JP3372159B2 - Temperature control method and device for incinerator - Google Patents
Temperature control method and device for incineratorInfo
- Publication number
- JP3372159B2 JP3372159B2 JP03048096A JP3048096A JP3372159B2 JP 3372159 B2 JP3372159 B2 JP 3372159B2 JP 03048096 A JP03048096 A JP 03048096A JP 3048096 A JP3048096 A JP 3048096A JP 3372159 B2 JP3372159 B2 JP 3372159B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- furnace
- amount
- pressure
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Incineration Of Waste (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、都市ごみ、産業廃
棄物等の被焼却物を焼却処理する焼却炉の温度制御方法
およびその装置の改善に関し、より詳しくは被焼却物を
安定燃焼させることを可能ならしめるようにした焼却炉
の温度制御方法およびその装置の技術分野に属するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an incinerator temperature control method for incinerating incineration materials such as municipal solid waste and industrial waste, and an improvement in the apparatus, and more particularly to a stable combustion of the incineration materials. The present invention belongs to the technical field of a temperature control method for an incinerator and a device for controlling the temperature.
【0002】[0002]
【従来の技術】近年、都市ごみや産業廃棄物等の被焼却
物の焼却処理には、焼却処理能率が優れているという観
点から流動床式焼却炉が多用されている。流動床式焼却
炉の場合、被焼却物の安定的燃焼を継続し得ることが好
ましい。そこで、被焼却物の安定的燃焼状態では炉内温
度が一定であると考え、炉内温度の一定制御により被焼
却物の安定的燃焼を制御する手法が開発されている。以
下、この従来例1に係る手法の概要を説明すると、これ
は、炉内温度を制御量、被焼却物の供給量を操作量とす
る制御方法で、具体的には、時刻iに測定される炉内温
度Ti と、予め設定された目標温度Tr との温度偏差Δ
Ti (= Ti −Tr )から被焼却物の供給量ui を、
ui =Kp ΔTi +Ki ΣTi +Kd (Ti −Ti-1)/
Δtの算式により求めると共に、求められた量ui の被
焼却物を焼却炉に供給するように被焼却物供給装置であ
るごみ供給装置を制御している。なお、上記算式中のK
p は比例ゲイン、Ki は積分ゲイン、Kd は微分ゲイ
ン、Δtはデータサンプリング時間である。つまり、K
p ,Ki ,Kd の各ゲインを操業データおよび制御仕様
に基づいて設定し、サンプリング時間Δt毎に、被焼却
物の供給量ui を演算し、演算で得られた量ui の被焼
却物を焼却炉に投入するものである。2. Description of the Related Art In recent years, a fluidized bed type incinerator has been widely used for incineration of incineration materials such as municipal solid waste and industrial wastes from the viewpoint of excellent incineration efficiency. In the case of a fluidized bed incinerator, it is preferable that stable burning of the incineration object can be continued. Therefore, it is considered that the furnace temperature is constant in a stable combustion state of the incineration object, and a method for controlling the stable combustion of the incineration object by constant control of the furnace temperature has been developed. The outline of the method according to the conventional example 1 will be described below. This is a control method in which the furnace temperature is a controlled variable and the supply amount of incineration is a manipulated variable. Specifically, it is measured at time i. Deviation Δ between the in-furnace temperature T i and the preset target temperature T r
T i (= The supply amount u i of the incineration object is calculated from T i −T r ).
u i = K p ΔT i + K i ΣT i + K d (T i −T i−1 ) /
The waste supply device, which is an incineration object supply device, is controlled so as to supply the incineration material in the incineration furnace by the calculated amount u i as well as the Δt equation. Note that K in the above formula
p is a proportional gain, K i is an integral gain, K d is a differential gain, and Δt is a data sampling time. That is, K
p, K i, and set based on the gain K d of the operational data and control specifications for each sampling time Delta] t, and calculates the supply amount u i of the incinerated, the amount u i obtained by the calculation The incinerator is put into an incinerator.
【0003】上記従来例1に係る温度制御方法は、温度
変動が緩かな場合には炉内温度を一定に制御することが
できるのでそれなりに有用であるが、被焼却物の突発的
な供給過剰等による急激な温度変化が発生した場合に
は、炉内温度測定の遅れ時間を考慮していないため制御
の応答性が劣り、炉内温度を一定に制御することが困難
であった。ところで、被焼却物の突発的な供給過剰等に
よる急激な温度変化に対処し得るようにしたものが、例
えば特開平3−170715号公報において開示されて
いる。以下、この従来例2に係る流動床式焼却炉装置
を、その概略全体図の図3と、制御システムの構成図の
図4とを参照しながら、同明細書に記載されている同一
名称並びに同一符号を以て説明する。The temperature control method according to the above-mentioned conventional example 1 is useful as it is because the temperature in the furnace can be controlled to be constant when the temperature fluctuation is gentle, but a sudden excess supply of the incineration material is required. When a rapid temperature change occurs due to such reasons, the control response is poor because the delay time of the furnace temperature measurement is not taken into consideration, and it is difficult to keep the furnace temperature constant. By the way, a device capable of coping with a rapid temperature change due to a sudden excessive supply of the incineration object is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-170715. Hereinafter, the fluidized bed type incinerator device according to Conventional Example 2 will be described with reference to FIG. 3 which is a schematic overall view and FIG. 4 which is a configuration diagram of a control system. Description will be given with the same reference numerals.
【0004】即ち、図3に示す符号1は炉体で、この炉
体1の炉内1aには、被焼却物Gの燃焼で高温状態に保
たれる砂等の流動媒体Sが貯留されている。前記炉体1
には、流動媒体S上に被焼却物Gを投入する投入口2、
被焼却物G中の不燃物Ga を流動媒体Sと共に排出する
排出口3、燃焼後の排気ガスを排出する排気口4がそれ
ぞれ設けられている。前記投入口2には、投入シュート
5を介してスクリュコンベヤ6およびこのスクリュコン
ベヤ6に被焼却物Gを送り込むホッパ7が接続されてい
る。炉内1aの底部には、炉体1の外部に設けられた一
次空気供給機構9から供給される一次空気を噴出させ、
流動媒体Sと被焼却物Gとを流動化させて被焼却物Gを
乾燥・熱分解・燃焼させる図示しない多数のノズルを有
する複数の散気管8が流動媒体Sに埋まる状態で平行に
配列されている。一次空気供給機構9は一次空気送風機
10と、一次空気送風機10から送風される一次空気の
流量を調節するダンパ11および一次空気流量発信器1
2とから構成されている。また、炉体1には、その外部
に設けられた二次空気供給機構14から供給される二次
空気を噴出させて、被焼却物Gから発生する可燃ガスを
二次燃焼させる燃焼用の二次空気供給口13が設けられ
ている。この二次空気供給機構14は、前記一次空気供
給機構9と同様に、二次空気送風機15と、二次空気送
風機15から送風される二次空気の流量を調節するため
のダンパ16および二次空気流量発信器17とから構成
されている。That is, the reference numeral 1 shown in FIG. 3 is a furnace body, and in the furnace 1a of the furnace body 1, a fluid medium S such as sand which is kept at a high temperature by the combustion of the incineration object G is stored. There is. The furnace body 1
Is a charging port 2 for charging the incineration object G on the fluidized medium S,
An exhaust port 3 for discharging the incombustible substance G a in the incinerated substance G together with the fluidized medium S and an exhaust port 4 for discharging the exhaust gas after combustion are provided. A screw conveyor 6 and a hopper 7 for feeding an incineration object G to the screw conveyor 6 via a charging chute 5 are connected to the charging port 2. Primary air supplied from a primary air supply mechanism 9 provided outside the furnace body 1 is jetted to the bottom of the furnace 1a,
A plurality of air diffusers 8 having a large number of nozzles (not shown) for fluidizing the fluidized medium S and the incinerated material G to dry, pyrolyze and burn the incinerated material G are arranged in parallel in a state of being buried in the fluidized media S. ing. The primary air supply mechanism 9 includes a primary air blower 10, a damper 11 for adjusting the flow rate of the primary air blown from the primary air blower 10, and a primary air flow rate transmitter 1.
2 and. In addition, secondary air supplied from a secondary air supply mechanism 14 provided on the outside of the furnace body 1 is ejected to burn a secondary gas for combustible gas generated from the incineration object G for secondary combustion. A secondary air supply port 13 is provided. The secondary air supply mechanism 14, like the primary air supply mechanism 9, has a secondary air blower 15, a damper 16 for adjusting the flow rate of the secondary air blown from the secondary air blower 15, and a secondary air blower 15. It is composed of an air flow rate transmitter 17.
【0005】前記排気口4には、途中に排気ガス中のダ
ストを沈降させて除去するダスト沈降室21と、排気ガ
スの熱を回収するための排熱ボイラ22と、排気ガス中
のダストを電気的に吸着して除去する電気集塵機23と
を有する排気通路19が誘引排風機20を介して煙突1
8に連通している。そして、前記電気集塵機23の入り
口には、排気ガス中のO2 濃度を分析するO2 濃度分析
計24が、また炉体1には炉内1aの圧力の変化を測定
するための炉内圧力測定器25が設置されており、これ
らO2 濃度分析計24と炉内圧力測定器25の測定値に
基づいて、図5に示す後述する二次空気制御システム2
6により、二次燃焼に要する二次空気の供給量、即ち二
次空気供給機構14による二次空気の供給量が、一次燃
焼の状態に応じて適切に制御されるようになっている。At the exhaust port 4, a dust settling chamber 21 for settling and removing dust in the exhaust gas, an exhaust heat boiler 22 for recovering heat of the exhaust gas, and dust in the exhaust gas are provided. An exhaust passage 19 having an electrostatic precipitator 23 for electrically adsorbing and removing the chimney 1 through an induced air exhauster 20.
It communicates with 8. Then, wherein the inlet of the electrostatic precipitator 23, O 2 O 2 concentration analyzer 24 for analyzing the concentration, also the pressure inside the furnace for measuring the change in pressure in the furnace 1a in the furnace body 1 in the exhaust gas A measuring device 25 is installed, and based on the measured values of the O 2 concentration analyzer 24 and the furnace pressure measuring device 25, a secondary air control system 2 shown in FIG.
6, the supply amount of secondary air required for secondary combustion, that is, the supply amount of secondary air by the secondary air supply mechanism 14 is appropriately controlled according to the state of primary combustion.
【0006】二次空気制御システム26は、一次・二次
燃焼とに要する総空気量を演算する燃焼総空気量演算器
27で一次空気供給機構9と二次空気供給機構14から
供給される総空気量が予め暫定的に設定され、この設定
値と一次空気量発信器12の信号が二次空気流量設定演
算器28に入力され、ここで総空気量から一次空気量発
信器12の信号に基づく一次空気量を差引いた値が二次
空気供給量として設定され、二次空気流量調節計29入
力される。二次空気流量調節計29は、二次空気流量発
信器17から送られる二次空気の流量信号が常に設定値
となるように二次空気供給機構14からの二次空気の供
給量を制御する。また、炉内1aで発生した排気ガス中
のO2 濃度が電気集塵機23の入口に設けられたO2 濃
度分析計24で分析され、予め設定されている適切なO
2 濃度になるようにO2 濃度調節計30から出力された
信号が補正演算器31に送られ、ここで二次空気流量設
定演算器28から送られる二次空気供給設定信号が補正
され、その後に二次空気流量調節計29に送られ、この
二次空気流量調節計29により二次空気供給機構14か
らの二次空気の供給量が制御される。In the secondary air control system 26, a total combustion air amount calculator 27 for calculating the total amount of air required for primary and secondary combustion is supplied from the primary air supply mechanism 9 and the secondary air supply mechanism 14. The air amount is provisionally set in advance, and the set value and the signal of the primary air amount transmitter 12 are input to the secondary air flow rate setting calculator 28, where the total air amount is changed to the signal of the primary air amount transmitter 12. A value obtained by subtracting the primary air amount based on this is set as the secondary air supply amount, and is input to the secondary air flow rate controller 29. The secondary air flow rate controller 29 controls the supply amount of the secondary air from the secondary air supply mechanism 14 so that the flow rate signal of the secondary air sent from the secondary air flow rate transmitter 17 always becomes a set value. . Further, the O 2 concentration in the exhaust gas generated in the furnace 1a is analyzed by the O 2 concentration analyzer 24 provided at the inlet of the electrostatic precipitator 23, and the appropriate O 2 preset is set.
The signal output from the O 2 concentration controller 30 so that the concentration becomes 2 is sent to the correction calculator 31, where the secondary air supply setting signal sent from the secondary air flow rate setting calculator 28 is corrected, and thereafter, To the secondary air flow controller 29, and the secondary air flow controller 29 controls the amount of secondary air supplied from the secondary air supply mechanism 14.
【0007】さらに、炉内圧力設定器25で測定された
炉内圧力の信号は平均化演算器32に送られて移動平均
処理された後、信号処理演算器33に送られる。この信
号処理演算器33は平均化された信号と炉内圧力設定器
25から送られてきた炉内圧力の信号とを比較して偏差
の大きさに応じた二次空気流量補正信号を作り、その信
号により二次空気流量調節計に送られる設定信号を補正
演算器31で補正して二次空気流量が適正な量になるよ
う制御するものである。なお、図4に示す符号35は一
次空気流量制御装置であり、符号36は二次空気流量制
御装置である。Further, the signal of the in-furnace pressure measured by the in-furnace pressure setting device 25 is sent to the averaging arithmetic unit 32, subjected to moving average processing, and then sent to the signal processing arithmetic unit 33. The signal processing calculator 33 compares the averaged signal with the signal of the furnace pressure sent from the furnace pressure setter 25 to generate a secondary air flow rate correction signal according to the magnitude of the deviation, The setting signal sent to the secondary air flow rate controller by the signal is corrected by the correction calculator 31 so that the secondary air flow rate is controlled to an appropriate amount. In addition, the code | symbol 35 shown in FIG. 4 is a primary air flow rate control apparatus, and the code | symbol 36 is a secondary air flow rate control apparatus.
【0008】[0008]
【発明が解決しようとする課題】上記従来例2に係る流
動床式焼却炉装置は、上記のとおり、被焼却物の燃焼の
急激な変化を炉内圧力値から検知し、これにより二次空
気流量補正信号を作り二次空気の流量が適正になるよう
に制御するものである。従って、炉内で発生する可燃ガ
スの完全燃焼に対して有用である。しかしながら、可燃
ガスを完全燃焼させることにより有害物質の発生量を抑
制することができるものの、必ずしも炉内温度を一定に
維持することができず、炉内温度変動による耐火物の損
耗が大きく流動床式焼却炉の短命化を招き、流動床式焼
却炉の保全費が嵩むという経済上の解決すべき課題があ
った。つまり、被焼却物を安定燃焼させることにより流
動床式焼却炉の炉内温度を一定に維持し続けることが、
有害物質の発生量の抑制と、流動床式焼却炉の長寿命化
にとって好ましい。As described above, the fluidized bed type incinerator apparatus according to the conventional example 2 detects a rapid change in combustion of the incineration object from the pressure value in the furnace, and thereby the secondary air is generated. A flow rate correction signal is generated to control the flow rate of the secondary air to be appropriate. Therefore, it is useful for complete combustion of the combustible gas generated in the furnace. However, although the amount of harmful substances generated can be suppressed by completely burning the combustible gas, the temperature inside the furnace cannot always be maintained at a constant level, and the wear of the refractory due to temperature fluctuations inside the furnace is large and the fluidized bed There was a problem to be solved economically that the life of the incinerator is shortened and the maintenance cost of the fluidized bed incinerator increases. In other words, it is possible to keep the in-furnace temperature of the fluidized bed incinerator constant by stably burning the incineration object,
It is desirable for suppressing the generation of harmful substances and extending the life of fluidized bed incinerators.
【0009】従って、本発明は、被焼却物を安定燃焼さ
せることにより流動床式焼却炉の炉内温度を一定に保持
し続けることを可能ならしめる焼却炉の温度制御方法お
よびその装置の提供を目的とする。Accordingly, the present invention provides a temperature control method for an incinerator and a device therefor, which makes it possible to keep the temperature inside the fluidized bed incinerator at a constant level by stably burning the incineration object. To aim.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係る焼却炉の温度制御方法の要
旨は、焼却炉の炉内圧力を検出し、検出された炉内圧力
データと炉内圧力の過去データとから炉内圧力の移動平
均値を求め、この移動平均値と予め設定したしきい値と
の大小を比較して、この移動平均値がしきい値以上のと
きには炉内圧力の変化と炉内温度の変化との関係式およ
び前記炉内圧力データとから予め設定した時間後の炉内
温度変化量を予測し、前記目標温度と炉内温度変化量と
の差の補正温度を新たな目標温度として被焼却物の供給
量を制御する一方、この移動平均値がしきい値未満のと
きには初期の目標温度を目標として被焼却物の供給量を
制御することを特徴とする。In order to solve the above problems, the gist of the temperature control method for an incinerator according to claim 1 of the present invention is to detect the pressure inside the incinerator and to detect the detected inside The moving average value of the in-furnace pressure is obtained from the pressure data and the past data of the in-furnace pressure, and the moving average value is compared with the preset threshold value. Occasionally, the change amount of the furnace temperature after a preset time is predicted from the relational expression between the change of the furnace pressure and the change of the furnace temperature and the pressure data of the furnace, and the target temperature and the change amount of the temperature of the furnace While controlling the supply amount of the incineration object by using the difference correction temperature as a new target temperature, control the supply amount of the incineration object by setting the initial target temperature as a target when the moving average value is less than the threshold value. Characterize.
【0011】本発明の請求項2に係る焼却炉の温度制御
方法の要旨は、請求項1に記載の焼却炉の温度制御方法
において、前記炉内圧力の変化と炉内温度の変化との関
係式を伝達関数表現することにより炉内温度変化量を予
測することを特徴とする。The gist of the temperature control method for an incinerator according to claim 2 of the present invention is, in the temperature control method for an incinerator according to claim 1, the relationship between a change in the furnace pressure and a change in the furnace temperature. It is characterized by predicting the temperature change in the furnace by expressing the equation as a transfer function.
【0012】本発明の請求項3に係る焼却炉の温度制御
装置の構成は、焼却炉の炉内圧力と炉内温度とを検出す
る圧力・温度検出装置11と、この圧力・温度検出器1
1で検出された炉内圧力データと炉内圧力の過去データ
とから移動平均値を演算する移動平均値演算装置12
と、炉内圧力の変化と炉内温度の変化との関係を表す伝
達関数の予め求められている係数を記憶する係数記憶装
置15と、前記移動平均値と予め設定されているしきい
値との大小を比較して、移動平均値がしきい値以上のと
きには炉内圧力の変化と炉内温度の変化との関係式、前
記炉内圧力データおよび前記伝達関数の係数を用いて予
め設定した時間後の炉内温度変化量を演算すると共に、
前記目標温度と炉内温度変化量との差の補正温度を演算
する目標温度演算装置13と、前記補正温度から被焼却
物の供給量を演算し、演算で求められた量の被焼却物を
焼却炉に供給するように被焼却物供給装置4を制御する
一方、前記移動平均値がしきい値未満のときには前記圧
力・温度検出装置11で検出される炉内温度データと目
標温度との温度差を演算し、この温度差から被焼却物の
供給量を演算すると共に、演算で求められた量の被焼却
物を焼却炉に供給するように被焼却物供給装置4を制御
する制御量演算装置14とを備えてなることを特徴とす
る。The structure of the temperature control device for an incinerator according to claim 3 of the present invention comprises a pressure / temperature detection device 11 for detecting the in-furnace pressure and the in-furnace temperature of the incinerator, and this pressure / temperature detector 1.
Moving average value calculation device 12 for calculating a moving average value from the in-furnace pressure data detected in 1 and the past data of the in-furnace pressure
And a coefficient storage device 15 that stores a predetermined coefficient of a transfer function that represents the relationship between the change in the furnace pressure and the change in the furnace temperature, the moving average value, and a preset threshold value. When the moving average value is greater than or equal to the threshold value, the relational expression between the change in the furnace pressure and the change in the furnace temperature, the furnace pressure data, and the coefficient of the transfer function were used to set in advance. Calculate the amount of temperature change in the furnace after time,
A target temperature calculation device 13 that calculates a correction temperature of the difference between the target temperature and the temperature change amount in the furnace, and a supply amount of the incineration object that is calculated from the correction temperature, and the incineration amount of the amount that is calculated is calculated. While controlling the incinerator supply device 4 to supply to the incinerator, when the moving average value is less than the threshold value, the temperature of the in-furnace temperature data detected by the pressure / temperature detection device 11 and the target temperature The difference is calculated, the supply amount of the incineration object is calculated from this temperature difference, and the control amount calculation is performed to control the incineration object supply device 4 so as to supply the incineration object of the amount obtained by the calculation to the incinerator. And a device (14).
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態に係る
焼却炉の温度制御装置を、流動床式焼却炉の模式的構成
説明図の図1と、その目標温度演算フロー図の図2とを
参照しながら説明する。但し、本発明の実施の形態に係
る流動床式焼却炉の構成については従来例に係るものと
ほぼ同構成であるから、その構成については概要に止
め、主としてその温度制御装置の構成を説明する。即
ち、図1に示す符号1は、流動床式焼却炉の炉体であっ
て、この炉体1にはその炉内1aの底部に貯留されてい
る硅砂等からなる流動媒体Sにごみ等の被焼却物を投入
するごみ投入口2が設けられており、このごみ投入口2
には被焼却物供給装置であるごみ供給装置4からシュー
ト3を介してごみ等の被焼却物が供給されるようになっ
ている。図示省略しているが、被焼却物中の不燃物を流
動媒体Sと共に排出する排出口、燃焼後の排気ガスを排
出する排気口がそれぞれ設けられると共に、炉内1aに
一次空気や二次空気を吹込む一次・二次空気供給機構も
設けられている。そして、このような流動床式焼却炉の
前記ごみ供給装置4は、後述する構成になる温度制御装
置10により、炉内1aに投入する被焼却物の供給量を
加減するように制御される。BEST MODE FOR CARRYING OUT THE INVENTION A temperature control device for an incinerator according to an embodiment of the present invention will be described below with reference to FIG. 1 which is a schematic configuration explanatory view of a fluidized bed incinerator and FIG. 2 which is a target temperature calculation flow chart thereof. It will be explained with reference to and. However, since the structure of the fluidized bed incinerator according to the embodiment of the present invention is almost the same as that of the conventional example, the structure is not described in the outline, and the structure of the temperature control device is mainly described. . That is, reference numeral 1 shown in FIG. 1 denotes a furnace body of a fluidized bed incinerator, in which the fluid medium S made of silica sand or the like stored in the bottom of the furnace 1a A waste input port 2 for inputting the incinerated material is provided, and this waste input port 2
An incineration object such as dust is supplied from the garbage supply device 4 which is an incineration material supply device through the chute 3. Although not shown, an exhaust port for discharging incombustible substances in the incinerated material together with the fluidized medium S and an exhaust port for discharging exhaust gas after combustion are provided, and primary air and secondary air are provided in the furnace 1a. A primary and secondary air supply mechanism for blowing air is also provided. The dust supply device 4 of such a fluidized bed incinerator is controlled by a temperature control device 10 having a configuration described later so as to adjust the supply amount of the incineration object to be put into the furnace 1a.
【0014】前記温度制御装置10は、図1に示すよう
に構成されている。即ち、炉体1の側部に設けた圧力セ
ンサPs からの圧力信号と、炉体1の頂部に設けた温度
センサTs からの圧力信号とを受けて炉内圧力と炉内温
度とを検出する圧力・温度検出装置11が設けられてい
る。この圧力・温度検出装置11で検出された炉内圧力
データはその移動平均値P′を演算する移動平均値演算
装置12に送られる。この移動平均値演算装置12で演
算された移動平均値P′と、炉内の圧力変化と温度変化
の関係から求められた伝達関数により予め求められてい
る係数を記憶する係数記憶装置15からの係数信号が入
力されると共に目標温度Tr が入力される目標温度演算
装置13に入力されるようになっている。The temperature control device 10 is constructed as shown in FIG. That is, the pressure signal from the pressure sensor P s provided on the side of the furnace body 1 and the pressure signal from the temperature sensor T s provided on the top of the furnace body 1 are received to determine the furnace pressure and the furnace temperature. A pressure / temperature detecting device 11 for detecting is provided. The in-furnace pressure data detected by the pressure / temperature detecting device 11 is sent to a moving average value calculating device 12 which calculates the moving average value P ′. The moving average value P ′ calculated by the moving average value calculating device 12 and a coefficient storage device 15 for storing a coefficient previously obtained from a transfer function obtained from the relationship between the pressure change and the temperature change in the furnace. The coefficient signal is input to the target temperature calculation device 13 to which the target temperature T r is input.
【0015】前記目標温度演算装置13は、圧力演算装
置12で演算された移動平均値P′を予め設定されてい
るしきい値P″と比較して、この移動平均値P′がしき
い値P″以上のときは初期化の目標温度Tr の補正が必
要であると判断し、記憶装置15に記憶されてある伝達
関数の係数を用いて温度変化量を演算し、目標温度Tr
を補正して新たな目標温度Tr ′を出力する。また、移
動平均値P′がしきい値P″未満のときは目標温度Tr
の補正が不要であると判断し、そのまま初期の目標温度
Tr を出力するものである。そして、目標温度演算装置
13から補正された新たな目標温度Tr ′または初期の
目標温度Tr は、前記圧力・温度検出装置11から炉内
温度が入力される制御量演算装置14に入力されるよう
になっている。つまり、この制御量演算装置14は、目
標温度演算装置13から入力される目標温度Tr ′,T
r と、圧力・温度検出装置11から入力される炉内温度
データとから、それぞれ被焼却物の供給量ui を演算
し、演算で求められた量の被焼却物を炉内1aに供給す
るようにごみ供給装置4を制御するものである。The target temperature calculating device 13 compares the moving average value P'calculated by the pressure calculating device 12 with a preset threshold value P ", and the moving average value P'is a threshold value. When it is equal to or more than P ″, it is determined that the initialization target temperature T r needs to be corrected, the temperature change amount is calculated using the coefficient of the transfer function stored in the storage device 15, and the target temperature Tr is calculated.
Is corrected and a new target temperature T r ′ is output. When the moving average value P ′ is less than the threshold value P ″, the target temperature T r
It is determined that the correction of No. is unnecessary, and the initial target temperature T r is output as it is. Then, the target temperature new target temperature is corrected from the arithmetic unit 13 T r 'or initial target temperature T r is input from the pressure and temperature sensing device 11 to the control calculation unit 14 furnace temperature is input It has become so. That is, the control amount calculation device 14 is configured so that the target temperature T r ′, T input from the target temperature calculation device 13 is input.
From r and the in-furnace temperature data input from the pressure / temperature detector 11, the supply amount u i of the incineration object is calculated, and the incineration amount of the calculated amount is supplied to the in-furnace 1a. As described above, the refuse supply device 4 is controlled.
【0016】次に、図2に基づいて、温度制御装置10
の作動を説明すると、ステップ1において、圧力センサ
Ps と温度センサTs とを介して圧力・温度検出装置1
1により時刻iの炉体1の炉内1a内の炉内圧力データ
Pi と炉内温度データTi とが逐次検出され、ステップ
2に進む。Next, based on FIG. 2, the temperature control device 10
The operation of the pressure / temperature detection device 1 will be described in step 1 via the pressure sensor P s and the temperature sensor T s.
By 1, the in-furnace pressure data P i and the in-furnace temperature data T i in the in-furnace 1a of the furnace body 1 at time i are sequentially detected, and the routine proceeds to step 2.
【0017】ステップ2において、移動平均値演算装置
12では、圧力・温度検出装置11から入力される炉内
圧力データPi 、過去の圧力データPk (k=i−1,
i−2,‥‥‥,i−n)、および予め設定される重み
係数Ci (i=0,1,2‥‥‥,n)から炉内圧力の
移動平均値P′が下記式に基づいて演算され、ステッ
プ3に進む。
P′=C0 *Pi +C1 *Pi-1 ‥‥‥+Cn *Pi-n ‥‥‥In step 2, in the moving average value computing device 12, the in-furnace pressure data P i and the past pressure data P k (k = i−1,
i−2, ..., In), and the weighting coefficient C i (i = 0, 1, 2, ..., N) set in advance, the moving average value P ′ of the pressure in the furnace is given by the following equation. Based on the calculation, the process proceeds to step 3. P ′ = C 0 * P i + C 1 * P i-1 ‥‥ + C n * P in ‥‥‥‥
【0018】ステップ3において、前記目標温度演算装
置13では、前記演算装置12から入力された移動平均
値P′と予め定められたしきい値P″との大小比較が行
われる。そして、移動平均値P′がしきい値P″未満で
あるNoの場合には、炉内温度の急激な変化が発生して
いないと判断され、ステップ5に進む。In step 3, the target temperature calculating device 13 compares the moving average value P'input from the calculating device 12 with a predetermined threshold value P ". When the value P ′ is less than the threshold value P ″, it is determined that no sudden change in the furnace temperature has occurred, and the routine proceeds to step 5.
【0019】ステップ5において、制御量演算装置14
により、圧力・温度検出装置11で得られる炉内温度T
i と、この炉内温度Ti と目標温度Tr との温度偏差Δ
Tiとから下記で表される算式により被焼却物の供給
量ui を演算し、流動床式焼却炉に演算により得られた
量の被焼却物を供給して、従来例1と同様の目標温度T
r を目標としてごみ供給装置4を制御する。
ui =Kp ΔTi +Ki ΣTi +Kd ( Ti −Ti-1)/Δt‥‥‥
なお、上記算式中のKp は比例ゲイン、Ki は積分ゲイ
ン、Kd は微分ゲイン、Δtはデータサンプリング時間
であって、従来例1と全く同様である。In step 5, the controlled variable computing device 14
The temperature T in the furnace obtained by the pressure / temperature detection device 11
i and the temperature deviation Δ between this furnace temperature T i and the target temperature T r
The supply amount u i of the incineration product is calculated from T i and the following expression, and the amount of the incineration product obtained by the calculation is supplied to the fluidized bed incinerator, and the same as in Conventional Example 1 Target temperature T
The waste supply device 4 is controlled with r as a target. u i = K p ΔT i + K i ΣT i + K d (T i −T i-1 ) / Δt ..... where K p is a proportional gain, K i is an integral gain, and K d is a differential gain. , Δt are data sampling times, which are exactly the same as those in the conventional example 1.
【0020】一方、ステップ3において、前記演算装置
12から入力された移動平均値P′と予め定められたし
きい値P″との大小比較の結果、移動平均値P′がしき
い値P″以上であるYesの場合には、被焼却物の供給
過剰に基づく温度上昇により炉内圧力が急激に変化した
と判断され、ステップ4に進む。On the other hand, in step 3, as a result of the magnitude comparison between the moving average value P'input from the arithmetic unit 12 and a predetermined threshold value P ", the moving average value P'is the threshold value P". In the case of Yes as described above, it is determined that the in-furnace pressure has rapidly changed due to the temperature rise due to the excessive supply of the incineration object, and the process proceeds to step 4.
【0021】ステップ4において、目標温度演算装置1
3では、炉内温度を目標温度にするための温度変化量を
求める演算が行われる。この温度変化量を演算するため
には、先ず予め炉内圧力の変化ΔPi と炉内温度の変化
ΔT1 との対応関係を、n次の下記式で表されるイン
パルスモデル(伝達関数)とし、その係数h1 ,h2,
‥‥,hn を操業データから求め記憶装置15に記憶さ
せておく。In step 4, the target temperature computing device 1
In 3, the calculation for obtaining the temperature change amount for making the furnace temperature the target temperature is performed. In order to calculate this temperature change amount, first, the correspondence relationship between the change ΔP i in the furnace pressure and the change ΔT 1 in the furnace temperature is set as an impulse model (transfer function) represented by the following n-th equation. , Its coefficients h 1 , h 2 ,
.., h n is obtained from the operation data and stored in the storage device 15.
【数1】
なお、l は圧力・温度検出装置11における温度計測の
遅れ時間である。次いで、移動平均値P′がしきい値
P″以上の間は継続して、この移動平均値P′としきい
値P″との差(P′−P″)を順次演算する。そして、
時刻iにおける偏差ΔPi として、圧力偏差の過去の値
と、前記インパルスモデル(伝達関数)の係数とを用い
た下記式により1時間後に生じると予測される温度変
化量である温度偏差ΔT1 が求められる。[Equation 1] In addition, l is a delay time of temperature measurement in the pressure / temperature detection device 11. Next, while the moving average value P'is equal to or larger than the threshold value P ", the difference (P'-P") between the moving average value P'and the threshold value P "is successively calculated.
As the deviation ΔP i at the time i, a temperature deviation ΔT 1 which is a temperature change amount predicted to occur one hour later is calculated by the following equation using the past value of the pressure deviation and the coefficient of the impulse model (transfer function). Desired.
【数2】
つまり、上記式から求められた温度偏差ΔT1 は、上
述の圧力・温度検出装置11における温度計測の遅れ時
間 l を0としたもので、1時間後に生じるであろう温
度偏差の予測値と考えられるものである。そして、目標
温度Tr から上記式で求められた温度偏差ΔT1 を差
し引いた補正温度であるTr ′(=Tr−ΔT1 )を新
たな目標温度として出力して、ステップ5に進む。[Equation 2] That is, the temperature deviation ΔT 1 obtained from the above equation is considered to be the predicted value of the temperature deviation that will occur one hour after the delay time l of the temperature measurement in the pressure / temperature detection device 11 is set to 0. It is what is done. Then, the corrected temperature T r ′ (= T r −ΔT 1 ) obtained by subtracting the temperature deviation ΔT 1 obtained by the above equation from the target temperature T r is output as a new target temperature, and the process proceeds to step 5.
【0022】ステップ5において、目標温度Tr ′に基
づいて被焼却物の供給量ui の演算が行われ、新たな目
標温度Tr ′を目標としてごみ供給装置4が制御され、
流動床式焼却炉に演算により得られた量ui の被焼却物
が供給される。なお、この場合には、時刻iに測定され
る炉内温度Ti と、新たな目標温度Tr ′との温度偏差
ΔTi (=Ti −Tr ′) から被焼却物の供給量u
i を、ui =Kp ΔTi +Ki ΣTi +Kd (Ti −T
i-1)/Δtの算式により求めるものである。[0022] In step 5, 'operation of the feed amount u i of the incinerated is performed based on a new target temperature T r' target temperature T r dust feeder 4 is controlled as a target,
The fluidized bed type incinerator is supplied with the amount of incineration material u i obtained by calculation. In this case, the supply amount u of the incineration object is calculated from the temperature deviation ΔT i (= T i −T r ′) between the furnace temperature T i measured at time i and the new target temperature T r ′.
i is u i = K p ΔT i + K i ΣT i + K d (T i −T
i-1 ) / [Delta] t.
【0023】ステップ4における上記のような演算がΔ
T1 <0(P′<P″)となった時点からnサンプリン
グ時間後まで行われ、目標温度にするための温度変化量
である温度偏差が0になると、ステップ5では目標温度
をTrとする通常の被焼却物の供給量ui の制御、つま
り従来例1と同様にui =Kp ΔTi +Ki ΣTi +K
d ( Ti −Ti-1)/Δtで表される算式により被焼却物
の供給量ui が演算され、初期の目標温度Tr を目標と
してごみ供給装置4が制御され、流動床式焼却炉に演算
により得られた量ui の被焼却物が供給される。The above calculation in step 4 is Δ
This is performed from the time when T 1 <0 (P ′ <P ″) until n sampling times have elapsed, and when the temperature deviation that is the temperature change amount for reaching the target temperature becomes 0, the target temperature is set to Tr in step 5. Control of the normal supply amount u i of the incineration object, that is, u i = K p ΔT i + K i ΣT i + K as in the first conventional example.
The supply amount u i of the incineration object is calculated by an expression represented by d (T i −T i−1 ) / Δt, the waste supply device 4 is controlled with the initial target temperature T r as a target, and the fluidized bed type is used. The incinerator is supplied with the amount u i of the incinerated material obtained by calculation.
【0024】このように、炉内温度に発生する急激な変
動を、温度変化よりも迅速に変化する炉内圧力から検出
して、被焼却物の供給量を加減するため、温度制御の即
応性が極めて優れている。また、炉内温度の急激な変化
を予め予測して制御するため、炉内温度の一定維持に大
いに寄与することができ、炉内温度変動による耐火物の
損耗の抑制による流動床式焼却炉の長命化と、流動床式
焼却炉の保全費の削減とに対して多大な効果がある。な
お、以上では、流動床式焼却炉の温度制御装置を例とし
て説明したが、本発明に係る技術的思想を他の形態に係
る焼却炉に対しても適用することができるので、上記実
施例によって本発明の技術的思想の範囲が限定されるも
のではない。As described above, the rapid fluctuation occurring in the furnace temperature is detected from the furnace pressure which changes more rapidly than the temperature change, and the supply amount of the incineration object is adjusted, so that the temperature control is promptly responsive. Is extremely excellent. In addition, since a rapid change in the furnace temperature is predicted and controlled in advance, it can greatly contribute to maintaining the furnace temperature at a constant level, and suppresses wear of refractory due to temperature fluctuations in the furnace It has a great effect on prolonging the life and reducing the maintenance cost of the fluidized bed incinerator. In the above, the temperature control device of the fluidized bed incinerator has been described as an example, but since the technical idea of the present invention can be applied to incinerators of other embodiments, the above-mentioned embodiment is used. However, the scope of the technical idea of the present invention is not limited thereto.
【0025】[0025]
【発明の効果】以上詳述したように、請求項1乃至3に
係る本発明によれば、炉内温度に発生する急激な変動
を、温度変化よりも迅速に変化する炉内圧力から検出し
て、被焼却物の供給量を加減するため、温度制御の即応
性が極めて優れると共に、炉内温度の急激な変化を予め
予測して制御するため、炉内温度の一定維持に大いに寄
与することができ、炉内温度変動による耐火物の損耗の
抑制による流動床式焼却炉の長命化と、流動床式焼却炉
の保全費の削減とに対して多大な効果を期待することが
できる。As described above in detail, according to the present invention according to claims 1 to 3, a rapid fluctuation occurring in the temperature inside the furnace is detected from the pressure inside the furnace which changes more rapidly than the temperature change. In addition, since the supply rate of the incineration material is adjusted, the responsiveness of temperature control is extremely excellent, and abrupt changes in the furnace temperature are predicted and controlled in advance, which greatly contributes to maintaining the furnace temperature constant. Therefore, it is possible to expect a great effect on prolonging the life of the fluidized bed type incinerator by suppressing the wear of the refractory due to the temperature change in the furnace and reducing the maintenance cost of the fluidized bed type incinerator.
【図1】本発明の実施の形態に係る流動床式焼却炉の温
度制御装置の模式的構成説明図である。FIG. 1 is a schematic configuration explanatory diagram of a temperature control device for a fluidized bed incinerator according to an embodiment of the present invention.
【図2】本発明の実施の形態に係る流動床式焼却炉の温
度制御装置の目標温度演算フロー図である。FIG. 2 is a target temperature calculation flow chart of the temperature control device for the fluidized bed incinerator according to the embodiment of the present invention.
【図3】従来例2に係る流動床式焼却炉装置の概略全体
図である。FIG. 3 is a schematic overall view of a fluidized bed incinerator device according to Conventional Example 2.
【図4】従来例2に係る流動床式焼却炉装置の制御シス
テムの構成図である。FIG. 4 is a configuration diagram of a control system of a fluidized bed incinerator apparatus according to Conventional Example 2.
1…炉体,1a…炉内,2…ごみ投入口,3…シュー
ト,4…ごみ供給装置,10…温度制御装置,11…圧
力・温度検出装置,12…移動平均値演算装置,13…
目標温度演算装置,14…制御量演算装置,15…係数
記憶装置,S…流動媒体,P′…移動平均値,P″…し
きい値,Ps …圧力センサ,Ts …温度センサ。DESCRIPTION OF SYMBOLS 1 ... Furnace body, 1a ... Furnace, 2 ... Garbage input port, 3 ... Chute, 4 ... Garbage supply device, 10 ... Temperature control device, 11 ... Pressure / temperature detection device, 12 ... Moving average value calculation device, 13 ...
Target temperature calculating unit, 14 ... control amount calculation unit, 15 ... coefficient storage unit, S ... flowing medium, P '... moving average, P "... threshold, P s ... pressure sensor, T s ... temperature sensor.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 友近 信行 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 北村 章 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (56)参考文献 特開 平3−170715(JP,A) 特開 平3−168513(JP,A) 特開 平6−235511(JP,A) 特開 平8−219429(JP,A) 特開 平5−87322(JP,A) (58)調査した分野(Int.Cl.7,DB名) F23G 5/50 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Tomokichi 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Works, Ltd. Kobe Research Institute (72) Inventor Akira Kitamura Nishi-ku, Kobe-shi, Hyogo Takatsukadai 1-5-5 Kobe Steel, Ltd., Kobe Research Institute (56) Reference JP-A-3-170715 (JP, A) JP-A-3-168513 (JP, A) JP-A-6 -235511 (JP, A) JP-A-8-219429 (JP, A) JP-A-5-87322 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F23G 5/50
Claims (3)
炉内圧力データと炉内圧力の過去データとから炉内圧力
の移動平均値を求め、この移動平均値と予め設定したし
きい値との大小を比較して、この移動平均値がしきい値
以上のときには炉内圧力の変化と炉内温度の変化との関
係式および前記炉内圧力データとから予め設定した時間
後の炉内温度変化量を予測し、前記目標温度と炉内温度
変化量との差の補正温度を新たな目標温度として被焼却
物の供給量を制御する一方、この移動平均値がしきい値
未満のときには初期の目標温度を目標として被焼却物の
供給量を制御することを特徴とする焼却炉の温度制御方
法。1. The in-furnace pressure of the incinerator is detected, a moving average value of the in-furnace pressure is obtained from the detected in-furnace pressure data and past data of the in-furnace pressure, and this moving average value is preset. When comparing the magnitude with the threshold value, when this moving average value is equal to or greater than the threshold value, the relational expression between the change in the furnace pressure and the change in the furnace temperature While predicting the furnace temperature change amount and controlling the supply amount of the incineration object with the correction temperature of the difference between the target temperature and the furnace temperature change amount as a new target temperature, this moving average value is less than the threshold value. In the case of, the temperature control method of the incinerator is characterized by controlling the supply amount of the incineration target with the initial target temperature as a target.
の関係式を伝達関数表現することにより炉内温度変化量
を予測することを特徴とする請求項1に記載の焼却炉の
温度制御方法。2. The incinerator temperature change amount is predicted by expressing a relational expression of a change in the furnace pressure and a change in the furnace temperature by a transfer function. Temperature control method.
る圧力・温度検出装置11と、この圧力・温度検出器1
1で検出された炉内圧力データと炉内圧力の過去データ
とから移動平均値を演算する移動平均値演算装置12
と、炉内圧力の変化と炉内温度の変化との関係を表す伝
達関数の予め求められている係数を記憶する係数記憶装
置15と、前記移動平均値と予め設定されているしきい
値との大小を比較して、移動平均値がしきい値以上のと
きには炉内圧力の変化と炉内温度の変化との関係式、前
記炉内圧力データおよび前記伝達関数の係数を用いて予
め設定した時間後の炉内温度変化量を演算すると共に、
前記目標温度と炉内温度変化量との差の補正温度を演算
する目標温度演算装置13と、前記補正温度から被焼却
物の供給量を演算し、演算で求められた量の被焼却物を
焼却炉に供給するように被焼却物供給装置4を制御する
一方、前記移動平均値がしきい値未満のときには前記圧
力・温度検出装置11で検出される炉内温度データと目
標温度との温度差を演算し、この温度差から被焼却物の
供給量を演算すると共に、演算で求められた量の被焼却
物を焼却炉に供給するように被焼却物供給装置4を制御
する制御量演算装置14とを備えてなることを特徴とす
る焼却炉の温度制御装置。3. A pressure / temperature detection device 11 for detecting the pressure and temperature inside the furnace of the incinerator, and this pressure / temperature detector 1.
Moving average value calculation device 12 for calculating a moving average value from the in-furnace pressure data detected in 1 and the past data of the in-furnace pressure
And a coefficient storage device 15 that stores a predetermined coefficient of a transfer function that represents the relationship between the change in the furnace pressure and the change in the furnace temperature, the moving average value, and a preset threshold value. When the moving average value is greater than or equal to the threshold value, the relational expression between the change in the furnace pressure and the change in the furnace temperature, the furnace pressure data, and the coefficient of the transfer function were used to set in advance. Calculate the amount of temperature change in the furnace after time,
A target temperature calculation device 13 that calculates a correction temperature of the difference between the target temperature and the temperature change amount in the furnace, and a supply amount of the incineration object that is calculated from the correction temperature, and the incineration amount of the amount that is calculated is calculated. While controlling the incinerator supply device 4 to supply to the incinerator, when the moving average value is less than the threshold value, the temperature of the in-furnace temperature data detected by the pressure / temperature detection device 11 and the target temperature The difference is calculated, the supply amount of the incineration object is calculated from this temperature difference, and the control amount calculation is performed to control the incineration object supply device 4 so as to supply the incineration object of the amount obtained by the calculation to the incinerator. A device 14 for controlling the temperature of an incinerator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03048096A JP3372159B2 (en) | 1996-02-19 | 1996-02-19 | Temperature control method and device for incinerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03048096A JP3372159B2 (en) | 1996-02-19 | 1996-02-19 | Temperature control method and device for incinerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09229337A JPH09229337A (en) | 1997-09-05 |
JP3372159B2 true JP3372159B2 (en) | 2003-01-27 |
Family
ID=12305015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03048096A Expired - Fee Related JP3372159B2 (en) | 1996-02-19 | 1996-02-19 | Temperature control method and device for incinerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3372159B2 (en) |
-
1996
- 1996-02-19 JP JP03048096A patent/JP3372159B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09229337A (en) | 1997-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3135892B2 (en) | Method of controlling the thermal power of an incinerator | |
US5020451A (en) | Fluidized-bed combustion furnace | |
RU2070688C1 (en) | Method of combustion control in furnace for burning waste in fluidized bed | |
JPH1068514A (en) | Combustion controlling method for refuse incinerating furnace | |
JP3372159B2 (en) | Temperature control method and device for incinerator | |
JP2955431B2 (en) | Incinerator combustion control device | |
JPS6116889B2 (en) | ||
JP5767486B2 (en) | Heat recovery plant and operation control method thereof | |
JPH1122941A (en) | Method and apparatus for controlling feed amount of waste to waste incinerator | |
JP3247066B2 (en) | Freeboard temperature control method for fluidized bed incinerator. | |
JPH09324907A (en) | Predetermined amount supply method of garbage in garbage incinerator | |
JPH01114610A (en) | Method for operating refuse incineration facility | |
JP2000046323A (en) | Method for controlling combustion in combustion furnace and apparatus for controlling combustion | |
JP3625639B2 (en) | Fluidized bed incinerator equipment and combustion control method for fluidized bed incinerator equipment | |
JP2785414B2 (en) | Detection method of supply interruption of incinerated material in fluidized bed incinerator | |
JPS58195707A (en) | Combustion control method for refuse incinerator | |
JP2762054B2 (en) | Combustion control method for fluidized bed incinerator | |
JP2906722B2 (en) | Boiler drum level control method and control device | |
JP3830299B2 (en) | Incinerator control method and incinerator using this control method | |
JPH03170715A (en) | Combustion control method and device for fluidized bed incinerator | |
JPH03122414A (en) | Combustion control method and device for fluidized bed incinerator | |
JPH1114027A (en) | Method of controlling combustion of incinerator | |
JPH1061917A (en) | Fluidized bed type incinerator and combustion control method for the same | |
JP2003247709A (en) | Fluidized bed incinerator and its combustion control method | |
JPH02176313A (en) | Combustion control method for fluidized bed incinerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |