[go: up one dir, main page]

JP3315494B2 - Reflective film - Google Patents

Reflective film

Info

Publication number
JP3315494B2
JP3315494B2 JP25370993A JP25370993A JP3315494B2 JP 3315494 B2 JP3315494 B2 JP 3315494B2 JP 25370993 A JP25370993 A JP 25370993A JP 25370993 A JP25370993 A JP 25370993A JP 3315494 B2 JP3315494 B2 JP 3315494B2
Authority
JP
Japan
Prior art keywords
refractive index
film
high refractive
index layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25370993A
Other languages
Japanese (ja)
Other versions
JPH0784105A (en
Inventor
淳理 石倉
実 大谷
光治 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25370993A priority Critical patent/JP3315494B2/en
Publication of JPH0784105A publication Critical patent/JPH0784105A/en
Application granted granted Critical
Publication of JP3315494B2 publication Critical patent/JP3315494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、紫外域から赤外域にお
よぶ波長領域のレーザ光等に適したレーザ用の反射膜に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection film for a laser, which is suitable for laser light in a wavelength range from an ultraviolet region to an infrared region.

【0002】[0002]

【従来の技術】反射膜は一般的に高屈折率材料からなる
λ/4膜と低屈折率材料からなるλ/4膜を交互に積層
した繰返し多層膜によって構成されるが、高屈折率材料
は一般的に屈折率が高いものほど照明光のエネルギーを
吸収しやすい傾向があるため、特に高出力のレーザ光等
を反射する反射膜の場合はレーザ耐力が不足するおそれ
がある。
2. Description of the Related Art In general, a reflection film is composed of a repeating multilayer film in which a λ / 4 film made of a high-refractive-index material and a λ / 4 film made of a low-refractive-index material are alternately laminated. In general, the higher the refractive index, the easier it is to absorb the energy of the illumination light, and therefore, particularly in the case of a reflective film that reflects high-output laser light or the like, the laser proof strength may be insufficient.

【0003】そこで、レーザ光が入射する側の高屈折率
層の材料には比較的屈折率が低く従って吸収の少い高屈
折率材料を選び、基板に近い方の高屈折率層の材料に屈
折率が高く吸収の大きい高屈折率材料を選ぶことによっ
て反射膜のレーザ耐力を向上させる等の工夫がなされて
いる(特開平2−204702号公報参照)。これは、
レーザ光が入射する側は定在波によって反射膜の内部に
発生する電界エネルギーの強度が高く、この部分の吸収
が特に大きいためにレーザ耐力が著しく低下する点に着
目し、レーザ光の入射側の高屈折率層の材料に吸収の小
さいものを用いることでレーザ耐力を向上させたもので
ある。
Therefore, a high refractive index material having a relatively low refractive index and therefore a small absorption is selected as a material for the high refractive index layer on the side where the laser beam is incident, and a material for the high refractive index layer closer to the substrate is selected. There has been a contrivance such as improving the laser resistance of the reflective film by selecting a high refractive index material having a high refractive index and a large absorption (see Japanese Patent Application Laid-Open No. 2-204702). this is,
Focusing on the point where the laser beam is incident, the intensity of the electric field energy generated inside the reflective film by the standing wave is high, and the absorption of this part is particularly large, so that the laser proof strength is significantly reduced. The laser proof strength is improved by using a material having low absorption as the material of the high refractive index layer.

【0004】また、各高屈折率層に等価膜を用いるとと
もに、該等価膜を構成する複数の層のうちで吸収の大き
い高屈折材料の層の光学膜厚を特に小さく設計すること
によって各高屈折率層の吸収を低減し、これによって反
射膜のレーザ耐力を向上させることも提案されている。
In addition, an equivalent film is used for each high-refractive-index layer, and the optical film thickness of a layer of a high-refractive-index material having a large absorption among a plurality of layers constituting the equivalent film is designed to be particularly small so that each high-refractive-index layer is designed to have a small optical thickness. It has also been proposed to reduce the absorption of the refractive index layer, thereby improving the laser resistance of the reflective film.

【0005】なお、高屈折率層と低屈折率層を交互に積
層した繰返し多層膜は、一般的に、高屈折率層と低屈折
率層の屈折率の差が大きいほど少ないλ/4膜の層数で
高い反射率を得ることができる。また、前述のように、
高屈折率材料は屈折率が高いほど吸収が大きく反射膜の
レーザ耐力を低下させる傾向がある。
In general, a repeated multilayer film in which high refractive index layers and low refractive index layers are alternately laminated generally has a smaller λ / 4 film as the difference in refractive index between the high refractive index layer and the low refractive index layer is larger. With the number of layers, a high reflectance can be obtained. Also, as mentioned above,
Higher refractive index materials tend to absorb more as the refractive index is higher, and reduce the laser proof strength of the reflective film.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、前述のように、レーザ光の入射側の高
屈折率層の材料に比較的吸収の少ない高屈折率材料を選
ぶことでレーザ耐力を向上させると、高屈折率層と低屈
折率層の屈折率の差が小さくなるために反射膜の反射率
が著しく低下する。従って、反射率の低下を防ぐために
反射膜を構成するλ/4膜の層数を増やさなければなら
ず、その結果、製造コストが上昇する。また、高屈折率
材料の層の光学膜厚を特に小さくした等価膜を用いる場
合も同様に全体の層数が増えて製造コストの上昇につな
がる。
However, according to the above-mentioned prior art, as described above, a high refractive index material having relatively low absorption is selected as a material for the high refractive index layer on the laser light incident side. When the proof stress is improved, the difference between the refractive indices of the high refractive index layer and the low refractive index layer becomes small, so that the reflectance of the reflective film is significantly reduced. Accordingly, the number of λ / 4 films constituting the reflection film must be increased in order to prevent a decrease in reflectance, and as a result, the manufacturing cost increases. Also, when an equivalent film in which the optical film thickness of the layer of the high refractive index material is particularly small is used, the total number of layers similarly increases, leading to an increase in manufacturing cost.

【0007】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであり、反射率を著しく低下させ
ることなく吸収を低減し、λ/4膜の層数を著しく増加
させることなくレーザ耐力を大幅に向上させることので
きる反射膜を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and it has been proposed to reduce the absorption without significantly lowering the reflectivity and without significantly increasing the number of layers of the λ / 4 film. It is an object of the present invention to provide a reflective film capable of greatly improving laser proof stress.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の反射膜は、基板の表面に交互に少くとも1
層ずつ積層された高屈折率層と低屈折率層からなる多層
膜を有し、前記高屈折率層の少くとも1層が、前記基板
の表面に向って屈折率が低くなるように構成された不均
質膜であることを特徴とする。
In order to achieve the above-mentioned object, the reflection film of the present invention is formed by alternately forming at least one film on the surface of a substrate.
It has a multilayer film composed of a high-refractive-index layer and a low-refractive-index layer laminated one by one, and at least one of the high-refractive-index layers is configured such that the refractive index decreases toward the surface of the substrate. Characterized by a heterogeneous film.

【0009】前記不均質膜が、それぞれ屈折率の異る材
料で作られた少くとも2つの層を積層した積層膜である
とよい。
It is preferable that the heterogeneous film is a laminated film formed by laminating at least two layers made of materials having different refractive indexes.

【0010】また、基板の表面に複数の高屈折率層と複
数の低屈折率層とを交互に積層した多層膜を有し、2つ
以上の高屈折率層がそれぞれ屈折率の異なる少くとも2
つの材料からなる混合膜であり、これらの混合膜のうち
で、前記基板の表面から遠いものほど屈折率の低い材料
を含む割合が大きく、かつ、前記基板の表面に近い側に
ある高屈折率層の方が遠い側にある高屈折率層よりも屈
折率が低くなるように形成されたことを特徴とする反射
膜でもよい。
Further , a plurality of high refractive index layers are formed on the surface of the substrate.
Having a multilayer film in which a number of low refractive index layers are alternately laminated, and two
The above high refractive index layers each have at least two different refractive indexes.
Is a mixed film composed of two materials.
A material farther from the surface of the substrate has a lower refractive index
Is large, and on the side close to the surface of the substrate.
One high-refractive-index layer is more flexible than the far-side high-refractive-index layer.
Reflection characterized by having a low folding ratio
It may be a membrane .

【0011】[0011]

【作用】反射膜に入射する照明光によって反射膜の内部
に発生する電界エネルギーの強度は、各高屈折率層にお
いて基板の表面に近いほど高くなり、反射膜に吸収され
る照明光のエネルギーは前記電界エネルギーの強度が高
い程大きい。また、反射膜に吸収される照明光のエネル
ギーは高屈折率層の屈折率が高い程大きい。高屈折率層
のうちの少くとも1つが基板の表面に向って屈折率の低
くなる不均質膜であれば、前記電界エネルギーの強度が
高い部分の吸収が低減されるため、反射膜全体の吸収を
大幅に低減できる。一方、不均質膜の基板の表面から遠
い部分は屈折率が高いため、不均質膜全体の屈折率が大
幅に低下して反射膜の反射率が著しく損われるおそれが
ない。
The intensity of the electric field energy generated inside the reflection film by the illumination light incident on the reflection film increases in each high refractive index layer as it approaches the surface of the substrate, and the energy of the illumination light absorbed by the reflection film increases. The larger the intensity of the electric field energy is, the larger the intensity is. Further, the energy of the illumination light absorbed by the reflection film increases as the refractive index of the high refractive index layer increases. If at least one of the high refractive index layers is a non-homogeneous film having a lower refractive index toward the surface of the substrate, the absorption in the portion where the intensity of the electric field energy is high is reduced. Can be greatly reduced. On the other hand, since the portion of the heterogeneous film far from the surface of the substrate has a high refractive index, there is no possibility that the refractive index of the entire heterogeneous film is significantly reduced and the reflectivity of the reflection film is significantly impaired.

【0012】[0012]

【実施例】本発明の実施例について説明する。An embodiment of the present invention will be described.

【0013】図1は第1実施例の反射膜E−1を示すも
ので、これは、合成石英の基板1の表面1aに、高屈折
率材料のλ/4膜である高屈折率層2aと低屈折率材料
のλ/4膜である低屈折率層2bを交互に6層ずつ積層
したうえで最終層として高屈折率材料のλ/4膜である
高屈折率層2aを積層し、合計13層からなる多層膜で
ある繰返し多層膜2を設けたものであって、前記低屈折
率材料にはSiO2 を用いるとともに、各高屈折率層2
aはそれぞれ比較的屈折率の高い高屈折率材料であるH
fO2 のλ/8膜3と比較的屈折率の低い高屈折率材料
であるAl23 のλ/8膜4からなり、それぞれレー
ザ光の入射側にHfO2 のλ/8膜3を積層した積層膜
である。本実施例の反射膜E−1はKrFレーザ用の反
射膜として設計されたもので、設計波長λは248nm
である。また、各高屈折率層2aおよび各低屈折率層2
bの成膜条件はいずれも成膜温度200℃、成膜速度2
〜5Å/s、酸素分圧1〜2×10-4torrであっ
た。
FIG. 1 shows a reflection film E-1 of the first embodiment, which is formed on a surface 1a of a synthetic quartz substrate 1 by a high refractive index layer 2a of a λ / 4 film of a high refractive index material. And a low-refractive-index layer 2b, which is a λ / 4 film of a low-refractive-index material, is alternately laminated in six layers, and a high-refractive-index layer 2a, which is a λ / 4 film of a high-refractive-index material, is laminated as a final layer. It is provided with a repetitive multilayer film 2 which is a multilayer film composed of a total of 13 layers, wherein SiO 2 is used as the low refractive index material and each high refractive index layer 2
a is H, which is a high refractive index material having a relatively high refractive index.
fO consists of two of lambda / 8 film 3 and Al 2 O 3 of lambda / 8 film 4 is relatively low refractive index and high refractive index material, the HfO 2 of lambda / 8 film 3 on the incident side of each of the laser beam It is a laminated film that has been laminated. The reflection film E-1 of this embodiment is designed as a reflection film for a KrF laser, and has a design wavelength λ of 248 nm.
It is. In addition, each high refractive index layer 2a and each low refractive index layer 2
The film forming conditions b are all a film forming temperature of 200 ° C. and a film forming speed of 2
Å5Å / s, oxygen partial pressure was 1-2 × 10 -4 torr.

【0014】図2は、反射膜E−1にKrFレーザを照
射したときに膜内の定在波によって発生する電界エネル
ギーの強度を算出し、レーザ光の入射側からプロットし
たものである。この図から解るように、定在波による電
界エネルギーの強度は各高屈折率層2a内においてレー
ザ光の入射側から立上り、低屈折率層2bにおいて減衰
する傾向を有し、各高屈折率層2a内ではレーザ光の入
射側ほど電界エネルギーの強度が小さい。各高屈折率層
2aは前述のように、レーザ光の入射側に比較的屈折率
が高く従って吸収の大きい高屈折率材料であるHfO2
のλ/8膜3を有するが、この部分では電界エネルギー
の強度が立上がったばかりで比較的低いために、吸収が
著しく大きくなるおそれはない。各高屈折率層2aの電
界エネルギーの強度が著しく大きくなる部分は比較的屈
折率が低く従って吸収の小さいAl23 のλ/8膜4
によって構成されているため、各高屈折率層2aの全体
が屈折率が高く従って吸収も大きいHfO2 で作られて
いる場合に比べて各高屈折率層2aの吸収を大幅に低減
できる。他方、各高屈折率層2aはその光学膜厚の半分
が屈折率の高いHfO2 で作られているため、全体が比
較的屈折率の低いAl23 などの高屈折率材料で作ら
れている場合に比べて、同じλ/4膜の層数であればは
るかに反射特性の良好な反射膜を得ることができる。
FIG. 2 is a graph in which the intensity of the electric field energy generated by the standing wave in the film when the reflective film E-1 is irradiated with the KrF laser is calculated and plotted from the laser light incident side. As can be seen from this figure, the intensity of the electric field energy due to the standing wave has a tendency to rise from the laser beam incident side in each high refractive index layer 2a and attenuate in the low refractive index layer 2b. In 2a, the intensity of the electric field energy is smaller toward the incident side of the laser beam. As described above, each high-refractive-index layer 2a has a relatively high refractive index on the laser beam incident side, and is thus a high-refractive-index material, HfO 2 , which has a large absorption.
However, since the intensity of the electric field energy has just risen and is relatively low in this portion, there is no possibility that the absorption is significantly increased. The portion of each high refractive index layer 2a where the intensity of the electric field energy is remarkably large has a relatively low refractive index and therefore a small absorption of Al 2 O 3 λ / 8 film 4
, The absorption of each high refractive index layer 2a can be greatly reduced as compared with the case where the entire high refractive index layer 2a is made of HfO 2 having a high refractive index and therefore high absorption. On the other hand, the high refractive index layer 2a is therefore half of the optical thickness is made of a high refractive index HfO 2, entirely made of high refractive index material such as relatively low refractive index Al 2 O 3 In comparison with the case where the number of layers is the same λ / 4 film, it is possible to obtain a reflection film having much better reflection characteristics.

【0015】本実施例の反射膜E−1のレーザ耐力を公
知の方法で測定したところ、4J/cm2 (レーザ波
長:248nm、パルス幅:15ns)であり、また、
反射率の分光特性は図3に示すとおりであり、波長24
8nmにおける反射率は96.5%、反射率90%以上
のバンド幅は43nmであった。すなわち、本実施例の
反射膜E−1は極めて良好な反射特性を有し、かつレー
ザ耐力も大きくてすぐれたレーザ用反射膜である。
When the laser proof stress of the reflection film E-1 of this embodiment was measured by a known method, it was 4 J / cm 2 (laser wavelength: 248 nm, pulse width: 15 ns).
The spectral characteristics of the reflectance are as shown in FIG.
The reflectivity at 8 nm was 96.5%, and the bandwidth at a reflectivity of 90% or more was 43 nm. In other words, the reflection film E-1 of this embodiment is a laser reflection film having extremely excellent reflection characteristics and excellent laser proof strength.

【0016】図4は本実施例の一変形例E−2を示すも
ので、これは、最もレーザ光の入射側に位置する高屈折
率層21aをHfO2 からなるλ/20膜31と、Al
23 からなるλ/5膜41によって構成し、その次に
レーザ光の入射側に位置する高屈折率層21aをHfO
2 からなるλ/14膜32とAl23 からなる5λ/
28膜42によって構成し、その次にレーザ光の入射側
に位置する高屈折率層21aをHfO2 からなるλ/8
膜33とAl23 からなるλ/8膜43によって構成
し、残りの高屈折率層21aはHfO2 からなるλ/4
膜によって構成したものである。
FIG. 4 shows a modified example E-2 of the present embodiment, in which a high refractive index layer 21a located closest to the laser beam incident side is formed of a λ / 20 film 31 made of HfO 2 , Al
A high refractive index layer 21a located on the laser beam incident side is formed of a λ / 5 film 41 made of 2 O 3.
2 of λ / 14 film 32 and 5λ / 14 of Al 2 O 3
Then, the high refractive index layer 21a located on the laser beam incident side is formed of a HfO 2 λ / 8
The film 33 is composed of a λ / 8 film 43 made of Al 2 O 3 , and the remaining high refractive index layer 21a is composed of λ / 4 film made of HfO 2.
It is composed of a film.

【0017】すなわち、図2から解るように反射膜の内
部に発生する電界エネルギーの強度は最もレーザ光の入
射側に位置する3つの高屈折率層に集中しているため、
これらの3つの高屈折率層21aのそれぞれの最も電界
エネルギーの強度が高くなる部分にのみ吸収の少ないA
23 を用いることでレーザ耐力を向上させたもの
で、反射特性の劣化が出来るだけ少くてすむように工夫
したものである。本変形例E−2のレーザ耐力を測定し
たところ5J/cm2 (レーザ波長248nm、パルス
幅15ns)であり、内部に発生する電界エネルギーの
強度を算出したところ図5に示すとおりであり、また、
反射率の分光特性は図6に示すとおりであった。
That is, as can be understood from FIG. 2, the intensity of the electric field energy generated inside the reflection film is concentrated on the three high refractive index layers located closest to the laser beam incident side.
Each of these three high-refractive-index layers 21a has only a portion where the intensity of the electric field energy is the highest, and A
The laser proof strength is improved by using l 2 O 3 , and the device is devised so that the reflection characteristics can be reduced as little as possible. The laser proof stress of this modification E-2 was 5 J / cm 2 (laser wavelength 248 nm, pulse width 15 ns), and the intensity of the electric field energy generated inside was calculated, as shown in FIG. ,
The spectral characteristics of the reflectance were as shown in FIG.

【0018】図6から解るように、設計波長における反
射率は97.5%、反射率90%以上のバンド幅は51
nmであり、第1実施例の反射膜E−1よりレーザ耐力
も反射特性もすぐれていることが解る。これは、レーザ
光の入射側に位置する3つの高屈折率層以外の高屈折率
層の材料がAl23 より屈折率の高い高屈折率材料で
あるHfO2 であるためと考えられる。
As can be seen from FIG. 6, the reflectance at the design wavelength is 97.5%, and the bandwidth of the reflectance of 90% or more is 51%.
nm, which indicates that the laser resistance and the reflection characteristics are superior to those of the reflection film E-1 of the first embodiment. This is probably because three materials of high refractive index layer other than the high refractive index layer positioned on the incident side of the laser light is HfO 2 is a high-refractive-index material having a refractive index higher than that of Al 2 O 3.

【0019】なお、比較のために、第1実施例と同様の
基板にHfO2 のλ/4膜である高屈折率層とSiO2
のλ/4膜である低屈折率層を交互に6層ずつ積層し、
最終層としてHfO2 のλ/4膜である高屈折率層を積
層した合計13層の繰返し多層膜からなる高反射膜を作
成してこれをサンプルAとし、また、第1実施例と同様
の基板にAl23 のλ/4膜である高屈折率層とSi
2 のλ/4膜である低屈折率層を交互に14層ずつ積
層し、最終層としてAl23 のλ/4膜を積層した合
計29層の繰返し多層膜からなる高反射膜を作成してこ
れをサンプルBとした。サンプルA、Bのレーザ耐力を
測定したところそれぞれ1J/cm2 、5J/cm2
反射率の分光特性は図7と図8に示す通りであり、設計
波長における反射率はそれぞれ97.5%、94.%、
反射率90%以上のバンド幅はそれぞれ68nm、15
nmであった。
For comparison, a high refractive index layer, which is a λ / 4 film of HfO 2 , and a SiO 2 film were formed on the same substrate as in the first embodiment.
6 low-refractive-index layers, which are λ / 4 films, are alternately laminated,
As a final layer, a high-reflection film composed of a total of 13 repetitive multilayer films formed by laminating a high-refractive-index layer, which is a λ / 4 film of HfO 2 , was used as a sample A, and the same as in the first embodiment. A high refractive index layer which is a λ / 4 film of Al 2 O 3 on a substrate and Si
A high-reflection film composed of a total of 29 repetitive multilayer films in which 14 low-refractive-index layers, which are λ / 4 films of O 2 , are alternately laminated, and a λ / 4 film of Al 2 O 3 is laminated as a final layer. This was made sample B. The laser proof stress of Samples A and B was measured to be 1 J / cm 2 , 5 J / cm 2 ,
The spectral characteristics of the reflectance are as shown in FIGS. 7 and 8, and the reflectance at the design wavelength is 97.5% and 94.%, respectively. %,
The bandwidths with a reflectance of 90% or more are 68 nm and 15 nm, respectively.
nm.

【0020】表1は、本実施例の反射膜E−1をサンプ
ルCとし、変形例E−2をサンプルDとして、各サンプ
ルA〜Dの膜構成とレーザ耐力を示すものである。
Table 1 shows the film structure and laser proof stress of each of the samples A to D, with the reflection film E-1 of this embodiment being Sample C and the modification E-2 being Sample D.

【0021】[0021]

【表1】 図9は第2実施例の反射膜E−3を示すもので、これ
は、合成石英の基板51の表面51aに、高屈折率材料
のλ/4膜である高屈折率層52aと低屈折率材料のλ
/4膜である低屈折率層52bを交互に4層ずつ積層し
たうえで最終層として高屈折率材料のλ/4膜である高
屈折率層52aを積層し、合計9層からなる多層膜であ
る繰返し多層膜52を設けたものであって、低屈折率材
料にはSiO2 を用いるとともに、各高屈折率層52a
はそれぞれ比較的屈折率の高い高屈折率材料であるTi
2 と比較的屈折率の低い高屈折率材料であるZrO2
の混合物によって構成された混合膜である。
[Table 1] FIG. 9 shows a reflection film E-3 of the second embodiment, which is formed on a surface 51a of a synthetic quartz substrate 51 by a high refractive index layer 52a of a λ / 4 film of a high refractive index material and a low refractive index layer. Rate material λ
A low-refractive-index layer 52b, which is a / 4 film, is alternately laminated by four layers, and a high-refractive-index layer 52a, which is a λ / 4 film of a high-refractive-index material, is laminated as a final layer. And a high refractive index layer 52a is formed by using SiO 2 as a low refractive index material.
Are Ti, which are high refractive index materials each having a relatively high refractive index.
O 2 and ZrO 2 is a relatively low refractive index and high refractive index material
Is a mixed film composed of a mixture of

【0022】本実施例の反射膜E−3はNd−YAGレ
ーザ基本波用の反射膜として設計されたもので、設計波
長λは1064nmである。また、各混合膜は、レーザ
光の入射側のTiO2 の混合比が最も低く、基板51の
表面51aに近づくにつれて高くなるように設定されて
いる。なお、基板51の表面51aに最も近い高屈折率
層52aのZrO2 の混合比をゼロとし、最終層の高屈
折率層52aをZrO2 のみによって構成する。
The reflection film E-3 of this embodiment is designed as a reflection film for a fundamental wave of an Nd-YAG laser, and has a design wavelength λ of 1064 nm. Further, each mixed film is set so that the mixing ratio of TiO 2 on the laser light incident side is the lowest, and becomes higher as approaching the surface 51 a of the substrate 51. The mixing ratio of ZrO 2 of the high refractive index layer 52a closest to the surface 51a of the substrate 51 is set to zero, and the high refractive index layer 52a as the final layer is formed only of ZrO 2 .

【0023】各層の成膜条件は、成膜温度200℃、酸
素分圧1〜2×10-4torr、SiO2 からなる低屈
折率層52bの成膜速度は2〜3Å/s、また、混合膜
である高屈折率層52aの成膜は、2源蒸着法によって
行い、最も基板に近い高屈折率層52aの成膜において
はTiO2 の成膜速度3Å/s、ZrO2 の成膜速度を
0Å/sに制御し、徐々にTiO2 の成膜速度を減少さ
せるとともにZrO2の成膜速度を増加させ、最終層の
成膜においてはTiO2 の成膜速度を0Å/s、ZrO
2 の成膜速度を3Å/sに制御した。
The film forming conditions for each layer are as follows: a film forming temperature of 200 ° C., an oxygen partial pressure of 1 to 2 × 10 −4 torr, a film forming rate of the low refractive index layer 52 b made of SiO 2 is 2 to 3 ° / s, The high-refractive-index layer 52a, which is a mixed film, is formed by a two-source vapor deposition method. In the high-refractive-index layer 52a closest to the substrate, a TiO 2 film forming rate of 3 ° / s and a ZrO 2 film are formed. The speed is controlled to 0 ° / s, the film forming speed of TiO 2 is gradually reduced and the film forming speed of ZrO 2 is increased, and the film forming speed of TiO 2 is set to 0 ° / s and ZrO 2
The film forming speed of No. 2 was controlled at 3 ° / s.

【0024】本実施例の反射膜E−3の電界エネルギー
の強度を計算したところ、図10に示す通りであり、レ
ーザ耐力を測定したところ8J/cm2 (レーザ波長1
064nm、パルス幅1ns)であり、また、反射率の
分光特性を測定した結果は図11に示す通りであり、波
長1064nmにおける反射率は95.5%、反射率9
0%以上のバンド幅は122nmであって、レーザ耐
力、反射特性ともに極めてすぐれた反射膜であることが
解る。
The intensity of the electric field energy of the reflection film E-3 of this embodiment was calculated as shown in FIG. 10, and the laser proof stress was measured to be 8 J / cm 2 (laser wavelength 1).
064 nm and a pulse width of 1 ns). The results of measuring the spectral characteristics of the reflectance are as shown in FIG. 11, and the reflectance at a wavelength of 1064 nm is 95.5% and the reflectance is 9
The band width of 0% or more is 122 nm, which indicates that the reflection film is extremely excellent in both laser proof stress and reflection characteristics.

【0025】比較のために、本実施例と同様の基板にT
iO2 のλ/4膜である高屈折率層とSiO2 のλ/4
膜である低屈折率層を交互に4層ずつ積層し、最終層と
してTiO2 のλ/4膜を積層したものをサンプルA、
また、本実施例と同様の基板にZrO2 のλ/4膜であ
る高屈折率層とSiO2 のλ/4膜である低屈折率層を
交互に4層ずつ積層し、最終層としてZrO2 のλ/4
膜を積層したものをサンプルBとした。サンプルA、B
のレーザ耐力を測定したところそれぞれ2J/cm2
10J/cm2 、反射率の分光特性は図12と図13に
示すとおりであり、設計波長における反射率はそれぞれ
95.5%、83%、反射率90%以上のバンド幅はそ
れぞれ228nm、0nmであった。本実施例の反射膜
E−3をサンプルCとして、各サンプルA〜Cの膜構成
とレーザ耐力を表2に示す。
For the sake of comparison, T
iO high refractive index layer which is a lambda / 4 film 2 and SiO 2 of lambda / 4
Samples A and A were obtained by laminating four layers of low refractive index layers alternately and laminating a λ / 4 film of TiO 2 as a final layer.
Further, a high refractive index layer as a λ / 4 film of ZrO 2 and a low refractive index layer as a λ / 4 film of SiO 2 are alternately laminated on the same substrate as the present embodiment, and the final layer is ZrO 2. Λ / 4 of 2
Sample B was obtained by laminating the films. Samples A and B
The laser proof stress was measured to be 2 J / cm 2 ,
The spectral characteristics of the reflectance at 10 J / cm 2 and the reflectance are as shown in FIGS. 12 and 13. The reflectance at the design wavelength is 95.5% and 83%, and the bandwidths with the reflectance of 90% or more are 228 nm and 0 nm, respectively. Met. Table 2 shows the film configuration and the laser proof stress of each of the samples A to C using the reflection film E-3 of this example as the sample C.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明は上述のとおり構成されているの
で、以下に記載するような効果を奏する。反射膜の反射
率を低下させることなく吸収を低減し、従って、λ/4
膜の層数を著しく増加させることなくレーザ耐力を大幅
に向上できる。その結果、高い反射率とレーザ耐力を有
し、しかも安価な反射膜を実現できる。
Since the present invention is configured as described above, the following effects can be obtained. The absorption is reduced without lowering the reflectivity of the reflective film, and therefore, λ / 4
The laser proof stress can be greatly improved without significantly increasing the number of layers of the film. As a result, an inexpensive reflective film having high reflectivity and laser proof strength can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例を示す模式断面図である。FIG. 1 is a schematic sectional view showing a first embodiment.

【図2】第1実施例の電界エネルギーの強度の分布を示
すグラフである。
FIG. 2 is a graph showing a distribution of electric field energy intensity according to the first embodiment.

【図3】第1実施例の反射率の分光特性を示すグラフで
ある。
FIG. 3 is a graph showing the spectral characteristics of the reflectance of the first embodiment.

【図4】第1実施例の一変形例を示す模式断面図であ
る。
FIG. 4 is a schematic sectional view showing a modification of the first embodiment.

【図5】図4の反射膜の電界エネルギーの強度の分布を
示すグラフである。
FIG. 5 is a graph showing a distribution of electric field energy intensity of the reflection film of FIG. 4;

【図6】図4の反射膜の反射率の分光特性を示すグラフ
である。
FIG. 6 is a graph showing the spectral characteristics of the reflectance of the reflection film of FIG. 4;

【図7】第1実施例の一比較例の反射率の分光特性を示
すグラフである。
FIG. 7 is a graph showing a spectral characteristic of a reflectance of a comparative example of the first embodiment.

【図8】第1実施例の別の比較例の反射率の分光特性を
示すグラフである。
FIG. 8 is a graph showing spectral characteristics of reflectance of another comparative example of the first embodiment.

【図9】第2実施例を示す模式断面図である。FIG. 9 is a schematic sectional view showing a second embodiment.

【図10】第2実施例の電界エネルギーの強度の分布を
示すグラフである。
FIG. 10 is a graph showing the distribution of the intensity of the electric field energy according to the second embodiment.

【図11】第2実施例の反射率の分光特性を示すグラフ
である。
FIG. 11 is a graph showing the spectral characteristics of the reflectance of the second embodiment.

【図12】第2実施例の一比較例の反射率の分光特性を
示すグラフである。
FIG. 12 is a graph showing the spectral characteristics of the reflectance of a comparative example of the second embodiment.

【図13】第2実施例の別の比較例の反射率の分光特性
を示すグラフである。
FIG. 13 is a graph showing the spectral characteristics of the reflectance of another comparative example of the second embodiment.

【符号の説明】[Explanation of symbols]

1,51 基板 2,52 繰返し多層膜 2a,21a,52a 高屈折率層 2b,52b 低屈折率層 3,33 HfO2 のλ/8膜 4,43 Al23 のλ/8膜 31 HfO2 のλ/20膜 41 Al23 のλ/5膜 32 HfO2 のλ/14膜 42 Al23 の5λ/28膜Reference Signs List 1,51 Substrate 2,52 Repeated multilayer film 2a, 21a, 52a High refractive index layer 2b, 52b Low refractive index layer 3,33 λ / 8 film of HfO 2 4,43 λ / 8 film of Al 2 O 3 31 HfO 2 λ / 20 film 41 λ / 5 film of Al 2 O 3 32 λ / 14 film of HfO 2 42 5λ / 28 film of Al 2 O 3

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−204702(JP,A) 特開 平2−192189(JP,A) 特開 昭52−43443(JP,A) 特開 昭55−45061(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 5/08 G02B 1/10 G02B 5/26 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-204702 (JP, A) JP-A-2-192189 (JP, A) JP-A-52-43443 (JP, A) JP-A-55-434 45061 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G02B 5/08 G02B 1/10 G02B 5/26

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板の表面に交互に少くとも1層ずつ積
層された高屈折率層と低屈折率層とからなる多層膜を有
し、前記高屈折率層の少くとも1層が、前記基板の表面
に向って屈折率が低くなるように構成された不均質膜で
あることを特徴とする反射膜。
1. A multi-layer film comprising a high refractive index layer and a low refractive index layer alternately laminated at least one by one on a surface of a substrate, wherein at least one of the high refractive index layers is A reflective film, which is a heterogeneous film configured to have a refractive index lower toward a surface of a substrate.
【請求項2】 前記不均質膜が、それぞれ屈折率の異な
る材料で作られた少くとも2つの層を積層した積層膜で
あることを特徴とする請求項1記載の反射膜。
2. The reflection film according to claim 1, wherein said heterogeneous film is a laminated film formed by laminating at least two layers made of materials having different refractive indexes.
【請求項3】 前記積層膜からなる高屈折率層を複数層
有し、これらの積層膜のうちで、前記基板の表面から
いものほど屈折率の低い方の材料で作られた層の光学膜
厚が大きいことを特徴とする請求項2記載の反射膜。
3. A high-refractive-index layer comprising the laminated film, comprising a plurality of layers.
The optical film thickness of a layer made of a material having a lower refractive index as the distance from the surface of the substrate is increased among these laminated films. The reflective film as described in the above.
【請求項4】 前記屈折率の異なる材料のうちで屈折率
の低い方の材料がAl2 3 あることを特徴とする請
求項2または3記載の反射膜。
4. The method of claim 2 or 3 reflective film according materials having a lower refractive index, characterized in that a Al 2 O 3 among the different refractive index material.
【請求項5】 基板の表面に複数の高屈折率層と複数の
低屈折率層とを交互に積層した多層膜を有し、2つ以上
の高屈折率層がそれぞれ屈折率の異なる少くとも2つの
材料からなる混合膜であり、これらの混合膜のうちで、
前記基板の表面から遠いものほど屈折率の低い材料を含
む割合が大きく、かつ、前記基板の表面に近い側にある
高屈折率層の方が遠い側にある高屈折率層よりも屈折率
が低くなるように形成されたことを特徴とする反射膜。
5. A plurality of high refractive index layers and a plurality of high refractive index layers on a surface of a substrate.
It has a multilayer film in which low refractive index layers are alternately laminated, and two or more
At least two high refractive index layers having different refractive indices
It is a mixed film made of materials, and among these mixed films,
A material farther from the surface of the substrate contains a material having a lower refractive index.
Large, and on the side close to the surface of the substrate
High refractive index layer has a higher refractive index than distant high refractive index layer
A reflection film formed so as to be low.
【請求項6】 前記屈折率の異なる材料のうちで屈折率
の低い方の材料がZrO 2 であることを特徴とする請求
項5記載の反射膜。
6. A material having a different refractive index among the materials having different refractive indexes.
Wherein the lower material is ZrO 2.
Item 6. The reflective film according to Item 5.
JP25370993A 1993-09-16 1993-09-16 Reflective film Expired - Fee Related JP3315494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25370993A JP3315494B2 (en) 1993-09-16 1993-09-16 Reflective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25370993A JP3315494B2 (en) 1993-09-16 1993-09-16 Reflective film

Publications (2)

Publication Number Publication Date
JPH0784105A JPH0784105A (en) 1995-03-31
JP3315494B2 true JP3315494B2 (en) 2002-08-19

Family

ID=17255064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25370993A Expired - Fee Related JP3315494B2 (en) 1993-09-16 1993-09-16 Reflective film

Country Status (1)

Country Link
JP (1) JP3315494B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715276A (en) * 2012-09-28 2014-04-09 茂迪股份有限公司 Solar cell and module thereof
JP6943984B2 (en) * 2018-06-18 2021-10-06 日本特殊陶業株式会社 Light wavelength converter and light emitting device
CN109061877B (en) * 2018-08-06 2020-11-27 成都精密光学工程研究中心 Structural parameter calculation method and structural parameter calculation device
CN110007374A (en) * 2019-03-26 2019-07-12 上海域申光电科技有限公司 A kind of High Power Laser Welding diaphragm membrane system process for plating

Also Published As

Publication number Publication date
JPH0784105A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
CA1139596A (en) Multilayer mirror with maximum reflectance
US5460888A (en) Multi-layered optical film
US7006292B2 (en) Multi-cavity optical filter
US5850309A (en) Mirror for high-intensity ultraviolet light beam
JP3133765B2 (en) Multilayer thin film bandpass filter
JPH11153711A (en) Multilayered thin-film band-region filter
US6859483B1 (en) Induced absorption filter (IAF)
JP3315494B2 (en) Reflective film
JP2005031298A (en) Transparent substrate with antireflection film
JPH02287301A (en) Reflecting mirror consisting of multilayered film of dielectric material having non-dependency on incident angle and having high reflecetivity
JP3402907B2 (en) Laser reflector
JP3224316B2 (en) Two-wavelength anti-reflection coating
JP2001100024A (en) Multilayered optical filter
KR20240123589A (en) High reflectance multilayer structure and method of manufacturing the same
US5581395A (en) Non-linear optical crystal element
JPS6177018A (en) Filter
JP2006259124A (en) Cold mirror
JP2001013304A (en) Optical parts
JP2003101126A (en) Semiconductor laser device and method of manufacturing the same
JPH0915407A (en) Reflection optical element
JP2814595B2 (en) Multilayer reflector
JPH0763907A (en) Reflection mirror for laser
JPH1039105A (en) Antireflection film
JPH01286476A (en) Laser mirror having flat spectral characteristics in narrow wavelength band
JPH0868906A (en) Dielectric multilayer film mirror manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees