JP3289231B2 - Negative electrode for lithium ion secondary battery - Google Patents
Negative electrode for lithium ion secondary batteryInfo
- Publication number
- JP3289231B2 JP3289231B2 JP06172095A JP6172095A JP3289231B2 JP 3289231 B2 JP3289231 B2 JP 3289231B2 JP 06172095 A JP06172095 A JP 06172095A JP 6172095 A JP6172095 A JP 6172095A JP 3289231 B2 JP3289231 B2 JP 3289231B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- weight
- carbide
- lithium ion
- ion secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高電気容量を有する炭
化物の粒子を含んでなるリチウムイオン二次電池用負極
に関する。The present invention relates to a lithium ion secondary battery negative electrode comprising particles of coal <br/> product that have a high electrical capacity.
【0002】[0002]
【従来の技術】近年、リチウムイオン二次電池は、小型
・軽量化を図り得る高エネルギー蓄電池であるために、
携帯用電子機器用電源として注目されている。そして、
このリチウムイオン二次電池にあっては、正極活物質に
は、LixMyOz(Mは遷移金属元素を主とする1種ま
たは2種以上の金属元素、0.5≦x≦2,1≦y≦
2,2≦z≦4)で示されるリチウム金属複合酸化物粒
子が用いられ、負極には、石油ピッチコークス、石炭ピ
ッチコークス、黒鉛の粒子等の炭素質材料が用いられ
る。2. Description of the Related Art In recent years, a lithium ion secondary battery is a high energy storage battery which can be reduced in size and weight.
It is attracting attention as a power source for portable electronic devices. And
In the lithium ion secondary battery, the positive electrode active material, Li x M y O z ( M is one or more metal elements mainly containing a transition metal element, 0.5 ≦ x ≦ 2 , 1 ≦ y ≦
Lithium metal composite oxide particles represented by (2, 2 ≦ z ≦ 4) are used, and carbonaceous materials such as petroleum pitch coke, coal pitch coke, and graphite particles are used for the negative electrode.
【0003】その電池性能を示すエネルギー密度は、負
極の活物質である炭素質材料のリチウムイオンのドーピ
ング(吸蔵)度合に依存する。正極活物質は充電時にリ
チウムイオンを放出し、負極の炭素質材料にドーピング
(充電)され、放電時に炭素質材料からリチウムイオン
が脱ドーピング(放電)される。電池缶の限られた内容
積により多くの負極活物質を充填することから、負極活
物質あたりの放電電気容量が大きいことが電池の高容量
化につながる。そして、各種電子・電気機器の電源用と
しては、2時間以内に充電でき、かつより高容量化を図
った電池の出現が更に望まれている。The energy density indicating the battery performance depends on the degree of lithium ion doping (occluding) of a carbonaceous material as an active material of a negative electrode. The positive electrode active material emits lithium ions during charging, is doped (charged) into the carbonaceous material of the negative electrode, and is dedoped (discharged) from the carbonaceous material during discharge. Since a larger amount of the negative electrode active material is filled into the limited internal volume of the battery can, a large discharge electric capacity per negative electrode active material leads to a higher capacity of the battery. As a power source for various electronic and electric devices, there is a further demand for a battery that can be charged within two hours and has a higher capacity.
【0004】負極活物質として用いられる石油ピッチコ
ークス、石炭ピッチコークス等を700〜800℃で熱
処理して得られた炭化物にあっては、炭化物1gあたり
の放電電気容量は高いものの、急速充電性に劣り、また
真比重が1.50〜1.75g/cm3であり、体積あ
たりの容量としては黒鉛を越えるものは得難かった。一
方、負極活物質として用いられる黒鉛としての天然黒
鉛、人工黒鉛は、電解液として非プロトン性有機溶媒を
選択することにより高容量化を図ることができる。これ
ら黒鉛は、その粒子径を小さくするほど単位重量当りの
表面積が増大して高容量化するものの、その電気容量は
372mAh/gが限界である。また、急速充電時、黒
鉛表面がより活性化しリチウムを析出させやすくなって
デンドライトショート等の電池の安全性に問題を生ずる
恐れがあり、さらに電解液を分解しやすくなることから
溶媒の選択が制約されることとなる。A carbide obtained by heat-treating petroleum pitch coke, coal pitch coke, or the like used as a negative electrode active material at 700 to 800 ° C. has a high discharge electric capacity per gram of carbide, but has a high chargeability. It was inferior and had a true specific gravity of 1.50 to 1.75 g / cm 3 , and it was difficult to obtain a material per volume exceeding graphite. On the other hand, natural graphite and artificial graphite as graphite used as a negative electrode active material can achieve high capacity by selecting an aprotic organic solvent as an electrolytic solution. Although the surface area per unit weight of these graphites increases as the particle size decreases, the capacity increases, but the electric capacity is limited to 372 mAh / g. In addition, during rapid charging, the graphite surface becomes more active and lithium is easily precipitated, which may cause a problem in battery safety such as dendrite short-circuit, and the solvent selection is restricted because the electrolyte is easily decomposed. Will be done.
【0005】黒鉛を負極活物質として用いた場合、例え
ば正極にリチウムコバルト酸化物を用いたリチウムイオ
ン二次電池とすると、3.4V以下では急激な放電電圧
となり、漸次電圧降下し、残留電池容量表示が容易であ
ったコークスを負極に用いるリチウムイオン二次電池の
特長が失われる欠点がある。When graphite is used as a negative electrode active material, for example, in the case of a lithium ion secondary battery using lithium cobalt oxide for the positive electrode, the discharge voltage suddenly drops below 3.4 V, gradually drops, and the residual battery capacity decreases. There is a disadvantage that the characteristics of a lithium ion secondary battery using coke, which was easy to display, as a negative electrode are lost.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、前記
の課題を克服し、高い電気容量を有し安全性に優れた炭
化物の粒子を含んでなるリチウムイオン二次電池用負極
を提供することにある。An object of the present invention is to provide a, to overcome the above problems, an excellent safety have capacitance have high coal
It is an object of the present invention to provide a negative electrode for a lithium ion secondary battery , comprising particles of a compound .
【0007】[0007]
【課題を解決するための手段】本発明者らは、前記目的
を達成するため鋭意検討した結果、特定の金属又はその
金属元素を含む化合物を添加し、特定の炭素質材料とタ
ールピッチとからなるものを熱処理し、炭化して得られ
る炭化物の粒子を含んでなるリチウムイオン二次電池用
負極が、前記課題の解決に極めて有効であることを見出
し、本発明の完成に至った。すなわち本発明は、平均粒
子径が1〜20μm、炭素層間距離(d002)が0.3
35〜0.340nmの範囲にある炭素質材料(A)と
タールピッチ(B)とアルミニウム、亜鉛、錫、ケイ素
から選ばれた1種の金属、又はそのいずれか1種の金属
元素を含む化合物の1種又は2種以上の混合物(C)と
を混合し、これを熱処理して炭化物を得るに当り、該炭
化物中(A)が10〜60重量%、(B)由来の炭素質
が80〜20重量%、(C)由来の金属元素が2〜20
重量%である炭化物の粒子を含んでなることを特徴とす
るリチウムイオン二次電池用負極である。Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, added a specific metal or a compound containing the metal element to form a specific carbonaceous material and tar pitch. For lithium ion secondary batteries containing carbide particles obtained by heat-treating and carbonizing
The inventors have found that the negative electrode is extremely effective in solving the above-mentioned problems, and have completed the present invention. That is, in the present invention, the average particle diameter is 1 to 20 μm, and the carbon interlayer distance (d 002 ) is 0.3.
A carbonaceous material (A) and a tar pitch (B) in the range of 35 to 0.340 nm, and one metal selected from aluminum, zinc, tin and silicon, or a compound containing any one of these metal elements Is mixed with one or more kinds of mixtures (C), and the mixture is heat-treated to obtain a carbide. In the carbide, (A) is 10 to 60% by weight, and carbonaceous material derived from (B) is 80% by weight. -20% by weight, metal element derived from (C) is 2-20%
It is characterized by comprising particles of weight% der Ru carbides
A negative electrode for a lithium ion secondary battery that.
【0008】以下、本発明について詳細に説明する。本
発明に用いられる炭素質材料(A)としては、2時間以
内の急速充電性を求めることから、平均粒子径1〜20
μm、好ましくは1〜5μm、また炭素層間距離(d
002)が0.335〜0.340nmであり、例えば天
然黒鉛、人工黒鉛を衝撃粉砕するか濃硫酸等でステージ
1のインターカレーションさせた後、水洗する等により
つくられる。また、2100℃以上で熱処理した高分子
材料、ピッチタール等の炭化物でもよい。Hereinafter, the present invention will be described in detail. Since the carbonaceous material (A) used in the present invention is required to have a rapid chargeability within 2 hours, the average particle diameter is 1 to 20.
μm, preferably 1 to 5 μm, and the carbon interlayer distance (d
002 ) is from 0.335 to 0.340 nm, and is formed, for example, by subjecting natural graphite or artificial graphite to impact pulverization or intercalating the stage 1 with concentrated sulfuric acid or the like, followed by washing with water. Alternatively, a polymer material heat-treated at 2100 ° C. or higher, or a carbide such as pitch tar may be used.
【0009】本発明で用いられるタールピッチ(B)と
しては、例としてナフサ分解、原油分解、石炭の熱分
解、アスファルト分解等による石油系タールピッチ、石
炭系タールピッチ等が挙げられる。必要に応じて、ター
ルピッチにフェノール樹脂類を添加してもよい。このフ
ェノール樹脂としては、硬化剤や硬化促進剤の存在下又
は非存在下で常温ないし加熱により架橋する性質、すな
わち硬化性を有するものであれば特に限定されず、例え
ばノボラック型、レゾール型もしくはベンジリックエー
テル型のフェノール樹脂、及びこれらをフラン樹脂、フ
ルフリルアルコール、メラミン樹脂、キシレン樹脂等で
変性した樹脂などが挙げられる。Examples of the tar pitch (B) used in the present invention include petroleum tar pitch and coal tar pitch by naphtha cracking, crude oil cracking, coal thermal cracking, asphalt cracking, and the like. If necessary, phenol resins may be added to the tar pitch. The phenolic resin is not particularly limited as long as it has a property of being crosslinkable at normal temperature or heating in the presence or absence of a curing agent or a curing accelerator, that is, a curable property. For example, novolak type, resol type or benzene Rick ether type phenol resins and resins obtained by modifying these with furan resins, furfuryl alcohol, melamine resins, xylene resins, and the like.
【0010】また、本発明で用いるタールピッチに、グ
リーンメソフェーズピッチ小球体とグリーンメソフェー
ズピッチ粉砕粒子のいずれかまたは混合物を添加しても
よい。これらは、前記タールピッチを300〜600℃
に加熱した際に生成するメソフェーズピッチ小球体を遠
心分離したもの、あるいは更に小球体が融合したものを
塊状として分離した後、粉砕したもの、更にはこれを1
600℃以下で不活性ガス雰囲気中、又は真空中で焼成
したものであってもよい。[0010] Further, any one or a mixture of green mesophase pitch small spheres and green mesophase pitch ground particles may be added to the tar pitch used in the present invention. These are prepared by setting the tar pitch to 300 to 600 ° C.
The mesophase pitch small spheres generated when heated to a temperature of 100 ° C. are centrifuged, or those in which the small spheres are fused are separated into a lump and then pulverized.
It may be fired at 600 ° C. or lower in an inert gas atmosphere or in a vacuum.
【0011】本発明に用いられる(C)成分は、アルミ
ニウム、亜鉛、錫、ケイ素から選ばれた1種の金属又は
そのいずれか1種の金属元素を含む化合物の1種又は2
種以上の混合物(以下、特定金属化合物等という)であ
り、例えば、錫及びその化合物としては、錫の金属パウ
ダー、酸化物、酢酸錫等のカルボン酸塩、塩化第1錫等
のハロゲン化合物、リン酸錫等の無機酸塩、ジブチル錫
オキサイド等の有機錫化合物等がある。ケイ素及びその
化合物としては、ケイ素の金属パウダー、二酸化ケイ
素、四塩化ケイ素、ケイ酸、ポリシロキサン、シラザン
等がある。アルミニウム及びその化合物としては、アル
ミニウムの金属パウダー、水酸化アルミニウム、アセト
アルコキシアルミニウムジイソプロピレート等のアルミ
ニウム系カップリング剤、アルミニウムエチルアセトア
セテードイソプロピレート等のアルミニウムキレート
粒、アルミニウムイソプロポキサイドオ等のアルコラー
ト類がある。亜鉛及びその化合物としては、亜鉛の金属
パウダー、水酸化亜鉛、酸化亜鉛、ジエチル亜鉛、酢酸
亜鉛等のカルボン酸塩、塩化亜鉛等のハロゲン化物、炭
酸亜鉛、硝酸亜鉛、リン酸亜鉛等の無機酸塩、ジエチル
ジチオカルバミン酸亜鉛等のカルバミン酸塩がある。The component (C) used in the present invention is one kind of metal selected from aluminum, zinc, tin and silicon or one or two kinds of compounds containing any one of these metal elements.
A mixture of more than one kind (hereinafter, referred to as a specific metal compound, etc.), for example, tin and its compounds include tin metal powder, oxides, carboxylates such as tin acetate, halogen compounds such as stannous chloride, There are inorganic acid salts such as tin phosphate and organic tin compounds such as dibutyltin oxide. Silicon and its compounds include silicon metal powder, silicon dioxide, silicon tetrachloride, silicic acid, polysiloxane, and silazane. Aluminum and its compounds include aluminum metal powders, aluminum-based coupling agents such as aluminum hydroxide and acetoalkoxyaluminum diisopropylate, aluminum chelate particles such as aluminum ethyl acetoacetate isopropylate, aluminum isopropoxide, etc. Alcoholates. Examples of zinc and its compounds include zinc metal powder, carboxylate salts such as zinc hydroxide, zinc oxide, diethyl zinc, and zinc acetate; halides such as zinc chloride; and inorganic acids such as zinc carbonate, zinc nitrate, and zinc phosphate. Salts and carbamates such as zinc diethyldithiocarbamate.
【0012】前記炭素質材料(A)と前記タールピッチ
(B)と前記特定金属化合物等(C)とを、不活性ガス
雰囲気中でヘンシェルミキサー等の混合機で混合する。
そして、不活性ガス雰囲気中で400℃まで加熱し、固
化させ、常温まで冷却する。必要であれば、これを微粉
砕した後、再度不活性ガス雰囲気中あるいは真空中で
0.01〜0.2℃/分の昇温速度で650〜1000
℃、好ましくは700〜900℃、さらに好ましくは7
00〜800℃まで熱処理し、炭化物を得る。この際、
雰囲気中に水素ガスを必要に応じて流入させてもよい。
炭化物の粒子としては、平均粒子径が5〜15μmのも
のが好ましい。この炭化物にあっては、炭素質材料
(A)が10〜60重量%、タールピッチ(B)由来の
炭素質が80〜20重量%、特定金属化合物等(C)由
来の金属元素が原子として2〜20重量%である。特定
金属化合物等(C)由来の金属元素が2重量%未満で
は、これを添加することによる電気容量の改善効果が小
さく、また20重量%を越えると、還元された金属原子
が炭化物粒子表面に出やすく、リチウムとの合金を表面
に形成しやすくなり、電池の高温安定性が悪くなって好
ましくない。炭素質材料(A)は、10重量%未満で
も、また60重量%を越えても急速充電性に劣る。ま
た、本発明の目的である高電気容量の発現ができ難い。The carbonaceous material (A), the tar pitch (B) and the specific metal compound (C) are mixed in an inert gas atmosphere by a mixer such as a Henschel mixer.
Then, it is heated to 400 ° C. in an inert gas atmosphere, solidified, and cooled to room temperature. If necessary, this is pulverized, and then again in an inert gas atmosphere or vacuum at a rate of 650-1000 ° C./min at a rate of 0.01-0.2 ° C./min.
° C, preferably 700 to 900 ° C, more preferably 7 ° C.
Heat treatment to 00 to 800 ° C to obtain carbide. On this occasion,
Hydrogen gas may be introduced into the atmosphere as needed.
The carbide particles preferably have an average particle diameter of 5 to 15 μm. In this carbide, the carbonaceous material (A) is 10 to 60% by weight, the carbonaceous material derived from the tar pitch (B) is 80 to 20% by weight, and the metal element derived from the specific metal compound (C) such as a specific metal compound is an atom. 2 to 20% by weight. If the amount of the metal element derived from the specific metal compound (C) is less than 2% by weight, the effect of improving the electric capacity by adding the metal element is small, and if it exceeds 20% by weight, the reduced metal atoms are present on the surface of the carbide particles. It is not preferable because it easily comes out and an alloy with lithium is easily formed on the surface, and the high-temperature stability of the battery deteriorates. If the carbonaceous material (A) is less than 10% by weight or more than 60% by weight, the quick chargeability is poor. Further, it is difficult to achieve the high electric capacity which is the object of the present invention.
【0013】本発明のリチウムイオン二次電池用負極
は、前記カーボン粒子単独または必要に応じて他のコー
クス、黒鉛等を混合し、これに、例えばカルボキシメチ
ルセルローズ、フッ素ゴム、ポリフッ化ビニリデン、ポ
リビニルピリジン、ポリビニルアルコール、ポリアクリ
ル酸塩、EPDMゴム、ジエン系ゴム等の何れか又は混
合物をバインダーとして混合したものからなる分散液
を、例えば1〜50μmの厚みを有する銅、ステンレ
ス、ニッケル等の金属箔、網状体、多孔体等の集電体の
上に塗布し、乾燥し、必要に応じてプレスして得られ
る。The negative electrode for a lithium ion secondary battery of the present invention comprises the above-mentioned carbon particles alone or, if necessary, a mixture of other coke, graphite, etc., into which, for example, carboxymethyl cellulose, fluorine rubber, polyvinylidene fluoride, polyvinyl Dispersion composed of a mixture of any of pyridine, polyvinyl alcohol, polyacrylate, EPDM rubber, diene rubber, or a mixture thereof as a binder, for example, a metal such as copper, stainless steel, nickel, etc. having a thickness of 1 to 50 μm. It is obtained by applying it on a current collector such as a foil, a net, or a porous body, drying it, and pressing if necessary.
【0014】本発明でいう非水系二次電池にあっては、
正極が、リチウムコバルト酸化物としては、例えばLi
xCoyMzO2(但し、MはAl,In,Sn,Mn,F
e,Ti,Zr,Ceの中から選ばれた少なくとも1種
の金属を表し、x,y,zは各々0<x≦1.1、0.
5<y≦1、z≦0.15の数を表す)、LixCoO2
(0<x≦1.1)、LixCoyNizO2(0<x≦
1、y+z=1)、リチウムニッケル酸化物としては、
例えばLixNiO2(0<x≦1)、LixNiyMzO2
(但し、MはMn,Ti,Feの中から選ばれた少なく
とも1種の金属を表し、x,zは各々0<x≦1、0.
1<z≦0.5の数を表す)、リチウムマンガン酸化物
としては、例えばLiMnO3、LixMnO2(0<x
≦1)、LixMn2O4(0<x<2)、LiCoxMn
2-xO4(0<x≦0.5)、LixMn2-yMyO4(但
し、MはNi,Co,Ti,Feの中から選ばれた少な
くとも1種の金属を表し、x,yは各々0.5≦x≦
2、0.1<y≦0.5の数を表す)、リチウム鉄酸化
物としては、例えばLiFeO2,LiFexM1-xO
2(但し、MはMn,Ti,Co,Niの中から選ばれ
た少なくとも1種の金属を表し、xは0<x≦0.2の
数を表す)である。また、電解液は、電解質が例えばL
iClO4,LiAsF6,LiPF6,LiBF4,CH
3SO3Li,CF3SO3Li,(CF3SO2)2NLi
等のリチウム塩のいずれか1種又は2種以上を混合した
もの、溶媒が例えばプロピレンカーボネート、エチレン
カーボネート、ジメチルカーボネート、ジエチルカーボ
ネート、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、γ−ブチロラクトン、テトラヒドロフラン、
2−メチルテトラヒドロフラン、1,3−ジオキソラ
ン、スルホラン、メチルスルホラン、アセトニトリル、
プロピオニトリル、ギ酸メチル、ギ酸エチル、酢酸メチ
ル、酢酸エチル、酢酸ブチル、酢酸ヘキシル、プロピオ
ン酸メチル、プロピオン酸エチル、プロピオン酸ブチ
ル、プロピオン酸ヘキシル、リン酸トリエチル、リン酸
トリエチルヘキシル、リン酸トリラウレル等のいずれか
1種又は2種以上を混合したもの、セパレーターが、ポ
リエチレン、ポリプロピレン等のポリオレフィン微多孔
膜の1種の単独膜或いはそれらの1種又は2種以上の貼
り合わせ膜、あるいは固体電解質膜、そして負極は炭素
質材料を活物質として用いるものをいう。In the non-aqueous secondary battery according to the present invention,
The positive electrode is made of, for example, Li
x Co y M z O 2 (where, M is Al, In, Sn, Mn, F
e, at least one metal selected from Ti, Zr, and Ce, where x, y, and z are each 0 <x ≦ 1.1, 0.
5 <y ≦ 1, representing a number of z ≦ 0.15), Li x CoO 2
(0 <x ≦ 1.1), Li x Co y Ni z O 2 (0 <x ≦
1, y + z = 1), and as the lithium nickel oxide,
For example, Li x NiO 2 (0 <x ≦ 1), Li x Ni y MzO 2
(However, M represents at least one metal selected from Mn, Ti, and Fe, and x and z are each 0 <x ≦ 1, 0.
1 <z ≦ 0.5), and examples of the lithium manganese oxide include LiMnO 3 and Li x MnO 2 (0 <x
≦ 1), Li x Mn 2 O 4 (0 <x <2), LiCo x Mn
2-x O 4 (0 < x ≦ 0.5), Li x Mn 2-y M y O 4 ( where, M represents Ni, Co, Ti, at least one metal selected from among Fe , X, y are respectively 0.5 ≦ x ≦
2, 0.1 <y ≦ 0.5), and examples of the lithium iron oxide include LiFeO 2 , LiFe x M 1-x O
2 (where M represents at least one metal selected from Mn, Ti, Co, and Ni, and x represents a number satisfying 0 <x ≦ 0.2). Further, the electrolyte is such that the electrolyte is, for example, L
iClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , CH
3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi
A mixture of any one or more of lithium salts such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ- Butyrolactone, tetrahydrofuran,
2-methyltetrahydrofuran, 1,3-dioxolan, sulfolane, methylsulfolane, acetonitrile,
Proponitrile, methyl formate, ethyl formate, methyl acetate, ethyl acetate, butyl acetate, hexyl acetate, methyl propionate, ethyl propionate, butyl propionate, hexyl propionate, triethyl phosphate, triethylhexyl phosphate, trilaurel phosphate Or a mixture of two or more of these, and the separator is a single membrane of a polyolefin microporous membrane such as polyethylene or polypropylene, or a laminated membrane of one or more thereof, or a solid electrolyte. The film and the negative electrode are those using a carbonaceous material as an active material.
【0015】本発明のリチウムイオン二次電池用負極
は、そのまま上述の正極、電解液、セパレーターあるい
は固体電解質膜と用いて、初充電時に正極からのリチウ
ムイオンをドーピングしてもよいし、予めリチウムイオ
ンをリチウム金属、リチウム合金、リチウムアルコキシ
ド、アルキルリチウム、ヨウ化リチウムと接触させてド
ーピングしておいてもよい。The negative electrode for a lithium ion secondary battery of the present invention may be used as it is with the above-described positive electrode, electrolytic solution, separator or solid electrolyte membrane, and may be doped with lithium ions from the positive electrode during the first charge, or The ions may be contacted with lithium metal, lithium alloy, lithium alkoxide, alkyllithium, or lithium iodide for doping.
【0016】[0016]
【実施例】以下実施例、比較例により本発明を更に詳し
く説明するが、本発明はこれらに限定されるものではな
い。 (測定法) 電流効率(%)は、放電電気量/充電電気量×100
で表す。負極活物質の放電容量(mAh/g)は、活
物質である当該炭化物重量当りの放電電気量としてもと
める。炭素網面の面間隔d002(nm)は、「日本学
術振興会法」に準じたX線回析法により算出する。 リチウムイオン二次電池用負極の作成 実施例及び比較例で得られたカーボン粒子100重量部
に対して、バインダーとしてカルボキシメチルセルロー
ズ0.8重量部と、スチレン−ブタジエンの架橋ゴムラ
テックス粒子2.0重量部とを含む水性液を100重量
部加えて分散液とし、これを厚さ18μmの電解銅箔の
片面に塗工し、乾燥し、圧縮プレスする。これを作用極
とし、ポリエチレン微多孔膜を介してステンレスネット
に押しつけたリチウムシートを対極とし、1.0モルの
LiBF4のプロピレンカーボネート25%、エチレン
カーボネート25%、γ−ブチロラクトン50%の容積
分率の混合溶媒中で、最大1.0mA/cm2の電流密
度で充電を開始し8時間充電する。対Li/Li+電位
10mVまでドーピング(充電)する。放電は、対Li
/Li+電位1.5Vまで行い放電容量をもとめ、活物
質重量当りの放電電気量としてmAh/gで表示する。 急速充電性 3.0mA/cm2の電流密度の定電流で充電を開始
し、2時間充電した場合と、8時間充電した場合との放
電電気容量の比を百分率としてもとめ、80%以上を良
好と判定する。金属元素の含有率を、錫、亜鉛につい
ては螢光X線分析法により、アルミニウム、ケイ素につ
いては原子吸光法により測定した。 残留容量表示性 負極としての放電電圧が、0.5〜1.5Vまでの放電
電気量の比率(百分率)が、放電電気量の10%以上あ
るものを残留電池容量表示性が良好と判断する。The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited thereto. (Measurement method) The current efficiency (%) is the amount of discharged electricity / the amount of charged electricity × 100.
Expressed by The discharge capacity (mAh / g) of the negative electrode active material is determined as the amount of discharge electricity per weight of the carbide as the active material. The plane spacing d 002 (nm) of the carbon net plane is calculated by an X-ray diffraction method according to the “Japan Society for the Promotion of Science”. Preparation of negative electrode for lithium ion secondary battery 0.8 parts by weight of carboxymethyl cellulose as a binder and 100 parts by weight of carbon particles obtained in Examples and Comparative Examples, and crosslinked rubber latex particles of styrene-butadiene 2.0 And 100 parts by weight of an aqueous liquid containing 1 part by weight of the aqueous liquid, to obtain a dispersion, which is applied to one surface of an electrolytic copper foil having a thickness of 18 μm, dried, and compression-pressed. Using this as a working electrode, a lithium sheet pressed against a stainless steel net through a polyethylene microporous membrane was used as a counter electrode, and a volume fraction of 1.0 mol of LiBF 4 propylene carbonate 25%, ethylene carbonate 25%, γ-butyrolactone 50% was used. In the mixed solvent at a rate of 1.0 mA / cm 2 at a maximum current density, charging is started for 8 hours. Doping (charging) is performed up to a Li / Li + potential of 10 mV. Discharge is to Li
/ Li + potential up to 1.5 V to determine the discharge capacity, which is expressed in mAh / g as the amount of discharge electricity per weight of active material. Quick chargeability Charge is started at a constant current of a current density of 3.0 mA / cm 2 , and the ratio of the discharge electric capacity between the case of charging for 2 hours and the case of charging for 8 hours is determined as a percentage, and 80% or more is good. Is determined. The metal element content was measured by X-ray fluorescence analysis for tin and zinc, and by atomic absorption method for aluminum and silicon. Residual capacity display performance When the discharge voltage as the negative electrode is 0.5 to 1.5 V and the ratio (percentage) of the discharge power is 10% or more of the discharge power, it is determined that the residual battery capacity display performance is good. .
【0017】(実施例1) 炭素質材料(A)として人工黒鉛のジェットミル粉砕品
(平均粒子径3μm、炭素層間距離(d002)0.33
6nm)を30重量部と、タールピッチ(B)として石
炭系タールピッチ(軟化点84℃)を97重量部と、特
定金属化合物等(C)としてアルミニウムイソプロピラ
ートを91重量部とを、オートクレーブ内の窒素雰囲気
中で高速撹拌下、常温から300℃まで3時間かけて漸
次上昇させる。これを一旦冷却し、撹拌下、常温に戻し
て取り出し、電気炉へ移す。そして、窒素雰囲気中で、
0.2℃/分の昇温速度で常温から750℃まで昇温
し、炭化させる。そして、炭化物を電気炉から取り出
し、200メッシュのふるいにかけ、200メッシュパ
ス品による負極評価した。実施結果をまとめて表1に示
す。(Example 1) As a carbonaceous material (A), a product obtained by pulverizing artificial graphite with a jet mill (average particle diameter 3 μm, carbon interlayer distance (d 002 ) 0.33)
6 nm), 97 parts by weight of coal tar pitch (softening point: 84 ° C.) as tar pitch (B), and 91 parts by weight of aluminum isopropylate as specific metal compound (C) in an autoclave. The temperature is gradually increased from room temperature to 300 ° C. over 3 hours under a high-speed stirring in a nitrogen atmosphere. This is once cooled, returned to room temperature under stirring, taken out, and transferred to an electric furnace. And in a nitrogen atmosphere,
The temperature is raised from room temperature to 750 ° C. at a rate of 0.2 ° C./min to carbonize. Then, the carbide was taken out of the electric furnace, passed through a 200-mesh sieve, and evaluated for a negative electrode using a 200-mesh pass product. The results are summarized in Table 1.
【0018】(実施例2) 炭素質材料(A)として天然黒鉛の粉砕品(平均粒子径
2.8μm、炭素層間距離(d002)0.335nm)
を30重量部と、タールピッチ(B)として石炭系ター
ルピッチ(軟化点89℃)を100重量部及びノボラッ
ク型フェノール樹脂を13重量部(硬化剤としてヘキサ
メチレンテトラミンを1.3重量部含む)と、特定金属
化合物等(C)として無水酢酸亜鉛を22重量部とを、
実施例1と同じオートクレーブ内の窒素雰囲気中で高速
撹拌下、常温から350℃まで4時間かけて漸次上昇さ
せる。350℃に到達後、撹拌下に常温まで冷却する。
これを取り出して、電気炉へ移す。そして窒素雰囲気中
で、0.2℃/分の昇温速度で常温から750℃まで昇
温し、炭化させる。この炭化物を200メッシュのふる
いにかけ、200メッシュパス品を負極評価した。実施
結果をまとめて表1に示す。(Example 2) A pulverized product of natural graphite as the carbonaceous material (A) (average particle size 2.8 µm, carbon interlayer distance (d 002 ) 0.335 nm)
30 parts by weight, 100 parts by weight of coal-based tar pitch (softening point 89 ° C.) as the tar pitch (B), and 13 parts by weight of a novolak-type phenol resin (including 1.3 parts by weight of hexamethylenetetramine as a curing agent) And 22 parts by weight of anhydrous zinc acetate as the specific metal compound (C),
In the same autoclave as in Example 1, the temperature is gradually increased from room temperature to 350 ° C. over 4 hours under high-speed stirring in a nitrogen atmosphere. After reaching 350 ° C., the mixture is cooled to room temperature with stirring.
Take it out and transfer to electric furnace. Then, in a nitrogen atmosphere, the temperature is raised from room temperature to 750 ° C. at a rate of 0.2 ° C./min to carbonize. This carbide was sieved through a 200-mesh sieve, and a 200-mesh pass product was evaluated as a negative electrode. The results are summarized in Table 1.
【0019】(実施例3) 炭素質材料(A)として実施例1と同一のものを30重
量部と、タールピッチ(B)として実施例1と同一のタ
ールピッチを95重量部及びレゾール型フェノール樹脂
(固形分)を14重量部と、特定金属化合物等(C)と
してジブチル錫オキサイドを21重量部とを、実施例1
と同じオートクレーブ内の窒素気流中で高速撹拌しなが
ら、常温から250℃まで5時間かけて漸次上昇させ
る。250℃に到達したら、次に撹拌しながら常温まで
冷却する。これを取り出して、電気炉へ移し、窒素雰囲
気中で、0.2℃/分の昇温速度で常温から750℃ま
で昇温し、炭化させる。この炭化物を200メッシュの
ふるいにかけ、200メッシュパス品を負極評価した。
実施結果をまとめて表1に示す。(Example 3) 30 parts by weight of the same carbonaceous material (A) as in Example 1; 95 parts by weight of the same tar pitch as in Example 1 as tar pitch (B); Example 1 Resin (solid content): 14 parts by weight and 21 parts by weight of dibutyltin oxide as the specific metal compound (C)
While gradually stirring in a nitrogen stream in the same autoclave as above, the temperature is gradually raised from room temperature to 250 ° C. over 5 hours. When it reaches 250 ° C., it is then cooled to room temperature with stirring. This is taken out, transferred to an electric furnace, and carbonized in a nitrogen atmosphere from normal temperature to 750 ° C. at a rate of 0.2 ° C./min. This carbide was sieved through a 200-mesh sieve, and a 200-mesh pass product was evaluated as a negative electrode.
The results are summarized in Table 1.
【0020】(実施例4) 炭素質材料(A)として実施例1と同一のものを30重
量部と、タールピッチ(B)として実施例1と同一のタ
ールピッチを90重量部及びレゾール型フェノール樹脂
(固形分)を10重量部と、特定金属化合物等(C)と
してオルト硅酸を51重量部とを、加熱式ニーダーに入
れて、常温から170℃まで加熱する。そして、これを
冷却して電気炉へ移し、窒素雰囲気中で、0.2℃/分
の昇温速度で常温から750℃まで昇温し、炭化させ
る。この炭化物を200メッシュのふるいにかけ、パス
品を負極評価した。実施結果をまとめて表1に示す。Example 4 30 parts by weight of the same carbonaceous material (A) as in Example 1; 90 parts by weight of the same tar pitch as in Example 1 as tar pitch (B); and resol phenol 10 parts by weight of the resin (solid content) and 51 parts by weight of orthosilicic acid as the specific metal compound (C) are placed in a heating kneader and heated from room temperature to 170 ° C. Then, it is cooled, transferred to an electric furnace, and heated from normal temperature to 750 ° C. at a rate of 0.2 ° C./min in a nitrogen atmosphere to be carbonized. This carbide was sieved through a 200 mesh sieve, and the pass product was evaluated as a negative electrode. The results are summarized in Table 1.
【0021】(比較例1) 実施例2と同一のタールピッチのみを実施例2と同様に
電気炉にて熱処理し、炭化させる。これを取り出し、粉
砕し、200メッシュのふるいにかける。200メッシ
ュパス品による負極評価を含めて、測定結果を表1に示
す。(Comparative Example 1) Only the same tar pitch as in Example 2 is heat-treated in an electric furnace and carbonized as in Example 2. Take this out, crush and sieve through a 200 mesh sieve. Table 1 shows the measurement results including the evaluation of the negative electrode using a 200 mesh pass product.
【0022】(比較例2) 平均粒子径10μm、炭素層間距離(d002)0.33
5nmの天然黒鉛による負極評価を含めて、測定結果を
表1に示す。Comparative Example 2 Average particle diameter 10 μm, distance between carbon layers (d 002 ) 0.33
Table 1 shows the measurement results, including the evaluation of the negative electrode using 5 nm of natural graphite.
【0023】(比較例3) 炭素質材料(A)として実施例1と同一のものを30重
量部と、タールピッチ(B)として実施例1と同一のタ
ールピッチを90重量部及びレゾール型フェノール樹脂
(固形分)を10重量部と、特定金属化合物等(C)に
代えて酸化鉄(Fe2O3)を21重量部とを、加熱式ニ
ーダーに入れて常温から170℃まで加熱する。次に、
これを冷却して電気炉へ移し、窒素雰囲気中で、0.2
℃/分の昇温速度で常温から750℃まで昇温し、炭化
させる。この炭化物を200メッシュのふるいにかけ、
200メッシュパス品を負極評価した。実施結果をまと
めて表1に示す。Comparative Example 3 30 parts by weight of the same carbonaceous material (A) as in Example 1 and 90 parts by weight of the same tar pitch as in Example 1 as tar pitch (B) and resol phenol 10 parts by weight of the resin (solid content) and 21 parts by weight of iron oxide (Fe 2 O 3 ) in place of the specific metal compound (C) are put into a heating kneader and heated from room temperature to 170 ° C. next,
This is cooled and transferred to an electric furnace, and is cooled to 0.2 in a nitrogen atmosphere.
The temperature is raised from room temperature to 750 ° C. at a temperature rising rate of ° C./min, and carbonized. This carbide is sifted through a 200 mesh sieve,
A 200 mesh pass product was evaluated for the negative electrode. The results are summarized in Table 1.
【0024】(比較例4) 実施例1と同様に行い、昇温を1400℃まで行う。こ
れを200メッシュのふるいにかけてパス品を負極評価
した。実施結果をまとめて表1に示す。(Comparative Example 4) The same procedure as in Example 1 was carried out, and the temperature was raised up to 1400 ° C. This was passed through a 200 mesh sieve to evaluate the pass product as a negative electrode. The results are summarized in Table 1.
【0025】[0025]
【表1】 [Table 1]
【0026】比較例1〜4は、放電容量において各実施
例よりも劣る。また比較例1は、真比重が低く、比較例
1〜3は急速充電性が劣り、比較例2は、急速充電性及
び残量容量表示性の双方が劣っている。Comparative Examples 1 to 4 are inferior in discharge capacity to each Example. Comparative Example 1 has a low true specific gravity, Comparative Examples 1 to 3 are inferior in quick chargeability, and Comparative Example 2 is inferior in both quick chargeability and remaining capacity display.
【0027】[0027]
【発明の効果】本発明によれば、実施例1〜実施例4に
示す如く、真比重が2.0以上で天然黒鉛以上のきわめ
て高い放電容量を発現するとともに、急速充電性、残留
容量表示性にも優れた炭化物の粒子を含んでなる高い電
気容量を有し安全性に優れたリチウムイオン二次電池用
負極を提供することができる。According to the present invention, as shown in Examples 1 to 4, a very high discharge capacity with a true specific gravity of 2.0 or more and a natural graphite or more, a rapid chargeability, and a residual capacity display. it is possible to provide a safety excellent anode for a lithium ion secondary battery has a high capacitance comprising a superior carbides particles to sex.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−85460(JP,A) 特開 昭51−5314(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/58 C01B 31/02 101 C04B 35/52 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-55-85460 (JP, A) JP-A-51-5314 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02 H01M 4/58 C01B 31/02 101 C04B 35/52
Claims (1)
離(d002)が0.335〜0.340nmの範囲にあ
る炭素質材料(A)とタールピッチ(B)とアルミニウ
ム、亜鉛、錫、ケイ素から選ばれた1種の金属、又はそ
のいずれか1種の金属元素を含む化合物の1種又は2種
以上の混合物(C)とを混合し、これを熱処理して炭化
物を得るに当り、該炭化物中(A)が10〜60重量
%、(B)由来の炭素質が80〜20重量%、(C)由
来の金属元素が2〜20重量%である炭化物の粒子を含
んでなることを特徴とするリチウムイオン二次電池用負
極。1. A carbonaceous material (A) having an average particle diameter of 1 to 20 μm and a carbon interlayer distance (d 002 ) in the range of 0.335 to 0.340 nm, a tar pitch (B), aluminum, zinc and tin. And one or more compounds (C) of a compound selected from silicon or a compound containing any one of the metal elements, and heat-treating the mixture to obtain a carbide. , including in the carbide (a) 10 to 60 wt%, (B) from carbonaceous of 80 to 20 wt%, the particles of carbide is 2 to 20 wt% metal element derived from the (C)
Negative for lithium ion secondary batteries
Pole .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06172095A JP3289231B2 (en) | 1995-02-24 | 1995-02-24 | Negative electrode for lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06172095A JP3289231B2 (en) | 1995-02-24 | 1995-02-24 | Negative electrode for lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08231273A JPH08231273A (en) | 1996-09-10 |
JP3289231B2 true JP3289231B2 (en) | 2002-06-04 |
Family
ID=13179350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06172095A Expired - Lifetime JP3289231B2 (en) | 1995-02-24 | 1995-02-24 | Negative electrode for lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3289231B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69739917D1 (en) | 1996-11-26 | 2010-08-05 | Kao Corp | MATERIAL FOR THE NEGATIVE ELECTRODE OF A NONWÄSLATOR |
US6143448A (en) * | 1997-10-20 | 2000-11-07 | Mitsubishi Chemical Corporation | Electrode materials having carbon particles with nano-sized inclusions therewithin and an associated electrolytic and fabrication process |
US5965297A (en) * | 1997-10-20 | 1999-10-12 | Mitsubhish Chemical Corporation | Electrode materials having carbon particles with nano-sized inclusions therewithin and an associated electrochemical and fabrication process |
JPH11260367A (en) * | 1998-03-13 | 1999-09-24 | Mitsubishi Chemical Corp | Active material for secondary battery negative electrode and manufacture thereof |
JP2000243396A (en) * | 1999-02-23 | 2000-09-08 | Hitachi Ltd | Lithium secondary battery, method of manufacturing the same, negative electrode material thereof, and electric equipment |
JP4747392B2 (en) * | 2000-01-12 | 2011-08-17 | ソニー株式会社 | Nonaqueous electrolyte secondary battery |
JP2003017038A (en) * | 2001-06-28 | 2003-01-17 | Sanyo Electric Co Ltd | Negative electrode for lithium battery, and lithium battery |
JP3957692B2 (en) * | 2004-02-27 | 2007-08-15 | Jfeケミカル株式会社 | Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery |
JP3995050B2 (en) * | 2003-09-26 | 2007-10-24 | Jfeケミカル株式会社 | Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
KR101957017B1 (en) * | 2017-05-17 | 2019-03-12 | 서울과학기술대학교 산학협력단 | Electrode active material, method for preparing the same and electrode and lithium secondary battery comprising the electrode active material |
CN114133945B (en) * | 2020-09-04 | 2022-11-11 | 国家能源投资集团有限责任公司 | Asphalt coke and preparation method and application thereof |
-
1995
- 1995-02-24 JP JP06172095A patent/JP3289231B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08231273A (en) | 1996-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5255138B2 (en) | Electric storage device and positive electrode for electric storage device | |
JP4524881B2 (en) | Nonaqueous electrolyte secondary battery | |
TWI504562B (en) | Carbonaceous material for negative electrode of non-aqueous electrolyte secondary batteries and manufacturing method thereof | |
WO2018123751A1 (en) | Non-aqueous electrolyte secondary cell | |
JP4046601B2 (en) | Negative electrode material for lithium secondary battery and lithium secondary battery using the same | |
CN111164805B (en) | Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP5505480B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
JPH10189044A (en) | Nonaqueous electrolytic secondary battery | |
WO2014006948A1 (en) | Nonaqueous-solvent type electricity storage device | |
JP2019012646A (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP3588885B2 (en) | Non-aqueous electrolyte battery | |
JP6960578B2 (en) | Negative electrode material for non-aqueous electrolyte secondary batteries and its manufacturing method | |
JP3289231B2 (en) | Negative electrode for lithium ion secondary battery | |
JP2001345100A (en) | Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell | |
JP3091949B2 (en) | Method for producing silicon-containing carbon particles and negative electrode comprising the carbon particles | |
JP3875048B2 (en) | Method for producing negative electrode active material | |
JP3091944B2 (en) | Method for producing carbon particles for negative electrode of lithium ion secondary battery | |
JP3816799B2 (en) | Lithium secondary battery | |
JP4530845B2 (en) | Nonaqueous electrolyte secondary battery and charging method thereof | |
JPH117958A (en) | Manufacture of positive electrode active material, and non-aqueous electrolyte secondary battery | |
JP2012079470A (en) | Nonaqueous electrolyte secondary battery | |
JP7620831B2 (en) | Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JPH07302594A (en) | Carbonaceous particles and negative electrode for lithium ion secondary battery using the same | |
JP3091943B2 (en) | Method for producing carbon particles for negative electrode of non-aqueous secondary battery and carbon particles obtained by the method | |
JP6941782B2 (en) | Negative electrode active material and battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080322 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110322 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120322 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120322 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130322 Year of fee payment: 11 |