこで、レーザ耐力が高く、層数が少な
く、かつ高反射率帯域幅の広い高反射膜の膜構成を求め
るため、
空気/(ZrO2 /SiO2 )m /(TiO2 /SiO
2 )n 基板
の膜構成のm,nを変化させ、光学特性とレーザ耐力の
測定を行なった。レーザ光の入射角は0度、膜厚はすべ
て1/4波長光学膜厚とした。Therefore, in order to obtain a film structure of a highly reflective film having a high laser resistance, a small number of layers, and a wide high reflectance bandwidth, air / (ZrO 2 / SiO 2 ) m / (TiO 2 / SiO 2
2 ) The optical characteristics and laser proof strength were measured by changing m and n of the film structure of the n substrate. The incident angle of the laser light was 0 degree, and the film thicknesses were all 1/4 wavelength optical film thicknesses.
【0058】まず、m,n値は、ピーク反射率が99.
5%以上となるようシミュレーションで求めた。表8
に、シミュレーションにより、ピーク反射率99%以上
となる膜構成のm,n値と95%反射率帯域幅△λ(R
=95%)および各膜構成における膜内電界強度のZr
O2 膜内およびTiO2 膜内の最大値E1 ,E2 を計算
した結果を示す。First, for the m and n values, the peak reflectance is 99.
It was calculated by simulation so as to be 5% or more. Table 8
Further, by simulation, the m and n values of the film structure having the peak reflectance of 99% or more and the 95% reflectance bandwidth Δλ (R
= 95%) and Zr of the electric field strength in the film in each film constitution
The results of calculating the maximum values E 1 and E 2 in the O 2 film and the TiO 2 film are shown.
【0059】[0059]
【表8】
表8のシミュレーション結果が示すように(TiO2 /
SiO2 )ペア数が増えると、全層数が減り、高反射率
帯域幅が増えて製作上有利となるが、TiO2膜内の最
大電界強度が増大し、レーザ耐力の低いTiO2 膜で損
傷が生じやすくなることが考えられる。[Table 8] As the simulation results in Table 8 show (TiO 2 /
When the number of pairs of SiO 2 ) increases, the total number of layers decreases and the high reflectance bandwidth increases, which is advantageous in manufacturing. However, the maximum electric field strength in the TiO 2 film increases, and a TiO 2 film with low laser resistance is used. Damage is likely to occur.
【0060】そこで、実際にこれらの膜構成の高反射膜
を製作し、その95%反射率帯域幅△λ(R=95%)
とレーザ耐力を測定した。レーザ耐力の測定は、Nd:
YAGレーザ(波長1064nm,パルス幅1ns)を
用い照射毎に膜面の新しい面にエネルギーを変えて照射
し、損傷が生じる閾値エネルギーを測定した。また、損
傷部をノマルスキー顕微鏡により詳細に観察した。測定
結果を表9に示す。Therefore, a high-reflecting film having such a film structure is actually manufactured, and its 95% reflectance bandwidth Δλ (R = 95%).
And the laser proof strength was measured. Laser resistance measurement is Nd:
A YAG laser (wavelength 1064 nm, pulse width 1 ns) was used to change the energy on a new surface of the film for each irradiation, and the threshold energy at which damage occurred was measured. In addition, the damaged part was observed in detail with a Nomarski microscope. The measurement results are shown in Table 9.
【0061】[0061]
【表9】
この結果から、「空気/(ZrO2 /SiO2 )m /
(TiO2 /SiO2 )n /基板」膜構成の(ZrO2
/SiO2 )ペア数mが13から4ではレーザ耐力はほ
とんど変わらずmが4より小さくなると急激に低下して
いることがわかる。ノマルスキー顕微鏡による損傷部観
察では、mが4を境に反射膜の表面の損傷から膜内部の
損傷に変わっていることが確認され、損傷が生じ始める
膜がZrO2 膜からTiO2 膜に変化したと推測され
る。[Table 9] From this result, "air / (ZrO 2 / SiO 2 ) m /
(TiO 2 / SiO 2 ) n / substrate ”film constitution of (ZrO 2
It can be seen that when the number of pairs of / SiO 2 ) m is 13 to 4, the laser proof strength hardly changes, and when m becomes smaller than 4, it sharply decreases. In the observation of the damaged portion with a Nomarski microscope, it was confirmed that the surface damage of the reflective film was changed to the damage inside the film when m was 4 as a boundary, and the film where the damage began to be changed from the ZrO 2 film to the TiO 2 film. Presumed to be.
【0062】すなわち、ZrO2 層で損傷が初めに生じ
ている膜構成ではレーザ耐力が高いが、TiO2 層で損
傷が初めに生じ始める膜構成ではレーザ耐力が低下する
ことがNd:YAGレーザの波長(1064nm)でも
同様であることが判明した。That is, the laser resistance is high in the film structure in which damage is first caused in the ZrO 2 layer, but the laser resistance is lowered in the film structure in which damage is first caused in the TiO 2 layer. It has been found that the same applies to the wavelength (1064 nm).
【0063】このように、損傷が初めに生じる層がZr
O2 層からTiO2 層へ移る境界の膜構成は、以下に示
す通りであり、これは式(1)を満足する膜構成のうち
で最も(ZrO2 /SiO2 )ペア数の少ないものであ
る。Thus, the layer in which damage first occurs is Zr.
The film structure at the boundary from the O 2 layer to the TiO 2 layer is as shown below. This is the film structure with the smallest number of (ZrO 2 / SiO 2 ) pairs among the film structures satisfying the formula (1). is there.
【0064】空気/(ZrO2 /SiO2 )4 /(Ti
O2 /SiO2 )6 /基板
図5は第2実施例によるレーザ用反射鏡M2 の膜構成を
示すもので、これは、ピーク反射率99%以上のKrF
エキシマレーザ(248nm)用の反射鏡である。Air / (ZrO 2 / SiO 2 ) 4 / (Ti
O 2 / SiO 2 ) 6 / Substrate FIG. 5 shows a film structure of the laser reflecting mirror M 2 according to the second embodiment, which is a KrF having a peak reflectance of 99% or more.
It is a reflecting mirror for an excimer laser (248 nm).
【0065】レーザ用反射鏡M2 は、基板11の表面に
Al(アルミニウム)の金属膜12を設け、その上に高
屈折率膜であるAl2 O3 膜13bと低屈折率膜である
SiO2 膜13a16ペアからなる誘電体多層膜を積層
した高反射膜で各膜はλ/4膜であり、全体の膜構成
は、「空気/(Al2 O3 /SiO2 )16/Al/基
板」で表わされる。この膜構成は、前述の光学特性を有
し、KrFエキシマレーザに対して充分なレーザ耐力を
備えており、しかも(Al2 O3 /SiO2 )ペア数が
少なくて、従って製造コストの低いレーザ用反射鏡とし
て最適のものであることが後述する実験で判明してい
る。また、金属膜の膜内電界強度の最大値E4と誘電体
多層膜のAl2 O3 膜の膜内電界強度の最大値E3 の間
に以下の関係が成立し、第1実験例と同様に膜内電界強
度を調べることで最適膜構成を見積もることができる。The reflecting mirror M 2 for laser is provided with a metal film 12 of Al (aluminum) on the surface of a substrate 11, and an Al 2 O 3 film 13b which is a high refractive index film and a SiO which is a low refractive index film on the metal film 12. A high-reflection film in which a dielectric multilayer film consisting of two films 13a16 pairs is laminated and each film is a λ / 4 film, and the overall film configuration is "air / (Al 2 O 3 / SiO 2 ) 16 / Al / substrate. ”. This film structure has the above-mentioned optical characteristics, has a sufficient laser resistance against the KrF excimer laser, and has a small number of (Al 2 O 3 / SiO 2 ) pairs, and thus has a low manufacturing cost. It has been proved by an experiment to be described later that it is the most suitable mirror for a vehicle. Further, the following relationship between the maximum value E 3 in the film field strength of the Al 2 O 3 film of the maximum value E 4 and the dielectric multilayer film having an electric field strength of the metal film is established, the first experimental example Similarly, the optimum film structure can be estimated by examining the electric field strength in the film.
【0066】E4 <E3 ・T4 /T3 ・・・・・(2) ここで、T3 :Al2 O3 膜の単層膜レーザ耐力 T4 :金属膜の単層膜レーザ耐力 次に実験例を説明する。E 4 <E 3 · T 4 / T 3 (2) where, T 3 : Al 2 O 3 film single layer film laser proof strength T 4 : Metal film single layer film laser proof strength Next, an experimental example will be described.
【0067】(第5実験例)まず、吸収が少ない膜の材
料と高反射率の金属膜の材料を選びそれぞれの単層膜レ
ーザ耐力および屈折率を測定した。波長248nmで高
反射率を示す金属膜はAlのみであった。(Fifth Experimental Example) First, a material of a film having a small absorption and a material of a metal film having a high reflectance were selected, and respective single layer film laser proof strengths and refractive indexes were measured. The only metal film having a high reflectance at a wavelength of 248 nm was Al.
【0068】表10に膜材料とレーザ耐力および屈折率
を測定した結果を示す。レーザ耐力の測定は、パルス幅
20nsのKrFエキシマレーザを用い、1ショット毎
に膜面の未照射部にエネルギーを変え照射し、膜が破壊
するレーザ光の閾値エネルギーを測定した。Table 10 shows the results of measuring the film material, the laser proof strength, and the refractive index. For the measurement of the laser resistance, a KrF excimer laser with a pulse width of 20 ns was used and the unirradiated portion of the film surface was irradiated with different energy for each shot, and the threshold energy of the laser light at which the film was broken was measured.
【0069】[0069]
【表10】
この結果から、レーザ耐力の高い高屈折率材料Al2 O
3 と低屈折率材料SiO2 の誘電体多層膜とAlの金属
膜で高反射膜を製作するとレーザ照射に対して高耐力な
膜が製作されることがわかる。そこで、
基板/Al/(SiO2 /Al2 O3 )m /空気
の膜構成の誘電体多層膜のペア数mを変えた入射角0度
の高反射膜を製作し、反射率およびレーザ耐力を測定し
た。また、各膜構成の膜内電界強度も計算で求めた。[Table 10] From this result, a high refractive index material Al 2 O having high laser resistance
It can be seen that when a highly reflective film is made of the dielectric multilayer film of 3 and the low refractive index material SiO 2 and the metal film of Al, a film having high resistance to laser irradiation is manufactured. Therefore, the substrate / Al / (SiO 2 / Al 2 O 3) m / dielectric incident angle of 0 degrees with different number of pairs m of the multilayer film of the air film structure produced a highly reflective film, reflectance and laser damage threshold Was measured. In addition, the in-film electric field strength of each film structure was also calculated.
【0070】図6は、誘電体多層膜のペア数mと248
nmでの反射率を測定したもので、mが8ペア以上で反
射率98.5%以上示すことがわかる。m=12、20
の分光特性測定結果の一例を図7に示した。FIG. 6 shows the number of pairs of dielectric multilayer films, m and 248.
When the reflectance in nm is measured, it can be seen that the reflectance is 98.5% or more when m is 8 pairs or more. m = 12, 20
An example of the measurement result of the spectral characteristics of is shown in FIG.
【0071】また、図8に各膜構成の高反射膜のレーザ
耐力測定結果を示す。レーザ耐力の測定は、パルス幅2
0nsのKrFエキシマレーザを用い、1ショット毎に
膜面の未照射部にエネルギーを変えて照射し、膜が破壊
するレーザ光の閾値エネルギーを測定した。mが16ペ
ア以上で、誘電体多層膜のみの高反射膜のレーザ耐力と
同程度の高いレーザ耐力を示した。これは、レーザ照射
による膜破壊が誘電体多層膜、特に単層膜レーザ耐力の
高いAl2 O3 膜内で生じていると考えられる。また、
mが8ペア以下ではレーザ耐力が低く、単層膜レーザ耐
力の低いAlの金属膜で損傷が生じていると考えられ
る。実際にmが16以上の損傷部と、mが8以下の損傷
部をノマルスキー顕微鏡で観察したところ前者はAlの
金属膜の破壊が生じていないが後者はAl膜の破壊が生
じていることが確認された。Further, FIG. 8 shows the measurement results of the laser proof strength of the highly reflective film having each film structure. Laser proof is pulse width 2
Using a 0 ns KrF excimer laser, the unirradiated portion of the film surface was irradiated with different energy for each shot, and the threshold energy of the laser light at which the film was broken was measured. When m was 16 pairs or more, the laser proof strength was as high as the laser proof strength of the high reflection film having only the dielectric multilayer film. It is considered that this is because the film destruction due to laser irradiation occurs in the dielectric multilayer film, particularly in the Al 2 O 3 film having a high monolayer laser resistance. Also,
When m is 8 pairs or less, the laser resistance is low, and it is considered that the Al metal film having low single layer laser resistance is damaged. When a damaged part in which m is 16 or more and a damaged part in which m is 8 or less are observed with a Nomarski microscope, it is found that the former does not cause the destruction of the Al metal film, but the latter does cause the destruction of the Al film. confirmed.
【0072】高反射膜の膜破壊には膜内電界強度が大き
く依存していると考えられ、各膜構成の金属膜内の最大
電界強度を計算した結果を図9に示した。この結果か
ら、レーザ照射で膜破壊が生じ始める層が金属膜から誘
電体多層膜に変わる膜構成はm=16である。m=16
の膜構成における金属膜およびAl2 O3 膜の膜内電界
強度の最大値をそれぞれE4 ,E3 、金属膜およびAl
2 O3 膜の単層膜レーザ耐力をT4 ,T3 とすると、以
下の関係が成立することが判明した。It is considered that the electric field strength in the film greatly depends on the film breakdown of the high reflection film, and the result of calculating the maximum electric field strength in the metal film of each film constitution is shown in FIG. From this result, the film configuration in which the layer in which film destruction starts to occur by laser irradiation is changed from the metal film to the dielectric multilayer film is m = 16. m = 16
The maximum values of the in-film electric field strengths of the metal film and the Al 2 O 3 film in the above film structure are E 4 , E 3 , respectively,
It has been found that the following relations are established when the single layer laser proof stress of the 2 O 3 film is T 4 and T 3 .
【0073】E4 =E3 ・T4 /T3
(第6実験例)KrFエキシマレーザ用高反射膜でAl
の金属膜を用いて膜層数を少なくし、かつ誘電体多層膜
のみの高反射膜と同程度のレーザ耐力をもつ膜構成を検
討した。高反射率帯域を大きくするため、表10の膜材
料からAl2 O3 よりレーザ耐力は低いが、高屈折率で
あるHfO2 を用い、
基板/Al/(SiO2 /HfO2 )m /空気
の膜構成の高耐力高反射膜を製作した。E 4 = E 3 · T 4 / T 3 (Sixth Experimental Example) Al with a high reflection film for KrF excimer laser
We investigated a film structure that uses the above metal film to reduce the number of film layers and has the same laser resistance as a high-reflection film with only a dielectric multilayer film. To increase the high reflectance band, the film materials in Table 10 have lower laser proof strength than Al 2 O 3, but HfO 2 with a high refractive index is used, and substrate / Al / (SiO 2 / HfO 2 ) m / air A high yield strength and high reflection film with the above film structure was manufactured.
【0074】最適膜構成のペア数mを設計するため、H
fO2 膜とAlの金属膜のそれぞれの単層膜レーザ耐力
T3 ,T4 およびHfO2 膜の最大膜内電界強度E3 か
らAlの金属膜の最大電界強度E4 を次式によって計算
した。In order to design the number of pairs m of the optimum film configuration, H
fO 2 film and Al metal film each monolayer laser damage threshold T 3 of, and T 4 and the HfO 2 film up film in an electric field strength E 3 of the metal film of Al a maximum electric field strength E 4 calculated by the following equation .
【0075】E4 =E3 ・T4 /T3
その結果、E4 =0.128であり、最適膜構成はm=
4であることが計算から求められた。E 4 = E 3 · T 4 / T 3 As a result, E 4 = 0.128, and the optimum film configuration is m =
It was calculated to be 4.
【0076】そこで、(A)金属膜と誘電体多層膜の組
み合わせによる高反射膜で膜構成「基板/Al/(Si
O2 /HfO2 )4 /空気」のものを製作し、これと
(B).誘電体多層膜のみの高反射膜で膜構成「基板/
(SiO2 /HfO2 )8 /空気」のものについて、反
射率およびレーザ耐力を比較した。Therefore, (A) a film structure "substrate / Al / (Si
O 2 / HfO 2 ) 4 / air ”, and (B). High-reflectivity film consisting of only dielectric multilayer film
The reflectance and the laser proof stress of “(SiO 2 / HfO 2 ) 8 / air” were compared.
【0077】反射率は(A),(B)ともに99%以上
でありレーザ耐力も(A)は2.3J/cm2 、(B)
は2.4J/cm2 とほとんど変わらない値であった。
これによって、(SiO2 /HfO2 )ペア数が4の膜
構成であれば、充分なレーザ耐力を有し、しかも安価な
レーザ用反射鏡を実現できることが判明した。The reflectivity of both (A) and (B) is 99% or more, and the laser resistance is (A) 2.3 J / cm 2 , (B).
Was 2.4 J / cm 2 which was almost the same value.
From this, it has been found that a film reflector having a number of (SiO 2 / HfO 2 ) pairs of 4 can realize an inexpensive laser reflecting mirror having sufficient laser resistance.
【0078】(第7実験例)金属膜と誘電体多層膜を組
み合わせた膜構成で誘電体多層膜のみの高反射膜より層
数を少なくし、かつ誘電体多層膜のみの高反射膜程度の
レーザ耐力をもつ、ピーク反射率99%以上のArFエ
キシマレーザ(193nm)用の高耐力高反射膜を開発
した。(Seventh Experimental Example) With a film structure in which a metal film and a dielectric multilayer film are combined, the number of layers is smaller than that of a high reflection film having only a dielectric multilayer film, and a high reflection film having only a dielectric multilayer film is provided. We have developed a high-strength, high-reflection film for ArF excimer lasers (193 nm) with a laser resistance and a peak reflectance of 99% or more.
【0079】開発手順は、まず、193nm波長で吸収
が少ない膜材料を選び単層膜レーザ耐力および屈折率を
測定した。また、金属膜は193nm波長で高反射を示
すAlを選択し、単層膜レーザ耐力を測定した。表11
に膜材料とレーザ耐力および屈折率を測定した結果を示
す。The development procedure was as follows. First, a film material having a small absorption at a wavelength of 193 nm was selected, and a single layer film laser proof stress and a refractive index were measured. As the metal film, Al showing high reflection at a wavelength of 193 nm was selected, and the laser resistance of the single layer film was measured. Table 11
The results of measurement of the film material, laser proof strength, and refractive index are shown in Fig.
【0080】レーザ耐力の測定は、パルス幅20nsの
ArFエキシマレーザを用い、1ショット毎に膜面の未
照射部にエネルギーを変えて照射し、膜が破壊するレー
ザ光の閾値エネルギーを測定した。For the measurement of the laser resistance, an ArF excimer laser with a pulse width of 20 ns was used, and the unirradiated portion of the film surface was irradiated with different energy for each shot, and the threshold energy of the laser light at which the film was broken was measured.
【0081】[0081]
【表11】
この結果から、(A)「基板/Al/(SiO2 /Al
2 O3 )m /空気」、(B)「基板/Al/(MgF2
/Al2 O3 )m /空気」、(C)「基板/Al/(A
lF3 /GdF3 )m /空気」の3種類の膜構成で、誘
電体多層膜のみの高反射膜より層数を少なくし、かつ誘
電体多層膜のみの高反射膜程度のレーザ耐力をもつ、ピ
ーク反射率99%以上のArFエキシマレーザ(193
nm)の高耐力高反射膜の膜設計を第6実験例と同様に
行ない、誘電体多層膜のペア数mの値を計算した。[Table 11] From this result, (A) “Substrate / Al / (SiO 2 / Al
2 O 3 ) m / air ”, (B)“ Substrate / Al / (MgF 2
/ Al 2 O 3) m / air ", (C)" substrate / Al / (A
1F 3 / GdF 3 ) m / air ”, the number of layers is smaller than that of the high reflection film having only the dielectric multilayer film, and the laser resistance is about the same as the high reflection film of only the dielectric multilayer film. , ArF excimer laser with peak reflectance of 99% or more (193
The film design of the high yield strength and high reflection film of (nm) was performed in the same manner as in the sixth experimental example, and the value of the number of pairs m of the dielectric multilayer film was calculated.
【0082】その結果、以下のようになった。As a result, the following was obtained.
【0083】(A)の最適膜構成.基板/Al/(Si
O2 /Al2 O3 )11/空気
(B)の最適膜構成.基板/Al/(MgF2 /Al2
O3 )6 /空気
(C)の最適膜構成.基板/Al/(AlF3 /GdF
3 )8 /空気
そこで、(A),(B),(C)の最適膜構成の反射鏡
と、比較のために誘電体多層膜のみの以下の膜構成
(E),(F),(G)の反射鏡を製作し、反射率とレ
ーザ耐力を測定した。(A) Optimal film configuration. Substrate / Al / (Si
Optimal film composition of O 2 / Al 2 O 3 ) 11 / air (B). Substrate / Al / (MgF 2 / Al 2
Optimal film composition of O 3 ) 6 / air (C). Substrate / Al / (AlF 3 / GdF
3 ) 8 / air Then, the reflecting mirror having the optimum film structure of (A), (B), and (C) and the following film structures (E), (F), (only for the dielectric multilayer film for comparison. The reflector of G) was manufactured, and the reflectance and the laser proof strength were measured.
【0084】 (E).基板/(SiO2 /Al2 O3 )21/空気 (F).基板/(MgF2 /Al2 O3 )12/空気 (G).基板/(AlF3 /GdF3 )16/空気 表12に測定結果を示す。(E). Substrate / (SiO 2 / Al 2 O 3) 21 / air (F). Substrate / (MgF 2 / Al 2 O 3) 12 / air (G). Substrate / (AlF 3 / GdF 3 ) 16 / air Table 12 shows the measurement results.
【0085】[0085]
【表12】
このように、式(2)に基づいて膜内電界強度によって
膜構成を設計すると、Alの金属膜と誘電体多層膜を組
み合わせた膜構成で、誘電体多層膜のみの高反射膜より
層数を少なくし、かつ誘電体多層膜のみの高反射膜と同
程度のレーザ耐力をもつ、ピーク反射率99%以上のA
rFエキシマレーザ(193nm)用の高耐力高反射膜
を製作することができる。[Table 12] As described above, when the film structure is designed based on the electric field strength in the film based on the formula (2), the film structure is a combination of the Al metal film and the dielectric multilayer film, and the number of layers is higher than that of the high reflection film having only the dielectric multilayer film. A, which has a peak reflectivity of 99% or more and has a laser proof strength comparable to that of a high reflection film having only a dielectric multilayer film.
A high yield strength and high reflection film for rF excimer laser (193 nm) can be manufactured.
【0086】(第8実験例)ピーク反射率99%以上の
Nd:YAGレーザ(1064nm)用の高耐力高反射
膜もKrF,ArFエキシマレーザ用と同様に、金属膜
と誘電体多層膜を組み合わせた膜構成で、誘電体多層膜
のみの高反射膜より層数を少なくし、かつ誘電体多層膜
のみの高反射膜程度のレーザ耐力をもつ高反射膜を製作
することが可能であることを表13の膜材料を用いて確
認した。表13にNd:YAGレーザ用反射鏡に使用可
能な膜材料と金属膜の単層膜レーザ耐力の測定結果を示
す。最適膜構成の開発手順は第5〜第7実験例と同様で
ある。(Eighth Experimental Example) A high yield strength and high reflection film for Nd: YAG laser (1064 nm) having a peak reflectance of 99% or more is a combination of a metal film and a dielectric multilayer film as in the case of KrF and ArF excimer lasers. It is possible to fabricate a high-reflection film with a different film structure, which has a smaller number of layers than a high-reflection film having only a dielectric multilayer film, and which has a laser resistance equivalent to that of a high-reflection film having only a dielectric multilayer film. It confirmed using the membrane material of Table 13. Table 13 shows the measurement results of the single-layer film laser proof stress of the film material and the metal film that can be used for the Nd: YAG laser reflecting mirror. The procedure for developing the optimum film configuration is the same as in the fifth to seventh experimental examples.
