JP2019012646A - Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents
Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDFInfo
- Publication number
- JP2019012646A JP2019012646A JP2017129107A JP2017129107A JP2019012646A JP 2019012646 A JP2019012646 A JP 2019012646A JP 2017129107 A JP2017129107 A JP 2017129107A JP 2017129107 A JP2017129107 A JP 2017129107A JP 2019012646 A JP2019012646 A JP 2019012646A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- ion secondary
- lithium ion
- secondary battery
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 97
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 97
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 86
- 239000002245 particle Substances 0.000 claims abstract description 132
- 239000010703 silicon Substances 0.000 claims abstract description 104
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 103
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims abstract description 77
- 229910052912 lithium silicate Inorganic materials 0.000 claims abstract description 77
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 46
- -1 phosphate compound Chemical class 0.000 claims abstract description 39
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 37
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 25
- 239000010452 phosphate Substances 0.000 claims abstract description 20
- 239000007772 electrode material Substances 0.000 claims abstract description 3
- 238000002429 nitrogen sorption measurement Methods 0.000 claims description 4
- 239000010439 graphite Substances 0.000 abstract description 9
- 229910002804 graphite Inorganic materials 0.000 abstract description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 100
- 238000000034 method Methods 0.000 description 35
- 235000021317 phosphate Nutrition 0.000 description 23
- 150000002894 organic compounds Chemical class 0.000 description 21
- 239000002904 solvent Substances 0.000 description 21
- 239000012298 atmosphere Substances 0.000 description 17
- 239000002002 slurry Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 15
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 12
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 229920005992 thermoplastic resin Polymers 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 230000002427 irreversible effect Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000011294 coal tar pitch Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000002848 electrochemical method Methods 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 229910004283 SiO 4 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000007833 carbon precursor Substances 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- ONBQEOIKXPHGMB-VBSBHUPXSA-N 1-[2-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-4,6-dihydroxyphenyl]-3-(4-hydroxyphenyl)propan-1-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 ONBQEOIKXPHGMB-VBSBHUPXSA-N 0.000 description 2
- WHRZCXAVMTUTDD-UHFFFAOYSA-N 1h-furo[2,3-d]pyrimidin-2-one Chemical compound N1C(=O)N=C2OC=CC2=C1 WHRZCXAVMTUTDD-UHFFFAOYSA-N 0.000 description 2
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 235000006173 Larrea tridentata Nutrition 0.000 description 2
- 244000073231 Larrea tridentata Species 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 241000282320 Panthera leo Species 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229940126142 compound 16 Drugs 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 229960002126 creosote Drugs 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000007323 disproportionation reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ITOFPJRDSCGOSA-KZLRUDJFSA-N (2s)-2-[[(4r)-4-[(3r,5r,8r,9s,10s,13r,14s,17r)-3-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]-3-(1h-indol-3-yl)propanoic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H](CC[C@]13C)[C@@H]2[C@@H]3CC[C@@H]1[C@H](C)CCC(=O)N[C@H](C(O)=O)CC1=CNC2=CC=CC=C12 ITOFPJRDSCGOSA-KZLRUDJFSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- WKFQMDFSDQFAIC-UHFFFAOYSA-N 2,4-dimethylthiolane 1,1-dioxide Chemical compound CC1CC(C)S(=O)(=O)C1 WKFQMDFSDQFAIC-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011320 asphalt decomposition pitch Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- DISYGAAFCMVRKW-UHFFFAOYSA-N butyl ethyl carbonate Chemical compound CCCCOC(=O)OCC DISYGAAFCMVRKW-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FWBMVXOCTXTBAD-UHFFFAOYSA-N butyl methyl carbonate Chemical compound CCCCOC(=O)OC FWBMVXOCTXTBAD-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 229940125810 compound 20 Drugs 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000011319 crude-oil pitch Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- HVFFICXFJBAZMU-UHFFFAOYSA-N ethoxy dihydrogen phosphate Chemical compound CCOOP(O)(O)=O HVFFICXFJBAZMU-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- DMEJJWCBIYKVSB-UHFFFAOYSA-N lithium vanadium Chemical compound [Li].[V] DMEJJWCBIYKVSB-UHFFFAOYSA-N 0.000 description 1
- FZRNJOXQNWVMIH-UHFFFAOYSA-N lithium;hydrate Chemical compound [Li].O FZRNJOXQNWVMIH-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- SBOJXQVPLKSXOG-UHFFFAOYSA-N o-amino-hydroxylamine Chemical compound NON SBOJXQVPLKSXOG-UHFFFAOYSA-N 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000001254 oxidized starch Substances 0.000 description 1
- 235000013808 oxidized starch Nutrition 0.000 description 1
- 229920002755 poly(epichlorohydrin) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- POSICDHOUBKJKP-UHFFFAOYSA-N prop-2-enoxybenzene Chemical compound C=CCOC1=CC=CC=C1 POSICDHOUBKJKP-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 239000011318 synthetic pitch Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池に関する。 The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
リチウムイオン二次電池は、他の二次電池であるニッケルカドミウム電池、ニッケル水素電池、及び鉛蓄電池に比べて軽量で高い充放電容量を有することから、近年、電気自動車、ハイブリッド型電気自動車用等の電源として期待されている。電気自動車、ハイブリッド型電気自動車等が普及するためには、リチウムイオン二次電池の更なる高容量化が重要である。 Lithium ion secondary batteries are lighter and have higher charge / discharge capacity than other secondary batteries such as nickel cadmium batteries, nickel metal hydride batteries, and lead acid batteries. Is expected as a power source. In order to spread electric vehicles, hybrid electric vehicles, etc., it is important to further increase the capacity of lithium ion secondary batteries.
リチウムイオン二次電池を高電気容量化するために、その負極活物質としてシリコンを利用することが注目されている。一般にリチウムイオン二次電池に用いられる負極活物質として黒鉛があり、黒鉛の理論電気容量は372mAh/gである。シリコンの理論電気容量は、黒鉛の約11倍の4200mAh/gであり、シリコンはリチウムイオン二次電池の高電気容量化に有効な材料といえる。 In order to increase the electric capacity of a lithium ion secondary battery, the use of silicon as a negative electrode active material has attracted attention. In general, graphite is used as a negative electrode active material used in a lithium ion secondary battery, and the theoretical electric capacity of graphite is 372 mAh / g. The theoretical electric capacity of silicon is 4200 mAh / g, which is about 11 times that of graphite, and silicon can be said to be an effective material for increasing the electric capacity of lithium ion secondary batteries.
しかしながら、シリコンは充電時に体積膨張する性質があり、満充電時の理論体積膨張率は400%である。シリコンの体積膨張はリチウムイオン二次電池の電極の劣化を招くだけでなく、電池自体の形状安定性に課題を与える。また、充放電による体積の膨張収縮を繰り返すことによって、シリコン自体が崩壊、又は微粉化し、充放電効率及び寿命を低下させる課題がある。さらに、シリコンは表面で電解液を分解させる活性が高いことから、初回不可逆容量が黒鉛のそれに比べて大きいことも課題である。 However, silicon has a property of expanding in volume at the time of charging, and the theoretical volume expansion rate at the time of full charging is 400%. The volume expansion of silicon not only causes deterioration of the electrode of the lithium ion secondary battery, but also gives a problem to the shape stability of the battery itself. Moreover, there is a problem that the silicon itself collapses or is pulverized by repeating the expansion and contraction of the volume due to charge and discharge, thereby reducing the charge and discharge efficiency and life. Furthermore, since silicon has a high activity of decomposing electrolyte solution on the surface, it is also a problem that the initial irreversible capacity is larger than that of graphite.
シリコンの体積膨張による応力を緩和する手段として、これまでシリコンとリチウムシリケートとの複合化(特許文献1、及び特許文献2参照)が検討されてきた。この方法は非水系電極を用いたリチウムイオン二次電池の充放電サイクル特性を向上させることができる。 As a means for relieving the stress caused by the volume expansion of silicon, a composite of silicon and lithium silicate has been studied (see Patent Document 1 and Patent Document 2). This method can improve the charge / discharge cycle characteristics of a lithium ion secondary battery using a non-aqueous electrode.
また、シリコンの表面での電解液分解活性を抑制する手段として、これまでシリコンとリチウムシリケートとの複合粒子等のシリコンを含有する粒子表面への被覆処理(特許文献2、及び特許文献3参照)が検討されてきた。この方法は、シリコン由来の初回不可逆容量を軽減させることができる。 Further, as means for suppressing the electrolyte decomposition activity on the surface of silicon, the coating treatment on the surface of silicon-containing particles such as composite particles of silicon and lithium silicate has been performed so far (see Patent Documents 2 and 3). Has been studied. This method can reduce the initial irreversible capacity derived from silicon.
しかしながら、特許文献1及び特許文献2に記載されるシリコンとリチウムシリケートとを複合化する方法では、リチウムシリケートが水溶性かつ強塩基性を示すため、水系電極(つまり、負極を作製する際に、負極材を水系溶媒で分散する工程を含む電極)としたときに電極の結着性が低下する。従ってこの方法は水系電極を用いたリチウムイオン二次電池には適していない。また、特許文献2及び特許文献3に記載されるような被覆処理を行う方法によっても、リチウムシリケートによる水系電極の結着性の低下を防ぐことはできない。 However, in the method of compounding silicon and lithium silicate described in Patent Document 1 and Patent Document 2, since lithium silicate exhibits water solubility and strong basicity, an aqueous electrode (that is, when preparing a negative electrode) When the negative electrode material is an electrode including a step of dispersing with a water-based solvent, the binding property of the electrode is lowered. Therefore, this method is not suitable for a lithium ion secondary battery using an aqueous electrode. Further, even by the method of performing the coating treatment as described in Patent Document 2 and Patent Document 3, it is impossible to prevent a decrease in the binding property of the aqueous electrode due to lithium silicate.
従って、シリコンを用いて水系電極を用いたリチウムイオン二次電池の高電気容量化を図る場合、シリコンの体積膨張による応力の緩和、シリコンの崩壊の抑制、及びシリコンの表面での電解液分解活性の制御が必要となり、シリコン及びリチウムシリケートを含む粒子を用いる場合にも電極の結着性を改善する必要がある。 Therefore, when increasing the electric capacity of a lithium ion secondary battery using a water-based electrode using silicon, stress relaxation due to volume expansion of silicon, suppression of silicon collapse, and electrolyte decomposition activity on the surface of silicon are performed. Therefore, it is necessary to improve the binding property of the electrode even when using particles containing silicon and lithium silicate.
本開示は、リチウムイオン二次電池の初回容量の向上及び初回効率の向上、並びに電極の結着性の低下の抑制を可能とする、リチウムイオン二次電池用負極材、該負極材を含有するリチウムイオン二次電池用負極、及び該負極を備えるリチウムイオン二次電池を提供することを課題とする。 The present disclosure includes a negative electrode material for a lithium ion secondary battery, which can improve the initial capacity and the initial efficiency of the lithium ion secondary battery, and suppress the decrease in electrode binding properties, and the negative electrode material. An object is to provide a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery including the negative electrode.
上記課題を解決するための手段には、以下の実施態様が含まれる。
<1> シリコン及びリチウムシリケートを含有する粒子;前記粒子の表面の少なくとも一部に存在する炭素;及び、前記粒子の最表面の少なくとも一部に存在するリン酸化合物、を有するリチウムイオン二次電池用負極材。
<2> 77Kでの窒素吸着測定より求める比表面積が0.1 m2/g〜3.0 m2/gである、<1>に記載のリチウムイオン二次電池用負極材。
<3> 平均粒子径(50%D)が0.5 μm〜20 μmである、<1>又は<2>に記載のリチウムイオン二次電池用負極材。
<4> <1>〜<3>のいずれか1項に記載のリチウムイオン二次電池用負極材を含有するリチウムイオン二次電池用負極。
<5> <4>に記載のリチウムイオン二次電池用負極を備えるリチウムイオン二次電池。
Means for solving the above problems include the following embodiments.
<1> A lithium ion secondary battery comprising: particles containing silicon and lithium silicate; carbon present on at least a part of the surface of the particle; and a phosphate compound existing on at least a part of the outermost surface of the particle. Negative electrode material.
<2> The specific surface area determined from nitrogen adsorption measurements at 77K is 0.1 m 2 /g~3.0 m 2 / g , negative for a lithium ion secondary battery according to <1> electrode material.
<3> The negative electrode material for a lithium ion secondary battery according to <1> or <2>, wherein the average particle size (50% D) is 0.5 μm to 20 μm.
<4> A negative electrode for a lithium ion secondary battery, comprising the negative electrode material for a lithium ion secondary battery according to any one of <1> to <3>.
<5> A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to <4>.
本開示によれば、リチウムイオン二次電池の初回容量の向上及び初回効率の向上、並びに電極の結着性の低下の抑制を可能とする、リチウムイオン二次電池用負極材、該負極材を含有するリチウムイオン二次電池用負極、及び該負極を備えるリチウムイオン二次電池が提供される。 According to the present disclosure, a negative electrode material for a lithium ion secondary battery, which can improve the initial capacity and initial efficiency of a lithium ion secondary battery, and suppress the decrease in electrode binding property, the negative electrode material A negative electrode for a lithium ion secondary battery to be contained, and a lithium ion secondary battery including the negative electrode are provided.
以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and the present invention is not limited thereto.
本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
本開示において「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アクリロニトリル」はアクリロニトリル及びメタクリルニトリルの少なくとも一方を意味する。
In the present disclosure, the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. .
In the present disclosure, the numerical ranges indicated using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In the numerical ranges described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical description. . Further, in the numerical ranges described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
In the present disclosure, each component may contain a plurality of corresponding substances. When multiple types of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the multiple types of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of particles corresponding to each component may be included. When a plurality of particles corresponding to each component are present in the composition, the particle diameter of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the term “layer” or “film” includes only a part of the region in addition to the case where the layer or film is formed over the entire region. The case where it is formed is also included.
In the present disclosure, the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
In the present disclosure, “(meth) acrylate” means at least one of acrylate and methacrylate, and “(meth) acrylonitrile” means at least one of acrylonitrile and methacrylonitrile.
<リチウムイオン二次電池用負極材>
本開示のリチウムイオン二次電池用負極材は、シリコン及びリチウムシリケートを含有する粒子;前記粒子の表面の少なくとも一部に存在する炭素;及び、前記粒子の最表面の少なくとも一部に存在するリン酸化合物、を有する。以下、本開示のリチウムイオン二次電池用負極材を単に「負極材」ともいう。
本開示のリチウムイオン二次電池用負極材によれば、リチウムイオン二次電池の初回容量の向上及び初回効率の向上、並びに電極の結着性の低下の抑制が可能となる。上記効果を奏する理由は必ずしも明らかではないが、以下のように考えることができる。
本開示のリチウムイオン二次電池用負極材では高容量の負極活物質であるシリコンを用いているため、リチウムイオン二次電池を作製したときに初回容量が向上する。一方、負極活物質としてシリコン単独ではなくシリコン及びリチウムシリケートを含有する粒子を用いているため、シリコンの体積膨張による応力を緩和することができ、その結果として負極材の崩壊を抑制することができる。さらに、シリコン及びリチウムシリケートを含有する粒子の表面に炭素及びリン酸化合物が存在することにより、シリコンの表面の電解液との接触面が減り、シリコンの表面での電解液の分解活性が抑制される。そのため、初回効率が向上すると考えられる。これに加え、シリコン及びリチウムシリケートを含有する粒子の表面に炭素及びリン酸化合物が存在することにより、シリコン及びリチウムシリケートを含有する粒子の耐水性が向上し、シリコン及びリチウムシリケートの溶出が抑えられる。その結果、水系電極としたときにもスラリーのpHの上昇が抑えられ、電極の結着性を向上することができると考えられる。
<Anode material for lithium ion secondary battery>
The negative electrode material for a lithium ion secondary battery of the present disclosure includes particles containing silicon and lithium silicate; carbon existing on at least a part of the surface of the particles; and phosphorus existing on at least a part of the outermost surface of the particles. An acid compound. Hereinafter, the negative electrode material for a lithium ion secondary battery of the present disclosure is also simply referred to as “negative electrode material”.
According to the negative electrode material for a lithium ion secondary battery of the present disclosure, it is possible to improve the initial capacity and the initial efficiency of the lithium ion secondary battery, and to suppress the decrease in electrode binding properties. The reason for the above effect is not necessarily clear, but can be considered as follows.
Since the negative electrode material for a lithium ion secondary battery of the present disclosure uses silicon which is a high capacity negative electrode active material, the initial capacity is improved when a lithium ion secondary battery is manufactured. On the other hand, since particles containing silicon and lithium silicate instead of silicon alone are used as the negative electrode active material, stress due to the volume expansion of silicon can be relieved, and as a result, collapse of the negative electrode material can be suppressed. . Furthermore, the presence of carbon and phosphate compounds on the surface of particles containing silicon and lithium silicate reduces the contact surface with the electrolyte solution on the silicon surface and suppresses the decomposition activity of the electrolyte solution on the silicon surface. The Therefore, it is considered that the initial efficiency is improved. In addition, the presence of carbon and phosphate compounds on the surface of particles containing silicon and lithium silicate improves the water resistance of particles containing silicon and lithium silicate, and suppresses elution of silicon and lithium silicate. . As a result, even when a water-based electrode is used, it is considered that the increase in pH of the slurry can be suppressed and the binding property of the electrode can be improved.
(シリコン及びリチウムシリケートを含有する粒子)
本開示のリチウムイオン二次電池用負極材は、シリコン及びリチウムシリケートを含有する粒子を有する。シリコン及びリチウムシリケートを含有する粒子はリチウムイオンの吸蔵及び放出が可能である。シリコン及びリチウムシリケートを含有する粒子は、シリコンとリチウムシリケートを合計して100%の純度を有する粒子であってもよく、微量の不純物元素を含んでいてもよい。
(Particles containing silicon and lithium silicate)
The negative electrode material for a lithium ion secondary battery of the present disclosure has particles containing silicon and lithium silicate. Particles containing silicon and lithium silicate can occlude and release lithium ions. The particles containing silicon and lithium silicate may be particles having a total of 100% purity of silicon and lithium silicate, and may contain a trace amount of impurity elements.
上記粒子に含有されるシリコンは、結晶性であってもよく、非晶性であってもよく、これらが混合されていてもよい。
シリコン及びリチウムシリケートを含有する粒子中のシリコンの含有量は特に限定されず、シリコン及びリチウムシリケートを含有する粒子に対して30質量%〜80質量%であることが好ましく、40質量%〜70質量%であることがより好ましい。
The silicon contained in the particles may be crystalline, amorphous, or a mixture thereof.
The content of silicon in the particles containing silicon and lithium silicate is not particularly limited, and is preferably 30% by mass to 80% by mass with respect to the particles containing silicon and lithium silicate, and 40% by mass to 70% by mass. % Is more preferable.
上記粒子に含有されるリチウムシリケートの組成は特に限定されない。高いサイクル特性が得られる観点からは、Li4SiO4、Li2Si2O5、Li6Si2O7、又はLi2SiO3が好ましい。リチウムシリケートは1種を単独で含んでもよく、2種以上の混合であってもよい。
シリコン及びリチウムシリケートを含有する粒子中のリチウムシリケートの含有量は特に限定されず、シリコン及びリチウムシリケートを含有する粒子に対して20質量%〜70質量%であることが好ましく、30質量%〜60質量%であることがより好ましい。
The composition of the lithium silicate contained in the particles is not particularly limited. From the viewpoint of obtaining high cycle characteristics, Li 4 SiO 4 , Li 2 Si 2 O 5 , Li 6 Si 2 O 7 , or Li 2 SiO 3 is preferable. Lithium silicate may contain 1 type independently, and 2 or more types of mixtures may be sufficient as it.
Content of the lithium silicate in the particle | grains containing a silicon | silicone and lithium silicate is not specifically limited, It is preferable that it is 20 mass%-70 mass% with respect to the particle | grains containing a silicon | silicone and lithium silicate, 30 mass%-60 mass%. More preferably, it is mass%.
シリコン及びリチウムシリケートを含有する粒子の製造方法は特に限定されない。一例として、バルク内改質が挙げられる。バルク内改質では、電気化学的手法により、シリコン系材料の内部に存在するSiO2成分の一部をリチウムシリケートへ選択的に変更することによりシリコン及びリチウムシリケートを含有する粒子を得ることができる。バルク内改質に用いるシリコン系材料としては金属ケイ素、二酸化ケイ素等を単独で、又は2種以上を組み合わせて用いることができる。生成するリチウムシリケートとしては、Li4SiO4、Li2Si2O5、Li6Si2O7、及びLi2SiO3が特に良い特性を示す傾向にある。
このようなバルク内改質を用いてシリコン及びリチウムシリケートを含有する粒子を製造すると、シリコン領域のシリケート化を低減、又は避けることが可能であり、大気中で安定した物質となる傾向にある。
The method for producing particles containing silicon and lithium silicate is not particularly limited. One example is in-bulk reforming. In bulk modification, particles containing silicon and lithium silicate can be obtained by selectively changing part of the SiO 2 component present in the silicon-based material to lithium silicate by an electrochemical method. . As the silicon-based material used for modification in the bulk, metallic silicon, silicon dioxide, or the like can be used alone or in combination of two or more. As the lithium silicate to be generated, Li 4 SiO 4 , Li 2 Si 2 O 5 , Li 6 Si 2 O 7 , and Li 2 SiO 3 tend to exhibit particularly good characteristics.
When particles containing silicon and lithium silicate are produced using such in-bulk modification, silicate formation in the silicon region can be reduced or avoided, and the material tends to be stable in the atmosphere.
シリコン及びリチウムシリケートを含有する粒子の製造方法の更なる一例として、プレドープ法が挙げられる。プレドープ法では、シリコン系材料及びリチウム金属を、溶媒の存在下で混練する。
プレドープ法に用いるシリコン系材料として、シリコンの微粒子が、SiOx(0.5≦x≦2.0、好ましくは0.5≦x<1.6)で表されるシリケート粒子内又は酸化ケイ素粒子内に分散した材料が挙げられる。シリコンの微粒子がシリケート内に分散した微細な構造を有する粒子において、シリケートは不活性なものが好ましい。シリケート又は酸化ケイ素のなかでも、製造し易さの観点からは二酸化ケイ素が好ましい。
A further example of a method for producing particles containing silicon and lithium silicate is a pre-doping method. In the pre-doping method, a silicon-based material and lithium metal are kneaded in the presence of a solvent.
As a silicon-based material used in the pre-doping method, silicon fine particles are contained in silicate particles or silicon oxide particles represented by SiO x (0.5 ≦ x ≦ 2.0, preferably 0.5 ≦ x <1.6). Examples of the material dispersed therein. Of the particles having a fine structure in which silicon fine particles are dispersed in the silicate, the silicate is preferably inactive. Among silicates and silicon oxides, silicon dioxide is preferable from the viewpoint of ease of production.
シリコン及びリチウムシリケートを含有する粒子の製造方法の更なる一例として、熱ドープ法が挙げられる。熱ドープ法では、例えば、リチウムシリケートとSiOガスを発生するSiOz粉末(0.5≦x≦2.0、好ましくは1.0≦z<1.6)とを含有する混合物を不活性ガス雰囲気又は減圧下、900℃〜1300℃の温度で加熱して反応させて、シリコン及びリチウムシリケートを含有する粒子を得る。 As a further example of the method for producing particles containing silicon and lithium silicate, there is a thermal doping method. In the thermal doping method, for example, a mixture containing lithium silicate and SiO z powder (0.5 ≦ x ≦ 2.0, preferably 1.0 ≦ z <1.6) that generates SiO gas is an inert gas. The reaction is conducted by heating at a temperature of 900 ° C. to 1300 ° C. under an atmosphere or reduced pressure to obtain particles containing silicon and lithium silicate.
シリコン及びリチウムシリケートを含有する粒子の製造方法の更なる一例として、熱による不均化反応後にメカニカルアロイを行う方法が挙げられる。一酸化ケイ素粒子を、不活性雰囲気下で1000℃〜1500℃まで熱することで、不均化反応が発生し、粒子内にシリコンと二酸化ケイ素が分散する。得られた粒子とリチウムシリケートをメカニカルアロイで融合することで、シリコン及びリチウムシリケートを含有する粒子が得られる。
メカニカルアロイで融合させる材料として、シリコン及びリチウムシリケートを使用してもよい。リチウムシリケートとしては、Li4SiO4、Li2Si2O5、Li6Si2O7、及びLi2SiO3が特に良い特性を示す傾向にある。
As a further example of the method for producing particles containing silicon and lithium silicate, there is a method of performing mechanical alloying after disproportionation reaction by heat. By heating the silicon monoxide particles to 1000 ° C. to 1500 ° C. under an inert atmosphere, a disproportionation reaction occurs, and silicon and silicon dioxide are dispersed in the particles. By fusing the obtained particles and lithium silicate with a mechanical alloy, particles containing silicon and lithium silicate can be obtained.
Silicon and lithium silicate may be used as materials to be fused by mechanical alloy. As lithium silicate, Li 4 SiO 4 , Li 2 Si 2 O 5 , Li 6 Si 2 O 7 , and Li 2 SiO 3 tend to exhibit particularly good characteristics.
シリコン及びリチウムシリケートを含有する粒子の平均粒子径(50%D)は特に限定されない。後述するリチウムイオン二次電池用負極材の粒子径を好適な範囲に調整する観点から、平均粒子径(50%D)は0.3μm〜20μmであることが好ましく、0.3μm〜15μmであることがより好ましい。なお、平均粒子径(50%D)の測定方法は後述のリチウムイオン二次電池用負極材の平均粒子径の測定方法と同様の方法で測定することができる。 The average particle diameter (50% D) of the particles containing silicon and lithium silicate is not particularly limited. From the viewpoint of adjusting the particle diameter of a negative electrode material for a lithium ion secondary battery to be described later to an appropriate range, the average particle diameter (50% D) is preferably 0.3 μm to 20 μm, and preferably 0.3 μm to 15 μm. It is more preferable. In addition, the measuring method of an average particle diameter (50% D) can be measured by the method similar to the measuring method of the average particle diameter of the negative electrode material for lithium ion secondary batteries mentioned later.
(炭素)
本開示の負極材は、シリコン及びリチウムシリケートを含有する粒子の表面の少なくとも一部に存在する炭素を有する。炭素は、シリコン及びリチウムシリケートを含有する粒子の表面全体に存在していてもよく、表面の一部のみに存在していてもよい。炭素がシリコン及びリチウムシリケートを含有する粒子の表面に存在する様式は特に限定されず、化学的に結合していても、化学的結合を介さず存在していてもよい。以下、シリコン及びリチウムシリケートを含有する粒子の表面の少なくとも一部に存在するように形成された炭素の層を、炭素層ともいう。
(carbon)
The negative electrode material of this indication has carbon which exists in at least one part of the surface of the particle | grains containing a silicon and lithium silicate. Carbon may be present on the entire surface of the particles containing silicon and lithium silicate, or may be present only on a part of the surface. The manner in which carbon is present on the surface of the particle containing silicon and lithium silicate is not particularly limited, and may be chemically bonded or may not exist via a chemical bond. Hereinafter, the carbon layer formed so as to exist on at least part of the surface of the particle containing silicon and lithium silicate is also referred to as a carbon layer.
シリコン及びリチウムシリケートを含有する粒子に対する炭素の比率は特に限定されず、質量比で0.001〜0.3であることが好ましい。シリコン及びリチウムシリケートを含有する粒子に対する炭素層の比率(質量比)が0.001以上であると、リチウムイオン二次電池としたときに良好な寿命特性、及び充放電容量が得られる傾向にあり、0.3以下であると、リチウムイオン二次電池としたときに良好な初回充放電効率及びエネルギー密度が得られる傾向にある。シリコン及びリチウムシリケートを含有する粒子に対する炭素層の比率は、シリコン及びリチウムシリケートを含有する粒子の重量、並びに炭素層となる炭素前駆体の質量及び炭素前駆体の炭化率より算出することができる。 The ratio of carbon to particles containing silicon and lithium silicate is not particularly limited, and is preferably 0.001 to 0.3 by mass ratio. When the ratio of the carbon layer to the particles containing silicon and lithium silicate (mass ratio) is 0.001 or more, good life characteristics and charge / discharge capacity tend to be obtained when a lithium ion secondary battery is obtained. If it is 0.3 or less, good initial charge / discharge efficiency and energy density tend to be obtained when a lithium ion secondary battery is obtained. The ratio of the carbon layer to the particles containing silicon and lithium silicate can be calculated from the weight of the particles containing silicon and lithium silicate, the mass of the carbon precursor serving as the carbon layer, and the carbonization rate of the carbon precursor.
炭素層は、例えば、熱処理により炭素質を残す有機化合物(炭素前駆体ともいう)を上記シリコン及びリチウムシリケートを含有する粒子の表面に付着させた後、焼成することで形成してもよい。 The carbon layer may be formed, for example, by attaching an organic compound (also referred to as a carbon precursor) that leaves carbonaceous matter by heat treatment to the surface of the particles containing silicon and lithium silicate, and then firing.
シリコン及びリチウムシリケートを含有する粒子の表面に有機化合物を付着させる方法としては、特に制限はなく、有機化合物を溶媒に溶解、又は分散させた混合溶液にシリコン及びリチウムシリケートを含有する粒子を分散して混合した後、溶媒を除去する湿式方式、シリコン及びリチウムシリケートを含有する粒子と有機化合物を固体同士で混合し、その混合物に力学エネルギーを加え付着させる乾式方式、CVD法等の気相法などが挙げられる。 There is no particular limitation on the method of attaching the organic compound to the surface of the particles containing silicon and lithium silicate, and the particles containing silicon and lithium silicate are dispersed in a mixed solution in which the organic compound is dissolved or dispersed in a solvent. Wet method to remove the solvent after mixing, a dry method in which particles containing silicon and lithium silicate and organic compound are mixed with each other, and mechanical energy is applied to the mixture, and a vapor phase method such as CVD method, etc. Is mentioned.
シリコン及びリチウムシリケートを含有する粒子の表面に有機化合物を付着させる場合の有機化合物に特に制限はなく、熱可塑性樹脂、熱硬化性樹脂等の高分子化合物などを用いることができる。例えば、熱可塑性樹脂を用いる場合は、液相経由で炭素化し、比表面積の比較的小さな炭素層が生成する。この炭素層がシリコン及びリチウムシリケートを含有する粒子の表面に存在すると負極材の比表面積も比較的小さくなり、結果としてリチウムイオン二次電池の初回不可逆容量が小さくなる傾向があるため、好ましい。有機化合物は1種を単独で用いてもよく、2種以上を併用してもよい。 There is no restriction | limiting in particular in the organic compound in the case of making an organic compound adhere to the surface of the particle | grains containing a silicon | silicone and lithium silicate, High molecular compounds, such as a thermoplastic resin and a thermosetting resin, etc. can be used. For example, when a thermoplastic resin is used, it is carbonized via the liquid phase and a carbon layer having a relatively small specific surface area is generated. The presence of this carbon layer on the surface of particles containing silicon and lithium silicate is preferable because the specific surface area of the negative electrode material is also relatively small, and as a result, the initial irreversible capacity of the lithium ion secondary battery tends to be small. An organic compound may be used individually by 1 type, and may use 2 or more types together.
熱可塑性樹脂を用いる場合の熱可塑性樹脂は特に限定されず、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して生成するピッチ、ナフタレン等を超強酸存在下で重合させて作製される合成ピッチなどを使用してもよい。また、熱可塑性樹脂として、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等を用いてもよい。また、デンプン、セルロース等の天然物を用いてもよい。熱可塑性樹脂は1種を単独で用いてもよく、2種以上を併用してもよい。 The thermoplastic resin used in the case of using a thermoplastic resin is not particularly limited, and ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt decomposition pitch, pitch generated by pyrolyzing polyvinyl chloride, etc., naphthalene, etc. are super strong acids. A synthetic pitch produced by polymerization in the presence may be used. Further, polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, polyvinyl butyral, or the like may be used as the thermoplastic resin. Natural products such as starch and cellulose may also be used. A thermoplastic resin may be used individually by 1 type, and may use 2 or more types together.
有機化合物を溶解又は分散する溶媒は特に限定されない。溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。被覆効果を向上させるため、界面活性剤、分散材等を添加することでシリコン粒子の表面と有機化合物の親和性を向上させてもよい。 The solvent for dissolving or dispersing the organic compound is not particularly limited. A solvent may be used individually by 1 type and may use 2 or more types together. In order to improve the coating effect, the affinity between the surface of the silicon particles and the organic compound may be improved by adding a surfactant, a dispersing agent or the like.
有機化合物がピッチ類の場合には、溶媒としてテトラヒドロフラン、トルエン、キシレン、ベンゼン、キノリン、ピリジン、石炭乾留において生成する比較的低沸点の液状物の混合物(クレオソート油)等を使用してもよい。また、有機化合物がポリ塩化ビニルの場合には、溶媒としてテトラヒドロフラン、シクロヘキサノン、ニトロベンゼン等を使用してもよい。有機化合物がポリ酢酸ビニル、ポリビニルブチラール等の場合には、溶媒としてアルコール類、エステル類、ケトン類等を使用してもよい。有機化合物がポリビニルアルコールの場合には、溶媒として水等を使用してもよい。なお、水を溶媒とする場合には、溶媒中でのシリコン及びリチウムシリケートを含有する粒子の混合又は分散を促進させ、有機化合物とシリコン及びリチウムシリケートを含有する粒子との密着性を向上させるため、界面活性剤を添加してもよい。 When the organic compound is pitches, tetrahydrofuran, toluene, xylene, benzene, quinoline, pyridine, a mixture of relatively low boiling point liquid substances (creosote oil) produced in coal dry distillation, etc. may be used as the solvent. . Further, when the organic compound is polyvinyl chloride, tetrahydrofuran, cyclohexanone, nitrobenzene or the like may be used as a solvent. When the organic compound is polyvinyl acetate, polyvinyl butyral, etc., alcohols, esters, ketones, etc. may be used as the solvent. When the organic compound is polyvinyl alcohol, water or the like may be used as a solvent. When water is used as a solvent, mixing or dispersion of particles containing silicon and lithium silicate in the solvent is promoted, and adhesion between the organic compound and particles containing silicon and lithium silicate is improved. A surfactant may be added.
溶媒の除去は、常圧又は減圧雰囲気で加熱することによって行ってもよい。溶媒除去の際の温度は、雰囲気が大気の場合、200℃以下であることが好ましい。除去温度が200℃以下であると、雰囲気中の酸素と有機化合物及び溶媒(特にクレオソート油を用いる場合)の反応が抑えられ、焼成によって生成する炭素量が変動することを抑制できる傾向にある。また、多孔質化が抑制されることにより、負極材として所望の特性を発現しやすい傾向にある。 The removal of the solvent may be performed by heating in a normal pressure or reduced pressure atmosphere. The temperature at the time of solvent removal is preferably 200 ° C. or lower when the atmosphere is air. When the removal temperature is 200 ° C. or lower, the reaction between oxygen in the atmosphere, the organic compound, and the solvent (especially when creosote oil is used) is suppressed, and there is a tendency that fluctuation in the amount of carbon generated by firing can be suppressed. . Moreover, it exists in the tendency which tends to express a desired characteristic as a negative electrode material by making porous.
また、有機化合物の付着したシリコン及びリチウムシリケートを含有する粒子の焼成条件は、当該有機化合物の炭素化率を考慮して適宜決定すればよく、特に限定されない。非酸化性雰囲気下、好ましくは、700℃〜1400℃、より好ましくは、700℃〜900℃の範囲で焼成することが好ましい。焼成温度が700℃以上であると、リチウムイオン二次電池の初回不可逆容量を抑えられる傾向にあり、一方、焼成温度が1400℃以下であると、生産コストの増加を抑えられる傾向にある。なお、1400℃を越えて加熱しても負極材としての性能にはほとんど変化はない。
非酸化性雰囲気下としては、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下、真空雰囲気下、循環された燃焼排ガス雰囲気下などが挙げられる。
Moreover, the firing conditions of the particles containing silicon and lithium silicate to which the organic compound is attached may be determined as appropriate in consideration of the carbonization rate of the organic compound, and are not particularly limited. Baking is preferably performed in a non-oxidizing atmosphere in the range of 700 ° C to 1400 ° C, more preferably 700 ° C to 900 ° C. When the firing temperature is 700 ° C. or more, the initial irreversible capacity of the lithium ion secondary battery tends to be suppressed, and when the firing temperature is 1400 ° C. or less, an increase in production cost tends to be suppressed. In addition, even if it heats exceeding 1400 degreeC, there is almost no change in the performance as a negative electrode material.
Examples of the non-oxidizing atmosphere include an inert gas atmosphere such as nitrogen, argon, and helium, a vacuum atmosphere, and a circulated combustion exhaust gas atmosphere.
また、焼成に先だって、有機化合物の付着したシリコン及びリチウムシリケートを含有する粒子を150℃〜300℃の温度で加熱処理してもよい。例えば、有機化合物としてポリビニルアルコールを用いる場合、このような加熱処理により炭素化率を増加させることができる傾向にある。 Prior to firing, the particles containing silicon and lithium silicate to which an organic compound is attached may be heat-treated at a temperature of 150 ° C. to 300 ° C. For example, when polyvinyl alcohol is used as the organic compound, the carbonization rate tends to be increased by such heat treatment.
(リン酸化合物)
本開示の負極材は、シリコン及びリチウムシリケートを含有する粒子の最表面の少なくとも一部に存在するリン酸化合物を有する。リン酸化合物は、シリコン及びリチウムシリケートを含有する粒子の最表面の全体に存在していてもよく、一部にのみ存在していてもよい。リン酸化合物が存在する様式は特に限定されず、上述のように炭素を存在させたシリコン及びシリケートを含有する粒子の表面に存在する成分と化学的に結合していてもよく、化学的結合を介さずに存在していてもよい。
(Phosphate compound)
The negative electrode material of the present disclosure has a phosphoric acid compound present on at least a part of the outermost surface of particles containing silicon and lithium silicate. The phosphoric acid compound may be present on the entire outermost surface of the particles containing silicon and lithium silicate, or may be present only on a part thereof. The manner in which the phosphate compound is present is not particularly limited, and may be chemically bonded to the components present on the surface of the particles containing silicon and silicate containing carbon as described above. It may exist without intervention.
リン酸化合物を存在させる方法としては、特に制限はなく、例えば、上述のように焼成後の、表面に炭素が存在するシリコン及びシリケートを含有する粒子に対して、必要に応じて、解砕処理、分級処理、又は篩分け処理を施し、リン酸化合物を溶解又は分散させた溶液に、表面に炭素が存在するシリコン及びシリケートを含有する粒子を分散して混合した後、溶媒を除去してリン酸化合物を付与する方法が挙げられる。 The method for causing the phosphate compound to exist is not particularly limited. For example, the particles containing silicon and silicate containing carbon on the surface after firing as described above may be crushed as necessary. Then, after classifying or sieving, the particles containing silicon and silicate containing carbon on the surface are dispersed and mixed in a solution in which the phosphate compound is dissolved or dispersed, and then the solvent is removed to remove phosphorus. The method of providing an acid compound is mentioned.
リン酸化合物は特に限定されず、耐水性の向上、及び負極材としての導電性を阻害しない観点から、界面活性剤系のリン酸化合物、又は非イオン界面活性剤系のリン酸化合物が好ましく、エーテル型非イオン界面活性剤系ホスフェート、アミノエーテル型非イオン界面活性剤系ホスフェート、エーテル・エステル型非イオン界面活性剤系ホスフェート、及びアルカノールアミド型脂肪酸エステルホスフェートがより好ましく、ポリオキシエチレンアルキルエーテルホスフェート、ポリオキシエチレンアリルフェニルエーテルホスフェート、脂肪酸メチルエステルエトキシルホスフェート、ポリオキシエチレンアルキルフェニルエーテルホスフェート、ポリオキシエチレンポリオキシプロピレングリコールホスフェートが更に好ましい。リン酸化合物は1種を単独で用いてもよく、2種以上を併用してもよい。 The phosphoric acid compound is not particularly limited, and from the viewpoint of improving water resistance and not inhibiting the conductivity as the negative electrode material, a surfactant-based phosphate compound or a nonionic surfactant-based phosphate compound is preferable. More preferred are ether type nonionic surfactant phosphates, amino ether type nonionic surfactant phosphates, ether ester type nonionic surfactant phosphates, and alkanolamide type fatty acid ester phosphates, polyoxyethylene alkyl ether phosphates Polyoxyethylene allyl phenyl ether phosphate, fatty acid methyl ester ethoxyl phosphate, polyoxyethylene alkylphenyl ether phosphate, polyoxyethylene polyoxypropylene glycol phosphate are more preferable. A phosphoric acid compound may be used individually by 1 type, and may use 2 or more types together.
リン酸化合物の存在量は特に限定されず、耐水性の向上、及び負極材としての導電性を阻害しない観点から、負極材全量に対して質量比で0.5質量%〜3質量%であることが好ましい。リン酸化合物の存在量はリン酸化合物の付与前後の乾燥重量の差から算出することができる。 The abundance of the phosphoric acid compound is not particularly limited, and is 0.5% by mass to 3% by mass with respect to the total amount of the negative electrode material from the viewpoint of improving water resistance and not inhibiting the conductivity as the negative electrode material. It is preferable. The abundance of the phosphate compound can be calculated from the difference in dry weight before and after the application of the phosphate compound.
リン酸化合物を溶解又は分散する溶媒は特に限定されない。溶媒は1種を単独で用いてもよく、2種以上を併用してもよい。被覆効果を向上させるため、界面活性剤、分散材等を添加することで炭素が存在するシリコン及びシリケートを含有する粒子の表面と有機化合物の親和性を高めてもよい。有機化合物の親和性を高める物質として、例えば、アルコール類、エステル類、ケトン類等を用いてもよい。 The solvent for dissolving or dispersing the phosphate compound is not particularly limited. A solvent may be used individually by 1 type and may use 2 or more types together. In order to improve the coating effect, the affinity between the organic compound and the surface of the particles containing silicon and silicate containing carbon may be increased by adding a surfactant, a dispersing agent, or the like. For example, alcohols, esters, ketones, and the like may be used as substances that increase the affinity of organic compounds.
上記溶媒の除去は、常圧又は減圧雰囲気で加熱することによって行ってもよい。溶媒除去の際の温度は、雰囲気が大気の場合、150℃以下であることが好ましい。除去温度が150℃以下であると、雰囲気中の酸素とリン酸化合物及び溶媒との反応を抑制でき、リン酸化合物の付着量が変動することを抑制できる傾向にある。また、多孔質化が抑制されることにより、負極材として所望の特性を発現しやすい傾向にある。 The removal of the solvent may be performed by heating in a normal pressure or reduced pressure atmosphere. The temperature for removing the solvent is preferably 150 ° C. or lower when the atmosphere is air. When the removal temperature is 150 ° C. or lower, the reaction between oxygen in the atmosphere, the phosphoric acid compound, and the solvent can be suppressed, and fluctuations in the adhesion amount of the phosphoric acid compound tend to be suppressed. Moreover, it exists in the tendency which tends to express a desired characteristic as a negative electrode material by making porous.
最表面にリン酸化合物を存在させた、炭素が存在するシリコン及びシリケートを含有する粒子に対して、必要に応じて、解砕処理、分級処理、又は篩分け処理を施し、本開示のリチウムイオン二次電池用負極材を得てもよい。 The particles containing silicon and silicate in which a phosphoric acid compound is present on the outermost surface and containing silicate are subjected to crushing treatment, classification treatment, or sieving treatment as necessary, and lithium ions of the present disclosure You may obtain the negative electrode material for secondary batteries.
本開示のリチウムイオン二次電池用負極材は、77Kでの窒素吸着測定より求める比表面積が0.1m2/g〜3.0m2/gであることが好ましく、0.2m2/g〜2.0m2/gであることがより好ましく、0.5m2/g〜1.0m2/gであることがさらに好ましい。比表面積が0.1m2/g以上であると、入力特性が良好である傾向にある。また、比表面積が3.0m2/g以下であると、シリコン及びリチウムシリケートを含有する粒子の表面に存在する炭素が何らかの原因で多孔質化することを抑えることができ、リチウムイオン二次電池の初回不可逆容量の増加を抑制できる傾向にある。なお、窒素吸着での比表面積は、77Kでの窒素吸着測定より得た吸着等温線からBET法を用いて求めることができる。 The negative electrode material for a lithium ion secondary battery of the present disclosure is preferably a specific surface area determined from nitrogen adsorption measurements at 77K is 0.1m 2 /g~3.0m 2 / g, 0.2m 2 / g~ more preferably 2.0 m 2 / g, further preferably 0.5m 2 /g~1.0m 2 / g. When the specific surface area is 0.1 m 2 / g or more, the input characteristics tend to be good. Moreover, when the specific surface area is 3.0 m 2 / g or less, carbon existing on the surface of the particles containing silicon and lithium silicate can be prevented from becoming porous for some reason, and the lithium ion secondary battery There is a tendency to suppress the increase in the first irreversible capacity. In addition, the specific surface area by nitrogen adsorption can be calculated | required using the BET method from the adsorption isotherm obtained from the nitrogen adsorption measurement in 77K.
本開示のリチウムイオン二次電池用負極材の平均粒子径は特に限定されない。平均粒子径(50%D)は0.5μm〜20μmであることが好ましい。
平均粒子径が0.5μm以上であると、比表面積が大きくなりすぎず、リチウムイオン二次電池の初回充放電効率が良好となる傾向にある。さらに、粒子同士の接触が良好に保たれ充放電容量の低下が抑えられる傾向にある。また、表面酸化の影響で純度が低下して充放電容量が低下すること、及び、かさ密度の低下により単位体積あたりの充放電容量が低下すること等を抑制できる傾向にある。
一方、平均粒子径が20μm以下であると、電極面に凸凹が発生することが抑えられ、電池の短絡の原因となることを抑制できる傾向にあり、さらに粒子表面から内部へのLiの拡散距離が長くなりすぎずリチウムイオン二次電池の充放電容量を良好に保つことができる傾向にある。また、炭素を付着させる処理を行う際に、炭素析出量の減少を原因とするサイクル性能の低下を抑制しやすい傾向にある。さらに、充放電時の粒子内シリコンの膨張収縮を原因とする粒子割れ、及びこれによるサイクル特性の低下を抑制しやすい傾向にある。
The average particle diameter of the negative electrode material for a lithium ion secondary battery of the present disclosure is not particularly limited. The average particle size (50% D) is preferably 0.5 μm to 20 μm.
When the average particle size is 0.5 μm or more, the specific surface area does not become too large and the initial charge / discharge efficiency of the lithium ion secondary battery tends to be good. Furthermore, it is in the tendency for the contact of particle | grains to be maintained favorable and for the fall of charging / discharging capacity to be suppressed. Moreover, it exists in the tendency which can suppress that the purity falls by the influence of surface oxidation, a charge / discharge capacity falls, and the charge / discharge capacity per unit volume falls by the fall of a bulk density.
On the other hand, when the average particle size is 20 μm or less, unevenness on the electrode surface is suppressed, and it tends to be possible to suppress a short circuit of the battery. Further, the diffusion distance of Li from the particle surface to the inside However, the charge / discharge capacity of the lithium ion secondary battery tends to be kept good. Moreover, when performing the process of adhering carbon, it tends to be easy to suppress a decrease in cycle performance caused by a decrease in the amount of deposited carbon. Furthermore, it tends to be easy to suppress particle cracking caused by expansion and contraction of intra-particle silicon during charging and discharging, and deterioration of cycle characteristics due to this.
なお、平均粒子径は以下の方法で測定される。
測定試料を界面活性剤(エソミンT/15、ライオン株式会社製)0.01質量%水溶液中に入れ、振動撹拌機で分散する。得られた分散液をレーザー回折式粒度分布測定装置(株式会社島津製作所製SALD−3000J)の試料水槽に入れ、超音波をかけながらポンプで循環させ、レーザー回折式で測定する。得られる粒度分布の体積累積50%粒子径(50%D)を平均粒子径とする。測定条件は下記の通りとする。
・光源:赤色半導体レーザー(690nm)
・吸光度:0.10〜0.15
・屈折率:2.00〜0.20
The average particle size is measured by the following method.
A measurement sample is placed in a 0.01% by weight aqueous solution of a surfactant (Esomine T / 15, manufactured by Lion Corporation) and dispersed with a vibration stirrer. The obtained dispersion is put into a sample water tank of a laser diffraction particle size distribution analyzer (SALD-3000J, manufactured by Shimadzu Corporation), circulated with a pump while applying ultrasonic waves, and measured by a laser diffraction method. The volume cumulative 50% particle size (50% D) of the obtained particle size distribution is defined as the average particle size. The measurement conditions are as follows.
・ Light source: Red semiconductor laser (690nm)
Absorbance: 0.10 to 0.15
-Refractive index: 2.00 to 0.20
本開示のリチウムイオン二次電池用負極材の具体例を図1及び図2に示す。
図1では、負極材10は、シリコン及びリチウムシリケートを含有する粒子12;前記粒子の表面の少なくとも一部に存在する炭素14;及び前記粒子の最表面の少なくとも一部に存在するリン酸化合物16を有する。図1において、炭素14はシリコン及びリチウムシリケートを含有する粒子12の表面の全体に存在しており、リン酸化合物16はリチウムシリケートを含有する粒子12の最表面の全体を覆っている。
図2では、負極材20は、シリコン及びリチウムシリケートを含有する粒子22;前記粒子の表面の少なくとも一部に存在する炭素24;及び前記粒子の最表面の少なくとも一部に存在するリン酸化合物26を有する。図2において、炭素24はシリコン及びリチウムシリケートを含有する粒子22の表面の一部に存在し、リン酸化合物26はリチウムシリケートを含有する粒子22の最表面の一部に存在している。
なお、本開示のリチウムイオン二次電池用負極材は、図面に記載される具体例に限定されるものではない。また、図面における各構造の大きさは概念的なものであり、構造間の相対的な関係はこれに限定されない。
Specific examples of the negative electrode material for a lithium ion secondary battery of the present disclosure are shown in FIGS. 1 and 2.
In FIG. 1, the negative electrode material 10 includes particles 12 containing silicon and lithium silicate; carbon 14 present on at least a part of the surface of the particles; and phosphate compound 16 present on at least a part of the outermost surface of the particles. Have In FIG. 1, carbon 14 is present on the entire surface of particles 12 containing silicon and lithium silicate, and phosphoric acid compound 16 covers the entire outermost surface of particles 12 containing lithium silicate.
In FIG. 2, the negative electrode material 20 includes particles 22 containing silicon and lithium silicate; carbon 24 existing on at least a part of the surface of the particles; and phosphate compound 26 existing on at least a part of the outermost surface of the particles. Have In FIG. 2, carbon 24 is present on part of the surface of the particle 22 containing silicon and lithium silicate, and the phosphoric acid compound 26 is present on part of the outermost surface of the particle 22 containing lithium silicate.
In addition, the negative electrode material for lithium ion secondary batteries of this indication is not limited to the specific example described in drawing. Moreover, the size of each structure in the drawings is conceptual, and the relative relationship between the structures is not limited to this.
<リチウムイオン二次電池用負極>
本開示におけるリチウムイオン二次電池用負極は、本開示のリチウムイオン二次電池用負極材を含有する。
一実施形態において、リチウムイオン二次電池用負極は、本開示のリチウムイオン二次電池用負極材、及び有機結着剤を溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混練して負極材スラリーを調製し、これを集電体に塗布して負極層を形成する、又は、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することで得ることができる。
<Anode for lithium ion secondary battery>
The negative electrode for lithium ion secondary batteries in the present disclosure contains the negative electrode material for lithium ion secondary batteries of the present disclosure.
In one embodiment, the negative electrode for a lithium ion secondary battery is obtained by using a negative electrode material for a lithium ion secondary battery of the present disclosure and a dispersing device such as a stirrer, a ball mill, a super sand mill, and a pressure kneader together with an organic binder. A negative electrode material slurry is prepared by kneading and applied to a current collector to form a negative electrode layer, or a paste-like negative electrode material slurry is formed into a sheet shape, a pellet shape, etc. It can be obtained by integrating with the body.
上記有機結着剤は特に限定されず、スチレン−ブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル;アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸;ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。有機結着剤は1種を単独で用いてもよく、2種以上を併用してもよい。有機結着剤の含有量は特に限定されず、リチウムイオン二次電池用負極材と有機結着剤の合計100質量部に対して1質量部〜20質量部含有することが好ましい。 The organic binder is not particularly limited, and ethylene such as styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, and the like. Unsaturated carboxylic acid ester; ethylenically unsaturated carboxylic acid such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid; polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, etc. And a high molecular compound having a large ion conductivity. An organic binder may be used individually by 1 type, and may use 2 or more types together. Content of an organic binder is not specifically limited, It is preferable to contain 1-20 mass parts with respect to a total of 100 mass parts of the negative electrode material for lithium ion secondary batteries, and an organic binder.
負極材スラリーには、粘度を調整するための増粘剤を添加してもよい。増粘剤は特に限定されず、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(又はその塩)、酸化スターチ、リン酸化スターチ、カゼイン等を使用することができる。増粘剤は1種を単独で用いてもよく、2種以上を併用してもよい。 A thickener for adjusting the viscosity may be added to the negative electrode material slurry. The thickener is not particularly limited, and carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (or a salt thereof), oxidized starch, phosphorylated starch, casein and the like can be used. A thickener may be used individually by 1 type and may use 2 or more types together.
また、上記負極材スラリーには、導電補助材を混合してもよい。導電補助材は特に限定されず、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物又は窒化物等が挙げられる。導電助剤の使用量は、負極材の1質量%〜15質量%程度としてよい。 Moreover, you may mix a conductive support material with the said negative electrode material slurry. The conductive auxiliary material is not particularly limited, and examples thereof include carbon black, graphite, acetylene black, oxides or nitrides exhibiting conductivity. The usage-amount of a conductive support agent is good about 1 mass%-15 mass% of a negative electrode material.
集電体の材質及び形状は特に限定されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状の集電体を用いることができる。また、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も使用可能である。 The material and shape of the current collector are not particularly limited, and a strip-shaped current collector made of aluminum, copper, nickel, titanium, stainless steel, or the like in a foil shape, a punched foil shape, a mesh shape, or the like can be used. Also, porous materials such as porous metal (foamed metal) and carbon paper can be used.
負極材スラリーを集電体に塗布してリチウムイオン二次電池用負極を得る場合、負極材スラリーを集電体に塗布する方法は特に限定されず、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行ってもよい。
負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化してリチウムイオン二次電池用負極を得る場合、シート状、ペレット状等の形状に成形された負極材スラリーと集電体との一体化の方法は特に限定されず、ロール、プレス、又はこれらの組み合わせ等の公知の方法により行ってよい。
When a negative electrode material slurry is applied to a current collector to obtain a negative electrode for a lithium ion secondary battery, the method of applying the negative electrode material slurry to the current collector is not particularly limited, and a metal mask printing method, electrostatic coating method, dipping Known methods such as a coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, and a screen printing method may be used. After the application, rolling treatment with a flat plate press, a calender roll or the like may be performed as necessary.
When the negative electrode material slurry is formed into a sheet shape, pellet shape, etc., and this is integrated with a current collector to obtain a negative electrode for a lithium ion secondary battery, the negative electrode material formed into a sheet shape, pellet shape, etc. The method for integrating the slurry and the current collector is not particularly limited, and may be performed by a known method such as a roll, a press, or a combination thereof.
<リチウムイオン二次電池>
本開示のリチウムイオン二次電池は、本開示のリチウムイオン二次電池用負極を備える。リチウムイオン二次電池は、例えば、リチウムイオン二次電池用負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present disclosure includes the negative electrode for a lithium ion secondary battery of the present disclosure. A lithium ion secondary battery can be obtained, for example, by disposing a negative electrode for a lithium ion secondary battery and a positive electrode facing each other with a separator interposed therebetween and injecting an electrolytic solution.
正極は、上記負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属又は合金を、箔状、穴開け箔状、メッシュ状等にした帯状の集電体を用いることができる。 The positive electrode can be obtained by forming a positive electrode layer on the current collector surface in the same manner as the negative electrode. As the current collector in this case, a strip-shaped current collector made of a metal or an alloy such as aluminum, titanium, or stainless steel in a foil shape, a punched foil shape, a mesh shape, or the like can be used.
上記正極層に用いる正極材料は特に限定されず、例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物、金属酸化物、金属硫化物、又は導電性高分子材料を用いてよい。例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、及びこれらの複酸化物(LiCoxNiyMnzO2、X+Y+Z=1)、リチウムマンガンスピネル(LiMn2O4)、リチウムバナジウム化合物、V2O5、V6O13、VO2、MnO2、TiO2、MoV2O8、TiS2、V2S5、VS2、MoS2、MoS3、Cr3O8、Cr2O5、オリビン型LiMPO4(MはCo、Ni、Mn、又はFeを表す)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などを用いることができる。正極材料は1種を単独で用いてもよく、2種以上を併用してもよい。 The positive electrode material used for the positive electrode layer is not particularly limited. For example, a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions may be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and their double oxides (LiCo x Ni y Mn z O 2 , X + Y + Z = 1), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 5 , olivine-type LiMPO 4 (M represents Co, Ni, Mn, or Fe), conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, porous carbon, etc. Can be used. The positive electrode material may be used alone or in combination of two or more.
セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものが挙げられる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造である場合は、セパレータを使用する必要はない。 Examples of the separator include non-woven fabrics, cloths, microporous films, or a combination thereof, mainly composed of polyolefins such as polyethylene and polypropylene. In addition, when it is the structure where the positive electrode and negative electrode of a lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.
電解液としては、例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の単体又は2成分以上の混合物を非水系溶剤に溶解した、いわゆる有機電解液であってもよい。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, and 3-methyl. Sulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl Ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, vinegar A so-called organic electrolyte solution in which a simple substance such as ethyl acid or a mixture of two or more components is dissolved in a non-aqueous solvent may be used.
また、電解液としては、リチウム塩水和物(常温溶融水和物(ハイドレートメルト))等の水系溶媒を使用してもよい。 Further, as the electrolytic solution, an aqueous solvent such as lithium salt hydrate (normal temperature molten hydrate (hydrate melt)) may be used.
本開示のリチウムイオン二次電池の構造は、特に限定されない。例えば、正極及び負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造が挙げられる。 The structure of the lithium ion secondary battery of the present disclosure is not particularly limited. For example, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral to form a wound electrode group, or these are laminated as a flat plate to form a stacked electrode group, The structure which enclosed these electrode groups in the exterior body is mentioned.
本開示のリチウムイオン二次電池の形状は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池等として使用することができる。 The shape of the lithium ion secondary battery of the present disclosure is not particularly limited, and can be used as a paper-type battery, a button-type battery, a coin-type battery, a stacked battery, a cylindrical battery, or the like.
本開示のリチウムイオン二次電池の用途は特に限定されず、電気自動車、パワーツール等の用途が挙げられる。 Applications of the lithium ion secondary battery of the present disclosure are not particularly limited, and examples include applications such as electric vehicles and power tools.
次に、下記の実施例により上記実施形態を更に詳しく説明するが、これらの実施例は上記実施形態を制限するものではない。 Next, although the said embodiment is described in more detail with the following example, these Examples do not restrict | limit the said embodiment.
(実施例1)
金属ケイ素と二酸化ケイ素を混合した原料を反応炉に設置し、雰囲気を15Paの真空度に減圧して原料を気化させ、これを吸着板上に堆積させた後、十分に冷却した。その後、堆積物を取出し、ボールミルで粉砕し、粒子径を調整して粉末を得た。作製した粉末に対して、プロピレンカーボネート及びエチレンカーボネートの1:1(体積比)混合溶媒中で電気化学法によるバルク改質を行い、シリコン及びリチウムシリケートを含む粒子を得た。このシリコン及びリチウムシリケートを含有する粒子を100gとコールタールピッチ10gを、それぞれ室温(25℃)で混合し、次いで窒素流通下、300℃/時間の昇温速度で800℃まで昇温し、1時間保持して炭素を付着させた。得られた粒子を解砕し、250メッシュの標準篩を通した。得られた粒子2gと株式会社アデカ製ポリオキシエチレンアルキルエーテルホスフェート2gとイソプロパノール38gを混合し、アズワン株式会社製MIXROTOR MR−5で20回転/分(rpm)の速度で撹拌した。得られた混合液をろ過し、105℃で2時間乾燥させ、平均粒子径16.8μmの負極材1を得た。
Example 1
A raw material in which metal silicon and silicon dioxide were mixed was placed in a reaction furnace, the atmosphere was reduced to a vacuum degree of 15 Pa to vaporize the raw material, and this was deposited on an adsorption plate, and then cooled sufficiently. Thereafter, the deposit was taken out and pulverized with a ball mill, and the particle size was adjusted to obtain a powder. The produced powder was subjected to bulk modification by an electrochemical method in a 1: 1 (volume ratio) mixed solvent of propylene carbonate and ethylene carbonate to obtain particles containing silicon and lithium silicate. 100 g of particles containing silicon and lithium silicate and 10 g of coal tar pitch were mixed at room temperature (25 ° C.), respectively, and then heated to 800 ° C. at a temperature rising rate of 300 ° C./hour under nitrogen flow. Carbon was deposited by holding for a period of time. The resulting particles were crushed and passed through a 250 mesh standard sieve. 2 g of the obtained particles, 2 g of polyoxyethylene alkyl ether phosphate manufactured by ADEKA CORPORATION, and 38 g of isopropanol were mixed and stirred at a rate of 20 rotations / minute (rpm) with MIXROTOR MR-5 manufactured by ASONE CORPORATION. The obtained mixed liquid was filtered and dried at 105 ° C. for 2 hours to obtain a negative electrode material 1 having an average particle diameter of 16.8 μm.
(実施例2)
金属ケイ素と二酸化ケイ素を混合した原料を反応炉に設置し、雰囲気を15Paの真空度に減圧して原料を気化させ、これを吸着板上に堆積させた後、十分に冷却した。その後、堆積物を取出し、ボールミルで粉砕し、粒子径を調整して粉末を得た。作製した粉末に対して、プロピレンカーボネート及びエチレンカーボネートの1:1(体積比)混合溶媒中で電気化学法によるバルク改質を行い、シリコン及びリチウムシリケートを含む粒子を得た。このシリコン及びリチウムシリケートを含有する粒子を100gとコールタールピッチ10gを、それぞれ室温(25℃)で混合し、次いで窒素流通下、300℃/時間の昇温速度で800℃まで昇温し、1時間保持して炭素を付着させた。得られた粒子を解砕し、250メッシュの標準篩を通した。得られた粒子2gと株式会社アデカ製ポリオキシエチレンアルキルエーテルホスフェート4gとイソプロパノール36gを混合し、アズワン株式会社製MIXROTOR MR−5で20回転/分(rpm)の速度で撹拌した。得られた混合液をろ過し、105℃で2時間乾燥させ、平均粒子径17.3μmの負極材2を得た。
(Example 2)
A raw material in which metal silicon and silicon dioxide were mixed was placed in a reaction furnace, the atmosphere was reduced to a vacuum degree of 15 Pa to vaporize the raw material, and this was deposited on an adsorption plate, and then cooled sufficiently. Thereafter, the deposit was taken out and pulverized with a ball mill, and the particle size was adjusted to obtain a powder. The produced powder was subjected to bulk modification by an electrochemical method in a 1: 1 (volume ratio) mixed solvent of propylene carbonate and ethylene carbonate to obtain particles containing silicon and lithium silicate. 100 g of particles containing silicon and lithium silicate and 10 g of coal tar pitch were mixed at room temperature (25 ° C.), respectively, and then heated to 800 ° C. at a temperature rising rate of 300 ° C./hour under nitrogen flow. Carbon was deposited by holding for a period of time. The resulting particles were crushed and passed through a 250 mesh standard sieve. 2 g of the obtained particles, 4 g of polyoxyethylene alkyl ether phosphate manufactured by Adeka Corporation and 36 g of isopropanol were mixed, and the mixture was stirred at a speed of 20 rotations / minute (rpm) with MIXROTOR MR-5 manufactured by ASONE Corporation. The obtained mixed liquid was filtered and dried at 105 ° C. for 2 hours to obtain a negative electrode material 2 having an average particle diameter of 17.3 μm.
(実施例3)
金属ケイ素と二酸化ケイ素を混合した原料を反応炉に設置し、雰囲気を15Paの真空度に減圧して原料を気化させ、これを吸着板上に堆積させた後、十分に冷却した。その後、堆積物を取出し、ボールミルで粉砕し、粒子径を調整して粉末を得た。作製した粉末に対して、プロピレンカーボネート及びエチレンカーボネートの1:1(体積比)混合溶媒中で電気化学法によるバルク改質を行い、シリコン及びリチウムシリケートを含む粒子を得た。このシリコン及びリチウムシリケートを含有する粒子を100gとコールタールピッチ10gを、それぞれ室温(25℃)で混合し、次いで窒素流通下、300℃/時間の昇温速度で800℃まで昇温し、1時間保持して炭素を付着させた。得られた粒子を解砕し、250メッシュの標準篩を通した。得られた粒子6gと株式会社アデカ製ポリオキシエチレンアルキルエーテルホスフェート2gとイソプロパノール34gを混合し、アズワン株式会社製MIXROTOR MR−5で20回転/分(rpm)の速度で撹拌した。得られた混合液をろ過し、105℃で2時間乾燥させ、平均粒子径17.8μmの負極材3を得た。
(Example 3)
A raw material in which metal silicon and silicon dioxide were mixed was placed in a reaction furnace, the atmosphere was reduced to a vacuum degree of 15 Pa to vaporize the raw material, and this was deposited on an adsorption plate, and then cooled sufficiently. Thereafter, the deposit was taken out and pulverized with a ball mill, and the particle size was adjusted to obtain a powder. The produced powder was subjected to bulk modification by an electrochemical method in a 1: 1 (volume ratio) mixed solvent of propylene carbonate and ethylene carbonate to obtain particles containing silicon and lithium silicate. 100 g of particles containing silicon and lithium silicate and 10 g of coal tar pitch were mixed at room temperature (25 ° C.), respectively, and then heated to 800 ° C. at a temperature rising rate of 300 ° C./hour under nitrogen flow. Carbon was deposited by holding for a period of time. The resulting particles were crushed and passed through a 250 mesh standard sieve. 6 g of the obtained particles, 2 g of polyoxyethylene alkyl ether phosphate manufactured by ADEKA CORPORATION, and 34 g of isopropanol were mixed, and the mixture was stirred at a speed of 20 revolutions / minute (rpm) with MIXROTOR MR-5 manufactured by ASONE CORPORATION. The obtained mixed liquid was filtered and dried at 105 ° C. for 2 hours to obtain a negative electrode material 3 having an average particle diameter of 17.8 μm.
上記の実施例1〜3で得られた負極材1〜3の物性値、及び電気的特性を下記の要領で測定した。測定結果を表1に示す。また、比較のために比較例1として、炭素被覆したシリコン及びシリケートを含有する粒子(平均粒子径15.0μm)を負極材として使用した。 The physical property values and electrical characteristics of the negative electrode materials 1 to 3 obtained in Examples 1 to 3 were measured as follows. The measurement results are shown in Table 1. For comparison, as Comparative Example 1, particles containing carbon-coated silicon and silicate (average particle diameter: 15.0 μm) were used as the negative electrode material.
[平均粒子径]
得られた負極材試料2gを界面活性剤(エソミンT/15、ライオン株式会社製)0.01質量%水溶液中に入れ、振動撹拌機で分散した。得られた分散液をレーザー回折式粒度分布測定装置(株式会社島津製作所製SALD−3000J)の試料水槽に入れた。次いで、超音波をかけながらポンプで循環させ、レーザー回折式で平均粒子径を測定した。得られた粒度分布の体積累積50%粒子径(50%D)を平均粒子径とした。測定条件は下記の通りとした。
・光源:赤色半導体レーザー(690nm)
・吸光度:0.10〜0.15
・屈折率:2.00〜0.20
[Average particle size]
2 g of the obtained negative electrode material sample was placed in a 0.01% by mass aqueous solution of a surfactant (Esomine T / 15, manufactured by Lion Corporation) and dispersed with a vibration stirrer. The obtained dispersion was placed in a sample water tank of a laser diffraction particle size distribution measuring apparatus (SALD-3000J, manufactured by Shimadzu Corporation). Subsequently, it was made to circulate with a pump, applying an ultrasonic wave, and the average particle diameter was measured with the laser diffraction type. The volume cumulative 50% particle size (50% D) of the obtained particle size distribution was defined as the average particle size. The measurement conditions were as follows.
・ Light source: Red semiconductor laser (690nm)
Absorbance: 0.10 to 0.15
-Refractive index: 2.00 to 0.20
[比表面積]
得られた負極材試料1gを200℃で2時間真空乾燥した後、Micromeritics社製ASAP2010を用い、液体窒素温度(77K)での窒素吸着を多点法で測定、BET法に従って算出した。
[Specific surface area]
After 1 g of the obtained negative electrode material sample was vacuum-dried at 200 ° C. for 2 hours, nitrogen adsorption at a liquid nitrogen temperature (77 K) was measured by a multipoint method using ASAP2010 manufactured by Micromeritics, and calculated according to the BET method.
[スラリーのpH]
各実施例及び比較例の負極材試料5質量%に対し、黒鉛系負極材料、スチレンブタジエンゴム(SBR)、及びカルボキシメチルセルロース(CMC)を固形分でそれぞれ92.6質量%、1.2質量%、及び1.2質量%となるよう加え、混練してペースト状の負極材スラリーを作製した。作製した負極材スラリーの水浸漬時のpHを、株式会社堀場製作所製コンパクトpHメータ LAQUAtwin B−712で測定した。
[PH of slurry]
92.6% by mass and 1.2% by mass of the solid content of graphite-based negative electrode material, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), respectively, with respect to 5% by mass of the negative electrode material sample of each example and comparative example. And kneaded to prepare a paste-like negative electrode material slurry. The pH of the prepared negative electrode material slurry when immersed in water was measured with a compact pH meter LAQUATwin B-712 manufactured by Horiba, Ltd.
[剥離試験]
各実施例及び比較例の負極材試料5質量%に対し、黒鉛系負極材料、スチレンブタジエンゴム(SBR)、及びカルボキシメチルセルロース(CMC)を固形分でそれぞれ92.6質量%、1.2質量%、及び、1.2質量%となるよう加え、混練してペースト状の負極材スラリーを作製した。作製したスラリーを厚さ10μmの電解銅箔に厚さ100μmのクオーターを用いて塗布し、さらに105℃で乾燥して水分を除去し、試料電極(負極)を作製した。
作製した電極を幅10mmに切り出し、株式会社島津製作所製オートグラフEZ-Sにより、100mm/分の試験速度で剥離強度を測定した。同一の試験サンプルにつき、5回の測定を行い、平均値を算出した。
[Peel test]
92.6% by mass and 1.2% by mass of the solid content of graphite-based negative electrode material, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), respectively, with respect to 5% by mass of the negative electrode material sample of each example and comparative example. And it added so that it might become 1.2 mass%, and it knead | mixed, and produced the paste-form negative electrode material slurry. The prepared slurry was applied to an electrolytic copper foil having a thickness of 10 μm using a quarter having a thickness of 100 μm, and further dried at 105 ° C. to remove moisture, thereby preparing a sample electrode (negative electrode).
The produced electrode was cut out to a width of 10 mm, and peel strength was measured at a test speed of 100 mm / min by an autograph EZ-S manufactured by Shimadzu Corporation. The same test sample was measured 5 times, and the average value was calculated.
[初回充電容量及び初回効率]
各実施例及び比較例の負極材試料5質量%に対し、黒鉛系負極材料、スチレンブタジエンゴム(SBR)、及び、カルボキシメチルセルロース(CMC)を固形分でそれぞれ92.6質量%、1.2質量%、及び、1.2質量%となるよう加え、混練してペースト状の負極材スラリーを作製した。このスラリーを厚さ10μmの電解銅箔に厚さ100μmのクオーターを用いて塗布し、さらに、105℃で乾燥して水分を除去し、試料電極(負極)を作製した。
[Initial charge capacity and initial efficiency]
92.6% by mass and 1.2% by mass in terms of solid content of graphite-based negative electrode material, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), respectively, with respect to 5% by mass of the negative electrode material sample of each example and comparative example. % And 1.2% by mass and kneaded to prepare a paste-like negative electrode material slurry. This slurry was applied to an electrolytic copper foil with a thickness of 10 μm using a quarter with a thickness of 100 μm, and further dried at 105 ° C. to remove moisture, thereby preparing a sample electrode (negative electrode).
次いで、上記試料電極、セパレータ、対極(正極)の順に積層した後、LiPF6をエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で3:7)を混合した電解液溶液を注入し、コイン型電池を作製した。対極には金属リチウムを使用し、セパレータには厚み20μmのポリエチレン微孔膜を使用した。 Next, after laminating the sample electrode, separator, and counter electrode (positive electrode) in this order, LiPF 6 was mixed with ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (EC and MEC are in a volume ratio of 3: 7). The solution was poured into a coin type battery. Metal lithium was used for the counter electrode, and a polyethylene microporous film having a thickness of 20 μm was used for the separator.
得られたコイン型電池の試料電極と対極の間に、0.6mA/cm2の定電流で0.06V(V vs. Li/Li+)まで充電し、次いで0.6Vの定電圧で電流が0.06mAになるまで充電した。次に30分の休止時間後に0.6mA/cm2の定電流で1.0 V(V vs. Li/Li+)まで放電する1サイクル試験を行い、初回充電容量を測定した。さらに、得られた初回充電容量と初回放電容量の差から、初回効率を算出した。 Between the sample electrode and the counter electrode of the obtained coin-type battery, it was charged to 0.06 V (V vs. Li / Li + ) with a constant current of 0.6 mA / cm 2 , and then the current with a constant voltage of 0.6 V Was charged to 0.06 mA. Next, after a 30-minute rest period, a one-cycle test was performed to discharge to 1.0 V (V vs. Li / Li + ) at a constant current of 0.6 mA / cm 2 to measure the initial charge capacity. Furthermore, the initial efficiency was calculated from the difference between the obtained initial charge capacity and the initial discharge capacity.
測定した物性値の結果を表1に示す。 Table 1 shows the measured physical property values.
表1から明らかなように、実施例1〜3のリチウムイオン二次電池用負極材を用いた場合、比較例1のリチウムイオン二次電池用負極材を用いた場合と比較して、スラリーの水浸漬時のpHが低く、耐水性が向上している。結果、剥離試験においても、実施例1〜3のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池用負極は、比較例1のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池用負極と比較して、結着性が向上していることがわかる。
さらに、実施例1〜3のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池は、比較例1のリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池と比較して、初回充電容量及び初回効率に優れる。
As is clear from Table 1, when the negative electrode material for lithium ion secondary batteries of Examples 1 to 3 was used, the slurry was compared with the case of using the negative electrode material for lithium ion secondary batteries of Comparative Example 1. The pH when immersed in water is low, and the water resistance is improved. As a result, also in the peel test, the negative electrode for lithium ion secondary battery using the negative electrode material for lithium ion secondary battery of Examples 1 to 3 was lithium ion using the negative electrode material for lithium ion secondary battery of Comparative Example 1. It can be seen that the binding property is improved as compared with the negative electrode for the secondary battery.
Furthermore, the lithium ion secondary battery using the negative electrode material for lithium ion secondary batteries of Examples 1 to 3 is compared with the lithium ion secondary battery using the negative electrode material for lithium ion secondary battery of Comparative Example 1. Excellent initial charge capacity and initial efficiency.
以上より、本開示のリチウムイオン二次電池用負極材を用いた場合、リチウムイオン二次電池の初回充電容量及び初回効率を向上させることができる。さらに、負極材の耐水性が向上され、その結果として、電極の結着性を向上させることができる。 From the above, when the negative electrode material for a lithium ion secondary battery of the present disclosure is used, the initial charge capacity and the initial efficiency of the lithium ion secondary battery can be improved. Furthermore, the water resistance of the negative electrode material is improved, and as a result, the binding property of the electrode can be improved.
10 負極材
12 シリコン及びリチウムシリケートを含有する粒子
14 炭素
16 リン酸化合物
20 負極材
22 シリコン及びリチウムシリケートを含有する粒子
24 炭素
26 リン酸化合物
10 Negative electrode material 12 Particles containing silicon and lithium silicate 14 Carbon 16 Phosphoric acid compound 20 Negative electrode material 22 Particles containing silicon and lithium silicate 24 Carbon 26 Phosphoric acid compound
Claims (5)
前記粒子の表面の少なくとも一部に存在する炭素;及び、
前記粒子の最表面の少なくとも一部に存在するリン酸化合物、
を有するリチウムイオン二次電池用負極材。 Particles containing silicon and lithium silicate;
Carbon present on at least a portion of the surface of the particle; and
A phosphate compound present on at least a portion of the outermost surface of the particle;
A negative electrode material for a lithium ion secondary battery having:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017129107A JP6946781B2 (en) | 2017-06-30 | 2017-06-30 | Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries |
JP2021145912A JP7279757B2 (en) | 2017-06-30 | 2021-09-08 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017129107A JP6946781B2 (en) | 2017-06-30 | 2017-06-30 | Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021145912A Division JP7279757B2 (en) | 2017-06-30 | 2021-09-08 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019012646A true JP2019012646A (en) | 2019-01-24 |
JP6946781B2 JP6946781B2 (en) | 2021-10-06 |
Family
ID=65227425
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017129107A Active JP6946781B2 (en) | 2017-06-30 | 2017-06-30 | Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries |
JP2021145912A Active JP7279757B2 (en) | 2017-06-30 | 2021-09-08 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021145912A Active JP7279757B2 (en) | 2017-06-30 | 2021-09-08 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6946781B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021153076A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Electrochemical element, method for producing same, and electrochemical device |
WO2021153075A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Electrochemical element, method for manufacturing same, and electrochemical device |
WO2021153077A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Negative electrode active substance for secondary battery, method for producing same, and secondary battery |
WO2021153073A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Active material particles, electrochemical element, method for producing said active material particles, method for producing said electrochemical element, and electrochemical device |
WO2021153074A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Electrochemical element, method for manufacturing same, and electrochemical device |
WO2022163099A1 (en) * | 2021-01-29 | 2022-08-04 | パナソニックIpマネジメント株式会社 | Active material particle, electrochemical element, and electrochemical device |
WO2022168408A1 (en) * | 2021-02-03 | 2022-08-11 | パナソニックIpマネジメント株式会社 | Active material particle, electrochemical element and electrochemical device |
JP2023101910A (en) * | 2022-01-11 | 2023-07-24 | 信越化学工業株式会社 | Negative electrode active material and negative electrode |
WO2024070708A1 (en) * | 2022-09-29 | 2024-04-04 | パナソニックIpマネジメント株式会社 | Negative-electrode material for secondary battery, and secondary battery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000264614A (en) * | 1999-03-23 | 2000-09-26 | Sharp Corp | Production of graphite particle coated with carbon and non-aqueous secondary battery |
WO2012011247A1 (en) * | 2010-07-20 | 2012-01-26 | 株式会社大阪チタニウムテクノロジーズ | Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor |
WO2012049826A1 (en) * | 2010-10-15 | 2012-04-19 | 株式会社大阪チタニウムテクノロジーズ | Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor |
WO2012144177A1 (en) * | 2011-04-21 | 2012-10-26 | 株式会社豊田自動織機 | Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode |
WO2015118675A1 (en) * | 2014-02-10 | 2015-08-13 | 株式会社日立製作所 | Negative electrode material for lithium ion secondary battery |
WO2016088837A1 (en) * | 2014-12-04 | 2016-06-09 | 日本電気株式会社 | Lithium secondary battery |
JP2016219408A (en) * | 2015-05-21 | 2016-12-22 | 日立化成株式会社 | Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2017152358A (en) * | 2016-02-24 | 2017-08-31 | 信越化学工業株式会社 | Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery |
-
2017
- 2017-06-30 JP JP2017129107A patent/JP6946781B2/en active Active
-
2021
- 2021-09-08 JP JP2021145912A patent/JP7279757B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000264614A (en) * | 1999-03-23 | 2000-09-26 | Sharp Corp | Production of graphite particle coated with carbon and non-aqueous secondary battery |
WO2012011247A1 (en) * | 2010-07-20 | 2012-01-26 | 株式会社大阪チタニウムテクノロジーズ | Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor |
WO2012049826A1 (en) * | 2010-10-15 | 2012-04-19 | 株式会社大阪チタニウムテクノロジーズ | Powder for lithium ion secondary battery negative pole material, lithium ion secondary battery negative pole and capacitor negative pole, and lithium ion secondary battery and capacitor |
WO2012144177A1 (en) * | 2011-04-21 | 2012-10-26 | 株式会社豊田自動織機 | Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode |
WO2015118675A1 (en) * | 2014-02-10 | 2015-08-13 | 株式会社日立製作所 | Negative electrode material for lithium ion secondary battery |
WO2016088837A1 (en) * | 2014-12-04 | 2016-06-09 | 日本電気株式会社 | Lithium secondary battery |
JP2016219408A (en) * | 2015-05-21 | 2016-12-22 | 日立化成株式会社 | Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2017152358A (en) * | 2016-02-24 | 2017-08-31 | 信越化学工業株式会社 | Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021153073A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Active material particles, electrochemical element, method for producing said active material particles, method for producing said electrochemical element, and electrochemical device |
CN115023826A (en) * | 2020-01-31 | 2022-09-06 | 松下知识产权经营株式会社 | Electrochemical element, method for manufacturing the same, and electrochemical device |
WO2021153077A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Negative electrode active substance for secondary battery, method for producing same, and secondary battery |
JPWO2021153075A1 (en) * | 2020-01-31 | 2021-08-05 | ||
JPWO2021153077A1 (en) * | 2020-01-31 | 2021-08-05 | ||
JPWO2021153076A1 (en) * | 2020-01-31 | 2021-08-05 | ||
WO2021153075A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Electrochemical element, method for manufacturing same, and electrochemical device |
WO2021153076A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Electrochemical element, method for producing same, and electrochemical device |
EP4099439A4 (en) * | 2020-01-31 | 2024-03-20 | Panasonic Intellectual Property Management Co., Ltd. | Active material particles, electrochemical element, method for producing said active material particles, method for producing said electrochemical element, and electrochemical device |
JP7656831B2 (en) | 2020-01-31 | 2025-04-04 | パナソニックIpマネジメント株式会社 | Electrochemical element, its manufacturing method, and electrochemical device |
WO2021153074A1 (en) * | 2020-01-31 | 2021-08-05 | パナソニックIpマネジメント株式会社 | Electrochemical element, method for manufacturing same, and electrochemical device |
CN115210910A (en) * | 2020-01-31 | 2022-10-18 | 松下知识产权经营株式会社 | Active material particles, electrochemical element, method for producing same, and electrochemical device |
JP7617438B2 (en) | 2020-01-31 | 2025-01-20 | パナソニックIpマネジメント株式会社 | Electrochemical element, its manufacturing method, and electrochemical device |
EP4098614A4 (en) * | 2020-01-31 | 2023-11-01 | Panasonic Intellectual Property Management Co., Ltd. | NEGATIVE ELECTRODE ACTIVE SUBSTANCE FOR SECONDARY BATTERY, METHOD FOR PRODUCING SAME AND SECONDARY BATTERY |
CN115023826B (en) * | 2020-01-31 | 2024-03-01 | 松下知识产权经营株式会社 | Electrochemical element, method for manufacturing same, and electrochemical device |
WO2022163099A1 (en) * | 2021-01-29 | 2022-08-04 | パナソニックIpマネジメント株式会社 | Active material particle, electrochemical element, and electrochemical device |
WO2022168408A1 (en) * | 2021-02-03 | 2022-08-11 | パナソニックIpマネジメント株式会社 | Active material particle, electrochemical element and electrochemical device |
JP2023101910A (en) * | 2022-01-11 | 2023-07-24 | 信越化学工業株式会社 | Negative electrode active material and negative electrode |
WO2024070708A1 (en) * | 2022-09-29 | 2024-04-04 | パナソニックIpマネジメント株式会社 | Negative-electrode material for secondary battery, and secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP7279757B2 (en) | 2023-05-23 |
JP2021193672A (en) | 2021-12-23 |
JP6946781B2 (en) | 2021-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7279757B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP7392151B2 (en) | Secondary batteries, battery modules, battery packs, and devices containing the secondary batteries | |
JP6609909B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5927788B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5439701B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery | |
JP6938914B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2012144177A1 (en) | Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode | |
JP2008112710A (en) | Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery | |
JP2016100225A (en) | Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery | |
JP2008277232A (en) | Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery | |
JP2008277231A (en) | Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery | |
JP4866611B2 (en) | Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery | |
JPH11199211A (en) | Graphite particle, its production, lithium secondary battery and negative pole thereof | |
JP5505480B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
WO2015015548A1 (en) | Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary batteries | |
JP2013187016A (en) | Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP7004093B2 (en) | Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP6922927B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP5590159B2 (en) | Negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery | |
CN119208600A (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2009187924A (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode | |
CN114207880B (en) | Method for producing negative electrode material for lithium ion secondary battery, and method for producing lithium ion secondary battery | |
JP2020187988A (en) | Manufacturing method of negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP7047892B2 (en) | Carbonaceous particles, negative material for lithium-ion secondary batteries, negative-negative materials for lithium-ion secondary batteries, and lithium-ion secondary batteries | |
JP5885919B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200409 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210830 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6946781 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |