JP3315287B2 - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereofInfo
- Publication number
- JP3315287B2 JP3315287B2 JP6309995A JP6309995A JP3315287B2 JP 3315287 B2 JP3315287 B2 JP 3315287B2 JP 6309995 A JP6309995 A JP 6309995A JP 6309995 A JP6309995 A JP 6309995A JP 3315287 B2 JP3315287 B2 JP 3315287B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- polycrystalline silicon
- refractory metal
- silicon
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 95
- 239000003870 refractory metal Substances 0.000 claims description 50
- 229910052721 tungsten Inorganic materials 0.000 claims description 46
- 239000010937 tungsten Substances 0.000 claims description 46
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 44
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 43
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 35
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 27
- 230000004888 barrier function Effects 0.000 claims description 26
- 238000006243 chemical reaction Methods 0.000 claims description 26
- -1 tungsten nitride Chemical class 0.000 claims description 18
- 238000000151 deposition Methods 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 230000008018 melting Effects 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 4
- 238000000059 patterning Methods 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 239000011733 molybdenum Substances 0.000 claims 1
- 239000004094 surface-active agent Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 36
- 238000005530 etching Methods 0.000 description 15
- 238000007254 oxidation reaction Methods 0.000 description 14
- 238000001312 dry etching Methods 0.000 description 13
- 238000009792 diffusion process Methods 0.000 description 12
- 238000002955 isolation Methods 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000005468 ion implantation Methods 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 229910021332 silicide Inorganic materials 0.000 description 5
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 238000004380 ashing Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000005546 reactive sputtering Methods 0.000 description 3
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28247—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高融点金属膜、反応障
壁層及び多結晶ケイ素膜の積層構造からなる配線及び電
極パターンを具備する半導体装置及びその製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a wiring and an electrode pattern having a laminated structure of a high melting point metal film, a reaction barrier layer and a polycrystalline silicon film, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】近年、半導体デバイスの高集積化、高速
化に対する要求が高まっている。これらの要求を実現す
べく、素子間及び素子寸法の縮小化、微細化が進められ
る一方、内部配線材料の低抵抗化などが検討されてい
る。2. Description of the Related Art In recent years, demands for higher integration and higher speed of semiconductor devices have been increasing. In order to fulfill these demands, while reductions and miniaturization between elements and element dimensions have been promoted, reduction of the internal wiring material and the like have been studied.
【0003】とりわけRC遅延が顕著に現れるワード線
では、低抵抗化が大きな課題となっている。そこで、最
近では低抵抗化を図るため、金属シリサイド膜と多結晶
ケイ素膜の2層構造を採用したポリサイドゲートが広く
採用されている。高融点金属のシリサイドは多結晶ケイ
素膜に比べ比抵抗が約1桁低く、かつ耐酸化性に優れて
おり、低抵抗配線として有望である。シリサイドとして
は、タングステンシリサイド(WSix )が最も広く使
用されている。[0003] In particular, in a word line in which an RC delay appears remarkably, reduction in resistance is a major problem. Therefore, recently, in order to reduce the resistance, a polycide gate employing a two-layer structure of a metal silicide film and a polycrystalline silicon film has been widely adopted. The refractory metal silicide has a specific resistance about one digit lower than that of the polycrystalline silicon film and is excellent in oxidation resistance, and is promising as a low-resistance wiring. As the silicide, tungsten silicide (WSix) is most widely used.
【0004】しかし、0.25μm世代以降では、さら
なる遅延時間の短縮化が求められている。仮に、ポリサ
イド構造によってシート抵抗1Ω/□以下のゲート電極
を実現した場合、シリサイド膜の膜厚は厚くなり、ゲー
ト電極のアスペクト比は非常に高くなる。その結果、ゲ
ート電極パターンや電極上の層間膜の加工が難しくなる
ため、ゲート電極材料には金属シリサイドよりも比抵抗
の低い材料を用いる必要がある。[0004] However, from the 0.25 µm generation onward, further reduction in delay time is required. If a gate electrode having a sheet resistance of 1Ω / □ or less is realized by the polycide structure, the thickness of the silicide film becomes large and the aspect ratio of the gate electrode becomes extremely high. As a result, it becomes difficult to process the gate electrode pattern and the interlayer film on the electrode. Therefore, it is necessary to use a material having a lower specific resistance than metal silicide as the gate electrode material.
【0005】最近、高融点金属膜、反応障壁層及び多結
晶ケイ素膜からなるポリメタルゲート構造が注目されて
いる。例えばタングステンの比抵抗はWSix に比べ約
1桁小さく、RC遅延の大幅な短縮が可能である。ま
た、タングステンは多結晶ケイ素と800℃程度の加熱
処理で容易に反応するが、タングステン膜と多結晶ケイ
素膜との間に反応障壁層を挟むことにより、耐熱性に優
れた低抵抗ゲート構造が形成可能となる。Recently, a polymetal gate structure comprising a refractory metal film, a reaction barrier layer and a polycrystalline silicon film has been receiving attention. For example, the specific resistance of tungsten is about one digit smaller than WSix, and the RC delay can be greatly reduced. Tungsten easily reacts with polycrystalline silicon by heat treatment at about 800 ° C. By sandwiching a reaction barrier layer between the tungsten film and the polycrystalline silicon film, a low-resistance gate structure having excellent heat resistance is obtained. It can be formed.
【0006】[0006]
【発明が解決しようとする課題】上述したように、高融
点金属膜、反応障壁層及び多結晶ケイ素膜の積層からな
るポリメタル構造は次世代の低抵抗ゲート材料として期
待される。しかし、高融点金属膜は、一般に酸化ケイ素
膜などの層間膜に比べ熱膨張係数が一桁程度大きい。そ
のため、高融点金属膜を電極や配線に用いた場合、電極
とそれを覆う層間膜との間に大きなストレスが加わる。
特にMOS型トランジスタの電極では、電極の側面に加
わるストレスが電極直下の薄いゲート酸化膜に大きな悪
影響を与え、酸化膜の信頼性を著しく劣化させる。よっ
て、電極側面に働くストレスは可能な限り抑える必要が
あり、熱膨張係数を考慮した構造が望まれる。As described above, a polymetal structure composed of a laminate of a high melting point metal film, a reaction barrier layer and a polycrystalline silicon film is expected as a next-generation low-resistance gate material. However, the refractory metal film generally has a coefficient of thermal expansion that is about an order of magnitude higher than that of an interlayer film such as a silicon oxide film. Therefore, when a refractory metal film is used for an electrode or a wiring, a large stress is applied between the electrode and an interlayer film covering the electrode.
Particularly, in the electrode of a MOS transistor, the stress applied to the side surface of the electrode has a large adverse effect on the thin gate oxide film immediately below the electrode, and significantly deteriorates the reliability of the oxide film. Therefore, it is necessary to suppress the stress acting on the electrode side surfaces as much as possible, and a structure considering the thermal expansion coefficient is desired.
【0007】また、本ポリメタル構造を製造する上で、
克服すべき多くの問題がある。まずタングステンをはじ
めとした高融点金属膜は非常に酸化され易く、例えば、
タングステンは500℃程度で酸化される。タングステ
ンの酸化物は絶縁体であり、さらには酸化とともに堆積
膨張を引き起こすため、ポリメタル構造の電極を酸化性
雰囲気中で加熱することはできない。In manufacturing the polymetal structure,
There are many problems to overcome. First, refractory metal films such as tungsten are very easily oxidized, for example,
Tungsten is oxidized at about 500 ° C. Tungsten oxide is an insulator and, furthermore, causes deposition expansion with oxidation, so that an electrode having a polymetal structure cannot be heated in an oxidizing atmosphere.
【0008】一般に、LSI製造工程において、ゲート
電極形成後に酸化膜の信頼性向上を目的とした後酸化と
いう工程が必要とされる。ポリメタル構造においてもそ
の必要性は変わらないが、上述したようにタングステン
が酸化されるため、後酸化工程を行う訳にはいかない。Generally, in the LSI manufacturing process, a post-oxidation process is required after the gate electrode is formed to improve the reliability of the oxide film. The need for the polymetal structure remains the same, but since the tungsten is oxidized as described above, a post-oxidation step cannot be performed.
【0009】さらに、イオン注入後には不純物の活性化
のため加熱処理を行うが、通常用いられる加熱処理用の
炉内では残留酸素が無視できない。このため、Wが露出
したままでは加熱処理を行うこともできない。Further, after ion implantation, heat treatment is performed to activate impurities. However, residual oxygen cannot be ignored in a commonly used heat treatment furnace. Therefore, the heat treatment cannot be performed while W is exposed.
【0010】これら酸化の問題に対し、タングステンを
酸化させずにシリコンを選択的に酸化させる方法が提案
されている(特公平4−58688)。この方法によれ
ば、水素と水蒸気の分圧制御により、シリコンのみを酸
化させることが可能である。In order to solve these oxidation problems, there has been proposed a method of selectively oxidizing silicon without oxidizing tungsten (Japanese Patent Publication No. 4-58688). According to this method, it is possible to oxidize only silicon by controlling the partial pressure of hydrogen and water vapor.
【0011】しかしながら、この方法は水素ガスを多量
に使用するため、安全性の点で問題があり、その実用化
は困難である。さらに、特殊な設備を維持する必要があ
り、経費がかかるという問題がある。However, since this method uses a large amount of hydrogen gas, it has a problem in terms of safety, and its practical use is difficult. Furthermore, there is a problem that it is necessary to maintain special equipment, which is costly.
【0012】また、ポリメタル構造のような積層型電極
のパターンを形成する上で、新たな問題が発生する。通
常、多結晶ケイ素膜単層からなる電極パターン形成の場
合、エッチングマスクに対し多結晶ケイ素膜を異方性か
つ選択的に加工し、下地の薄いゲート酸化膜に対して高
い選択比で多結晶ケイ素膜をエッチングしなければなら
ない。その上、高融点金属膜と多結晶ケイ素膜からなる
ポリメタル電極パターンを形成する場合、これに加えて
高融点金属膜を多結晶ケイ素膜及び薄い酸化膜に対し選
択的にエッチングする必要がある。Further, a new problem arises in forming a pattern of a laminated electrode such as a polymetal structure. Normally, in the case of forming an electrode pattern consisting of a single layer of a polycrystalline silicon film, the polycrystalline silicon film is anisotropically and selectively processed with respect to an etching mask, and the polycrystalline silicon film is formed with a high selectivity with respect to a thin gate oxide film as an underlayer. The silicon film must be etched. In addition, when forming a polymetal electrode pattern composed of a refractory metal film and a polycrystalline silicon film, it is necessary to selectively etch the refractory metal film with respect to the polycrystalline silicon film and the thin oxide film.
【0013】しかしながら、現在用いられているエッチ
ング技術では、多結晶ケイ素膜に対し高融点金属膜を選
択的にエッチングすることができないために、高融点金
属膜をエッチングする段階で、下層にある多結晶ケイ素
膜が大幅に削られ、最悪の場合にはシリコン基板までエ
ッチングされる。However, the etching technique currently used cannot selectively etch the high melting point metal film with respect to the polycrystalline silicon film. The crystalline silicon film is greatly shaved and, in the worst case, is etched down to the silicon substrate.
【0014】さらに、金属膜は比較的大きな粒径を有
し、その値は0.1μm以上にもなる。一般にドライエ
ッチングは粒界部分で進行しやすく、パターンの長手方
向は直線状にエッチングされず、ぎざぎざな形状にな
る。パターン寸法が0.2μm程度の世代になると、こ
のぎざぎざは無視できず、配線の寸法バラツキ要因とな
るため、トランジスタの動作特性に多大な悪影響を与え
る。本発明は、上記問題を考慮してなされたもので、信
頼性向上とRC遅延の低減を可能とする半導体装置及び
その製造方法を提供することにある。Further, the metal film has a relatively large particle size, and the value is as large as 0.1 μm or more. Generally, dry etching easily proceeds at a grain boundary portion, and the pattern is not etched linearly in the longitudinal direction, but has a jagged shape. When the pattern size reaches the generation of about 0.2 μm, the jaggedness cannot be ignored and causes a variation in the size of the wiring, which greatly affects the operation characteristics of the transistor. SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide a semiconductor device capable of improving reliability and reducing RC delay, and a method of manufacturing the same.
【0015】[0015]
【課題を解決するための手段】本発明に係る半導体装置
は、高融点金属膜を含む配線及び電極が高融点金属膜に
対し熱膨張係数の近い絶縁膜で覆われていることを特徴
とする。本発明に係る半導体装置の製造方法は、高融点
金属膜を含む配線及び電極パターンの形成に際し、前記
高融点金属膜に対して熱膨張係数の近い絶縁膜を基板上
に堆積すると共に前記絶縁膜に溝を形成する工程と、前
記絶縁膜上に反応障壁層及び前記高融点金属膜を順に堆
積し、前記溝を埋め込む工程と、前記反応障壁層及び前
記高融点金属膜を平坦化する工程と、を具備することを
特徴とする。A semiconductor device according to the present invention is characterized in that wirings and electrodes including a high melting point metal film are covered with an insulating film having a thermal expansion coefficient close to that of the high melting point metal film. . In the method of manufacturing a semiconductor device according to the present invention, when forming a wiring and an electrode pattern including a high melting point metal film, an insulating film having a thermal expansion coefficient close to that of the high melting point metal film is deposited on a substrate and the insulating film Forming a groove on the insulating film, sequentially depositing a reaction barrier layer and the refractory metal film on the insulating film, filling the groove, and planarizing the reaction barrier layer and the refractory metal film. , Is provided.
【0016】本発明に係る半導体装置の製造方法のある
態様において、前記溝を形成する工程が、多結晶ケイ素
膜を基板上に堆積する工程と、前記多結晶ケイ素膜上に
酸化ケイ素膜を形成する工程と、前記多結晶ケイ素膜及
び前記酸化ケイ素膜からなる積層膜をパターニングする
工程と、パターニングされた前記積層膜を含む前記基板
上に前記絶縁膜を堆積する工程と、前記絶縁膜を平坦化
する工程と、前記酸化ケイ素膜を選択的に除去する工程
と、を具備する。この場合、前記多結晶ケイ素膜の堆積
後でかつ前記酸化ケイ素膜の堆積前に、前記多結晶ケイ
素膜を平坦化する工程をさらに具備することができる。In one embodiment of the method of manufacturing a semiconductor device according to the present invention, the step of forming the groove includes the steps of: depositing a polycrystalline silicon film on a substrate; and forming a silicon oxide film on the polycrystalline silicon film. Performing a step of patterning a laminated film including the polycrystalline silicon film and the silicon oxide film; a step of depositing the insulating film on the substrate including the patterned laminated film; and planarizing the insulating film. And a step of selectively removing the silicon oxide film. In this case, the method may further include a step of flattening the polycrystalline silicon film after depositing the polycrystalline silicon film and before depositing the silicon oxide film.
【0017】本発明に係る半導体装置の製造方法の別の
態様において、前記溝を形成する工程が、多結晶ケイ素
膜を基板上に堆積する工程と、前記多結晶ケイ素膜をパ
ターニングする工程と、パターニングされた前記多結晶
ケイ素膜を含む前記基板上に前記絶縁膜を堆積する工程
と、パターニングされた前記多結晶ケイ素膜が露出する
ように前記絶縁膜を平坦化する工程と、パターニングさ
れた前記多結晶ケイ素膜を酸化雰囲気に曝し、該多結晶
ケイ素膜上に酸化ケイ素膜を形成する工程と、前記酸化
ケイ素膜を選択的に除去する工程と、を具備する。In another aspect of the method for manufacturing a semiconductor device according to the present invention, the step of forming the groove includes the steps of: depositing a polycrystalline silicon film on a substrate; and patterning the polycrystalline silicon film. Depositing the insulating film on the substrate including the patterned polycrystalline silicon film, flattening the insulating film so that the patterned polycrystalline silicon film is exposed, and The method includes the steps of: exposing a polycrystalline silicon film to an oxidizing atmosphere to form a silicon oxide film on the polycrystalline silicon film; and selectively removing the silicon oxide film.
【0018】[0018]
【作用】本発明によれば、高融点金属の周辺は熱膨張係
数の近い材料で囲まれており、熱膨張にともなう内部ス
トレスは生じにくい。よって、本構造を採用することに
より、電極側面に加わるストレスを大幅に低減可能であ
り、ゲート酸化膜の信頼性向上が可能となる。According to the present invention, the periphery of the high melting point metal is surrounded by a material having a close thermal expansion coefficient, so that internal stress due to thermal expansion hardly occurs. Therefore, by employing this structure, the stress applied to the electrode side surface can be significantly reduced, and the reliability of the gate oxide film can be improved.
【0019】また、本発明によれば、上述した構造の電
極及び配線を具備する半導体装置の製造に際し、底部に
多結晶ケイ素膜を有する絶縁膜の溝内部に反応障壁層及
び高融点金属膜を埋め込むことにより、高融点金属膜と
反応障壁層と多結晶ケイ素膜とからなる構造を形成する
ことが可能となる。According to the present invention, a reaction barrier layer and a refractory metal film are formed inside a groove of an insulating film having a polycrystalline silicon film at the bottom when a semiconductor device having the electrodes and wirings having the above-described structures is manufactured. By embedding, it becomes possible to form a structure composed of a refractory metal film, a reaction barrier layer, and a polycrystalline silicon film.
【0020】なお、酸化ケイ素膜と多結晶ケイ素膜とを
同一のレジストパターンでエッチングし、窒化ケイ素膜
で全面を覆い平坦化した後、酸化膜のみを選択的に除去
することにより、多結晶ケイ素膜上に選択的に溝を形成
することが可能であり、よって、自己整合的に反応障壁
層及び高融点金属膜を埋め込むことができる。The polycrystalline silicon film is etched by etching the silicon oxide film and the polycrystalline silicon film with the same resist pattern, covering the entire surface with a silicon nitride film and flattening, and selectively removing only the oxide film. Grooves can be selectively formed on the film, so that the reaction barrier layer and the refractory metal film can be embedded in a self-aligned manner.
【0021】つまり、本発明よれば多結晶ケイ素膜とそ
の上層の反応障壁層及び高融点金属膜との合わせズレと
いった問題は発生しない。さらに、高融点金属膜の堆積
前に後酸化工程を行うことが可能であり、酸化膜の信頼
性向上を図ることができるとともに、上述した選択酸化
といった特殊な酸化技術を必要としない。That is, according to the present invention, the problem of misalignment between the polycrystalline silicon film and the overlying reaction barrier layer and refractory metal film does not occur. Furthermore, a post-oxidation step can be performed before the deposition of the refractory metal film, so that the reliability of the oxide film can be improved and the special oxidation technique such as the selective oxidation described above is not required.
【0022】また、イオン注入後の加熱処理を行う際に
も、高融点金属膜の堆積前に行うことが可能であり、残
留酸素の影響を心配する必要はない。さらに、高融点金
属膜は溝埋め込みによって形成するため、高融点金属膜
を下地多結晶ケイ素膜に対し選択的にエッチングする必
要もなく、異方性エッチングについて言えば多結晶ケイ
素膜単層のパターン形成と変わらない。また、本方法に
よれば、配線は金属膜のエッチングに特有のぎざぎざな
形状にならないため、寸法バラツキを低減することがで
きる。Also, when performing the heat treatment after the ion implantation, the heat treatment can be performed before the deposition of the refractory metal film, and there is no need to worry about the influence of the residual oxygen. Further, since the refractory metal film is formed by filling the groove, it is not necessary to selectively etch the refractory metal film with respect to the underlying polycrystalline silicon film. Same as formation. Further, according to the present method, since the wiring does not have a jagged shape peculiar to the etching of the metal film, the dimensional variation can be reduced.
【0023】[0023]
【実施例】以下、図面を参照して本発明の実施例を説明
する。 (実施例1)図1乃至図4は本発明の第1実施例に係る
半導体装置の製造方法を工程順に示す断面図である。よ
り具体的には、本実施例は、MOS型電界効果トランジ
スタのゲート電極パターンの形成に関する。Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIGS. 1 to 4 are sectional views showing a method of manufacturing a semiconductor device according to a first embodiment of the present invention in the order of steps. More specifically, the present embodiment relates to formation of a gate electrode pattern of a MOS field effect transistor.
【0024】まず、図1(a)に示すように、単結晶シ
リコンからなる基板100上に、ゲート絶縁膜として薄
い酸化膜101(膜厚7nm)を形成した後、その上に
化学的気相成長(CVD)法を用いて多結晶ケイ素膜1
02(膜厚100nm)を堆積した。次に、多結晶ケイ
素膜上にCVD法により酸化ケイ素膜103(膜厚10
0nm)を堆積した。なお、酸化ケイ素膜103は、P
やB等を含むドープ・ガラスやTEOS膜でも良い。こ
の後、酸化ケイ素膜上にフォトレジスト(膜厚1μm)
をスピンコート法により塗布した後、このフォトレジス
トをフォトマスクを通して露光し、現像して、例えば
0.25μm幅のレジストパターン104を形成した。First, as shown in FIG. 1A, a thin oxide film 101 (7 nm thick) is formed as a gate insulating film on a substrate 100 made of single crystal silicon, and then a chemical vapor phase is formed thereon. Polycrystalline silicon film 1 using growth (CVD) method
02 (film thickness 100 nm) was deposited. Next, a silicon oxide film 103 (with a film thickness of 10) is formed on the polycrystalline silicon film by a CVD method.
0 nm). Note that the silicon oxide film 103 is made of P
Or a doped glass containing TE or B or a TEOS film. Then, a photoresist (1 μm thick) is formed on the silicon oxide film.
Was applied by a spin coat method, and the photoresist was exposed through a photomask and developed to form a resist pattern 104 having a width of, for example, 0.25 μm.
【0025】次に、図1(b)に示すように、ドライエ
ッチング装置を用いて、レジストパターン104に沿っ
て酸化ケイ素膜103をエッチングした。このときのエ
ッチング条件は、電力密度2.9W/cm2 、圧力50
mTorr、流量CHF3 /CF4 =74/78SCC
Mとし、電極温度は35℃に保持した。Next, as shown in FIG. 1B, the silicon oxide film 103 was etched along the resist pattern 104 using a dry etching apparatus. The etching conditions at this time are as follows: power density 2.9 W / cm 2, pressure 50
mTorr, flow rate CHF3 / CF4 = 74/78 SCC
M and the electrode temperature was kept at 35 ° C.
【0026】さらに、図1(c)に示すように、レジス
ト104及び酸化ケイ素膜103をマスクパターンとし
て多結晶ケイ素膜102をエッチングした。エッチング
条件は、電力密度0.8W/cm2 、圧力75mTor
r、流量HBr=100SCCMとし、電極温度は65
℃に保持した。なお、残存したレジストパターン104
は多結晶ケイ素膜102のエッチング後にO2 アッシン
グにより剥離した。Further, as shown in FIG. 1C, the polycrystalline silicon film 102 was etched using the resist 104 and the silicon oxide film 103 as a mask pattern. The etching conditions are a power density of 0.8 W / cm @ 2, a pressure of 75 mTorr.
r, the flow rate HBr = 100 SCCM, and the electrode temperature is 65
C. was maintained. Note that the remaining resist pattern 104
Was removed by O2 ashing after etching the polycrystalline silicon film 102.
【0027】この後、図2(d)に示すように、多結晶
ケイ素膜102のエッチング時に削られた薄い酸化ケイ
素膜101の回復と多結晶ケイ素膜102のコーナー部
分105を丸めるため、後酸化工程と呼ばれる酸化を行
った。これにより、ゲート酸化膜101は元の膜厚まで
回復し、かつ多結晶ケイ素膜102のコーナー部分10
5が丸められる。この結果、ゲート電極のコーナー部分
105における電界集中が避けられ、さらにはゲート酸
化膜101の信頼性が向上する。Thereafter, as shown in FIG. 2D, post-oxidation is performed to recover the thin silicon oxide film 101 shaved during the etching of the polycrystalline silicon film 102 and to round the corner portion 105 of the polycrystalline silicon film 102. An oxidation called process was performed. As a result, the gate oxide film 101 recovers to its original thickness, and the corner portion 10 of the polycrystalline silicon film 102
5 is rounded. As a result, electric field concentration at the corner portion 105 of the gate electrode is avoided, and the reliability of the gate oxide film 101 is further improved.
【0028】図2(e)に示すように、この上から、イ
オン注入法により例えばAs+ イオンを加速電圧30k
eV、注入量3×1014cm-2の条件で基板へドーピン
グを行い、さらに例えば窒素雰囲気中で900℃30秒
程度の加熱処理を行い、N型拡散層106を形成した。As shown in FIG. 2 (e), for example, As.sup. +
The substrate was doped under the conditions of eV and an implantation amount of 3 × 10 14 cm −2, and further, a heat treatment was performed at 900 ° C. for about 30 seconds in, for example, a nitrogen atmosphere to form an N-type diffusion layer 106.
【0029】次に、図2(f)に示すように、その上に
CVD法により窒化ケイ素膜107(膜厚150nm)
を堆積した。窒化ケイ素膜は高融点金属膜に熱膨張係数
の近い材料である。窒化ケイ素膜107をドライエッチ
ング法によりエッチバックし、酸化ケイ素膜103と多
結晶ケイ素膜102の側壁にのみ残した。エッチング条
件は電力密度0.8W/cm2 、圧力20mTorr、
流量CHF3 /CF4=74/78SCCMとし、電極
温度は60℃に保持した。なお、側壁部分107の膜厚
は約50nmであった。Next, as shown in FIG. 2F, a silicon nitride film 107 (150 nm thick) is formed thereon by the CVD method.
Was deposited. The silicon nitride film is a material having a thermal expansion coefficient close to that of the high melting point metal film. The silicon nitride film 107 was etched back by a dry etching method, and was left only on the side walls of the silicon oxide film 103 and the polycrystalline silicon film 102. The etching conditions were a power density of 0.8 W / cm 2, a pressure of 20 mTorr,
The flow rate was CHF3 / CF4 = 74/78 SCCM, and the electrode temperature was maintained at 60.degree. The thickness of the side wall portion 107 was about 50 nm.
【0030】さらに、図3(g)に示すように、この上
から、イオン注入法により例えばAs+ イオンを加速電
圧45keV、注入量3×1015cm-2の条件で基板へ
ドーピングを行い、さらに例えば窒素雰囲気中で800
℃30分程度の加熱処理を行い、N+ 拡散層108を形
成した。Further, as shown in FIG. 3 (g), the substrate is doped with As.sup. + Ions from above by ion implantation under the conditions of an acceleration voltage of 45 keV and a dose of 3.times.10@15 cm @ -2. 800 in nitrogen atmosphere
A heat treatment at about 30 ° C. was performed to form an N + diffusion layer 108.
【0031】この後、図3(h)に示すように、高融点
金属膜に対し熱膨張係数の近い絶縁膜により囲むため、
この上に再度CVD法により窒化ケイ素膜109(膜厚
400nm)を堆積した。次に、窒化ケイ素膜109を
平坦化するために、その上にレジストをスピンコート法
により塗布し、窒化ケイ素膜109を酸化ケイ素膜の上
面が現れる高さまでエッチバックを行った。なお、窒化
ケイ素膜109の平坦化を行う方法として、エッチバッ
クの他に、化学的機械研磨(CMP)法によっても可能
である。Thereafter, as shown in FIG. 3 (h), the refractory metal film is surrounded by an insulating film having a thermal expansion coefficient close to that of the refractory metal film.
On this, a silicon nitride film 109 (thickness: 400 nm) was deposited again by the CVD method. Next, in order to flatten the silicon nitride film 109, a resist was applied thereon by spin coating, and the silicon nitride film 109 was etched back to a height at which the upper surface of the silicon oxide film appeared. Note that, as a method of flattening the silicon nitride film 109, a chemical mechanical polishing (CMP) method can be used instead of the etch back.
【0032】次に、図3(i)に示すように、多結晶ケ
イ素膜102上の酸化ケイ素膜103をドライエッチン
グにより窒化ケイ素膜109に対して選択的に除去し
た。エッチング条件は、電力密度2.9W/cm2 、圧
力40mTorr、流量C4 F8 /CO/Ar=10/
100/200SCCMとし、電極温度は30℃に保持
した。このとき、酸化ケイ素膜103は約400nm/
分でエッチングされるのに対し、窒化ケイ素膜109は
約20nm/分でエッチングされたため、酸化ケイ素膜
103の窒化ケイ素膜109に対する選択比は約20で
あった。なお、窒化ケイ素膜109に対し、酸化ケイ素
膜103を選択的に除去する方法として、例えば5%ま
で希釈したフッ化水素酸(HF)水溶液に被処理基板を
浸すことでも可能である。Next, as shown in FIG. 3I, the silicon oxide film 103 on the polycrystalline silicon film 102 was selectively removed from the silicon nitride film 109 by dry etching. The etching conditions were a power density of 2.9 W / cm 2, a pressure of 40 mTorr, and a flow rate of C 4 F 8 / CO / Ar = 10 /.
The electrode temperature was kept at 30 ° C. at 100/200 SCCM. At this time, the silicon oxide film 103 has a thickness of about 400 nm /
In contrast, the silicon nitride film 109 was etched at about 20 nm / min, whereas the selectivity of the silicon oxide film 103 to the silicon nitride film 109 was about 20. Note that as a method for selectively removing the silicon oxide film 103 from the silicon nitride film 109, for example, the substrate to be processed can be immersed in a hydrofluoric acid (HF) aqueous solution diluted to 5%.
【0033】この結果、図3(i)に示すように、基板
100上に多結晶ケイ素膜102を底部に持った窒化ケ
イ素膜109からなる溝110が形成された。次に、図
4(j)に示すように、その上からN2 /Ar混合ガス
を用い反応性スパッタリング法により窒化タングステン
膜111(膜厚10nm)を全面に堆積した。なお、窒
化タングステン膜111は、タングステン膜112と多
結晶ケイ素膜102との間の反応障壁層として用いた。
次いでCVD法によりタングステン膜112を溝110
を埋め込むように堆積した。As a result, as shown in FIG. 3I, a groove 110 made of a silicon nitride film 109 having a polycrystalline silicon film 102 at the bottom was formed on the substrate 100. Next, as shown in FIG. 4 (j), a tungsten nitride film 111 (thickness: 10 nm) was deposited on the entire surface by a reactive sputtering method using an N2 / Ar mixed gas. Note that the tungsten nitride film 111 was used as a reaction barrier layer between the tungsten film 112 and the polycrystalline silicon film 102.
Next, a tungsten film 112 is formed in the groove 110 by CVD.
Was deposited so as to be embedded.
【0034】図4(k)に示すように、ドライエッチン
グ法により、タングステン膜112及び窒化タングステ
ン膜111を窒化ケイ素膜109が露出するまでエッチ
バックした。エッチング条件は、電力密度1.5W/c
m2 、圧力40mTorr、流量SF6 /O2 =25/
75SCCMとし、電極温度は80℃に保持した。な
お、タングステン膜112及び窒化タングステン膜11
1の平坦化を行う方法として、エッチバックの他に、C
MP法によっても可能である。As shown in FIG. 4K, the tungsten film 112 and the tungsten nitride film 111 were etched back by a dry etching method until the silicon nitride film 109 was exposed. The etching condition is a power density of 1.5 W / c.
m2, pressure 40 mTorr, flow rate SF6 / O2 = 25 /
75 SCCM, and the electrode temperature was kept at 80 ° C. The tungsten film 112 and the tungsten nitride film 11
As a method for performing the flattening of No. 1, in addition to the etch back,
It is also possible by the MP method.
【0035】この結果、溝内部にのみタングステン膜1
12及び窒化タングステン膜111が残り、窒化ケイ素
膜で囲まれた高融点金属膜と反応障壁層と多結晶ケイ素
膜とからなるゲート電極パターンが形成された。As a result, the tungsten film 1 is formed only inside the trench.
12 and the tungsten nitride film 111 remained, and a gate electrode pattern composed of a refractory metal film surrounded by a silicon nitride film, a reaction barrier layer, and a polycrystalline silicon film was formed.
【0036】このように、本実施例では、高融点金属膜
及び多結晶ケイ素膜の側面は窒化ケイ素膜により覆われ
ている。電極とそれを覆う絶縁膜との間に働くストレス
は電極自体に悪影響を及ぼすだけでなく、本実施例のよ
うにMOS型トランジスタのゲート電極に用いた場合に
は、電極直下にある薄い酸化膜の信頼性劣化を招く恐れ
がある。材料の熱膨張係数をぞれぞれ示すと、高融点金
属膜、例えばタングステンは約1×1010dyn/cm
2 、多結晶ケイ素膜のそれは約8×109 dyn/cm
2 である。なお、反応障壁層、例えば窒化タングステン
膜はタングステン膜とほぼ同様な値である。これに対
し、通常、絶縁膜として用いれられる酸化ケイ素膜は約
5×108 dyn/cm2 であり、高融点金属膜とは一
桁程度小さく、酸化ケイ素膜と高融点金属膜との間に大
きなストレスが加わる。しかし、窒化ケイ素膜の熱膨張
係数はタングステンに近く、その値は約8×109 dy
n/cm2 であるため、高融点金属膜の側壁を窒化ケイ
素膜で囲むことにより、電極及び配線に加わるストレス
を大幅に緩和することが可能となる。As described above, in this embodiment, the side surfaces of the refractory metal film and the polycrystalline silicon film are covered with the silicon nitride film. The stress acting between the electrode and the insulating film covering it not only has a bad effect on the electrode itself, but also when used for the gate electrode of a MOS transistor as in this embodiment, a thin oxide film just under the electrode There is a possibility that the reliability may be deteriorated. When the coefficient of thermal expansion of each material is shown, a refractory metal film, for example, tungsten is about 1 × 10 10 dyn / cm.
2. The polycrystalline silicon film has a thickness of about 8.times.10@9 dyn / cm.
2 The value of a reaction barrier layer, for example, a tungsten nitride film is almost the same as that of a tungsten film. On the other hand, a silicon oxide film usually used as an insulating film is about 5.times.10@8 dyn / cm @ 2, which is smaller by about an order of magnitude than a refractory metal film, and has a large stress between the silicon oxide film and the refractory metal film. Is added. However, the thermal expansion coefficient of the silicon nitride film is close to that of tungsten, and its value is about 8 × 10 9 dy.
Since it is n / cm2, the stress applied to the electrodes and the wiring can be greatly reduced by surrounding the side wall of the refractory metal film with the silicon nitride film.
【0037】なお、本実施例では高融点金属膜としてタ
ングステン(W)を用いたが、この他にモリブデン(M
o)、ニオブ(Nb)、タンタル(Ta)でも良い。ま
た、反応障壁層として窒化タングステン膜を用いたが、
高融点金属膜の窒化物、窒化酸化物、炭化物、ホウ化物
でも良い。さらに、窒化ケイ素膜、炭化ケイ素膜も反応
障壁層として利用可能である。In this embodiment, tungsten (W) is used as the refractory metal film.
o), niobium (Nb), and tantalum (Ta). Although a tungsten nitride film was used as a reaction barrier layer,
A refractory metal film nitride, nitrided oxide, carbide, or boride may be used. Furthermore, a silicon nitride film and a silicon carbide film can also be used as a reaction barrier layer.
【0038】また、本実施例では、高融点金属膜に熱膨
張係数の近い絶縁膜として、窒化ケイ素膜を用いたが、
窒化酸化ケイ素膜(オキシナイトライド)でも良い。 (実施例2)図5乃至図8は本発明の第2実施例に係る
半導体装置の製造方法を工程順に示す断面図である。よ
り具体的には、本実施例は、MOS型電界効果トランジ
スタのゲート電極パターンの形成に関する。In this embodiment, the silicon nitride film is used as the insulating film having a thermal expansion coefficient close to that of the high melting point metal film.
A silicon nitride oxide film (oxynitride) may be used. (Embodiment 2) FIGS. 5 to 8 are sectional views showing a method of manufacturing a semiconductor device according to a second embodiment of the present invention in the order of steps. More specifically, the present embodiment relates to formation of a gate electrode pattern of a MOS field effect transistor.
【0039】まず、図5(a)に示すように、素子分離
201を有する基板200上に、ゲート絶縁膜として薄
い酸化ケイ素膜202(膜厚7nm)を形成した後、そ
の上に化学的気相成長(CVD)法を用いて多結晶ケイ
素膜203(膜厚200nm)を堆積した。この後、多
結晶ケイ素膜203上にフォトレジスト(膜厚1μm)
をスピンコート法により塗布した後、このフォトレジス
トをフォトマスクを通して露光し、現像して、レジスト
パターン204を形成した。First, as shown in FIG. 5A, a thin silicon oxide film 202 (thickness: 7 nm) is formed as a gate insulating film on a substrate 200 having an element isolation 201, and then a chemical vapor is formed thereon. A polycrystalline silicon film 203 (thickness: 200 nm) was deposited using a phase growth (CVD) method. Thereafter, a photoresist (1 μm thick) is formed on the polycrystalline silicon film 203.
Was applied by spin coating, and the photoresist was exposed through a photomask and developed to form a resist pattern 204.
【0040】次に、図5(b)に示すように、ドライエ
ッチング装置を用いて、レジストパターン204に沿っ
て多結晶ケイ素膜203をエッチングした。なお、残存
したレジストパターン204は多結晶ケイ素膜203の
エッチング後にO2 アッシングにより剥離した。Next, as shown in FIG. 5B, the polycrystalline silicon film 203 was etched along the resist pattern 204 using a dry etching apparatus. Note that the remaining resist pattern 204 was peeled off by O2 ashing after etching the polycrystalline silicon film 203.
【0041】この後、図5(c)に示すように、多結晶
ケイ素膜203のエッチング時に削られた薄い酸化ケイ
素膜202の回復と多結晶ケイ素膜のコーナー部分を丸
めるため、後酸化を行った。この上から、イオン注入法
により例えばAs+ イオンを加速電圧30keV、注入
量3×1014cm-2の条件で基板200へドーピングを
行い、N型拡散層205を形成した。Thereafter, as shown in FIG. 5 (c), post-oxidation is performed to recover the thin silicon oxide film 202 shaved during the etching of the polycrystalline silicon film 203 and to round the corners of the polycrystalline silicon film. Was. From above, the substrate 200 was doped with, for example, As @ + ions by an ion implantation method under the conditions of an acceleration voltage of 30 keV and a dose of 3.times.10@14 cm @ -2 to form an N-type diffusion layer 205.
【0042】次に、図6(d)に示すように、CVD法
により窒化ケイ素膜206(膜厚150nm)を堆積し
た。窒化ケイ素膜206をドライエッチング法によりエ
ッチバックし、多結晶ケイ素膜203の側壁にのみ残し
た。Next, as shown in FIG. 6D, a silicon nitride film 206 (150 nm thick) was deposited by the CVD method. The silicon nitride film 206 was etched back by a dry etching method, and was left only on the side walls of the polycrystalline silicon film 203.
【0043】さらに、図6(e)に示すように、この上
から、イオン注入法により例えばAs+ イオンを加速電
圧45keV、注入量3×1015cm-2の条件で基板へ
ドーピングを行い、N+ 拡散層207を形成した。Further, as shown in FIG. 6 (e), the substrate is doped with As + ions from above by ion implantation under the conditions of an acceleration voltage of 45 keV and a dose of 3.times.10@15 cm @ -2. The diffusion layer 207 was formed.
【0044】この後、図6(f)に示すように、高融点
金属膜に対し熱膨張係数の近い絶縁膜により囲むため、
この上に再度CVD法により窒化ケイ素膜208(膜厚
400nm)を堆積した。次いで、窒化ケイ素膜208
と多結晶ケイ素膜203を平坦化するために、その上に
レジストをスピンコート法により塗布し、薄い酸化膜2
02上の多結晶ケイ素膜203の高さまで平坦化を行っ
た。Thereafter, as shown in FIG. 6 (f), the refractory metal film is surrounded by an insulating film having a thermal expansion coefficient close to that of the refractory metal film.
On this, a silicon nitride film 208 (thickness: 400 nm) was deposited again by the CVD method. Next, the silicon nitride film 208
In order to planarize the polycrystalline silicon film 203, a resist is applied thereon by spin coating, and a thin oxide film 2 is formed.
The surface was planarized to the height of the polycrystalline silicon film 203 on the substrate 02.
【0045】次に、図7(g)に示すように、酸素雰囲
気中で多結晶ケイ素膜203を膜厚約100nm相当分
だけ酸化させ、多結晶ケイ素膜203上に酸化ケイ素膜
209を形成した。このとき、素子分離領域201上の
多結晶ケイ素膜203はほとんど残らないが、薄い酸化
膜202上は膜厚100nmの多結晶ケイ素膜203が
残る。Next, as shown in FIG. 7G, the polycrystalline silicon film 203 was oxidized in an oxygen atmosphere by a thickness corresponding to about 100 nm to form a silicon oxide film 209 on the polycrystalline silicon film 203. . At this time, the polycrystalline silicon film 203 on the element isolation region 201 hardly remains, but the polycrystalline silicon film 203 having a thickness of 100 nm remains on the thin oxide film 202.
【0046】この後、図7(h)に示すように、酸化ケ
イ素膜209のみをドライエッチングにより窒化ケイ素
膜208に対して選択的に除去した。この結果、素子分
離領域201を有する基板200上に多結晶ケイ素膜2
03を底部に持った窒化ケイ素膜208からなる溝が形
成された。Thereafter, as shown in FIG. 7H, only the silicon oxide film 209 was selectively removed from the silicon nitride film 208 by dry etching. As a result, the polycrystalline silicon film 2 is formed on the substrate 200 having the element isolation region 201.
A groove made of a silicon nitride film 208 having 03 at the bottom was formed.
【0047】図7(i)に示すように、その上からN2
/Ar混合ガスを用い反応性スパッタリング法により窒
化タングステン膜210(膜厚10nm)を全面に堆積
し、次いでCVD法によりタングステン膜211を溝を
埋め込むように堆積した。As shown in FIG. 7 (i), N2
A tungsten nitride film 210 (thickness: 10 nm) was deposited on the entire surface by a reactive sputtering method using a mixed gas of / Ar, and a tungsten film 211 was deposited by a CVD method so as to fill the trench.
【0048】その後、図8(j)に示すように、ドライ
エッチングにより、タングステン膜211及び窒化タン
グステン膜210を窒化ケイ素膜208が露出するまで
エッチバックした。この結果、溝内部にのみタングステ
ン膜211及び窒化タングステン膜210が残り、高融
点金属膜及び反応障壁層と多結晶ケイ素膜とからなるゲ
ート電極パターンが形成された。Thereafter, as shown in FIG. 8J, the tungsten film 211 and the tungsten nitride film 210 were etched back by dry etching until the silicon nitride film 208 was exposed. As a result, the tungsten film 211 and the tungsten nitride film 210 remained only inside the trench, and a gate electrode pattern composed of the refractory metal film, the reaction barrier layer, and the polycrystalline silicon film was formed.
【0049】なお、素子分離領域201上は多結晶ケイ
素膜203がほとんど残らないが、ゲート電極自体はタ
ングステン膜211で電気的につながっており、トラン
ジスタの動作特性に支障は無い。 (実施例3)図9乃至図12は本発明の第3実施例に係
る半導体装置の製造方法を工程順に示す断面図である。
より具体的には、本実施例は、MOS型電界効果トラン
ジスタのゲート電極パターンの形成に関する。Although the polycrystalline silicon film 203 hardly remains on the element isolation region 201, the gate electrode itself is electrically connected by the tungsten film 211, and there is no problem in the operation characteristics of the transistor. (Embodiment 3) FIGS. 9 to 12 are sectional views showing a method of manufacturing a semiconductor device according to a third embodiment of the present invention in the order of steps.
More specifically, the present embodiment relates to formation of a gate electrode pattern of a MOS field effect transistor.
【0050】まず、図9(a)に示すように、素子分離
領域301を有する基板300上に、ゲート絶縁膜とし
て薄い酸化膜302(膜厚7nm)を形成した後、その
上に化学的気相成長(CVD)法を用いて多結晶ケイ素
膜303(膜厚100nm)を堆積した。First, as shown in FIG. 9A, a thin oxide film 302 (thickness: 7 nm) is formed as a gate insulating film on a substrate 300 having an element isolation region 301, and then a chemical gas is formed thereon. A polycrystalline silicon film 303 (thickness: 100 nm) was deposited using a phase growth (CVD) method.
【0051】この後、図9(b)に示すように、素子分
離301の高さまで多結晶ケイ素膜303をCMP法に
より平坦化した。なお、多結晶ケイ素膜303の平坦化
を行う方法として、CMP法の他にエッチバックにても
可能である。Thereafter, as shown in FIG. 9B, the polycrystalline silicon film 303 was flattened to the height of the element isolation 301 by the CMP method. In addition, as a method of flattening the polycrystalline silicon film 303, an etch back can be used instead of the CMP method.
【0052】次に、図9(c)に示すように、多結晶ケ
イ素膜303上にCVD法により酸化ケイ素膜304
(膜厚100nm)を堆積した。この後、酸化ケイ素膜
304上にレジストパターン305を形成した。Next, as shown in FIG. 9C, a silicon oxide film 304 is formed on the polycrystalline silicon film 303 by CVD.
(Thickness: 100 nm). Thereafter, a resist pattern 305 was formed on the silicon oxide film 304.
【0053】次に、図10(d)に示すように、ドライ
エッチング装置を用いて、レジストパターン305に沿
って酸化ケイ素膜304及び多結晶ケイ素膜303をエ
ッチングした。なお、残存したレジストパターン305
は多結晶ケイ素膜303のエッチング後にO2 アッシン
グにより剥離した。Next, as shown in FIG. 10D, the silicon oxide film 304 and the polycrystalline silicon film 303 were etched along the resist pattern 305 using a dry etching apparatus. Note that the remaining resist pattern 305
Was removed by O2 ashing after etching the polycrystalline silicon film 303.
【0054】この後、図10(e)に示すように、多結
晶ケイ素膜303のエッチング時に削られた薄い酸化膜
302の回復と多結晶ケイ素膜のコーナー部分を丸める
ため、後酸化を行った。さらに、この上から、イオン注
入法により例えばAs+ イオンを加速電圧30keV、
注入量3×1014cm-2の条件で基板300へドーピン
グを行い、N型拡散層306を形成した。Thereafter, as shown in FIG. 10E, post-oxidation was performed in order to recover the thin oxide film 302 shaved during the etching of the polycrystalline silicon film 303 and to round the corners of the polycrystalline silicon film. . Further, from above, for example, As @ + ions were accelerated by ion implantation at an acceleration voltage of 30 keV,
The substrate 300 was doped under the conditions of an implantation amount of 3 × 10 14 cm −2 to form an N-type diffusion layer 306.
【0055】次に、図10(f)に示すように、CVD
法により窒化ケイ素膜307(膜厚150nm)を堆積
した。窒化ケイ素膜307をドライエッチング法により
エッチバックし、酸化ケイ素膜304と多結晶ケイ素膜
303の側壁にのみ残した。Next, as shown in FIG.
A silicon nitride film 307 (film thickness 150 nm) was deposited by the method. The silicon nitride film 307 was etched back by a dry etching method, and was left only on the side walls of the silicon oxide film 304 and the polycrystalline silicon film 303.
【0056】さらに、図11(g)に示すように、この
上から、イオン注入法により例えばAs+ イオンを加速
電圧45keV、注入量3×1015cm-2の条件で基板
300へドーピングを行い、N+ 拡散層308を形成し
た。Further, as shown in FIG. 11 (g), the substrate 300 is doped from above with, for example, As + ions by ion implantation under the conditions of an acceleration voltage of 45 keV and a dose of 3.times.10@15 cm @ -2. + A diffusion layer 308 was formed.
【0057】この後、図11(h)に示すように、高融
点金属膜に対し熱膨張係数の近い絶縁膜により囲むた
め、この上に再度CVD法により窒化ケイ素膜309
(膜厚400nm)を堆積した。次に、窒化ケイ素膜3
09を平坦化するために、その上にレジストをスピンコ
ート法により塗布し、窒化ケイ素膜309を酸化ケイ素
膜304の上面が現れる高さまでエッチバックを行っ
た。Thereafter, as shown in FIG. 11H, the silicon nitride film 309 is again formed thereon by a CVD method so as to be surrounded by an insulating film having a thermal expansion coefficient close to that of the refractory metal film.
(Thickness: 400 nm). Next, the silicon nitride film 3
In order to flatten 09, a resist was applied thereon by spin coating, and the silicon nitride film 309 was etched back to a height at which the upper surface of the silicon oxide film 304 appeared.
【0058】次に、図11(i)に示すように、多結晶
ケイ素膜303上の酸化ケイ素膜304をドライエッチ
ングにより窒化ケイ素膜309に対して選択的に除去し
た。この結果、多結晶ケイ素膜303を底部に持った窒
化ケイ素膜309からなる溝が形成された。Next, as shown in FIG. 11I, the silicon oxide film 304 on the polycrystalline silicon film 303 was selectively removed from the silicon nitride film 309 by dry etching. As a result, a groove made of the silicon nitride film 309 having the polycrystalline silicon film 303 at the bottom was formed.
【0059】さらに、図12(j)に示すように、その
上から反応性スパッタリング法により窒化タングステン
膜310(膜厚10nm)を、次いでCVD法によりタ
ングステン膜311を溝を埋め込むように堆積した。Further, as shown in FIG. 12J, a tungsten nitride film 310 (thickness: 10 nm) was deposited thereon by a reactive sputtering method, and then a tungsten film 311 was deposited by a CVD method so as to fill the grooves.
【0060】その後、図12(k)に示すように、ドラ
イエッチングにより、タングステン膜311及び窒化タ
ングステン膜310を窒化ケイ素膜309が露出するま
でエッチバックした。この結果、溝内部にのみタングス
テン膜311及び窒化タングステン膜310が残り、高
融点金属膜及び反応障壁層と多結晶ケイ素膜とからなる
ゲート電極パターンが形成された。Thereafter, as shown in FIG. 12K, the tungsten film 311 and the tungsten nitride film 310 were etched back by dry etching until the silicon nitride film 309 was exposed. As a result, the tungsten film 311 and the tungsten nitride film 310 remained only inside the trench, and a gate electrode pattern composed of the refractory metal film, the reaction barrier layer, and the polycrystalline silicon film was formed.
【0061】なお、素子分離領域301上は多結晶ケイ
素膜303はほとんど残らないが、ゲート電極自体はタ
ングステン膜311で電気的につながっており、トラン
ジスタの動作特性に支障は無い。なお、第1乃至第3実
施例では、ゲート電極に係わる例を説明したが、これ以
外に用いられる電極及び配線にも本発明を適用すること
ができる。Although the polycrystalline silicon film 303 hardly remains on the element isolation region 301, the gate electrode itself is electrically connected by the tungsten film 311 and there is no problem in the operating characteristics of the transistor. In the first to third embodiments, the example relating to the gate electrode has been described. However, the present invention can be applied to other electrodes and wirings.
【0062】[0062]
【発明の効果】本発明によれば、高融点金属と反応障壁
層と多結晶ケイ素膜とからなる配線及び電極を高融点金
属膜に対し熱膨張係数の近い絶縁膜で側面を囲うことに
より、高融点金属膜と絶縁膜にかかるストレスを大幅に
低減できる。According to the present invention, a wiring and an electrode composed of a refractory metal, a reaction barrier layer and a polycrystalline silicon film are surrounded by an insulating film having a thermal expansion coefficient close to that of the refractory metal film. Stress on the high melting point metal film and the insulating film can be greatly reduced.
【0063】また、本発明によれば、底部に多結晶ケイ
素膜を有する窒化膜の溝内部に反応障壁層及び高融点金
属膜を埋め込むことにより、高融点金属と反応障壁層と
多結晶ケイ素膜とからなる構造を形成することが可能と
なる。Further, according to the present invention, the reaction barrier layer and the refractory metal film are embedded in the trench of the nitride film having the polycrystalline silicon film at the bottom, so that the refractory metal, the reaction barrier layer and the polycrystalline silicon film are formed. Can be formed.
【0064】さらに、多結晶ケイ素膜上に選択的に溝を
形成することが可能であり、これにより、自己整合的に
反応障壁層及び高融点金属膜を埋め込むことができる。
また、高融点金属膜の堆積前に電極及び配線の後酸化工
程を行うことが可能であり、酸化膜の信頼性向上を図る
ことができるとともに、高融点金属の酸化による劣化は
問題とならない。Further, a groove can be selectively formed on the polycrystalline silicon film, whereby the reaction barrier layer and the refractory metal film can be embedded in a self-aligned manner.
Further, it is possible to perform a post-oxidation step of the electrode and the wiring before depositing the refractory metal film, so that the reliability of the oxide film can be improved and deterioration of the refractory metal due to oxidation does not pose a problem.
【0065】さらに、高融点金属膜は溝埋め込みによっ
て形成するため、高融点金属膜を下地多結晶ケイ素膜に
対し選択的にエッチングする必要もなく、異方性エッチ
ングについて言えば多結晶ケイ素膜単層のパターン形成
と変わらない。Further, since the refractory metal film is formed by filling the groove, it is not necessary to selectively etch the refractory metal film with respect to the underlying polycrystalline silicon film. Same as layer pattern formation.
【0066】このような効果によって、高融点金属膜と
反応障壁層と多結晶ケイ素膜との積層構造からなる電極
及び配線パターンを形成することが可能となり、半導体
デバイスの高性能化が図れる。With such an effect, it is possible to form an electrode and a wiring pattern having a laminated structure of a refractory metal film, a reaction barrier layer, and a polycrystalline silicon film, thereby improving the performance of a semiconductor device.
【図1】本発明の第1実施例に係る半導体装置の製造方
法を工程順に示す断面図。FIG. 1 is a sectional view showing a method for manufacturing a semiconductor device according to a first embodiment of the present invention in the order of steps.
【図2】本発明の第1実施例に係る半導体装置の製造方
法を図1に続いて工程順に示す断面図。FIG. 2 is a sectional view showing the method of manufacturing the semiconductor device according to the first embodiment of the present invention in the order of steps following FIG. 1;
【図3】本発明の第1実施例に係る半導体装置の製造方
法を図2に続いて工程順に示す断面図。FIG. 3 is a sectional view showing the method of manufacturing the semiconductor device according to the first embodiment of the present invention in the order of steps following FIG. 2;
【図4】本発明の第1実施例に係る半導体装置の製造方
法を図3に続いて工程順に示す断面図。FIG. 4 is a sectional view showing the method of manufacturing the semiconductor device according to the first embodiment of the present invention in the order of steps following FIG. 3;
【図5】本発明の第2実施例に係る半導体装置の製造方
法を工程順に示す断面図。FIG. 5 is a sectional view showing a method of manufacturing a semiconductor device according to a second embodiment of the present invention in the order of steps.
【図6】本発明の第2実施例に係る半導体装置の製造方
法を図5に続いて工程順に示す断面図。FIG. 6 is a sectional view showing the method of manufacturing the semiconductor device according to the second embodiment of the present invention in the order of steps following FIG. 5;
【図7】本発明の第2実施例に係る半導体装置の製造方
法を図6に続いて工程順に示す断面図。FIG. 7 is a sectional view showing the method of manufacturing the semiconductor device according to the second embodiment of the present invention in the order of steps following FIG. 6;
【図8】本発明の第2実施例に係る半導体装置の製造方
法を図7に続いて工程順に示す断面図。FIG. 8 is a sectional view showing the method of manufacturing the semiconductor device according to the second embodiment of the present invention in the order of steps following FIG. 7;
【図9】本発明の第3実施例に係る半導体装置の製造方
法を工程順に示す断面図。FIG. 9 is a sectional view illustrating a method of manufacturing a semiconductor device according to a third embodiment of the present invention in the order of steps.
【図10】本発明の第3実施例に係る半導体装置の製造
方法を図9に続いて工程順に示す断面図。FIG. 10 is a sectional view showing the method of manufacturing the semiconductor device according to the third embodiment of the present invention in the order of steps following FIG. 9;
【図11】本発明の第3実施例に係る半導体装置の製造
方法を図10に続いて工程順に示す断面図。FIG. 11 is a sectional view showing the method of manufacturing the semiconductor device according to the third embodiment of the present invention in the order of steps following FIG. 10;
【図12】本発明の第3実施例に係る半導体装置の製造
方法を図11に続いて工程順に示す断面図。FIG. 12 is a sectional view showing the method of manufacturing the semiconductor device according to the third embodiment of the present invention in the order of steps following FIG. 11;
100…基板、101…薄い酸化ケイ素膜、102…多
結晶ケイ素膜、103…酸化ケイ素膜、104…レジス
ト、105…コーナー部分、106…N型拡散層、10
7…側壁部分、108…N+ 型拡散層、109…窒化ケ
イ素膜、110…溝、111…窒化タングステン膜、1
12…タングステン膜、200…基板、201…素子分
離、202…薄い酸化ケイ素膜、203…多結晶ケイ素
膜、204…レジスト、205…N型拡散層、206…
窒化ケイ素膜、207…N+ 型拡散層、208…窒化ケ
イ素膜、209…酸化ケイ素膜、210…窒化タングス
テン膜、211…タングステン膜、300…基板、30
1…素子分離、302…薄い酸化ケイ素膜、303…多
結晶ケイ素膜、304…酸化ケイ素膜、305…レジス
ト、306…N型拡散層、307…窒化ケイ素膜、30
8…N+ 型拡散層、309…窒化ケイ素膜、310…窒
化タングステン膜、311…タングステン膜。100: substrate, 101: thin silicon oxide film, 102: polycrystalline silicon film, 103: silicon oxide film, 104: resist, 105: corner portion, 106: N-type diffusion layer, 10
7 ... side wall portion, 108 ... N + type diffusion layer, 109 ... silicon nitride film, 110 ... groove, 111 ... tungsten nitride film, 1
12: tungsten film, 200: substrate, 201: element isolation, 202: thin silicon oxide film, 203: polycrystalline silicon film, 204: resist, 205: N-type diffusion layer, 206 ...
Silicon nitride film, 207: N + type diffusion layer, 208: silicon nitride film, 209: silicon oxide film, 210: tungsten nitride film, 211: tungsten film, 300: substrate, 30
DESCRIPTION OF SYMBOLS 1 ... Element isolation, 302 ... Thin silicon oxide film, 303 ... Polycrystalline silicon film, 304 ... Silicon oxide film, 305 ... Resist, 306 ... N-type diffusion layer, 307 ... Silicon nitride film, 30
8 N + type diffusion layer, 309 silicon nitride film, 310 tungsten nitride film, 311 tungsten film.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−167717(JP,A) 特開 平3−27551(JP,A) 特開 平6−342766(JP,A) 特開 平6−77246(JP,A) 特開 昭58−154270(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/3205 H01L 21/321 H01L 21/3213 H01L 21/768 H01L 21/28 - 21/288 H01L 21/44 - 21/445 H01L 29/40 - 29/43 H01L 29/47 H01L 29/872 H01L 21/336 H01L 29/76 H01L 29/772 H01L 29/78 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-167717 (JP, A) JP-A-3-27551 (JP, A) JP-A-6-342766 (JP, A) JP-A-6-342766 77246 (JP, A) JP-A-58-154270 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/3205 H01L 21/321 H01L 21/3213 H01L 21/768 H01L 21/28-21/288 H01L 21/44-21/445 H01L 29/40-29/43 H01L 29/47 H01L 29/872 H01L 21/336 H01L 29/76 H01L 29/772 H01L 29/78
Claims (6)
多結晶ケイ素膜と、前記多結晶ケイ素膜上に形成された
タングステン、モリブデン、ニオブ、タンタルからなる
群から選択された高融点金属膜と、を有する配線及び電
極と、 前記配線及び電極の側面を覆う窒化ケイ素膜と、前記高融点金属膜と前記窒化ケイ素膜との界面に形成さ
れた窒化タングステンと、 を具備することを特徴とする半導体装置。1. A polycrystalline silicon film formed on a substrate via a gate insulating film, and a refractory metal selected from the group consisting of tungsten, molybdenum, niobium, and tantalum formed on the polycrystalline silicon film. A wiring and an electrode having a film, a silicon nitride film covering side surfaces of the wiring and the electrode , and a film formed at an interface between the refractory metal film and the silicon nitride film.
And a tungsten nitride .
の界面に形成された酸化膜をさらに具備することを特徴
とする請求項1に記載の半導体装置。 2. The polycrystalline silicon film and the silicon nitride film
Characterized by further comprising an oxide film formed at the interface of
2. The semiconductor device according to claim 1, wherein:
の界面に形成された窒化タングステンをさらに具備する
ことを特徴とする請求項1または2に記載の半導体装
置。3. A pre-Symbol semiconductor device according to claim 1 or 2, further comprising a surfactant to form tungsten nitride with the refractory metal film and the polycrystalline silicon film.
形成に際し、 基板上に多結晶ケイ素膜を堆積する工程と、前記多結晶ケイ素膜を平坦化する工程と、 前記多結晶ケイ素膜上に酸化ケイ素膜を形成する工程
と、 前記多結晶ケイ素膜及び前記酸化ケイ素膜からなる積層
膜をパターニングする工程と、 パターニングされた前記積層膜を含む前記基板上に絶縁
膜を堆積する工程と、 前記絶縁膜を平坦化する工程と、 前記酸化ケイ素膜を選択的に除去し、溝を形成する工程
と、 前記絶縁膜上に反応障壁層及び前記高融点金属膜を順に
堆積し、前記溝を埋め込む工程と、 前記反応障壁層及び前記高融点金属膜を平坦化する工程
と、 を具備することを特徴とする半導体装置の製造方法。 4. A wiring and an electrode pattern containing a refractory metal.
Upon formation, a step of depositing a polycrystalline silicon film on a substrate , a step of flattening the polycrystalline silicon film, a step of forming a silicon oxide film on the polycrystalline silicon film, A step of patterning the laminated film made of the silicon oxide film; a step of depositing an insulating film on the substrate including the patterned laminated film; a step of flattening the insulating film; and selecting the silicon oxide film. Of removing the groove and forming the groove
And a reaction barrier layer and the refractory metal film on the insulating film in order.
Depositing and filling the trench, and planarizing the reaction barrier layer and the refractory metal film
And a method of manufacturing a semiconductor device.
形成に際し、 基板上に多結晶ケイ素膜を堆積する工程と、 前記多結晶ケイ素膜をパターニングする工程と、 パターニングされた前記多結晶ケイ素膜を含む前記基板
上に絶縁膜を堆積する工程と、 パターニングされた前記多結晶ケイ素膜が露出するよう
に前記絶縁膜を平坦化する工程と、 パターニングされた前記多結晶ケイ素膜を酸化雰囲気に
曝し、該多結晶ケイ素膜上に酸化ケイ素膜を形成する工
程と、 前記酸化ケイ素膜を選択的に除去し、溝を形成する工程
と、 前記絶縁膜上に反応障壁層及び前記高融点金属膜を順に
堆積し、前記溝を埋め込む工程と、 前記反応障壁層及び前記高融点金属膜を平坦化する工程
と、 を具備することを特徴とする半導体装置の製造方法。5. A wiring and electrode pattern containing a high melting point metal.
A step of depositing a polycrystalline silicon film on the substrate when forming; a step of patterning the polycrystalline silicon film; a step of depositing an insulating film on the substrate including the patterned polycrystalline silicon film; Flattening the insulating film so that the patterned polycrystalline silicon film is exposed; and exposing the patterned polycrystalline silicon film to an oxidizing atmosphere to form a silicon oxide film on the polycrystalline silicon film. Forming a groove by selectively removing the silicon oxide film.
And a reaction barrier layer and the refractory metal film on the insulating film in order.
Depositing and filling the trench, and planarizing the reaction barrier layer and the refractory metal film
When manufacturing method of a semi-conductor device characterized by comprising a.
ターンであることを特徴とする請求項4または5に記載
の半導体装置の製造方法。6. The method according to claim 4, wherein the wiring and the electrode pattern are gate electrode patterns.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6309995A JP3315287B2 (en) | 1995-03-22 | 1995-03-22 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6309995A JP3315287B2 (en) | 1995-03-22 | 1995-03-22 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08264531A JPH08264531A (en) | 1996-10-11 |
JP3315287B2 true JP3315287B2 (en) | 2002-08-19 |
Family
ID=13219519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6309995A Expired - Fee Related JP3315287B2 (en) | 1995-03-22 | 1995-03-22 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3315287B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10335652A (en) | 1997-05-30 | 1998-12-18 | Hitachi Ltd | Method for manufacturing semiconductor integrated circuit device |
US6184083B1 (en) | 1997-06-30 | 2001-02-06 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
TW412862B (en) * | 1997-06-30 | 2000-11-21 | Hitachi Ltd | Method for fabricating semiconductor integrated circuit device |
JP3232043B2 (en) | 1997-06-30 | 2001-11-26 | 株式会社東芝 | Method for manufacturing semiconductor device |
JPH11195621A (en) * | 1997-11-05 | 1999-07-21 | Tokyo Electron Ltd | Barrier metal, method of forming the same, gate electrode and method of forming the same |
US7829144B2 (en) | 1997-11-05 | 2010-11-09 | Tokyo Electron Limited | Method of forming a metal film for electrode |
EP0926741A3 (en) * | 1997-12-23 | 1999-11-03 | Texas Instruments Incorporated | Gate structure and method of forming same |
US6093628A (en) * | 1998-10-01 | 2000-07-25 | Chartered Semiconductor Manufacturing, Ltd | Ultra-low sheet resistance metal/poly-si gate for deep sub-micron CMOS application |
JP4987796B2 (en) * | 1999-01-08 | 2012-07-25 | 株式会社東芝 | Manufacturing method of semiconductor device |
JP2001127288A (en) | 1999-10-28 | 2001-05-11 | Mitsubishi Electric Corp | Manufacturing method of gate structure |
KR100539448B1 (en) * | 1999-12-20 | 2005-12-27 | 주식회사 하이닉스반도체 | Method for forming gate in semiconductor device |
US6596598B1 (en) * | 2000-02-23 | 2003-07-22 | Advanced Micro Devices, Inc. | T-shaped gate device and method for making |
KR20020056285A (en) * | 2000-12-29 | 2002-07-10 | 박종섭 | Method for manufacturing gate in semiconductor device |
US7049187B2 (en) | 2001-03-12 | 2006-05-23 | Renesas Technology Corp. | Manufacturing method of polymetal gate electrode |
CN100552956C (en) | 2001-03-12 | 2009-10-21 | 株式会社日立制作所 | Semiconductor integrated circuit device and method for manufacturing semiconductor integrated circuit device |
DE10231965B4 (en) * | 2002-07-15 | 2006-06-14 | Infineon Technologies Ag | Method for producing a T-gate structure and an associated field effect transistor |
JP2004319722A (en) | 2003-04-16 | 2004-11-11 | Hitachi Ltd | Semiconductor integrated circuit device and method of manufacturing the same |
JP2005101141A (en) | 2003-09-24 | 2005-04-14 | Renesas Technology Corp | Semiconductor integrated circuit device and manufacturing method thereof |
US9660076B2 (en) | 2015-09-03 | 2017-05-23 | Kabushiki Kaisha Toshiba | Semiconductor memory device and method for manufacturing the same |
TWI794363B (en) * | 2017-12-20 | 2023-03-01 | 美商應用材料股份有限公司 | High pressure oxidation of metal films |
-
1995
- 1995-03-22 JP JP6309995A patent/JP3315287B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08264531A (en) | 1996-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3315287B2 (en) | Semiconductor device and manufacturing method thereof | |
US6639319B2 (en) | Conductive structure in an integrated circuit | |
JP4094073B2 (en) | Method for manufacturing a semiconductor device | |
EP0126424B1 (en) | Process for making polycide structures | |
US20070293030A1 (en) | Semiconductor device having silicide thin film and method of forming the same | |
KR100467021B1 (en) | Contact structure of semiconductro device and method for fabricating the same | |
JP3232043B2 (en) | Method for manufacturing semiconductor device | |
KR100277377B1 (en) | Formation method of contact/through hole | |
US6228761B1 (en) | Method of forming a local interconnect with improved etch selectivity of silicon dioxide/silicide | |
JPH0653337A (en) | Manufacture of semiconductor device | |
US6093627A (en) | Self-aligned contact process using silicon spacers | |
US6236091B1 (en) | Method of forming a local interconnect with improved etch selectivity of silicon dioxide/silicide | |
JP4307544B2 (en) | Method for forming metal pattern of semiconductor device | |
US6225216B1 (en) | Method of forming a local interconnect with improved etch selectivity of silicon dioxide/silicide | |
JP3642965B2 (en) | Manufacturing method of semiconductor device | |
US6184113B1 (en) | Method of manufacturing a gate electrode in a semiconductor device | |
US7482256B2 (en) | Semiconductor device and method of manufacturing the same | |
KR100243280B1 (en) | Gate pattern of semiconductor device &fabrication method thereof | |
JP3543504B2 (en) | Method for manufacturing semiconductor device | |
US6893980B1 (en) | Semiconductor device and manufacturing method therefor | |
KR100447989B1 (en) | Gate electrode formation method of semiconductor device | |
JP4196898B2 (en) | Manufacturing method of semiconductor device | |
JPH06208968A (en) | Manufacture of semiconductor device | |
JP3254900B2 (en) | Method for manufacturing semiconductor device | |
KR20030053658A (en) | Method For Manufacturing Semiconductor Devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090607 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100607 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100607 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110607 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20120607 |
|
LAPS | Cancellation because of no payment of annual fees |