【0087】[0087]
【表13】 [Table 13]
【0088】[0088]
【発明の効果】本発明は上述のとおり構成されているの
で、次に記載するような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0089】すぐれた光学特性と充分なレーザ耐力を有
し、しかも全体の層数が少なくて製造コストの低いレー
ザ用反射鏡を実現できる。It is possible to realize a laser reflecting mirror having excellent optical characteristics and sufficient laser resistance, and having a small number of layers as a whole and a low manufacturing cost.
【図1】第1実施例によるレーザ用反射鏡の膜構成を示
す図である。FIG. 1 is a diagram showing a film structure of a laser reflecting mirror according to a first embodiment.
【図2】第1実施例の膜内電界強度の分布を示すグラフ
である。FIG. 2 is a graph showing a distribution of in-film electric field strength of the first example.
【図3】第1実験例において、(ZrO2 /SiO2 )
ペア数の比率と膜内電界強度および高反射率帯域幅の関
係を調べた結果を示すグラフである。FIG. 3 shows (ZrO 2 / SiO 2 ) in the first experimental example.
It is a graph which shows the result of having investigated the relationship of the ratio of the number of pairs, the electric field strength in a film, and the high reflectance bandwidth.
【図4】第1実験例において、(ZrO2 /SiO2 )
ペア数の比率とレーザ耐力の関係を調べた結果を示すグ
ラフである。FIG. 4 shows (ZrO 2 / SiO 2 ) in the first experimental example.
It is a graph which shows the result of having investigated the relationship between the ratio of the number of pairs and laser proof strength.
【図5】第2実施例によるレーザ用反射鏡の膜構成を示
す図である。FIG. 5 is a diagram showing a film configuration of a laser reflecting mirror according to a second embodiment.
【図6】第5実験例において、誘電体多層膜のペア数と
反射率の関係を調べた結果を示すグラフである。FIG. 6 is a graph showing the results of examining the relationship between the number of pairs of dielectric multilayer films and the reflectance in the fifth experimental example.
【図7】第5実験例において、誘電体多層膜のペア数が
12である場合と20である場合の反射率の周波数特性
を調べた結果を示すグラフである。FIG. 7 is a graph showing the results of examining the frequency characteristics of reflectance in the case where the number of pairs of the dielectric multilayer film is 12 and 20 in the fifth experimental example.
【図8】第5実験例において、誘電体多層膜のペア数と
レーザ耐力の関係を調べた結果を示すグラフである。FIG. 8 is a graph showing the results of examining the relationship between the number of pairs of dielectric multilayer films and laser proof stress in a fifth experimental example.
【図9】第5実験例において、誘電体多層膜のペア数と
金属膜の膜内電界強度の最大値の関係を示すグラフであ
る。FIG. 9 is a graph showing the relationship between the number of pairs of dielectric multilayer films and the maximum value of the in-film electric field strength of a metal film in a fifth experimental example.
1,11 基板 2,4,13a SiO2 膜 3 ZrO2 膜 5,13b Al2 O3 膜 12 金属膜1, 11 Substrate 2, 4, 13a SiO 2 film 3 ZrO 2 film 5, 13b Al 2 O 3 film 12 Metal film
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 5/08 G02B 5/28 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G02B 5/08 G02B 5/28
Claims (11)
層膜を有し、該誘電体多層膜は空気側の第1の部分と基
板側の第2の部分から構成され、前記第1の部分は高耐
力である複数の第1の高屈折率膜と複数の低屈折率膜と
が交互に積層されてなり、前記第2の部分は前記第1の
高屈折率膜より屈折率の高い複数の第2の高屈折率膜と
複数の低屈折率膜とが交互に積層されてなり、前記第1
の高屈折率膜の膜内電界強度の最大値E1 と前記第2の
高屈折率膜の膜内電界強度の最大値E2 の間に以下の関
係が成立するように構成されていることを特徴とするレ
ーザ用反射鏡。 E2 <0.20・E1 ・T2 /T1 ここで、T1 :前記第1の高屈折率膜の単層膜レーザ耐力 T2 :前記第2の高屈折率膜の単層膜レーザ耐力1. A substrate and a dielectric multilayer film laminated on the surface thereof, the dielectric multilayer film including a first portion on the air side and a substrate.
It is composed from a second portion of the plate side, the first portion and a plurality of low refractive index film the first high refractive index film of the multiple a high yield strength
Are alternately laminated, and the second portion is the first
A plurality of second high refractive index films having a higher refractive index than the high refractive index film
Ri name and a plurality of low refractive index film are laminated alternately, the first
The following relationship is established between the maximum value E 1 of the in-film electric field strength of the high refractive index film and the maximum E 2 of the in-film electric field strength of the second high refractive index film. A laser reflecting mirror. E 2 <0.20 · E 1 · T 2 / T 1 where T 1 is the single layer film laser resistance of the first high refractive index film T 2 is the single layer film of the second high refractive index film Laser resistance
光用の反射鏡であって、90%以上の反射率を有し、高
屈折率膜の材料としてTiO2 ,HfO2 ,ZrO2 ,
Al2 O3 ,Ta 2 O 5 ,Sc2 O3 ,NdF3 ,La
F3 ,GdF3 またはHoF3 、低屈折率膜の材料とし
てSiO2 ,MgF2 またはAlF3を用いることを特
徴とする請求項1記載のレーザ用反射鏡。2. A reflecting mirror for laser light having a wavelength range of 190 to 1200 nm, which has a reflectance of 90% or more, and is used as a material for a high refractive index film of TiO 2 , HfO 2 , ZrO 2 ,
Al 2 O 3 , Ta 2 O 5 , Sc 2 O 3 , NdF 3 , La
F 3, GdF 3, or HoF 3, the laser reflecting mirror of claim 1, wherein SiO 2, was MgF 2 or, characterized in that the use of AlF 3 as a material for the low refractive index film.
射鏡であって、第1の高屈折率膜の材料として、Al2
O3 、第2の高屈折率膜の材料としてZrO2 を用いる
ことを特徴とする請求項1または2記載のレーザ用反射
鏡。3. A reflection mirror for the third harmonic of an Nd: YAG laser, wherein Al 2 is used as the material of the first high refractive index film.
3. The laser reflecting mirror according to claim 1, wherein O 3 and ZrO 2 are used as a material of the second high refractive index film.
て、第1の高屈折率膜の材料としてAl2 O3 、第2の
高屈折率膜の材料としてHfO2 またはSc2 O3 を用
いることを特徴とする請求項1または2記載のレーザ用
反射鏡。4. A reflection mirror for a KrF excimer laser, wherein Al 2 O 3 is used as the material of the first high refractive index film and HfO 2 or Sc 2 O 3 is used as the material of the second high refractive index film. The laser reflecting mirror according to claim 1 or 2, wherein.
て、第1の高屈折率膜の材料としてNdF3 ,La
F3 ,GdF3 またはHoF3 、第2の高屈折率膜の材
料としてAl2 O3 を用いることを特徴とする請求項1
または2記載のレーザ用反射鏡。5. A reflection mirror for an ArF excimer laser, wherein NdF 3 , La is used as a material of the first high refractive index film.
F 3 , GdF 3 or HoF 3 , and Al 2 O 3 is used as a material for the second high refractive index film.
Alternatively, the reflecting mirror for laser according to the item 2.
て、第1の高屈折率膜の材料として、Al2 O3 または
ZrO2 、第2の高屈折率膜の材料としてTiO2 を用
いることを特徴とする請求項1または2記載のレーザ用
反射鏡。6. Nd: A reflecting mirror for YAG laser, as a material of the first high refractive index film, Al 2 O 3 or ZrO 2, the TiO 2 used as the material of the second high refractive index film The laser reflecting mirror according to claim 1 or 2, wherein.
上に設けられた誘電体多層膜を有し、該誘電体多層膜は
複数の高屈折率膜と複数の低屈折率膜とが交互に積層さ
れてなり、前記高屈折率膜の膜内電界強度の最大値E3
と前記金属膜の膜内電界強度の最大値E4 の間に以下の
関係が成立するように構成されていることを特徴とする
レーザ用反射鏡。 E4 <E3 ・T4 /T3 ここで、T3 :前記高屈折率膜の単層膜レーザ耐力 T4 :前記金属膜の単層膜レーザ耐力7. A metal is deposited on the surface of the substrate film has a dielectric multi-layer film provided thereon, the dielectric multilayer film
Multiple high refractive index films and multiple low refractive index films are alternately stacked.
Ri Na is the maximum value E 3 in the film field strength of the high refractive index film
And a maximum value E 4 of the in-film electric field strength of the metal film, the following relationship is established. E 4 <E 3 · T 4 / T 3 where T 3 is the single layer film laser resistance of the high refractive index film T 4 is the single layer film laser resistance of the metal film
光用の反射鏡であって、90%以上の反射率を有し、高
屈折率膜の材料としてTiO2 ,HfO2 ,ZrO2 ,
Al2 O3 ,Ta 2 O 5 ,Sc2 O3 ,NdF3 ,La
F3 ,GdF3 またはHoF3 、低屈折率膜の材料とし
てSiO2 ,MgF2 またはAlF3,金属膜の材料と
してAl,Ag,Au,CuまたはPtを用いることを
特徴とする請求項7記載のレーザ用反射鏡。8. A reflecting mirror for laser light in a wavelength region of 190 to 1200 nm, which has a reflectance of 90% or more and is used as a material for a high refractive index film of TiO 2 , HfO 2 , ZrO 2 ,
Al 2 O 3 , Ta 2 O 5 , Sc 2 O 3 , NdF 3 , La
F 3, GdF 3, or HoF 3, claim 7, characterized by using Al, Ag, Au, Cu or Pt as the material of the low refractive index film SiO 2, MgF 2 or AlF 3, as the material of gold Shokumaku The laser reflecting mirror described.
て、高屈折率膜の材料としてAl2 O3 ,HfO2 また
はSc2 O3 、金属膜の材料としてAlを用いることを
特徴とする請求項7または8記載のレーザ用反射鏡。9. A reflection mirror for a KrF excimer laser, characterized in that Al 2 O 3 , HfO 2 or Sc 2 O 3 is used as a material for the high refractive index film, and Al is used as a material for the metal film. Item 7. A laser reflecting mirror according to item 7 or 8.
って、高屈折率膜の材料としてNdF3 ,LaF3 ,G
dF3 ,HoF3 またはAl2 O3 、金属膜の材料とし
てAlを用いることを特徴とする請求項7または8記載
のレーザ用反射鏡。10. A reflecting mirror for an ArF excimer laser, wherein NdF 3 , LaF 3 and G are used as a material for a high refractive index film.
9. The laser reflecting mirror according to claim 7, wherein dF 3 , HoF 3 or Al 2 O 3 and Al are used as the material of the metal film.
て、高屈折率膜の材料として、Al2 O3 ,ZrO2 ま
たはTiO2 、金属膜の材料としてAl,Ag,Cuま
たはAuを用いることを特徴とする請求項7または8記
載のレーザ用反射鏡。11. A reflector for an Nd: YAG laser, wherein Al 2 O 3 , ZrO 2 or TiO 2 is used as the material of the high refractive index film, and Al, Ag, Cu or Au is used as the material of the metal film. 9. The laser reflecting mirror according to claim 7 or 8, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05401696A JP3402907B2 (en) | 1996-02-16 | 1996-02-16 | Laser reflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05401696A JP3402907B2 (en) | 1996-02-16 | 1996-02-16 | Laser reflector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09222507A JPH09222507A (en) | 1997-08-26 |
JP3402907B2 true JP3402907B2 (en) | 2003-05-06 |
Family
ID=12958797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05401696A Expired - Fee Related JP3402907B2 (en) | 1996-02-16 | 1996-02-16 | Laser reflector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3402907B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4976346B2 (en) * | 2008-07-16 | 2012-07-18 | 日本航空電子工業株式会社 | Visible light mirror, visible light oscillation gas laser, and He-Ne ring laser gyro |
JP5390941B2 (en) * | 2009-06-03 | 2014-01-15 | 日本航空電子工業株式会社 | Visible light mirror, visible light oscillation gas laser, and ring laser gyro |
JP2011191338A (en) * | 2010-03-11 | 2011-09-29 | Etsumi Kogaku:Kk | Transparent coloring article |
JP6089686B2 (en) * | 2012-12-25 | 2017-03-08 | 日亜化学工業株式会社 | Light emitting device |
JP6149218B2 (en) * | 2013-06-19 | 2017-06-21 | 東海光学株式会社 | Dielectric multilayer film design method and optical element manufactured by the same method |
US20210098657A1 (en) * | 2018-06-18 | 2021-04-01 | Ngk Spark Plug Co., Ltd. | Optical wavelength conversion material, optical wavelength conversion device, and light emitting device |
CN114839708B (en) * | 2022-03-24 | 2024-09-13 | 中国计量大学 | Anti-laser damage blue light reflector and design method |
-
1996
- 1996-02-16 JP JP05401696A patent/JP3402907B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09222507A (en) | 1997-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2629693B2 (en) | Excimer laser mirror | |
US5274661A (en) | Thin film dielectric coating for laser resonator | |
JP2754214B2 (en) | Dielectric multilayer film capable of compensating frequency chirp of light pulse | |
IE850613L (en) | Ultra narrow bandwidth optical thin-film interference¹coatings for single wavelength lasers | |
US20020001672A1 (en) | Protective overcoat for replicated diffraction gratings | |
US5394501A (en) | Optical coating for reflecting visible and longer wavelength radiation having grazing incidence angle | |
JP3402907B2 (en) | Laser reflector | |
JP2007193060A (en) | Mirror for solid-state laser | |
JPH0593811A (en) | Light absorptive film | |
JPH0716038B2 (en) | Gas laser | |
JPH10253802A (en) | Reflection preventive film | |
JP3224316B2 (en) | Two-wavelength anti-reflection coating | |
JP2005221867A (en) | Reflection type optical device | |
JPH052101A (en) | Optical component | |
JP3232727B2 (en) | 2-wavelength anti-reflection coating | |
JP3315494B2 (en) | Reflective film | |
JP2002296758A (en) | Halftone type phase shift mask blank and halftone type phase shift mask | |
JP2835535B2 (en) | Anti-reflection coating for optical components | |
JPH11101903A (en) | High reflection mirror for excimer laser | |
JPH07244204A (en) | Dual wavelength anti-reflection film | |
JP3142173B2 (en) | Optical thin film, substrate with optical thin film, and laser device | |
JPH07225316A (en) | Polarization beam splitter | |
JPH04145677A (en) | High efficiency reflector for visible laser beam | |
JP3069641B2 (en) | Dielectric multilayer film | |
JP2023117913A (en) | mirror |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080229 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |