[go: up one dir, main page]

JP3336584B2 - Tilt angle measuring method and measuring device - Google Patents

Tilt angle measuring method and measuring device

Info

Publication number
JP3336584B2
JP3336584B2 JP02503994A JP2503994A JP3336584B2 JP 3336584 B2 JP3336584 B2 JP 3336584B2 JP 02503994 A JP02503994 A JP 02503994A JP 2503994 A JP2503994 A JP 2503994A JP 3336584 B2 JP3336584 B2 JP 3336584B2
Authority
JP
Japan
Prior art keywords
value
radiation
theta
angle
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02503994A
Other languages
Japanese (ja)
Other versions
JPH07234118A (en
Inventor
真司 小池
伸昭 松浦
秀行 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP02503994A priority Critical patent/JP3336584B2/en
Publication of JPH07234118A publication Critical patent/JPH07234118A/en
Application granted granted Critical
Publication of JP3336584B2 publication Critical patent/JP3336584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、傾斜角度測定方法及び
測定装置に関し、特に、光導波路を用いた伝送装置の評
価に用いると良好である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring an inclination angle, and more particularly, to a method for evaluating a transmission apparatus using an optical waveguide.

【0002】[0002]

【従来の技術】三次元光導波路の端部に設けられたミラ
ーの従来の傾斜角度の測定を図6、7に基づいて説明す
る。図6に示すように、シリコン基板などの導体配線を
有する基板51上に設けられた光線伝送体である光導波
路52の端部には、ミラー53が設けられている。この
基板51を光導波路52の長手方向に沿って切断し、図
7に示すように、基板51の表面とミラー53とがなす
傾斜角度θa を光学顕微鏡21で観察することにより測
定していた。
2. Description of the Related Art A conventional measurement of a tilt angle of a mirror provided at an end of a three-dimensional optical waveguide will be described with reference to FIGS. As shown in FIG. 6, a mirror 53 is provided at an end of an optical waveguide 52 which is a light beam transmitting body provided on a substrate 51 having conductor wiring such as a silicon substrate. The substrate 51 is cut along the longitudinal direction of the optical waveguide 52, as shown in FIG. 7, was measured by observing the inclination angle theta a formed between the surface and the mirror 53 of the substrate 51 is an optical microscope 21 .

【0003】[0003]

【発明が解決しようとする課題】前述したような傾斜角
度の測定では、測定前に基板51を切断加工処理しなけ
ればならず、手間がかかると共に、効率が悪いものであ
った。また、基板51を破壊的に処理するため、測定に
用いたものは、実際に使用することができず、無駄が多
くなってコストが上昇してしまうだけでなく、測定した
サンプルから実際に用いるものの傾斜角度θa を推察し
なければならず、実際に用いたものの傾斜角度θa を高
精度に求めることは、非常に困難であった。
In the measurement of the inclination angle as described above, the substrate 51 must be cut before the measurement, which is troublesome and inefficient. In addition, since the substrate 51 is destructively treated, what is used for measurement cannot be actually used, not only increasing waste and increasing costs, but also using the measured sample for actual use. It must infer tilt angle theta a things, although actually used to determine the inclination angle theta a high precision has been very difficult.

【0004】[0004]

【0005】[0005]

【課題を解決するための手段】 前述した課題を解決する
ため、本発明は、 被計測体に光線伝送体を介して光線を
照射し、前記被計測体から放射される前記光線の放射光
のうち最大放射強度を有する第一放射光の所定の方向に
対する第一放射角度θr1を求め、前記θr1から下記に示
す式(1)に基づいて所定の方向に対する前記被計測体
の第一仮傾斜角度θx1を求め、前記θx1の値が下記に示
す式(2)より求められる前記被計測体の臨界反射角度
θc の値よりも小さい場合、または、当該θx1の値が当
該θc の値よりも大きく且つ前記第一放射光が前記光線
の上流側へ進行する場合には、当該θx1の値を所定の方
向に対する当該被計測体の傾斜角度θa とし、前記θx1
の値が前記θc の値よりも大きく且つ前記第一放射光が
前記光線の下流側へ進行する場合には下記に示す式
(3)に基づいて所定の方向に対する前記被計測体の第
二仮傾斜角度θx2を求め、前記θx2の値が前記θc の値
に対して所定の範囲以上に大きい場合には当該θx2の値
を前記θa とし、前記θx2の値が前記θc の値に対して
所定の範囲以内に含まれる場合には前記第一放射光に次
ぐ放射強度を有する第二放射光の所定の方向に対する第
二放射角度θr2を求め、前記θr2から下記に示す式
(4)及び式(5)に基づいて所定の方向に対する前記
被計測体の第三仮傾斜角度θr3及び第四仮傾斜角度θr4
を求め、前記θx1,θx2,θx3,θx4から下記に示す式
(6)に基づいて指数値Pを求め、前記Pの値が正の値
となる場合には下記に示す式(7)に基づいて前記θa
を求め、前記Pの値が負の値となる場合には下記に示す
式(8)に基づいて前記θa を求めることにより、傾斜
角度測定方法を構成したのである。
[Means for Solving the Problems ] To solve the above-mentioned problems.
Therefore, the present invention is to irradiate a light beam to the measured object through the light beam transmission body, in a predetermined direction of the first radiated light having the maximum radiation intensity among the radiated light of the light beam emitted from the measured object obtains a first radiation angle theta r1, obtains a first provisional inclined angle theta x1 of the measured object with respect to a predetermined direction on the basis of the theta r1 in formula (1) shown below, the value of the theta x1 is below If it is shown smaller than the value of the critical reflection angle theta c of the measured object obtained from the formula (2), or, the theta value of x1 is greater than the value of the theta c and the first emitted light the light beam when traveling to the upstream side, the value of the theta x1 and the inclination angle theta a of the measured object with respect to a predetermined direction, the theta x1
Is larger than the value of θ c and the first radiation light travels to the downstream side of the light ray, the second direction of the object to be measured in a predetermined direction based on the following equation (3). seeking temporary inclination angle theta x2, wherein if larger than the predetermined range for values of theta x2 the value of the theta c to the value of the theta x2 and the theta a, the value of the theta x2 said theta If the value of c is included within a predetermined range, a second radiation angle θ r2 with respect to a predetermined direction of the second radiation having the radiation intensity next to the first radiation is obtained, and the following θ r2 is obtained from the θ r2: The third temporary inclination angle θ r3 and the fourth temporary inclination angle θ r4 of the measured object with respect to a predetermined direction based on Expressions (4) and (5) shown in
Is calculated, and an exponent value P is calculated from θ x1 , θ x2 , θ x3 , and θ x4 based on the following equation (6). When the value of P is a positive value, the following equation ( the theta a based on 7)
Look, when the value of the P becomes a negative value by obtaining the theta a according to equation (8) shown below, it was constituted the inclination angle measuring methods.

【数3】 θx1={cos-1(sinθr1/N)}/2 … (1) θc =cos-1(1/N) … (2) θx2=tan-1(N−sinθr1)/(cosθr1) … (3) θx3={cos-1(sinθr2/N)}/2 … (4) θx4=tan-1(N−sinθr2)/(cosθr2) … (5) P=|θx1−θx4|−|θx2−θx3| … (6) θa =(θx2+θx3)/2 … (7) θa =(θx1+θx4)/2 … (8) 但し、N:光線伝送体の屈折率 Equation 3 θ x1 = {cos −1 (sin θ r1 / N)} / 2 (1) θ c = cos −1 (1 / N) (2) θ x2 = tan −1 (N−sin θ r1 ) / (Cos θ r1 ) (3) θ x3 = {cos −1 (sin θ r2 / N)} / 2 (4) θ x4 = tan −1 (N−sin θ r2 ) / (cos θ r2 ) (5) ) P = | θ x1 −θ x4 | − | θ x2 −θ x3 | (6) θ a = (θ x2 + θ x3 ) / 2 (7) θ a = (θ x1 + θ x4 ) / 2 (( 8) where N is the refractive index of the light transmitting body

【0006】ここで、前記被計測体がミラーであり、前
記光線がレーザ光であるよい。
[0006] Here, the a measured object is a mirror, may the light is a laser beam.

【0007】[0007]

【0008】一方、本発明は、光線を発振する光線発振
手段と、前記光線発振手段からの前記光線を被計測体へ
光線伝送体を介して送る光線送信体と、前記被計測体か
ら放射される前記光線の放射光の放射強度及び当該放射
光の所定の方向に対する放射角度を計測する計測手段
と、前記計測手段で計測した前記放射光のうち所定の放
射強度を有する放射光の前記放射角度を選出すると共に
この選出した放射角度に基づいて所定の方向に対する前
記被計測体の傾斜角度を算出する演算手段と、前記演算
手段の演算結果を表示する表示手段とを備え、前記演算
手段が、前記計測手段で計測した前記放射光のうち最大
放射強度を有する第一放射光の所定の方向に対する放射
角度θr1から下記に示す式(1)に基づいて所定の方向
に対する前記被計測体の第一仮傾斜角度θx1を算出し、
前記θx1の値が下記に示す式(2)より求められる前記
被計測体の臨界反射角度θc の値よりも小さい場合、ま
たは、当該θx1の値が当該θc の値よりも大きく且つ前
記第一放射光が前記光線の上流側へ進行する場合には、
当該θx1の値を所定の方向に対する当該被計測体の傾斜
角度θa と判断し、前記θx1の値が前記θc の値よりも
大きく且つ前記第一放射光が前記光線の下流側へ進行す
る場合には下記に示す式(3)に基づいて所定の方向に
対する前記被計測体の第二仮傾斜角度θx2を算出し、前
記θx2の値が前記θc の値に対して所定の範囲以上に大
きい場合には当該θx2の値を前記θa と判断し、前記θ
x2の値が前記θc の値に対して所定の範囲以内に含まれ
る場合には前記第一放射光に次ぐ放射強度を有する第二
放射光の所定の方向に対する第二放射角度θr2から下記
に示す式(4)及び式(5)に基づいて所定の方向に対
する前記被計測体の第三仮傾斜角度θx3及び第四仮傾斜
角度θx4を算出し、前記θx1,θx2,θx3,θx4から下
記に示す式(6)に基づいて指数値Pを算出し、前記P
の値が正の値となる場合には下記に示す式(7)に基づ
いて前記θa を算出し、前記Pの値が負の値となる場合
には下記に示す式(8)に基づいて前記θaを算出する
演算処理装置とすることにより、傾斜角度測定装置を構
成したのである
On the other hand, the present invention provides a light beam
Means and the light beam from the light beam oscillating means to the object to be measured.
A light beam transmitting body to be transmitted via a light beam transmitting body,
Radiation intensity of the light emitted from the light beam and the radiation
Measuring means for measuring the radiation angle of a predetermined direction of light
A predetermined emission of the emitted light measured by the measurement means.
And selecting the radiation angle of the radiation having the radiation intensity
Based on the selected radiation angle,
Calculating means for calculating the inclination angle of the object to be measured;
Display means for displaying a calculation result of the means, wherein the calculation means calculates a radiation angle θ r1 with respect to a predetermined direction of the first radiation light having the maximum radiation intensity among the radiation lights measured by the measurement means. Calculating a first temporary inclination angle θ x1 of the measured object with respect to a predetermined direction based on the following equation (1);
When the value of the θ x1 is smaller than the value of the critical reflection angle θ c of the object to be measured determined by the following equation (2), or the value of the θ x1 is larger than the value of the θ c and When the first emitted light travels upstream of the light beam,
The value of θ x1 is determined to be the inclination angle θ a of the measured object with respect to a predetermined direction, the value of θ x1 is larger than the value of θ c and the first radiation light is downstream of the light beam. In the case of proceeding, the second provisional inclination angle θ x2 of the measured object with respect to a predetermined direction is calculated based on the following equation (3), and the value of θ x2 is predetermined with respect to the value of θ c. If more than a large range to determine the value of the theta x2 and the theta a, the theta
below the second radiating angle theta r2 for a given direction of the second emitted light having a radiation intensity behind the first emitted light when the value of x2 is included within a predetermined range with respect to the value of the theta c calculating a third provisional inclined angle theta x3 and the fourth tentative inclination angle theta x4 of the measured object with respect to a predetermined direction based on the equations (4) and (5) shown in the θ x1, θ x2, θ An index value P is calculated from x3 and θx4 based on the following equation (6).
When the value of P is a positive value, the θ a is calculated based on the following equation (7). When the value of P is a negative value, the θ a is calculated based on the following equation (8). with processor to calculate the theta a Te, structure the inclination angle measuring device
It was done .

【数4】 θx1={cos-1(sinθr1/N)}/2 … (1) θc =cos-1(1/N) … (2) θx2=tan-1(N−sinθr1)/(cosθr1) … (3) θx3={cos-1(sinθr2/N)}/2 … (4) θx4=tan-1(N−sinθr2)/(cosθr2) … (5) P=|θx1−θx4|−|θx2−θx3| … (6) θa =(θx2+θx3)/2 … (7) θa =(θx1+θx4)/2 … (8) 但し、N:光線伝送体の屈折率 Equation 4 θ x1 = {cos −1 (sin θ r1 / N)} / 2 (1) θ c = cos −1 (1 / N) (2) θ x2 = tan −1 (N−sin θ r1 ) / (Cos θ r1 ) (3) θ x3 = {cos −1 (sin θ r2 / N)} / 2 (4) θ x4 = tan −1 (N−sin θ r2 ) / (cos θ r2 ) (5) ) P = | θ x1 −θ x4 | − | θ x2 −θ x3 | (6) θ a = (θ x2 + θ x3 ) / 2 (7) θ a = (θ x1 + θ x4 ) / 2 (( 8) where N is the refractive index of the light transmitting body

【0009】なお、前記光線発振手段がレーザダイオー
ド装置であり、前記光線送信体がシングルモード光ファ
イバであり、前記被計測体がミラーであると良い。
It is preferable that the light beam oscillating means is a laser diode device, the light beam transmitter is a single mode optical fiber, and the object to be measured is a mirror.

【0010】[0010]

【作用】前述した構成による傾斜角度測定方法では、被
計測体に光線を照射し、被計測体から放射される光線の
放射光のうち所定の放射強度を有する放射光の所定の方
向に対する放射角度を求め、この放射角度に基づいて所
定の方向に対する被測定体の傾斜角度を求めるので、被
計測体の傾斜角度は、非破壊的に得られる。
In the tilt angle measuring method according to the above-described configuration, the object to be measured is irradiated with a light beam, and the emission angle of the light having a predetermined radiation intensity with respect to a predetermined direction among the light emitted from the object to be measured. Is obtained, and the inclination angle of the object to be measured with respect to a predetermined direction is obtained based on the radiation angle. Therefore, the inclination angle of the object to be measured can be obtained nondestructively.

【0011】また、前述したような条件毎に基づいて被
計測体の傾斜角度を求めれば、被計測体の傾斜角度がよ
り正確に求められる。
Further, if the inclination angle of the object to be measured is obtained based on each of the above conditions, the angle of inclination of the object to be measured can be obtained more accurately.

【0012】ここで、前記被計測体がミラーであり、前
記光線がレーザ光であれば、ミラーの傾斜角度は、より
高精度に求められる。
Here, when the object to be measured is a mirror and the light beam is a laser beam, the tilt angle of the mirror can be obtained with higher accuracy.

【0013】一方、前述した構成による傾斜角度測定装
置では、光線発振手段で発振した光線を光線送信体によ
り被計測体へ光線伝送体を介して送ると、計測手段が被
計測体から放射される光線の放射強度及び放射角度を計
測し、演算手段が計測手段で計測した放射光のうち所定
の放射強度を有する放射光の放射角度を選出すると共
に、選出した放射角度に基づいて所定の方向に対する被
計測体の傾斜角度を算出し、表示手段が演算手段の演算
結果を表示するので、被計測体は、非破壊的に傾斜角度
を測定される。
On the other hand, in the tilt angle measuring device having the above-described configuration, when the light beam oscillated by the light beam oscillating means is sent to the measured object by the light beam transmitting body via the light beam transmitting body, the measuring means is radiated from the measured object. The radiation intensity and the radiation angle of the light beam are measured, and the calculation means selects the radiation angle of the radiation light having the predetermined radiation intensity from the radiation light measured by the measurement means, and the radiation angle with respect to the predetermined direction based on the selected radiation angle. The tilt angle of the measured object is calculated, and the display means displays the calculation result of the calculating means, so that the measured angle of the measured object is nondestructively measured.

【0014】ここで、前記演算手段が前述したような演
算処理装置であれば、被計測体の傾斜角度がより正確に
測定される。
Here, if the arithmetic means is an arithmetic processing device as described above, the inclination angle of the measured object can be measured more accurately.

【0015】なお、前記光線発振手段がレーザダイオー
ド装置であり、前記光線送信体がシングルモード光ファ
イバであり、前記被計測体がミラーであれば、ミラーの
傾斜角度は、より高精度に測定される。
If the light beam oscillating means is a laser diode device, the light beam transmitter is a single mode optical fiber, and the object to be measured is a mirror, the mirror tilt angle can be measured with higher accuracy. You.

【0016】[0016]

【実施例】本発明による傾斜角度測定方法及び測定装置
の基本原理を図5に基づいて説明する。なお、図5は、
その基本原理を表す概略図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic principle of the tilt angle measuring method and measuring apparatus according to the present invention will be described with reference to FIG. In addition, FIG.
It is a schematic diagram showing the basic principle.

【0017】図5に示すように、光線101を光線伝送
体42の他端側、即ち、図3中、左側から被計測体43
へ向けて基板41と平行に照射すると、光線101は、
基板41と被計測体43とのなす傾斜角度θa に応じ
て、反射もしくは透過して、被計測体43から放射光1
02として放射される。この放射光102は、傾斜角度
θa が被計測体43の臨界反射角度θc 以下の場合には
(A)、光線101の下流側へ反射し(a)、傾斜角度
θa が臨界反射角度θc 以上の場合には(B)、光線1
01の上流側へ反射(b)及び光線101の下流側へ透
過(c)する。この臨界反射角度θc 以上の場合の反射
及び透過の混在比は、傾斜角度θa に依存している。
As shown in FIG. 5, the light beam 101 is transmitted from the other end of the light beam transmitting member 42, that is, from the left side in FIG.
When irradiated in parallel to the substrate 41 toward
A substrate 41 in accordance with the form inclination angle theta a between the measurement object 43, the reflected or transmitted through, the emitted light 1 from the measurement object 43
Emitted as 02. The emitted light 102, the inclination angle theta a is in the case of below the critical reflection angle theta c of the measurement object 43 (A), is reflected to the downstream side of the beam 101 (a), the inclination angle theta a critical reflection angle In the case of θc or more (B), ray 1
The light beam 101 is reflected upstream (b) and transmitted downstream of the light beam 101 (c). Mixed ratio of reflection and transmission of not less than the critical reflection angle theta c depends on the inclination angle theta a.

【0018】従って、放射光114の放射方向と基板1
11に対して垂直な方向とのなす放射角度θr を計測す
れば、スネルの法則により、傾斜角度θa を求めること
ができる。即ち、放射光102が反射光の場合には、下
記に示す式(11)に基づいて傾斜角度θa が求めら
れ、放射光102が透過光の場合には、下記に示す式
(12)に基づいて傾斜角度θa が求められるのであ
る。但し、放射角度θr は、基板41に対して垂直な方
向を基準とした偏差角度とし、光線101の下流側を
正、光線101の上流側を負とする。なお、前述した臨
界反射角度θc は、下記に示す式(13)に基づいて求
めることができる。
Therefore, the radiation direction of the radiation 114 and the substrate 1
By measuring the formed radiation angle theta r a direction perpendicular to 11, according to Snell's law, it is possible to obtain the inclination angle theta a. That is, when the radiated light 102 is reflected light, the inclination angle θ a is obtained based on the following equation (11). When the radiated light 102 is transmitted light, the inclination angle θ a is calculated by the following equation (12). the inclination angle theta a is being asked based. However, the radiation angle θ r is a deviation angle with respect to a direction perpendicular to the substrate 41, the downstream side of the light beam 101 is positive, and the upstream side of the light beam 101 is negative. Incidentally, the critical reflection angle theta c described above can be determined based on equation (13) shown below.

【数5】 θa ={cos-1(sinθr /N)}/2 … (11) θa =tan-1(N−sinθr )/(cosθr ) … (12) θc =cos-1(1/N) … (13) 但し、N:光線伝送体の屈折率Θ a = {cos −1 (sin θ r / N)} / 2 (11) θ a = tan −1 (N−sin θ r ) / (cos θ r ) (12) θ c = cos − 1 (1 / N) (13) where N is the refractive index of the light transmitting body

【0019】このような基本原理を応用した本発明によ
る傾斜角度測定方法及び測定装置の一実施例を図1に基
づいて説明する。なお、図1は、その傾斜角度測定装置
の概略構成図である。
An embodiment of a method and an apparatus for measuring an inclination angle according to the present invention, to which such a basic principle is applied, will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of the inclination angle measuring device.

【0020】図1に示すように、光線であるレーザ光1
11を発振する光線発振手段であるレーザダイオード装
置1の出力部には、レーザ光を減衰させる減衰器2の入
力部が光線送信体であるシングルモード光ファイバ3を
介して連結されている。減衰器2の出力部には、シリコ
ン基板などの導体配線を有する基板51上に設けられた
光線伝送体である光導波路52の一端側がシングルモー
ド光ファイバ4を介して連結されている。光導波路52
の他端側には、基板101の表面に対して傾斜するよう
被計測体であるミラー53が立設されている。
As shown in FIG. 1, a laser beam 1
An input of a laser attenuator 2 for attenuating a laser beam is connected to an output of a laser diode device 1 as a light beam oscillating means for oscillating 11 via a single mode optical fiber 3 as a light beam transmitter. One end of an optical waveguide 52 which is a light beam transmitting body provided on a substrate 51 having a conductor wiring such as a silicon substrate is connected to an output portion of the attenuator 2 via a single mode optical fiber 4. Optical waveguide 52
On the other end side, a mirror 53 as an object to be measured is erected so as to be inclined with respect to the surface of the substrate 101.

【0021】従って、レーザダイオード装置1を稼働し
て、レーザ光111をシングルモード光ファイバ3、4
及び減衰器2を介して光導波路52の一端側から光導波
路52の内部へ送り込むことにより、ミラー53にレー
ザ光111を照射するのである。これにより、ミラー5
3は、基板51となす傾斜角度θa の大きさに応じて、
レーザ光111を反射したり透過したりするようにレー
ザ光111を放射光112として、放射するのである。
Accordingly, the laser diode device 1 is operated to transmit the laser beam 111 to the single mode optical fibers 3 and 4.
The mirror 53 is irradiated with the laser beam 111 by sending the light from the one end of the optical waveguide 52 to the inside of the optical waveguide 52 via the attenuator 2. Thereby, the mirror 5
3, according to the size of the inclination angle theta a formed between the substrate 51,
The laser beam 111 is emitted as the radiated light 112 so that the laser beam 111 is reflected or transmitted.

【0022】ミラー53の近傍には、ミラー53からの
放射光112の放射角度及び放射強度を計測する計測手
段である計測器5が設けられている。計測器5には、計
測器5からの信号に基づいて、基板51とミラー53と
のなす傾斜角度を算出する演算手段である演算処理装置
6が電気的に接続されている。
In the vicinity of the mirror 53, there is provided a measuring device 5 which is a measuring means for measuring a radiation angle and a radiation intensity of the radiation 112 from the mirror 53. The measuring device 5 is electrically connected to an arithmetic processing device 6 which is a calculating means for calculating an inclination angle between the substrate 51 and the mirror 53 based on a signal from the measuring device 5.

【0023】ここで、前記演算処理装置6の演算処理機
能を図2、3に基づいて説明する。なお、図2は、その
フロー図、図3は、計測器による計測データの一例を表
すグラフである。
Here, the arithmetic processing function of the arithmetic processing unit 6 will be described with reference to FIGS. FIG. 2 is a flow chart, and FIG. 3 is a graph showing an example of data measured by a measuring instrument.

【0024】図2に示すように、演算処理装置6は、図
3中、計測器5が計測した放射光112のうち最大放射
強度を有する第一放射光113と基板51に対して垂直
な方向とがなす第一放射角度θr1を求める(S1)。
As shown in FIG. 2, the arithmetic processing unit 6 is arranged such that, in FIG. 3, the first radiation light 113 having the maximum radiation intensity of the radiation light 112 measured by the measuring instrument 5 and the direction perpendicular to the substrate 51 DOO seek a first radiation angle theta r1 formed (S1).

【0025】即ち、実際の放射角度の計測データには、
基板51と平行と仮定できない高次モードのピークが多
数存在してしまう。しかしながら、光導波路52を定常
励振すれば、計測される高次モードのピーク強度は小さ
くなる。従って、図3に示すように、放射強度の大きい
ピークの放射角度を求めれば良いのである。
That is, the actual radiation angle measurement data includes:
Many high-order mode peaks that cannot be assumed to be parallel to the substrate 51 exist. However, if the optical waveguide 52 is excited in a steady state, the peak intensity of the measured higher-order mode becomes smaller. Therefore, as shown in FIG. 3, the radiation angle of the peak having the large radiation intensity may be obtained.

【0026】図2に示すように、演算処理装置61は、
下記に示す式(1)に基づいて、第一放射角度θr1及び
予め入力された光導波路52の屈折率Nから基板51と
ミラー53とがなす第一仮傾斜角度θx1を算出する(S
2)。
As shown in FIG. 2, the arithmetic processing unit 61 comprises:
Based on the following equation (1), a first provisional tilt angle θ x1 formed by the substrate 51 and the mirror 53 is calculated from the first radiation angle θ r1 and the previously input refractive index N of the optical waveguide 52 (S
2).

【数6】 θx1={cos-1(sinθr1/N)}/2 … (1) Equation 6 θ x1 = {cos −1 (sin θ r1 / N)} / 2 (1)

【0027】演算処理装置6は、下記に示す式(2)に
基づいてミラー53の臨界反射角度θc を算出し、第一
仮傾斜角度θx1と臨界反射角度θc とを比較する。第一
仮傾斜角度θx1が臨界反射角度θc よりも小さい場合に
は、放射光112は、反射光であるので、演算処理装置
6は、第一仮傾斜角度θx1が基板51とミラー53とが
なす傾斜角度θa と判断する(S11)。
The arithmetic processing unit 6 calculates the critical reflection angle theta c of the mirror 53 based on the equation (2) shown below, comparing the first temporary tilt angle theta x1 and the critical reflection angle theta c. When first temporary tilt angle theta x1 is smaller than the critical reflecting angle theta c is emitted light 112 are the reflected light, the arithmetic processing unit 6, a first temporary tilt angle theta x1 and the substrate 51 a mirror 53 it is determined that the tilt angle theta a to preparative forms (S11).

【数7】 θc =cos-1(1/N) … (2)Equation 7 θ c = cos −1 (1 / N) (2)

【0028】一方、第一仮傾斜角度θx1が臨界反射角度
θc よりも大きい場合には、放射光112は、反射光も
しくは透過光であるので、演算処理装置6は、第一放射
角度θr1の正負を判断する(S3)。
On the other hand, when the first provisional inclination angle θ x1 is larger than the critical reflection angle θ c , the emitted light 112 is reflected light or transmitted light, and the arithmetic processing unit 6 sets the first emission angle θ It is determined whether r1 is positive or negative (S3).

【0029】第一放射角度θr1が負の場合には、放射光
112は、レーザ光111の入射方向上流側に放射して
いるので反射光であると判断され、演算処理装置6は、
前記第一仮傾斜角度θx1がミラー53の傾斜角度θa
あると判断する(S12)。
When the first radiation angle θ r1 is negative, the radiated light 112 is radiated to the upstream side in the incident direction of the laser light 111, so that it is determined that the radiated light is reflected light.
It is determined that the first temporary tilt angle θ x1 is the tilt angle θ a of the mirror 53 (S12).

【0030】一方、第一放射角度θr1が正の場合には、
放射光112は、レーザ光111の入射方向下流側に放
射しているので、透過光もしくは反射光であると判断さ
れ、演算処理装置6は、放射光112を透過光であると
仮定し、下記に示す式(3)に基づいて第二仮傾斜角度
θx2を算出する(S4)。
On the other hand, when the first radiation angle θ r1 is positive,
Since the emitted light 112 is emitted to the downstream side in the incident direction of the laser beam 111, it is determined that the emitted light 112 is transmitted light or reflected light, and the arithmetic processing unit 6 assumes that the emitted light 112 is transmitted light, and The second provisional inclination angle θ x2 is calculated based on Expression (3) shown in (4) (S4).

【数8】 θx2=tan-1(N−sinθr1)/(cosθr1) … (3)[Equation 8] θ x2 = tan −1 (N−sin θ r1 ) / (cos θ r1 ) (3)

【0031】演算処理装置6は、臨界反射角度θc に対
する所定の範囲、即ち、臨界反射角度θc に対する計測
器5などの機器類の誤差範囲(約5%程度)内に第二仮
傾斜角度θx2が含まれるかどうかを判断する。
The arithmetic processing unit 6, a predetermined range for the critical reflection angle theta c, i.e., the second temporary tilt angle within the error range of the instrument such as the instrument 5 for the critical reflection angle theta c (approximately 5%) It is determined whether or not θ x2 is included.

【0032】第二仮傾斜角度θx2が前記範囲外である場
合には、放射光112は、透過光であると判断され、演
算処理装置6は、第二仮傾斜角度θx2がミラー53の傾
斜角度θa であると判断する(S13)。
If the second provisional inclination angle θ x2 is out of the above range, the emitted light 112 is determined to be transmitted light, and the processing unit 6 determines that the second provisional inclination angle θ x2 is it is determined that the tilt angle θ a (S13).

【0033】一方、第二仮傾斜角度θx2が前記範囲内で
ある場合には、放射光112は、透過光及び反射光の両
方に大きな放射強度を有している。このため、演算処理
装置6は、図3中、計測器5が計測した放射光112の
うち第一放射光113に次ぐ放射強度を有する第二放射
光114と基板51に対して垂直な方向とがなす第二放
射角度θr2を求める(S5)。
On the other hand, when the second provisional inclination angle θ x2 is within the above range, the radiated light 112 has a large radiant intensity in both the transmitted light and the reflected light. For this reason, in FIG. 3, the arithmetic processing device 6 sets the second radiation 114 having the radiation intensity next to the first radiation 113 in the radiation 112 measured by the measuring device 5 in the direction perpendicular to the substrate 51. A second radiation angle θ r2 is determined (S5).

【0034】図2に示すように、演算処理装置6は、下
記に示す式(4)及び式(5)に基づいて、第二放射角
度θr2及び光導波路52の屈折率Nから第三仮傾斜角度
θx3及び第四仮傾斜角度θx4を算出する(S6)。
As shown in FIG. 2, the arithmetic processing unit 6 calculates the third temporary angle from the second radiation angle θ r2 and the refractive index N of the optical waveguide 52 based on the following equations (4) and (5). The inclination angle θ x3 and the fourth provisional inclination angle θ x4 are calculated (S6).

【数9】 θx3={cos-1(sinθr2/N)}/2 … (4) θx4=tan-1(N−sinθr2)/(cosθr2) … (5)Θ x3 = {cos −1 (sin θ r2 / N)} / 2 (4) θ x4 = tan −1 (N−sin θ r2 ) / (cos θ r2 ) (5)

【0035】演算処理装置6は、第一放射光113及び
第二放射光114の反射・透過の判断を行うため、下記
に示す式(6)に基づいて、第一、第二、第三、第四仮
傾斜角度θx1,θx2,θx3,θx4から指数値Pを算出す
る(S7)。
The arithmetic processing unit 6 determines the reflection / transmission of the first radiation light 113 and the second radiation light 114 based on the following equation (6). An index value P is calculated from the fourth temporary inclination angles θ x1 , θ x2 , θ x3 , θ x4 (S7).

【数10】 P=|θx1−θx4|−|θx2−θx3| … (6)P = | θ x1 −θ x4 | − | θ x2 −θ x3 | (6)

【0036】演算処理装置6は、指数値Pが正の値とな
る場合には、下記に示す式(7)に基づいて、第二、第
三仮傾斜角度θx2,θx3からミラー53の傾斜角度θa
を算出する(S8)。
When the exponent value P becomes a positive value, the arithmetic processing unit 6 calculates the mirror 53 from the second and third temporary inclination angles θ x2 and θ x3 based on the following equation (7). Tilt angle θ a
Is calculated (S8).

【数11】 θa =(θx2+θx3)/2 … (7)Equation 11 θ a = (θ x2 + θ x3 ) / 2 (7)

【0037】一方、指数値Pが負の値となる場合には、
演算処理装置6は、下記に示す式(8)に基づいて、第
一、第四仮傾斜角度θx1,θx4からミラー53の傾斜角
度θ a を算出する(S9)。
On the other hand, when the exponent value P is a negative value,
The arithmetic processing unit 6 calculates the first value based on the following equation (8).
First, fourth temporary inclination angle θx1, Θx4From the mirror 53
Degree θ aIs calculated (S9).

【数12】 θa =(θx1+θx4)/2 … (8)[Expression 12] θ a = (θ x1 + θ x4 ) / 2 (8)

【0038】即ち、S5〜S9におけるステップでは、
第一放射光113及び第二放射光114の反射・透過の
判断が適切に行われていれば、第一放射光113もしく
は第二放射光114のどちらを用いてもミラー53の傾
斜角度θa は一致するので、前記式(6)に示した絶対
値内の偏差は誤差範囲内で0に近づく。そこで、前記絶
対値内の偏差が小さい方を用いて、ミラー53の傾斜角
度θa を求めることとしている。
That is, in steps S5 to S9,
If the reflection / transmission of the first radiated light 113 and the second radiated light 114 is properly determined, the tilt angle θ a of the mirror 53 is determined regardless of whether the first radiated light 113 or the second radiated light 114 is used. Coincide with each other, the deviation in the absolute value shown in the above equation (6) approaches 0 within the error range. Therefore, using towards deviations in the absolute value is smaller, is set to ask the inclination angle theta a mirror 53.

【0039】従って、演算処理装置7は、ミラー53か
らの放射光112の反射・透過を判断して、ミラー53
の傾斜角度θa を算出する。
Accordingly, the arithmetic processing unit 7 determines the reflection and transmission of the radiation 112 from the mirror 53 and
Calculating a tilt angle theta a.

【0040】図1に示すように、演算処理装置6には、
演算処理装置6で演算した結果を表示する表示手段であ
るディスプレイ7が電気的に接続されている。
As shown in FIG. 1, the arithmetic processing unit 6 includes:
A display 7 which is a display means for displaying a result calculated by the arithmetic processing unit 6 is electrically connected.

【0041】従って、ミラー53により放射された放射
光112を計測器5で計測すると、演算処理装置6が計
測器5からの信号に基づいて、基板51とミラー53と
のなす傾斜角度θa を算出し、その結果をディスプレイ
7に表示するのである。
Accordingly, when the radiation 112 emitted by the mirror 53 is measured by the measuring device 5, the arithmetic processing unit 6 determines the inclination angle θ a between the substrate 51 and the mirror 53 based on the signal from the measuring device 5. The calculation is performed, and the result is displayed on the display 7.

【0042】このような傾斜角度測定装置の測定精度を
求めるため、傾斜角度θa が既知である、斜め研磨した
光ファイバを用いて、傾斜角度を求めた。その結果を図
4に示す。なお、図4は、その結果を表すグラフであ
る。但し、横軸は、実際の傾斜角度を表し、縦軸は、実
際の傾斜角度に対する測定した傾斜角度の誤差率を表
す。
In order to determine the measurement accuracy of such an inclination angle measuring device, an inclination angle was determined using an obliquely polished optical fiber having a known inclination angle θa. FIG. 4 shows the results. FIG. 4 is a graph showing the result. Here, the horizontal axis represents the actual inclination angle, and the vertical axis represents the error rate of the measured inclination angle with respect to the actual inclination angle.

【0043】図4から明らかなように、前述したような
傾斜角度測定装置の誤差範囲は、±3%以内であること
が判明した。よって、本装置は、何ら問題なく使用する
ことができるのである。
As is apparent from FIG. 4, it was found that the error range of the inclination angle measuring device as described above was within ± 3%. Therefore, the present device can be used without any problem.

【0044】なお、前述した実施例では、ミラー53の
傾斜角度θa を測定したが、例えば、プリズムなどや斜
め研磨ファイバのミラーなどの傾斜角度を測定すること
も可能である。また、本方法による測定を行った後に、
破壊することによってミラーの傾斜角度やミラー面精度
を求めた測定試料を標準サンプルとして用いて、他の試
料である光導波路端部に設けたミラーからの放射ビーム
プロファイルと破壊測定前に求めた本方法による測定結
果とを比較して、測定サンプルの傾斜角度やミラー面精
度について検討することも可能である。
[0044] In the embodiment described above, was measured tilt angle theta a mirror 53, for example, it is also possible to measure the tilt angle, such as a mirror prism like or obliquely polished fiber. In addition, after performing measurement by this method,
Using the measurement sample for which the mirror tilt angle and mirror surface accuracy were determined by destruction as a standard sample, the radiation beam profile from the mirror provided at the end of the optical waveguide, which is another sample, and the book determined before destruction measurement It is also possible to examine the inclination angle of the measurement sample and the mirror surface accuracy by comparing the measurement results with the method.

【0045】[0045]

【発明の効果】本発明による傾斜角度測定方法では、被
計測体に光線を照射し、被計測体から放射される光線の
放射光の放射角度を求め、この放射角度に基づいて被計
測体の傾斜角度を求めることにより、被計測体の傾斜角
度を非破壊的に得ているので、被計測体の前処理が不要
となり、手間が大幅に省けて効率が向上する。また、測
定に用いるサンプルが実際に使用できるので、コストが
低下すると共に、実際に使用するものが直接測定できる
ので、正確な傾斜角度が得られる。
According to the tilt angle measuring method of the present invention, the object to be measured is irradiated with a light beam, the emission angle of the light emitted from the object to be measured is determined, and the measurement angle of the object to be measured is determined based on the emission angle. Since the inclination angle of the object to be measured is obtained non-destructively by obtaining the inclination angle, the pre-processing of the object to be measured is not required, and the labor is greatly saved and the efficiency is improved. In addition, since the sample used for the measurement can be actually used, the cost is reduced, and the actually used sample can be directly measured, so that an accurate tilt angle can be obtained.

【0046】また、前述したような条件毎に基づいて被
計測体の傾斜角度を求めれば、被計測体の傾斜角度がよ
り正確に求められる。
Further, if the inclination angle of the object to be measured is obtained based on each of the above conditions, the inclination angle of the object to be measured can be obtained more accurately.

【0047】また、レーザ光を用いて、ミラーの傾斜角
度を測定すれば、ミラーの傾斜角度がより高精度に求め
られる。
If the tilt angle of the mirror is measured using laser light, the tilt angle of the mirror can be determined with higher accuracy.

【0048】本発明による傾斜角度測定装置では、光線
発振手段で発振した光線を被計測体へ送り、計測手段が
被計測体から放射される光線の放射強度及び放射角度を
計測し、演算手段が計測手段で計測した放射光の放射角
度に基づいて被計測体の傾斜角度を算出し、表示手段が
演算手段の演算結果を表示することにより、被計測体の
傾斜角度を非破壊的に測定するので、被計測体の前処理
が不要となり、手間が大幅に省けて効率が向上する。ま
た、測定に用いるサンプルが実際に使用できるので、コ
ストが低下すると共に、実際に使用するものが直接測定
できるので、正確な傾斜角度が得られる。
In the tilt angle measuring apparatus according to the present invention, the light beam oscillated by the light beam oscillating means is sent to the object to be measured, the measuring means measures the radiation intensity and the radiating angle of the light beam radiated from the object to be measured, and the calculating means The tilt angle of the measured object is calculated based on the radiation angle of the radiation measured by the measuring means, and the display means displays the calculation result of the calculating means, thereby non-destructively measuring the tilt angle of the measured object. This eliminates the need for pretreatment of the object to be measured, greatly reducing labor and improving efficiency. In addition, since the sample used for the measurement can be actually used, the cost is reduced, and the actually used sample can be directly measured, so that an accurate tilt angle can be obtained.

【0049】また、前述したような演算処理装置を用い
れば、被計測体の傾斜角度がより正確に測定される。
Further, by using the above-mentioned arithmetic processing unit, the inclination angle of the measured object can be measured more accurately.

【0050】また、レーザダイオード装置からレーザ光
をシングルモード光ファイバでミラーに照射するように
すれば、ミラーの傾斜角度がより高精度に測定される。
If the laser beam is irradiated from the laser diode device to the mirror with a single mode optical fiber, the mirror tilt angle can be measured with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による傾斜角度測定装置の一実施例の概
略構成図である。
FIG. 1 is a schematic configuration diagram of one embodiment of a tilt angle measuring device according to the present invention.

【図2】その一実施例の演算処理装置の演算処理機能の
フロー図である。
FIG. 2 is a flowchart of an arithmetic processing function of the arithmetic processing device according to the embodiment;

【図3】その一実施例の計測器による計測データの一例
を表すグラフである。
FIG. 3 is a graph showing an example of data measured by the measuring instrument of the embodiment.

【図4】その一実施例の測定結果の精度を表すグラフで
ある。
FIG. 4 is a graph showing the accuracy of the measurement result of the example.

【図5】本発明による傾斜角度測定方法及び測定装置の
基本原理を表す概略説明図である。
FIG. 5 is a schematic explanatory view showing a basic principle of a tilt angle measuring method and a measuring device according to the present invention.

【図6】三次元光導波路の一部を省略した外観図であ
る。
FIG. 6 is an external view in which a part of the three-dimensional optical waveguide is omitted.

【図7】従来の傾斜角度測定方法の概略説明図である。FIG. 7 is a schematic explanatory view of a conventional inclination angle measuring method.

【符号の説明】[Explanation of symbols]

1 レーザダイオード装置 3,4 シングルモード光ファイバ 5 計測器 6 演算処理装置 7 ディスプレイ 51 基板 52 光導波路 53 ミラー 111 レーザ光 112 放射光 DESCRIPTION OF SYMBOLS 1 Laser diode device 3, 4 Single mode optical fiber 5 Measuring instrument 6 Arithmetic processing unit 7 Display 51 Substrate 52 Optical waveguide 53 Mirror 111 Laser light 112 Emitted light

フロントページの続き (56)参考文献 実開 平1−70111(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 G01M 11/00 Continuation of the front page (56) References Japanese Utility Model 1-70111 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G01B 11/00-11/30 G01M 11/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被計測体に光線伝送体を介して光線を照
射し、 前記被計測体から放射される前記光線の放射光のうち最
大放射強度を有する第一放射光の所定の方向に対する第
一放射角度θ r1 を求め、 前記θ r1 から下記に示す式(1)に基づいて所定の方向
に対する前記被計測体の第一仮傾斜角度θ x1 を求め、 前記θ x1 の値が下記に示す式(2)より求められる前記
被計測体の臨界反射角度θ c の値よりも小さい場合、ま
たは、当該θ x1 の値が当該θ c の値よりも大きく且つ前
記第一放射光が前記光線の上流側へ進行する場合には、
当該θ x1 の値を所定の方向に対する当該被計測体の傾斜
角度θ a とし、 前記θ x1 の値が前記θ c の値よりも大きく且つ前記第一
放射光が前記光線の下流側へ進行する場合には下記に示
す式(3)に基づいて所定の方向に対する前記被計測体
の第二仮傾斜角度θ x2 を求め、 前記θ x2 の値が前記θ c の値に対して所定の範囲以上に
大きい場合には当該θ x2 の値を前記θ a とし、 前記θ x2 の値が前記θ c の値に対して所定の範囲以内に
含まれる場合には前記第一放射光に次ぐ放射強度を有す
る第二放射光の所定の方向に対する第二放射角度θ r2
求め、 前記θ r2 から下記に示す式(4)及び式(5)に基づい
て所定の方向に対する前記被計測体の第三仮傾斜角度θ
r3 及び第四仮傾斜角度θ r4 を求め、 前記θ x1 ,θ x2 ,θ x3 ,θ x4 から下記に示す式(6)に
基づいて指数値Pを求め、 前記Pの値が正の値となる場合には下記に示す式(7)
に基づいて前記θ a を求め、 前記Pの値が負の値となる場合には下記に示す式(8)
に基づいて前記θ a を求める ことを特徴とする傾斜角度
測定方法。 【数1】 θ x1 ={cos -1 (sinθ r1 /N)}/2 … (1) θ c =cos -1 (1/N) … (2) θ x2 =tan -1 (N−sinθ r1 )/(cosθ r1 ) … (3) θ x3 ={cos -1 (sinθ r2 /N)}/2 … (4) θ x4 =tan -1 (N−sinθ r2 )/(cosθ r2 ) … (5) P=|θ x1 −θ x4 |−|θ x2 −θ x3 | … (6) θ a =(θ x2 +θ x3 )/2 … (7) θ a =(θ x1 +θ x4 )/2 … (8) 但し、N:光線伝送体の屈折率
1. An object to be measured is irradiated with a light beam via a light beam transmitting body.
Shines, most of the emitted light of the light beam emitted from the measurement object
The first radiation having a high radiation intensity has a
One radiation angle θ r1 is determined, and a predetermined direction is determined from θ r1 based on the following equation (1).
The first provisional inclination angle θ x1 of the measured object with respect to is obtained, and the value of the θ x1 is obtained by the following equation (2).
If less than the value of the critical reflection angle theta c of the measurement object, or
Alternatively, the value of the θ x1 is larger than the value of the θ c and
When the first emitted light travels upstream of the light beam,
The value of the θ x1 is determined by tilting the measured object with respect to a predetermined direction.
And the angle theta a, greater than the value of the value of the theta x1 said theta c and the first
If the emitted light travels downstream of the ray,
The object to be measured in a predetermined direction based on equation (3)
The second provisional inclination angle θ x2 is obtained, and the value of θ x2 is not less than a predetermined range with respect to the value of θ c.
If larger, the value of θ x2 is defined as θ a, and the value of θ x2 is within a predetermined range with respect to the value of θ c.
If included, has radiation intensity next to the first radiation
The second radiation angle θ r2 with respect to the predetermined direction of the second radiation
And calculated from θ r2 based on the following equations (4) and (5).
And the third temporary inclination angle θ of the measured object with respect to a predetermined direction.
r3 and the fourth provisional inclination angle θ r4 are obtained, and from the above θ x1 , θ x2 , θ x3 , and θ x4 , the following equation (6) is obtained.
An exponent value P is obtained based on the above. If the value of P is a positive value, the following equation (7) is obtained.
Obtains the theta a based on, shown below when the value of the P becomes a negative value (8)
Tilt angle and obtaining the theta a based on the
Measuring method. Equation 1 θ x1 = {cos −1 (sin θ r1 / N)} / 2 (1) θ c = cos −1 (1 / N) (2) θ x2 = tan −1 (N−sin θ r1 ) / ( Cos θ r1 ) (3) θ x3 = {cos −1 (sin θ r2 / N)} / 2 (4) θ x4 = tan −1 (N−sin θ r2 ) / (cos θ r2 ) (5) ) P = | θ x1 −θ x4 | − | θ x2 −θ x3 | (6) θ a = (θ x2 + θ x3 ) / 2 (7) θ a = (θ x1 + θ x4 ) / 2 (( 8) where N is the refractive index of the light beam transmitting body
【請求項2】 前記被計測体がミラーであり、 前記光線がレーザ光である ことを特徴とする請求項1に
記載の傾斜角度測定方法。
Wherein said measured object is a mirror, to claim 1, wherein said light beam is a laser beam
The described tilt angle measuring method.
【請求項3】 光線を発振する光線発振手段と、 前記光線発振手段からの前記光線を被計測体へ光線伝送
体を介して送る光線送信体と、 前記被計測体から放射される前記光線の放射光の放射強
度及び当該放射光の所定の方向に対する放射角度を計測
する計測手段と、 前記計測手段で計測した前記放射光のうち所定の放射強
度を有する放射光の前記放射角度を選出すると共にこの
選出した放射角度に基づいて所定の方向に対する前記被
計測体の傾斜角度を算出する演算手段と、 前記演算手段の演算結果を表示する表示手段と を備え、 前記演算手段が 前記計測手段で計測した前記放射光のう
ち最大放射強度を有する第一放射光の所定の方向に対す
る放射角度θ r1 から下記に示す式(1)に基づいて所定
の方向に対する前記被計測体の第一仮傾斜角度θ x1 を算
出し、 前記θ x1 の値が下記に示す式(2)より求められる前記
被計測体の臨界反射角度θ c の値よりも小さい場合、ま
たは、当該θ x1 の値が当該θ c の値よりも大きく且つ前
記第一放射光が前記光線の上流側へ進行する場合には、
当該θ x1 の値を所定の方向に対する当該被計測体の傾斜
角度θ a と判断し、 前記θ x1 の値が前記θ c の値よりも大きく且つ前記第一
放射光が前記光線の下流側へ進行する場合には下記に示
す式(3)に基づいて所定の方向に対する前記被計測体
の第二仮傾斜角度θ x2 を算出し、 前記θ x2 の値が前記θ c の値に対して所定の範囲以上に
大きい場合には当該θ x2 の値を前記θ a と判断し、 前記θ x2 の値が前記θ c の値に対して所定の範囲以内に
含まれる場合には前記第一放射光に次ぐ放射強度を有す
る第二放射光の所定の方向に対する第二放射角度θ r2
ら下記に示す式(4)及び式(5)に基づいて所定の方
向に対する前記被計測体の第三仮傾斜角度θ x3 及び第四
仮傾斜角度θ x4 を算出し、 前記θ x1 ,θ r2 ,θ x3 ,θ r4 から下記に示す式(6)に
基づいて指数値Pを算出し、 前記Pの値が正の値となる場合には下記に示す式(7)
に基づいて前記θ a を算出し、 前記Pの値が負の値となる場合には下記に示す式(8)
に基づいて前記θ a を算出する演算処理装置である こと
を特徴とする傾斜角度測定装置。 【数2】 θ x1 ={cos -1 (sinθ r1 /N)}/2 … (1) θ c =cos -1 (1/N) … (2) θ x2 =tan -1 (N−sinθ r1 )/(cosθ r1 ) … (3) θ x3 ={cos -1 (sinθ r2 /N)}/2 … (4) θ x4 =tan -1 (N−sinθ r2 )/(cosθ r2 ) … (5) P=|θ x1 −θ x4 |−|θ x2 −θ x3 | … (6) θ a =(θ x2 +θ x3 )/2 … (7) θ a =(θ x1 +θ x4 )/2 … (8) 但し、N:光線伝送体の屈折率
3. A light beam oscillating means for oscillating a light beam, and a light beam transmitted from the light beam oscillating means to an object to be measured.
A light beam transmitting body that transmits through a body, and an emission intensity of the light beam emitted from the object to be measured.
Measures the radiation angle and the radiation angle of the radiation with respect to the specified direction
Measuring means, and a predetermined radiant intensity of the radiated light measured by the measuring means.
The radiation angle of the radiation having the degree
Based on the selected radiation angle,
A calculating means for calculating an inclination angle of the measuring object; and a display means for displaying a calculation result of the calculating means , wherein the calculating means measures the radiation beam measured by the measuring means.
In the given direction of the first radiation having the maximum radiation intensity
From the radiation angle θ r1 based on the following equation (1).
Calculate the first temporary tilt angle theta x1 of the measured object with respect to the direction of
And the value of θ x1 is determined by the following equation (2).
If less than the value of the critical reflection angle theta c of the measurement object, or
Alternatively, the value of the θ x1 is larger than the value of the θ c and
When the first emitted light travels upstream of the light beam,
The value of the θ x1 is determined by tilting the measured object with respect to a predetermined direction.
Determines that the angle theta a, greater than the value of the value of the theta x1 said theta c and the first
If the emitted light travels downstream of the ray,
The object to be measured in a predetermined direction based on equation (3)
The second provisional tilt angle θ x2 is calculated, and the value of θ x2 is not less than a predetermined range with respect to the value of θ c.
The value of the theta x2 is determined that the theta a to greater, within a predetermined range with respect to values of said theta c of the theta x2
If included, has radiation intensity next to the first radiation
Second radiating angle theta r2 or for a given direction of the second emitted light that
A predetermined one based on the following equations (4) and (5)
The third temporary inclination angle θ x3 and the fourth
The temporary inclination angle θ x4 is calculated, and from the above θ x1 , θ r2 , θ x3 , θ r4 , the following equation (6) is obtained.
An exponent value P is calculated based on the following equation. If the value of P is a positive value, the following equation (7) is used.
Calculates the theta a based on, shown below when the value of the P becomes a negative value (8)
It is an arithmetic processing unit for calculating the theta a based on the
A tilt angle measuring device. (2) θ x1 = {cos −1 (sin θ r1 / N)} / 2 (1) θ c = cos −1 (1 / N) (2) θ x2 = tan −1 (N−sin θ r1 ) / ( Cos θ r1 ) (3) θ x3 = {cos −1 (sin θ r2 / N)} / 2 (4) θ x4 = tan −1 (N−sin θ r2 ) / (cos θ r2 ) (5) ) P = | θ x1 −θ x4 | − | θ x2 −θ x3 | (6) θ a = (θ x2 + θ x3 ) / 2 (7) θ a = (θ x1 + θ x4 ) / 2 (( 8) where N is the refractive index of the light beam transmitting body
【請求項4】 前記光線発振手段がレーザダイオード装
置であり、 前記光線送信体がシングルモード光ファイバであり、 前記被計測体がミラーである ことを特徴とする請求項3
に記載の傾斜角度測定装置。
4. The apparatus according to claim 1, wherein said light beam oscillating means includes a laser diode.
4. The apparatus according to claim 3 , wherein the light beam transmitter is a single mode optical fiber, and the object to be measured is a mirror.
The inclination angle measuring device according to 1.
JP02503994A 1994-02-23 1994-02-23 Tilt angle measuring method and measuring device Expired - Lifetime JP3336584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02503994A JP3336584B2 (en) 1994-02-23 1994-02-23 Tilt angle measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02503994A JP3336584B2 (en) 1994-02-23 1994-02-23 Tilt angle measuring method and measuring device

Publications (2)

Publication Number Publication Date
JPH07234118A JPH07234118A (en) 1995-09-05
JP3336584B2 true JP3336584B2 (en) 2002-10-21

Family

ID=12154776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02503994A Expired - Lifetime JP3336584B2 (en) 1994-02-23 1994-02-23 Tilt angle measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP3336584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12215968B2 (en) 2020-05-19 2025-02-04 Nippon Telegraph And Telephone Corporation Angle measurement device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199229A (en) * 2013-03-29 2014-10-23 住友ベークライト株式会社 Inclination angle measuring method and inclination angle measuring device
JP6664128B2 (en) 2015-12-17 2020-03-13 日東電工株式会社 Optical waveguide inspection method and optical waveguide manufacturing method using the same
JP7215161B2 (en) * 2018-12-27 2023-01-31 住友ベークライト株式会社 Optical waveguide evaluation method and optical module manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12215968B2 (en) 2020-05-19 2025-02-04 Nippon Telegraph And Telephone Corporation Angle measurement device and method

Also Published As

Publication number Publication date
JPH07234118A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
US20040136636A1 (en) Optical fibre backscatter polarimetry
US4659215A (en) Optical fiber test method and apparatus
CA1112894A (en) Device for measuring the attenuation of optical waves in an optical transmission path
JPH0650846A (en) Effective-refractive-index measuring apparatus for optical fiber
CN87106264A (en) The method of measurement of Refractive Index Profile o figure
EP0605301A1 (en) Optical time domain reflectometer
JP3336584B2 (en) Tilt angle measuring method and measuring device
JP2006220466A (en) Self-mixing laser Doppler velocimeter
JP4315537B2 (en) Optical fiber transmission loss measurement method and apparatus for implementing the same
JP2001013036A (en) Backscattering measuring apparatus for optical time domain for multimode optical fiber, its light source and manufacture of light source part
CN117109885B (en) Method for determining laser beam characteristics by quantifying optical waveguide performance, optical assembly and device
US20020178757A1 (en) Calculation of modes in cylindrically-symmetric optical fiber
Kitano et al. Measurement of fourth-order aberration in a lens-like medium
JP3276033B2 (en) Apparatus and method for measuring equivalent refractive index and refractive index of optical transmission medium
JP3217953B2 (en) Optical fiber structure constant measurement method
JP3207323B2 (en) Optical fiber test method
JP2004138506A (en) OTDR measurement device
US6795612B2 (en) Device and method for measuring angle of slant surface of an optical component
JPH06129838A (en) Method for measuring an angular parameter of an optical fiber having a beveled end and an apparatus used for implementing the method
JPH0545895B2 (en)
JPH0756041A (en) Dual core optical fiber and temperature measuring device using the same
WO2023223613A1 (en) Light beam diameter measurement device, method, program, recording medium
JPS6136884Y2 (en)
CN117969031A (en) Device and method for measuring coupling efficiency of laser between optical lens and optical fiber
JPH11142293A (en) Otdr device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

EXPY Cancellation because of completion of term