JP3306160B2 - Manufacturing method of tape-shaped multi-core fiber preform - Google Patents
Manufacturing method of tape-shaped multi-core fiber preformInfo
- Publication number
- JP3306160B2 JP3306160B2 JP08248693A JP8248693A JP3306160B2 JP 3306160 B2 JP3306160 B2 JP 3306160B2 JP 08248693 A JP08248693 A JP 08248693A JP 8248693 A JP8248693 A JP 8248693A JP 3306160 B2 JP3306160 B2 JP 3306160B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- glass
- tape
- fiber preform
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01486—Means for supporting, rotating or translating the preforms being formed, e.g. lathes
- C03B37/01493—Deposition substrates, e.g. targets, mandrels, start rods or tubes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01466—Means for changing or stabilising the diameter or form of tubes or rods
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/31—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/02—External structure or shape details
- C03B2203/04—Polygonal outer cross-section, e.g. triangular, square
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/12—Non-circular or non-elliptical cross-section, e.g. planar core
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/34—Plural core other than bundles, e.g. double core
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Glass Melting And Manufacturing (AREA)
- Optical Integrated Circuits (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、テープ状マルチコア
ファイバ母材の製造方法に関するもので、シミュレータ
の画像伝送に用いて好適な細径、多芯、長尺でかつファ
イバ間隔の小さなテープ状マルチコアファイバを簡単に
得る方法を提供する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tape-shaped multi-core fiber preform, which is suitable for use in image transmission of a simulator, and has a small-diameter, multi-core, long and small-fiber spacing. A method for easily obtaining a fiber is provided.
【0002】[0002]
【従来の技術】一般に、多数本の光ファイバをコヒーレ
ントに並べたアレー状の伝送路としては次のようなもの
があげられる。 ファイバを一本ごとに並べていき、両端のみ接着剤で
固定し研磨したもので通常バンドル型と呼ばれ、途中は
それぞれ独立していて可撓性に富んでいる、図3は、こ
の種のバンドル型アレーの説明図で、1は並列に並べら
れ、隣接する側部が互いに接着剤で固定された多数の光
ファイバ端部で、図4は1の拡大斜視図を示している。
2はこの多数の光ファイバ端部を支持する保持部材、3
はそれぞれが互いに接着することなく単に束ねられた多
数の光ファイバの中央部である。 ファイバとなる出発部材を適当な太さ(3〜20m
m)に線引きし、ある長さ(約10〜50cm)に切断
し、これを必要本数整列し、順次、それらファイバ間を
酸水素炎等で加熱溶着する。これをさらに、溶融線引き
することによってテープ状のバンチファイバと呼ばれる
ものとする。2. Description of the Related Art In general, the following are examples of an array-like transmission line in which a number of optical fibers are coherently arranged. Fibers are arranged one by one, fixed at both ends with an adhesive and polished, and are usually called bundle type, and the middle is independent and rich in flexibility. FIG. 4 is an enlarged perspective view of the mold array, in which 1 is a plurality of optical fiber ends arranged side by side and adjacent sides are fixed to each other with an adhesive.
2 is a holding member for supporting the ends of the optical fibers, 3
Is the center of a multiplicity of optical fibers that are simply bundled without each gluing together. The starting member to be a fiber should be of an appropriate thickness (3 to 20 m
m), cut to a certain length (about 10 to 50 cm), arrange them in a required number, and sequentially heat and weld between the fibers with an oxyhydrogen flame or the like. This is further referred to as a tape-shaped bunch fiber by performing a melt drawing.
【0003】[0003]
【発明が解決しようとする課題】ところが、に示すバ
ンドル型アレーの場合、細い(約10μm)ファイバを
整列させることが困難で、せいぜい数百本に限定される
ことと著しく耐久性に劣りファイバの破断の問題が大き
いということがある。また、のバンチファイバの場
合、一次線引きのファイバが3mm以上の径がないと加
熱溶着時に変形が生じ整列が崩れる。ファイバを太くす
ると二次線引き用のファイバ母材が太くなりすぎて線引
きが容易でない。そのため、得られるテープ状ファイバ
は細径、多芯、長尺でかつファイバ間隔が小さなことが
要求されるシミュレータ画像伝送用としては使用できな
いものであった。However, in the case of the bundle type array shown in the following, it is difficult to align thin (about 10 .mu.m) fibers, the number of fibers is limited to several hundred at most, and the fiber has extremely low durability. The problem of breakage can be significant. In addition, in the case of the bunch fiber, if the fiber of the primary drawing does not have a diameter of 3 mm or more, deformation occurs at the time of heat welding and the alignment is broken. If the fiber is made thicker, the fiber preform for secondary drawing becomes too thick and drawing is not easy. Therefore, the obtained tape-shaped fiber cannot be used for transmitting a simulator image which requires a small diameter, a multi-core, a long length, and a small fiber interval.
【0004】[0004]
【課題を解決するための手段】この発明は、以上の観点
からなされるもので、その特徴とする請求項1記載の発
明は、所定間隔をおいて長さ方向に延びる多数の溝を有
する櫛型状のクラッド用ガラス基盤を用意し、この基盤
の溝をコアガラスで埋めた後、全表面上にクラッドとな
るガラス層を形成してなるテープ状マルチコアファイバ
母材の製造方法にある。また、その特徴とする請求項2
記載の発明は、所定間隔をおいて長さ方向に延びる多数
の溝を有する櫛型状のクラッド用ガラス基盤を用意し、
この基盤の溝を埋め、かつその全表面上にわたるように
コアガラスを設け、このコアガラスの溝に形成されたコ
アとなる部分を残して除去し、次いで、全表面上にわた
ってクラッドとなるガラス層を形成してなるテープ状マ
ルチコアファイバ母材の製造方法にある。なお、基盤に
形成される溝の数は500〜3000程度、溝と溝の間
の幅すなわち櫛の幅は10〜50程度とされ、また、溝
の形成は研削又はフォトリソグラフィーとエッチングの
併用などによる。また、コアおよびクラッドとなるガラ
スは直接ガラス化されたものでも良いし、ガラス微粒子
を経て透明ガラス化されたものでも良く、あるいはま
た、ゾル−ゲル法によるものでも良い。SUMMARY OF THE INVENTION The present invention has been made in view of the above, and the invention according to claim 1 is characterized in that a comb having a large number of grooves extending in a longitudinal direction at predetermined intervals. There is provided a method of manufacturing a tape-shaped multi-core fiber preform in which a mold-shaped glass substrate for cladding is prepared, a groove of the substrate is filled with a core glass, and a glass layer serving as a cladding is formed on the entire surface. Also, the present invention is characterized in that
The described invention provides a comb-shaped clad glass substrate having a number of grooves extending in the length direction at predetermined intervals,
A core glass is provided so as to fill the groove of the base and extend over the entire surface thereof, and is removed except for a part which becomes a core formed in the groove of the core glass, and then a glass layer serving as a clad is formed over the entire surface. And a method for manufacturing a tape-shaped multi-core fiber preform. The number of grooves formed on the substrate is about 500 to 3000, the width between grooves, that is, the width of the comb is about 10 to 50, and the formation of the grooves is performed by grinding or using photolithography and etching together. by. The glass serving as the core and the clad may be directly vitrified, may be transparent vitrified through glass fine particles, or may be a sol-gel method.
【0005】[0005]
【作用】クラッドとなる櫛型基盤の櫛の間隔および櫛に
よって形成される溝の間隔および個数を適宜選択し、こ
の溝内をコア材で埋め、その全表面をクラッド材で覆う
という簡単な工程だけで所定のテープ状マルチコアファ
イバ母材が簡単に得られるので、この母材を線引きすれ
ば容易に所望のテープ状マルチコアファイバが得られ
る。A simple process of appropriately selecting the intervals between the combs and the intervals and the number of grooves formed by the combs of the comb-shaped substrate serving as the cladding, filling the interior of the grooves with a core material, and covering the entire surface with the cladding material. The desired tape-shaped multi-core fiber preform can be easily obtained by simply drawing the tape-shaped multi-core fiber preform.
【0006】[0006]
【実施例1】図1は、この発明の製造方法の1実施例を
示す工程図で、aは予め用意された基盤10を示してい
る。基盤10は、全体として櫛形状をしたクラッド用石
英ガラスからなり、所定間隔毎に形成された多数の櫛状
部12とこれら櫛状部12間に形成された多数の溝14
とからなっている。基盤の諸サイズは、例えば長さが5
0〜300mm、幅が30〜200mm、櫛部の幅が2
5〜180mm、溝の数が500〜3000個、幅が1
0〜50mmである。bはディポジション工程で、この
基盤10の全表面上に酸水素バーナを用いて火炎加水分
解法によってコアとなるGeO2 −SiO2 ガラス微粒
子を形成する。得られたGeO2 −SiO2 コアガラス
のSiO2 に対する比屈折率差Δは0.5〜3.0%と
される。cはこのディポジション工程後の状態図で、多
数の溝はGeO2 −SiO2 ガラス微粒子で埋められ、
かつ多数の櫛状部12表面にもGeO2 −SiO2 ガラ
ス微粒子が形成されている。この基盤に形成されたGe
O2 −SiO2 ガラス微粒子は1000〜1800℃に
加熱され透明ガラス化される。dは表面研削工程で、溝
を除く部分のGeO2 −SiO2 ガラス層を除去する。
eはクラッド形成工程で、全表面にわたってクラッドと
なるSiO2 ガラス微粒子層を形成し、このSiO2 ガ
ラス微粒子層を透明ガラス化する。なお、この後必要に
応じて透明ガラス化されたクラッド層表面を火炎又は研
削研磨して平滑化する。以上の工程を経て、所定間隔毎
にコアとなるGeO2 −SiO2 ガラス部を有するテー
プ状マルチコアファイバ母材が得られる。この母材を線
引きし、幅25mm、高さ0.6mm、コア径8μmの
テープ状マルチコアファイバとし、その上にUV樹脂な
どのコーティングを厚さ30μmに施して所望のテープ
状マルチコアファイバとした。このテープ状マルチコア
ファイバを用いてシュミレータ画像伝送用バンドルを作
成したところ、画素配列が均一で曲げ半径100mm以
下の特性を有しており、従来のものと比較すると画質、
フレキシビリティともに格段に優れていた。[Embodiment 1] FIG. 1 is a process drawing showing an embodiment of the manufacturing method of the present invention, wherein a indicates a base 10 prepared in advance. The base 10 is made of a comb-shaped quartz glass having a comb shape as a whole, and has a large number of comb-shaped portions 12 formed at predetermined intervals and a large number of grooves 14 formed between the comb-shaped portions 12.
It consists of The size of the base is, for example, 5
0-300 mm, width 30-200 mm, width of comb part 2
5-180mm, 500-3000 grooves, 1 width
0 to 50 mm. b is a deposition step in which GeO 2 —SiO 2 glass microparticles serving as a core are formed on the entire surface of the substrate 10 by a flame hydrolysis method using an oxyhydrogen burner. The relative refractive index difference Δ of the obtained GeO 2 —SiO 2 core glass with respect to SiO 2 is set to 0.5 to 3.0%. c is a state diagram after this deposition step, in which many grooves are filled with GeO 2 —SiO 2 glass fine particles,
In addition, GeO 2 —SiO 2 glass fine particles are also formed on the surface of many comb-like portions 12. Ge formed on this base
The O 2 —SiO 2 glass particles are heated to 1000 to 1800 ° C. to be vitrified transparently. d is a surface grinding step for removing the GeO 2 —SiO 2 glass layer at portions other than the grooves.
e is a cladding formation step, to form a SiO 2 glass fine particle layer to be the cladding over the entire surface, transparent vitrification the SiO 2 glass fine particle layer. After that, if necessary, the surface of the clad layer, which has been made vitrified, is smoothed by flame or grinding and polishing. Through the above steps, a tape-shaped multi-core fiber preform having a GeO 2 —SiO 2 glass portion serving as a core at predetermined intervals is obtained. This base material was drawn to form a tape-shaped multi-core fiber having a width of 25 mm, a height of 0.6 mm, and a core diameter of 8 μm, and a coating of UV resin or the like was applied thereon to a thickness of 30 μm to obtain a desired tape-shaped multi-core fiber. When a simulator image transmission bundle was created using this tape-shaped multi-core fiber, the pixel array was uniform and had a characteristic of a bending radius of 100 mm or less.
The flexibility was outstanding.
【0007】[0007]
【実施例2】図2は、この発明の製造方法の他の実施例
による工程図で、同一符号は図1と同一物を示してい
る。イは第1実施例のaと同じ基盤である。ロはゾル−
ゲル法によるコアとなるGeO2 −SiO2 ガラス形成
工程である。具体的には、GeとSiのアルコキシド、
例えばSi(OCH3 )4 またはSi(OC2 H5 )4
およびGe(OCH3 )4 またはGe(OC2 H5 )4
を水に溶かしてゾル液としたものを用意し、この中に基
盤をディッピングするか、又は基盤表面に液をスプレー
して薄膜を形成する。この薄膜を乾燥ゲル化させ、さら
に加熱してガラス化させる。ハは全工程を繰返して薄膜
の厚みを増やし溝が埋まるまで行った状態図である。ニ
は研削工程で、溝以外に形成されたガラス部分を除去す
る。ホはゾル−ゲル法によるクラッドとなるSiO2 ガ
ラス形成工程である。具体的には例えばSi(OC
H3 )4 またはSi(OC2 H5 )4 を水に溶かしてゾ
ル液としたものの中にディッピングするか、または基盤
表面に液をスプレーして薄膜を形成する。この薄膜を乾
燥ゲル化させ、さらに加熱してガラス化させ、これを繰
返すことで所定の膜厚とする。かくして得られたテープ
状マルチコアファイバ母材を線引きして所望のテープ状
マルチコアファイバとした。[Embodiment 2] FIG. 2 is a process drawing according to another embodiment of the manufacturing method of the present invention, and the same reference numerals denote the same parts as in FIG. A is the same base as a in the first embodiment. B is sol-
This is a step of forming a GeO 2 —SiO 2 glass serving as a core by a gel method. Specifically, alkoxides of Ge and Si,
For example, Si (OCH 3 ) 4 or Si (OC 2 H 5 ) 4
And Ge (OCH 3 ) 4 or Ge (OC 2 H 5 ) 4
Is dissolved in water to prepare a sol solution, and a substrate is dipped in the sol solution or a liquid is sprayed on the surface of the substrate to form a thin film. The thin film is dried and gelled, and further heated to vitrify. 3C is a state diagram in which the entire process is repeated until the thickness of the thin film is increased and the groove is filled. (D) removes a glass portion formed other than the groove in the grinding step. E is a step of forming a SiO 2 glass to be a clad by the sol-gel method. Specifically, for example, Si (OC
H 3) 4 or Si (OC 2 H 5) 4 to form the or dipping in what was dissolved in water sol solution, or by spraying a liquid to the base plate surface film. This thin film is dried and gelled, and further heated to vitrify, and this is repeated to obtain a predetermined film thickness. The tape-like multi-core fiber preform thus obtained was drawn to obtain a desired tape-like multi-core fiber.
【0008】[0008]
【発明の効果】この発明方法により光ファイバの製造方
法は、以上のように長さ方向に多数の溝を有する櫛型状
のクラッドとなる基盤を用意し、この基盤の溝をコアガ
ラスで埋め、その後に基盤表面全体をクラッドガラスで
覆って、テープ状マルチコアファイバ母材とする方法で
あるので、出発部材となる基盤を精密に製作しさえすれ
ば、その後のコアおよびクラッドとなる部分の形成は極
めて簡単であり、以ってこの母材から得られるテープ状
マルチコアファイバは細径、多芯、長尺でかつファイバ
間隔の小さなものとなる。According to the method of manufacturing an optical fiber according to the present invention, a substrate serving as a comb-shaped clad having a number of grooves in the longitudinal direction is prepared as described above, and the grooves of the substrate are filled with a core glass. Then, the entire surface of the substrate is covered with clad glass to form a tape-shaped multi-core fiber preform, so if the substrate as a starting member is precisely manufactured, the formation of the subsequent core and clad portions will be formed. Is very simple, so that the tape-shaped multi-core fiber obtained from this base material has a small diameter, multiple cores, a long length, and a small fiber interval.
【図1】この発明方法の工程図。FIG. 1 is a process chart of the method of the present invention.
【図2】この発明方法の他の例の工程図。FIG. 2 is a process chart of another example of the method of the present invention.
【図3】従来のバンドル型アレーの説明図。FIG. 3 is an explanatory view of a conventional bundle type array.
【図4】図3の1の一部拡大斜視図。FIG. 4 is a partially enlarged perspective view of 1 in FIG. 3;
10 櫛外状クラッド基盤 12 櫛状部 14 溝 DESCRIPTION OF SYMBOLS 10 Comb outer clad base 12 Comb part 14 Groove
フロントページの続き (72)発明者 真田 和夫 千葉県佐倉市六崎1440番地 株式会社フ ジクラ佐倉工場内 (56)参考文献 特開 昭60−225104(JP,A) 特開 昭56−135808(JP,A) 特開 昭57−604(JP,A) 特開 昭61−273505(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/00 G02B 6/04 - 6/08 G02B 6/12 - 6/14 C03B 20/00 Continuation of the front page (72) Inventor Kazuo Sanada 1440 Mutsuzaki, Sakura City, Chiba Prefecture Inside Fujikura Sakura Factory (56) References JP-A-60-225104 (JP, A) JP-A-56-135808 (JP, A) JP-A-57-604 (JP, A) JP-A-61-273505 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 6/00 G02B 6/04-6 / 08 G02B 6/12-6/14 C03B 20/00
Claims (4)
の溝を有する櫛型状のクラッド用ガラス基盤を用意し、
この基盤の溝をコアガラスで埋めた後、全表面上にクラ
ッドとなるガラス層を形成することを特徴とするテープ
状マルチコアファイバ母材の製造方法。1. A comb-shaped glass substrate for cladding having a large number of grooves extending in a longitudinal direction at a predetermined interval is prepared.
A method for producing a tape-shaped multi-core fiber preform, wherein a groove of the substrate is filled with a core glass, and a glass layer serving as a clad is formed on the entire surface.
の溝を有する櫛型状のクラッド用ガラス基盤を用意し、
この基盤の溝を埋め、かつ基盤の全表面上にわたるよう
にコアガラスを設け、このコアガラスの溝に形成された
コアとなる部分を残して除去し、次いで、全表面上にわ
たってクラッドとなるガラス層を形成することを特徴と
するテープ状マルチコアファイバ母材の製造方法。2. A comb-shaped glass substrate for cladding having a number of grooves extending in a longitudinal direction at a predetermined interval is prepared.
A core glass is provided so as to fill the groove of the base and extend over the entire surface of the base, and is removed except for a part serving as a core formed in the groove of the core glass. A method for producing a tape-shaped multi-core fiber preform, comprising forming a layer.
子を経て透明ガラス化されたものであることを特徴とす
る請求項1、2記載のテープ状マルチコアファイバ母材
の製造方法。3. The method for producing a tape-shaped multi-core fiber preform according to claim 1, wherein the core and the clad glass are made vitreous through glass fine particles.
法によって形成されたものであることを特徴とする請求
項1、2記載のテープ状マルチコアファイバ母材の製造
方法。4. The method for producing a tape-shaped multi-core fiber preform according to claim 1, wherein the core and the clad glass are formed by a sol-gel method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08248693A JP3306160B2 (en) | 1993-03-18 | 1993-03-18 | Manufacturing method of tape-shaped multi-core fiber preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08248693A JP3306160B2 (en) | 1993-03-18 | 1993-03-18 | Manufacturing method of tape-shaped multi-core fiber preform |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06273632A JPH06273632A (en) | 1994-09-30 |
JP3306160B2 true JP3306160B2 (en) | 2002-07-24 |
Family
ID=13775846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08248693A Expired - Fee Related JP3306160B2 (en) | 1993-03-18 | 1993-03-18 | Manufacturing method of tape-shaped multi-core fiber preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3306160B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116065245B (en) * | 2023-01-05 | 2024-04-19 | 华南理工大学 | A polymer fiber with controllable conduction path, a preparation device and a preparation method thereof |
-
1993
- 1993-03-18 JP JP08248693A patent/JP3306160B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06273632A (en) | 1994-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2918156B2 (en) | Passive alignment device for optical fiber using alignment platform | |
EP0490095B1 (en) | A process of manufacturing an elongate integrated optical device with at least one channel therein | |
JPH11174246A (en) | Planar type optical waveguide | |
JP3306160B2 (en) | Manufacturing method of tape-shaped multi-core fiber preform | |
JPS6228098B2 (en) | ||
JP3871737B2 (en) | Manufacturing method of tape-shaped multi-core fiber | |
JPH07253518A (en) | Star coupler manufacturing method and star coupler | |
JP3477497B2 (en) | Planar optical waveguide and method of manufacturing the same | |
JPH0688914A (en) | Optical waveguide and its production | |
JPS6328857B2 (en) | ||
EP1659430A1 (en) | Optical waveguide circuit component and production method therefor | |
JPH0557215B2 (en) | ||
JP2886599B2 (en) | Image fiber manufacturing method | |
JPS6243932B2 (en) | ||
JPH0210093B2 (en) | ||
JP3293411B2 (en) | Method for manufacturing quartz-based glass waveguide device | |
JPS6365619B2 (en) | ||
JP2005003899A (en) | Optical fiber array for converting mode field diameter and its manufacturing method | |
JP2887409B2 (en) | Manufacturing method of fiber fusion type optical directional coupler | |
JPS5840521A (en) | Production of photocoupler | |
JP2887411B2 (en) | Manufacturing method of fiber fusion type optical directional coupler | |
JPH07294755A (en) | Production of tape-shaped multicore fiber | |
JPS63379B2 (en) | ||
JPH06222225A (en) | Tape-shaped multi-core fiber and its manufacture | |
JP3983971B2 (en) | Double clad fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080510 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100510 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110510 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |