[go: up one dir, main page]

JP3287111B2 - Scanning optical system - Google Patents

Scanning optical system

Info

Publication number
JP3287111B2
JP3287111B2 JP10110294A JP10110294A JP3287111B2 JP 3287111 B2 JP3287111 B2 JP 3287111B2 JP 10110294 A JP10110294 A JP 10110294A JP 10110294 A JP10110294 A JP 10110294A JP 3287111 B2 JP3287111 B2 JP 3287111B2
Authority
JP
Japan
Prior art keywords
lens
scanning
distance
deflection point
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10110294A
Other languages
Japanese (ja)
Other versions
JPH07311336A (en
Inventor
理 小野
弘 中村
Original Assignee
ミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミノルタ株式会社 filed Critical ミノルタ株式会社
Priority to JP10110294A priority Critical patent/JP3287111B2/en
Priority to US08/296,020 priority patent/US5563729A/en
Publication of JPH07311336A publication Critical patent/JPH07311336A/en
Priority to US08/620,103 priority patent/US5721631A/en
Priority to US08/948,852 priority patent/US5926306A/en
Priority to US08/949,921 priority patent/US5828480A/en
Application granted granted Critical
Publication of JP3287111B2 publication Critical patent/JP3287111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、走査光学系に関するも
のであり、更に詳しくはレーザプリンタのプリントヘッ
ド等に用いられる走査光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning optical system , and more particularly to a scanning optical system used for a print head of a laser printer.

【0002】[0002]

【従来の技術】従来より、偏向器で偏向された光束を被
走査面上に結像させる1枚のfθレンズから成る走査レ
ンズとして、様々なものが提案されている(例えば、特
開平3−213812号,特開平4−50908号,特
開昭62−139520号,特開昭63−157122
号)。これらの走査レンズが用いられたレーザプリンタ
等の装置においては、光源から発せられ、コリメータレ
ンズ等の光学系で平行光束又は収束光束とされ、ポリゴ
ンミラー等の偏向器で等角速度的に偏向された光束は、
走査レンズで被走査面上に結像されるとともに実質的に
等速で走査される。
2. Description of the Related Art Hitherto, various types of scanning lenses comprising a single fθ lens for forming an image of a light beam deflected by a deflector on a surface to be scanned have been proposed (see, for example, Japanese Patent Application Laid-Open No. HEI 3-3-1). 213812, JP-A-4-50908, JP-A-62-139520, JP-A-63-157122
issue). In an apparatus such as a laser printer using these scanning lenses, the light is emitted from a light source, converted into a parallel light beam or a convergent light beam by an optical system such as a collimator lens, and deflected at a constant angular velocity by a deflector such as a polygon mirror. The luminous flux is
An image is formed on the surface to be scanned by the scanning lens, and scanning is performed at a substantially constant speed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来例に
よれば、光学性能を保持しつつ装置全体の小型化を図る
のは困難である。走査レンズの画角、即ち偏向角を広角
化することによって走査光路を短くすれば、装置全体を
小型化することはできるが、光学性能を保持しつつ偏向
角の広角化を図ろうとすれば、偏向点から像面までの距
離や主走査方向のレンズ長さの増大に伴って装置全体が
大型化してしまう。
However, according to the above conventional example, it is difficult to reduce the size of the entire apparatus while maintaining the optical performance. If the scanning optical path is shortened by widening the angle of view of the scanning lens, that is, the deflection angle, the entire apparatus can be reduced in size.However, if an attempt is made to widen the deflection angle while maintaining optical performance, As the distance from the deflection point to the image plane and the length of the lens in the main scanning direction increase, the size of the entire apparatus increases.

【0004】例えば、特開平3−213812号では、
偏向器から走査レンズまでの距離が60mm以上もある
ため、偏向角を広角化しようとするとレンズ長さを大き
くしなければならなくなり、逆に、レンズ長さを小さく
しようとすると偏向角の範囲を狭くしなければならなく
なる。従って、偏向面から像面までの距離を大きくしな
ければ、偏向角の広角化を図ることができないという問
題がある。
For example, in JP-A-3-213812,
Since the distance from the deflector to the scanning lens is more than 60 mm, the lens length must be increased to widen the deflection angle, and conversely, if the lens length is reduced, the range of the deflection angle is increased. You have to make it narrow. Therefore, there is a problem that the deflection angle cannot be widened unless the distance from the deflection surface to the image surface is increased.

【0005】特開平4−50908号では、偏向点から
走査レンズまでの距離が15mmと小さくなっているも
のの、走査レンズを偏向器に近づけることによって偏向
角の広角化を図ったことが、主走査方向のレンズ長さの
短縮化に直接寄与していない。これは、第1面の光軸近
傍の曲率が偏向点側に凸であるため、偏向角が大きくな
ったときのレンズ面上での光束入射位置が、光軸上のレ
ンズ面位置よりも像面側にあるからである。さらに、走
査レンズの主走査方向の非球面が2以上の変曲点を持つ
ような面形状になっているため、金型の加工・測定・管
理が難しいという問題もある。
In Japanese Patent Application Laid-Open No. 4-50908, although the distance from the deflecting point to the scanning lens is as small as 15 mm, it has been attempted to increase the deflection angle by bringing the scanning lens closer to the deflector. It does not directly contribute to shortening of the lens length in the direction. This is because the curvature of the first surface in the vicinity of the optical axis is convex toward the deflection point, so that the light flux incident position on the lens surface when the deflection angle is large is smaller than the lens surface position on the optical axis. Because it is on the surface side. Furthermore, since the aspheric surface of the scanning lens in the main scanning direction has a surface shape having two or more inflection points, there is a problem that it is difficult to process, measure, and manage a mold.

【0006】特開昭62−139520号,特開昭63
−157122号では、偏向器に入射する光線が平行光
束であるため、入射光束の収束位置の設計パラメータが
欠けている。平行光束を用いる走査レンズによれば、偏
向角が大きいときの収差劣化が大きくなるため、偏向角
を大きくすることができず、これが装置全体の大型化を
招くことになる。ところが、特開昭62−139520
号では、コマ収差を無視した設計となっている。また、
特開昭63−157122号では、偏向器から走査レン
ズまでの距離が10mm程度と小さくなっているもの
の、レンズ中心厚が30mm〜60mmと非常に大きく
なっており、さらに、偏向角が大きくなっているにもか
かわらず、走査レンズから像面までの距離が170mm
以上もあるため、実質上偏向角を大きくしたことが装置
の小型化に寄与していない。
JP-A-62-139520, JP-A-63-139520
In -157122, since the light beam incident on the deflector is a parallel light beam, the design parameter of the convergence position of the incident light beam is lacking. According to the scanning lens using the parallel light beam, the aberration is deteriorated when the deflection angle is large. Therefore, the deflection angle cannot be increased, which leads to an increase in the size of the entire apparatus. However, Japanese Patent Application Laid-Open No. 62-139520
No. is designed to ignore coma. Also,
In Japanese Patent Application Laid-Open No. 63-157122, although the distance from the deflector to the scanning lens is as small as about 10 mm, the center thickness of the lens is very large, 30 mm to 60 mm, and the deflection angle is further increased. Despite the distance, the distance from the scanning lens to the image plane is 170 mm
For the reasons described above, the fact that the deflection angle is substantially increased does not contribute to downsizing of the apparatus.

【0007】本発明は、これらの点に鑑みてなされたも
のであって、光学性能を保持しつつ偏向点から像面まで
の距離及び主走査方向のレンズ長さの短縮化並びに偏向
角の広角化が達成された走査光学系を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of these points, and has been made to reduce the distance from the deflecting point to the image plane, the lens length in the main scanning direction, and the wide angle of deflecting angle while maintaining optical performance. It is an object of the present invention to provide a scanning optical system in which the image formation is achieved.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る走査光学系は、偏向点からの収束光束
1枚のfθレンズから成る走査レンズで被走査面上に
結像させる走査光学系であって、前記走査レンズの第1
面と第2面が共に非球面であり、更に以下の条件式(1)
〜(7)を満足することを特徴としている。なお、走査レ
ンズの材質は、コスト・大量生産の面で有利な樹脂であ
るのが好ましい。
In order to achieve the above object, a scanning optical system according to the present invention forms an image of a convergent light beam from a deflecting point on a surface to be scanned by a scanning lens comprising one fθ lens . A scanning optical system , wherein a first
Both the surface and the second surface are aspherical surfaces, and the following conditional expression (1)
~ (7) is satisfied. The material of the scanning lens is preferably a resin that is advantageous in terms of cost and mass production.

【0009】r1<0 …(1) r1/r2>0 …(2) aymax<a’ …(3) 0<a/G<0.15 …(4) 0<t/G<0.25 …(5) 1.1<L/G<1.5 …(6) |f|/G<1.5 …(7)R 1 <0 (1) r 1 / r 2 > 0 (2) aymax <a ′ (3) 0 <a / G <0.15 (4) 0 <t / G <0.25 (5) 1.1 <L / G <1.5 (6) | f | / G <1.5 (7)

【0010】但し、 r1:第1面の近軸曲率半径 r2:第2面の近軸曲率半径 aymax:偏向点位置から、レンズ有効高さの上限位置を
通る光束が第1面を通過する位置までを、光軸に対して
平行に測った距離 a’:偏向点位置から、レンズ有効高さの上限位置を通
る光束が第1面の軸上から近軸曲率半径r1で延長され
た球面を通過する位置までを、光軸に対して平行に測っ
た距離 G:偏向点から像面までの距離 a:偏向点から第1面までの距離 t:レンズ中心厚(レンズ芯厚) L:走査幅(像面の幅) f:焦点距離 である。
Here, r 1 : paraxial radius of curvature of the first surface r 2 : paraxial radius of curvature of the second surface a ymax : light flux passing from the deflection point position to the upper limit position of the lens effective height passes through the first surface. the position to the passing distance measured parallel to the optical axis a ': extending from the deflection point position, the light flux passing through the upper limit position of the lens effective height from the axis of the first surface with the paraxial curvature radius r 1 G: distance from deflection point to image plane a: distance from deflection point to first surface t: lens center thickness (lens core thickness) ) L: scanning width (width of image plane) f: focal length

【0011】図1に上記条件式中の符号と対応する位
置,距離等を示し、図2に本発明の走査レンズが使用さ
れた走査光学系全体の概略構成を示す。なお、図1中の
符号を以下に定義する。
FIG. 1 shows positions, distances and the like corresponding to the symbols in the above conditional expression, and FIG. 2 shows a schematic configuration of an entire scanning optical system using the scanning lens of the present invention. The symbols in FIG. 1 are defined below.

【0012】H:走査レンズの前側主点位置 H’:走査レンズの後側主点位置 OS:走査レンズに対する入射光束の自然収束点位置
(即ち、走査レンズがない場合の収束光束の光軸上での
収束点位置) DS:偏向点位置 IS:像面(被走査面)位置 b:走査レンズの第2面から像面位置ISまでの距離 c:偏向点位置DSから前側主点位置Hまでの距離 S:前側主点位置Hから自然収束点位置OSまでの距離 S1:偏向点位置DSから自然収束点位置OSまでの距
離 ymax:レンズ有効高さ
H: Front principal point position of the scanning lens H ': Rear principal point position of the scanning lens OS: Natural convergence point position of the light beam incident on the scanning lens
(That is, the position of the convergence point on the optical axis of the convergent light beam when there is no scanning lens.) DS: Deflection point position IS: Image plane (scanned plane) position C: Distance from deflection point position DS to front principal point position H S: Distance from front principal point position H to natural convergence point position OS S1: Distance from deflection point position DS to natural convergence point position OS y max : Effective lens height

【0013】図2に示すように光源{例えば、LD(lase
r diode),LED(light emittingdiode)等}1から発せ
られた光束は、自然収束点位置OS(図1)に収束するよ
うに、集光用レンズ2によって調整されている。この収
束光束が、シリンドリカルレンズ3を通過した後、偏向
器4(4aが偏向点である。)で反射され、走査レンズ5
に入射する。なお、このシリンドリカルレンズ3は、偏
向器4の面倒れ補正のために副走査方向のみのパワーを
有している。
As shown in FIG. 2, a light source {for example, LD (lase
r diode), LED (light emitting diode), etc.} 1 is adjusted by the condenser lens 2 so as to converge to the natural convergence point position OS (FIG. 1). After passing through the cylindrical lens 3, the convergent light beam is reflected by the deflector 4 (4 a is a deflection point), and is scanned by the scanning lens 5.
Incident on. Note that the cylindrical lens 3 has power only in the sub-scanning direction for correcting surface tilt of the deflector 4.

【0014】被走査面位置IS(図1)には、走査レンズ
5によって、像面性及びリニアリティに優れコマ収差が
良好に補正されたビームスポットが形成される。偏向器
4の作用によって、偏向点4aが主走査平面内で若干移
動するものの、ほぼ偏向点4aを中心とした半径S1
(図1)の円弧を描くように、像面(被走査面)6上で走査
が行われる。
At the position IS (FIG. 1) of the surface to be scanned, the scanning lens 5 forms a beam spot having excellent image surface properties and linearity and in which coma has been well corrected. Although the deflection point 4a slightly moves in the main scanning plane due to the operation of the deflector 4, the radius S1 about the deflection point 4a is substantially the center.
Scanning is performed on the image plane (scanned surface) 6 so as to draw the arc of FIG.

【0015】偏向器4に入射するビームは、主走査方向
において収束光束である。これにより、偏向器4による
偏向角(即ち、偏向された光束と光軸AXとのなす画角)
θが大きいときの像面6における収差量が、平行光束入
射のときよりも良好になる。そのため、偏向角θを大き
くとることができ、装置全体を小さくすることが可能に
なる。特開昭62−139520号,特開昭63−15
7122号の従来例では、偏向器に入射する光線が平行
光束であるため、入射光束の収束位置の設計パラメータ
ーが欠けている。従って、このような効果は得られな
い。
The beam incident on the deflector 4 is a convergent light beam in the main scanning direction. Thereby, the deflection angle by the deflector 4 (that is, the angle of view between the deflected light beam and the optical axis AX)
When θ is large, the amount of aberration on the image plane 6 becomes better than when parallel light flux is incident. Therefore, the deflection angle θ can be increased, and the entire device can be reduced. JP-A-62-139520, JP-A-63-15
In the conventional example of No. 7122, since the light beam incident on the deflector is a parallel light beam, there is no design parameter for the convergence position of the incident light beam. Therefore, such an effect cannot be obtained.

【0016】偏向点4aと像面6との間に配置されてい
る単玉の走査レンズ5に必要とされる光学性能は、主走
査平面内におけるリニアリティ及び像面性である。リニ
アリティとは、偏向器4によって等角速度で偏向された
光束を、像面6上に等速度で走査させる性能をいう。リ
ニアリティを良好にするためには、像高y,偏向角θに
ついて、以下の数1の式で表される値を小さくする必要
がある。像面性とは、偏向された光束を、その有効偏向
角内での像面6上において常に集光させる性能をいう。
なお、良好な光学性能を得るためには、光束の近軸性能
だけでなくコマ収差も抑えられている必要がある。
The optical performance required for the single-lens scanning lens 5 disposed between the deflection point 4a and the image plane 6 is linearity and image plane property in the main scanning plane. The linearity refers to the ability to scan a light beam deflected at a constant angular speed by the deflector 4 on the image plane 6 at a constant speed. In order to improve the linearity, it is necessary to reduce the values represented by the following equation 1 for the image height y and the deflection angle θ. The image plane property refers to the ability to always converge the deflected light beam on the image plane 6 within the effective deflection angle.
In order to obtain good optical performance, not only the paraxial performance of the light beam but also the coma aberration must be suppressed.

【0017】[0017]

【数1】 (Equation 1)

【0018】前述したリニアリティ及び像面性を良好に
するために入射光束を収束光束にしたとしても、設計自
由度が少ないため、走査レンズ5の第1面又は両面を非
球面にしないと距離Gを小さくすることは困難である。
しかも、距離Gの小型化を図るために偏向角θを大きく
しようとすれば、本発明のように走査レンズ5の両面を
非球面にすることが不可欠な条件となる。
Even if the incident light beam is made a convergent light beam in order to improve the above-mentioned linearity and image plane property, the degree of freedom in design is small. Therefore, if the first surface or both surfaces of the scanning lens 5 are not made aspherical, the distance G Is difficult to reduce.
Moreover, if the deflection angle θ is to be increased in order to reduce the distance G, it is an essential condition that both surfaces of the scanning lens 5 be aspherical as in the present invention.

【0019】条件式(1),(2)は、走査レンズ5が第1面
と第2面共に光軸近傍において偏向点4a側に凹のメニ
スカスレンズであることを示している。また、条件式
(3)は、レンズ有効高さymaxの上限位置を通る光束が第
1面を通過する位置と、レンズ有効高さの上限位置を通
る光束が第1面の軸上から近軸曲率半径r1で延長され
た球面を通過する位置とに関し、前者の位置が後者の位
置よりも偏向点4a側に寄っていることを示している。
Conditional expressions (1) and (2) indicate that the scanning lens 5 is a meniscus lens concave on the deflection point 4a side near the optical axis on both the first surface and the second surface. Also, the conditional expression
(3) is the position where the light beam passing through the upper limit position of the lens effective height y max passes through the first surface, and the light beam passing through the upper limit position of the lens effective height is the paraxial radius of curvature r from the axis of the first surface. With respect to the position passing through the spherical surface extended by 1, it indicates that the former position is closer to the deflection point 4a side than the latter position.

【0020】条件式(1)〜(3)を満足させることによっ
て、走査レンズ5の第1面,第2面(各近軸曲率半径は
1,r2である。)を、共に周辺にいくに従って曲率が
きつくなる非球面形状とする。これにより、光軸近傍よ
りも偏向角θが大きいときの方が、第1面は偏向器4側
に位置することになるため、偏向角θが大きくなって
も、走査レンズ5は主走査方向に大きくなることはな
い。なお、走査レンズをメニスカス形状にすると偏肉が
少なくなるため、成形性が向上するといった効果もあ
る。
By satisfying conditional expressions (1) to (3), the first surface and the second surface (the paraxial radii of curvature are r 1 and r 2 ) of the scanning lens 5 are both located around the periphery. An aspherical shape in which the curvature becomes steeper as it goes. Accordingly, when the deflection angle θ is larger than in the vicinity of the optical axis, the first surface is located on the deflector 4 side. It does not grow. In addition, when the scanning lens has a meniscus shape, uneven thickness is reduced, and thus there is also an effect that moldability is improved.

【0021】これらの条件式(1)〜(3)の範囲を外れた場
合、走査レンズ5を偏向点4aに近づけたことが、主走
査方向のレンズ長さの短縮化に全く寄与しなくなり、更
にメニスカス形状を外れると偏肉が大きくなるため、成
形性が悪くなってしまう。像面性及びリニアリティをよ
り良好にするには、第1面と第2面とが条件式(1)〜(3)
を満足し、かつ、同じような形状であるのが好ましい。
その場合、走査レンズ5は、結果的に偏肉がより小さく
なるような形状を有することになる。
When the conditional expressions (1) to (3) are out of the range, the fact that the scanning lens 5 is moved closer to the deflection point 4a does not contribute to shortening of the lens length in the main scanning direction at all. Further, if the shape is out of the meniscus shape, the uneven thickness is increased, and the moldability is deteriorated. In order to improve image quality and linearity, the first surface and the second surface must satisfy conditional expressions (1) to (3).
And it is preferable that they have the same shape.
In that case, the scanning lens 5 will have a shape that results in less uneven thickness.

【0022】条件式(4)は、偏向点4aから第1面まで
の距離aと距離Gとの関係を示している。距離aを小さ
くすると走査レンズ5を主走査方向に小さくすることが
できるため、偏向角を広角化しても走査レンズ5を大型
化する必要がなくなる。条件式(4)の範囲を外れると、
走査レンズ5が像面6側に近づくことになり、結果とし
て走査レンズ5が主走査方向に大きくなってしまう。
Conditional expression (4) shows the relationship between the distance a and the distance G from the deflection point 4a to the first surface. When the distance a is reduced, the scanning lens 5 can be reduced in the main scanning direction, so that it is not necessary to increase the size of the scanning lens 5 even if the deflection angle is widened. When out of the range of conditional expression (4),
The scanning lens 5 approaches the image plane 6 side, and as a result, the scanning lens 5 becomes large in the main scanning direction.

【0023】条件式(5)は、走査レンズ5の中心厚tと
距離Gとの関係を示している。この条件式(5)の範囲を
外れると、レンズ中心厚tが異常に大きくなってしま
う。レンズ中心厚tの増大は、成形性の悪化や装置全体
の大型化をもたらすことになる。
Conditional expression (5) shows the relationship between the center thickness t of the scanning lens 5 and the distance G. If the value falls outside the range of the conditional expression (5), the lens center thickness t becomes abnormally large. An increase in the lens center thickness t results in deterioration of moldability and an increase in the size of the entire apparatus.

【0024】条件式(6)は、走査幅Lと距離Gとの関係
を示している。条件式(6)の下限を超えると装置が大き
くなってしまい、上限を超えるとこの形態のレンズでは
性能(リニアリティ,像面性)を満足させることができな
くなってしまう。
Conditional expression (6) shows the relationship between the scanning width L and the distance G. If the lower limit of conditional expression (6) is exceeded, the size of the apparatus will be large. If the upper limit of conditional expression (6) is exceeded, performance (linearity, image surface properties) cannot be satisfied with the lens of this embodiment.

【0025】条件式(7)は、焦点距離fと距離Gとの関
係を示している。条件式(7)を満足する構成において、
更に次の条件式(7')を満たすのが好ましい。 1.2<|f|/G<1.5 …(7')
Conditional expression (7) shows the relationship between the focal length f and the distance G. In a configuration that satisfies conditional expression (7),
Further, it is preferable that the following conditional expression (7 ′) is satisfied. 1.2 <| f | / G <1.5 ... (7 ')

【0026】条件式(7')の上限を超えると(即ち、条件
式(7)を満たさない場合)、リニアリティが画角中央部で
マイナス方向に、画角端面でプラス方向に大きくなり、
fθ性能が得られなくなる。また、条件式(7')の下限を
超えると、リニアリティ及び像面性は良好に保たれるも
のの、偏向点4aから像面6までの距離Gが大きくなる
ため、装置が大型化してしまう。さらに、偏向点4aか
ら走査レンズ5の第1面までの距離aが小さくなってし
まうので、ポリゴンミラーのような回転中心軸と偏向面
とが離れている偏光器を使うことができないといった問
題も発生する。また、コマ収差も大きくなるが、FNO
70程度では特に問題とはならない。なお、後述する実
施例1,2は、条件式(7')を満たす例であり、実施例3
は、ガルバノミラー等を使用したと仮定した上で|f|
/G=0.87の例である。
When the value exceeds the upper limit of the conditional expression (7 ') (that is, when the conditional expression (7) is not satisfied), the linearity increases in the minus direction at the center of the angle of view and in the plus direction at the end face of the angle of view,
fθ performance cannot be obtained. If the lower limit of the conditional expression (7 ') is exceeded, the linearity and the image plane property are kept good, but the distance G from the deflecting point 4a to the image plane 6 becomes large, so that the apparatus becomes large. Further, since the distance a from the deflecting point 4a to the first surface of the scanning lens 5 becomes small, there is also a problem that a polarizer such as a polygon mirror in which the rotation center axis and the deflecting surface are separated cannot be used. appear. In addition, the coma aberration increases, but F NO =
If it is about 70, there is no particular problem. Examples 1 and 2 described below are examples satisfying conditional expression (7 ′).
Is | f | on the assumption that a galvanomirror or the like is used.
/G=0.87.

【0027】以上のように条件式(4)〜(7)を満足させる
ことによって、距離aを非常に小さくし、距離Gも小さ
くし、更に走査レンズ5の主走査方向の大きさを小さく
することを可能にしたまま、単玉で像面性とリニアリテ
ィの良好な補正を実現することができる。また、距離G
を小さくすることにより、走査レンズ5が用いられた装
置(例えば、レーザプリンタのプリントヘッド)全体の大
きさを小型化することができる。
By satisfying conditional expressions (4) to (7) as described above, the distance a is made very small, the distance G is made small, and the size of the scanning lens 5 in the main scanning direction is made small. It is possible to realize good correction of the image surface property and the linearity with a single lens while keeping the above-mentioned conditions possible. Also, the distance G
, The size of the entire device (for example, a print head of a laser printer) using the scanning lens 5 can be reduced in size.

【0028】本発明においては、更に次の条件式(8)を
満たすのが好ましい。条件式(8)は、走査レンズ5の主
走査方向の長さ(2・ymax)と走査幅Lとの関係を示して
いる。この条件式(8)の上限を超えると、走査レンズ5
が大きくなってしまう。 0<2・ymax/L<0.4 …(8)
In the present invention, it is preferable to further satisfy the following conditional expression (8). Conditional expression (8) shows the relationship between the length (2 · y max ) of the scanning lens 5 in the main scanning direction and the scanning width L. If the upper limit of conditional expression (8) is exceeded, the scanning lens 5
Becomes large. 0 <2 · y max /L<0.4 (8)

【0029】副走査方向については、第1面,第2面の
うちのいずれか一方又は両方の副走査方向の曲率をy方
向に連続して変化させることによって、像面6上に集光
させることが可能である。そこで、図3に示すように主
走査方向の曲率が非球面で、かつ、副走査方向の曲率が
y方向の変位に対して連続して変化するような面(ここ
では変形トーリック面と呼ぶ。)を、第1面,第2面に
用いるのが好ましい。この変形トーリック面は、次の式
で定義される。
In the sub-scanning direction, the light is condensed on the image plane 6 by continuously changing the curvature in one or both of the first and second surfaces in the y-direction. It is possible. Therefore, as shown in FIG. 3, a surface in which the curvature in the main scanning direction is an aspheric surface and the curvature in the sub-scanning direction continuously changes with respect to the displacement in the y direction (herein referred to as a deformed toric surface). ) Is preferably used for the first surface and the second surface. This deformed toric surface is defined by the following equation.

【0030】x=vy2/{1+(1−μv22)1/2}+ρ
+A ここで v=V/(1−Vρ) ρ=Cz2/{1+(1−C22)1/2} A=a2222+a4222+a6222+a8222
+…+a042+a062+a082+… x:光軸方向 y:主走査方向 z:副走査方向 1/C:プロファイル曲線Cpの曲率半径(主曲線Cm
面頂点での副走査方向曲率半径) 1/V:主曲線Cmの面頂点曲率半径 ai2:副走査方向のy方向(画角)の曲率半径の変化を表
す係数 a0j:主曲線のy方向(画角)の曲率半径の変化を表す係
数 μ:主曲線方向の2次曲線パラメータ である。
X = vy 2 / {1+ (1-μv 2 y 2 ) 1/2 } + ρ
+ A where v = V / (1−Vρ) ρ = Cz 2 / {1+ (1−C 2 z 2 ) 1/2 } A = a 22 y 2 z 2 + a 42 y 2 z 2 + a 62 y 2 z 2 + a 82 y 2 z 2
+ ... + a 04 y 2 + a 06 y 2 + a 08 y 2 + ... x: optical axis direction y: main scanning direction z: sub-scanning direction 1 / C: radius of curvature of profile curve C p (surface vertex of main curve C m 1 / V: radius of curvature of the surface vertex of the main curve C m a i2 : coefficient representing the change in the radius of curvature in the y direction (angle of view) in the sub scanning direction a 0j : y direction of the main curve A coefficient μ representing a change in the radius of curvature of (angle of view): a quadratic curve parameter in the main curve direction.

【0031】[0031]

【実施例】以下、本発明に係る走査レンズの実施例を示
す。なお、nは波長780nmの光に対する走査レンズの屈
折率、2ωは走査レンズに対する最大画角(即ち、最大偏
向角×2)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the scanning lens according to the present invention will be described below. Here, n is the refractive index of the scanning lens with respect to light having a wavelength of 780 nm, and 2ω is the maximum angle of view with respect to the scanning lens (that is, the maximum deflection angle × 2).

【0032】<実施例1> a=18.08mm t=28.67mm b=108mm S1=241.52mm f=199.01mm c=44.04mm G=154.75mm aymax=15.75mm ymax=36mm L=221mm n=1.5722 2ω=103.2゜[0032] <Example 1> a = 18.08mm t = 28.67mm b = 108mm S1 = 241.52mm f = 199.01mm c = 44.04mm G = 154.75mm a ymax = 15.75mm y max = 36mm L = 221mm n = 1.5722 2ω = 103.2 ゜

【0033】[第1面] r1=-233.9mm μ=-46.819 a04=-0.72053×10-506=0.12274×10-808=0.41432×10-12010=0.93289×10-16012=0.34668×10-18014=0.10868×10−22 [First surface] r 1 = -233.9 mm μ = -46.819 a 04 = -0.72053 × 10 -5 a 06 = 0.12274 × 10 -8 a 08 = 0.41432 × 10 -12 a 010 = 0.93289 × 10 − 16 a 012 = 0.34668 × 10 -18 a 014 = 0.10868 × 10 -22

【0034】[第2面] r2=-80.007mm μ=-7.5331 a04=-0.37404×10-506=0.41983×10-908=-0.55201×10-12010=-0.3793×10-16012=0.13604×10-18014=-0.8481×10-22 [Second surface] r 2 = −80.007 mm μ = −7.5331 a 04 = −0.37404 × 10 −5 a 06 = 0.41983 × 10 −9 a 08 = −0.55201 × 10 −12 a 010 = −0.3793 × 10 -16 a 012 = 0.13604 × 10 -18 a 014 = -0.8481 × 10 -22

【0035】<実施例2> a=19.9mm t=17.74mm b=108mm S1=241.52mm f=218.54mm c=32.2mm G=154.64mm aymax=16.8mm ymax=31mm L=218mm n=1.5722 2ω=100゜[0035] <Example 2> a = 19.9mm t = 17.74mm b = 108mm S1 = 241.52mm f = 218.54mm c = 32.2mm G = 154.64mm a ymax = 16.8mm y max = 31mm L = 218mm n = 1.5722 2ω = 100 ゜

【0036】[第1面] r1=-1300.7mm μ=55.853 a04=-0.11714×10-4 a06=-0.23242×10-808=0.24488×10-12010=-0.10597×10-15012=-0.14867×10-16014=0.93616×10-22 [First surface] r 1 = −1300.7 mm μ = 55.853 a 04 = −0.11714 × 10 −4 a 06 = −0.23242 × 10 −8 a 08 = 0.24488 × 10 −12 a 010 = −0.10597 × 10 -15 a 012 = -0.14867 × 10 -16 a 014 = 0.93616 × 10 -22

【0037】[第2面] r2=-114.65mm μ=12.53 a04=-0.403×10-506=-0.54552×10-1008=-0.17216×10-11010=-0.3793×10-5012=0.20358×10-17014=-0.19845×10-20 [Second surface] r 2 = −114.65 mm μ = 12.53 a 04 = −0.403 × 10 −5 a 06 = −0.54552 × 10 −10 a 08 = −0.17216 × 10 −11 a 010 = −0.3793 × 10 -5 a 012 = 0.20358 × 10 -17 a 014 = -0.19845 × 10 -20

【0038】<実施例3> a=5.523mm t=42.67mm b=148mm S1=241.52mm f=170.51mm c=71.26mm G=196.20mm aymax=4.90mm ymax=29mm L=217.5mm n=1.57222 2ω=104゜[0038] <Example 3> a = 5.523mm t = 42.67mm b = 148mm S1 = 241.52mm f = 170.51mm c = 71.26mm G = 196.20mm a ymax = 4.90mm y max = 29mm L = 217.5mm n = 1.57222 2ω = 104 ゜

【0039】[第1面] r1=-42.17mm μ=-10.491 a04=-0.23381×10-406=0.96019×10-908=0.50438×10-12010=0.92630×10-16012=-0.38919×10-16014=0.10917×10-22 [First surface] r 1 = −42.17 mm μ = -10.491 a 04 = −0.23381 × 10 −4 a 06 = 0.96019 × 10 −9 a 08 = 0.50438 × 10 −12 a 010 = 0.92630 × 10 − 16 a 012 = -0.38919 × 10 -16 a 014 = 0.10917 × 10 -22

【0040】[第2面] r2=-40.286mm μ=-0.71817 a04=-0.37401×10-506=-0.46958×10-908=-0.88085×10-12010=-0.37930×10-16012=0.38461×10-18014=-0.65222×10-21 [Second surface] r 2 = -40.286 mm μ = -0.71817 a 04 = -0.37401 × 10 -5 a 06 = -0.46958 × 10 -9 a 08 = -0.88085 × 10 -12 a 010 = -0.37930 × 10 -16 a 012 = 0.38461 × 10 -18 a 014 = -0.65222 × 10 -21

【0041】図4,図8及び図12は、それぞれ実施例
1〜実施例3を主走査方向について断面的に示してい
る。上記各実施例は、材質が樹脂であるため、安価で大
量生産が可能であり、また、変曲点が1つである点で、
特開平4−50908号の従来例よりも加工が容易であ
る。
FIGS. 4, 8 and 12 show Embodiments 1 to 3 in cross section in the main scanning direction. In each of the above embodiments, since the material is a resin, it can be mass-produced at low cost and has one inflection point.
Processing is easier than in the conventional example of JP-A-4-50908.

【0042】図5〜図7,図9〜図11,図13〜図1
5に、実施例1〜実施例3の収差図を示す。そのうち、
図5,図9及び図13は、それぞれ実施例1〜実施例3
に対応する主走査像面湾曲を示している。図6,図10
及び図14は、それぞれ実施例1〜実施例3に対応する
歪曲収差を示している。図7,図11,図15は、それ
ぞれ実施例1〜実施例3に対応する横収差曲線(メリデ
ィオナル光線でのガウス面上横収差)を示している。横
収差図に付したKは、式:K=S1×sinθで表される
ある偏向角θの光束について、その光束の像面での収差
量を示している。
FIGS. 5 to 7, FIGS. 9 to 11, and FIGS.
FIG. 5 shows aberration diagrams of the first to third embodiments. Of which
FIGS. 5, 9 and 13 show Examples 1 to 3, respectively.
3 shows the main scanning field curvature corresponding to the main scanning direction. 6 and 10
14 shows distortions corresponding to Examples 1 to 3, respectively. 7, 11, and 15 show lateral aberration curves (lateral aberrations on a Gaussian surface with a meridional ray) corresponding to Examples 1 to 3, respectively. K attached to the lateral aberration diagram indicates the amount of aberration on the image plane of a light beam having a certain deflection angle θ represented by the formula: K = S1 × sin θ.

【0043】[0043]

【発明の効果】以上説明したように本発明によれば、偏
向点からの収束光束を1枚のfθレンズから成る走査レ
ンズで被走査面上に結像させる走査光学系であって、
記走査レンズの第1面と第2面が共に非球面であり、更
に前記条件式(1)〜(7)及び(7')を満足する構成となって
いるので、光学性能を保持しつつ偏向点から像面までの
距離及び主走査方向のレンズ長さの短縮化並びに偏向角
の広角化を達成することができる。
As described above, according to the present invention, a convergent light beam from a deflection point is scanned by a scanning lens comprising a single fθ lens.
A scanning optical system for imaging the surface to be scanned on the lens, before
Both the first surface and the second surface of the scanning lens are aspherical surfaces, and are configured to satisfy the above conditional expressions (1) to (7) and (7 ′). The distance from the deflection point to the image plane and the length of the lens in the main scanning direction can be reduced, and the deflection angle can be widened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る走査レンズの光路及び性能を説明
するための図。
FIG. 1 is a diagram for explaining an optical path and performance of a scanning lens according to the present invention.

【図2】本発明に係る走査レンズが用いられた走査光学
系の概略構成及び光路を示す図。
FIG. 2 is a diagram showing a schematic configuration and an optical path of a scanning optical system using the scanning lens according to the present invention.

【図3】本発明に係る走査レンズに用いる変形トーリッ
ク面を説明するための図。
FIG. 3 is a diagram for explaining a deformed toric surface used for the scanning lens according to the present invention.

【図4】本発明の実施例1のレンズ断面図。FIG. 4 is a sectional view of a lens according to a first embodiment of the present invention.

【図5】本発明の実施例1の主走査像面湾曲の収差図。FIG. 5 is an aberration diagram of main scanning field curvature in the first embodiment of the present invention.

【図6】本発明の実施例1の歪曲収差図。FIG. 6 is a distortion diagram of the first embodiment of the present invention.

【図7】本発明の実施例1の横収差図。FIG. 7 is a lateral aberration diagram of the first embodiment of the present invention.

【図8】本発明の実施例2のレンズ断面図。FIG. 8 is a sectional view of a lens according to a second embodiment of the present invention.

【図9】本発明の実施例2の主走査像面湾曲の収差図。FIG. 9 is an aberration diagram of main-scanning field curvature according to the second embodiment of the present invention.

【図10】本発明の実施例2の歪曲収差図。FIG. 10 is a distortion diagram of the second embodiment of the present invention.

【図11】本発明の実施例2の横収差図。FIG. 11 is a lateral aberration diagram according to the second embodiment of the present invention.

【図12】本発明の実施例3のレンズ断面図。FIG. 12 is a sectional view of a lens according to a third embodiment of the present invention.

【図13】本発明の実施例3の主走査像面湾曲の収差
図。
FIG. 13 is an aberration diagram of main-scanning field curvature according to the third embodiment of the present invention.

【図14】本発明の実施例3の歪曲収差図。FIG. 14 is a distortion diagram of the third embodiment of the present invention.

【図15】本発明の実施例3の横収差図。FIG. 15 is a lateral aberration diagram according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 …光源 2 …集光用レンズ 3 …シリンドリカルレンズ 4 …偏向器(ポリゴンミラー) 5 …走査レンズ 6 …像面(被走査面) DS …偏向点位置 OS …自然収束点位置 IS …像面(被走査面)位置 DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Condensing lens 3 ... Cylindrical lens 4 ... Deflector (polygon mirror) 5 ... Scanning lens 6 ... Image plane (scanned surface) DS ... Deflection point position OS ... Natural convergence point position IS ... Image plane ( (Scanned surface) position

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】偏向点からの収束光束を1枚のfθレンズ
から成る走査レンズで被走査面上に結像させる走査光学
であって、前記走査レンズの第1面と第2面が共に非
球面であり、更に以下の条件を満足することを特徴とす
る走査光学系; r1<0 r1/r2>0 aymax<a’ 0<a/G<0.15 0<t/G<0.25 1.1<L/G<1.51.2< |f|/G<1.5 但し、 r1:第1面の近軸曲率半径 r2:第2面の近軸曲率半径 aymax:偏向点位置から、レンズ有効高さの上限位置を
通る光束が第1面を通過する位置までを、光軸に対して
平行に測った距離 a’:偏向点位置から、レンズ有効高さの上限位置を通
る光束が第1面の軸上から近軸曲率半径r1で延長され
た球面を通過する位置までを、光軸に対して平行に測っ
た距離 G:偏向点から像面までの距離 a:偏向点から第1面までの距離 t:レンズ中心厚 L:走査幅 f:焦点距離 である。
1. An fθ lens for converging a luminous flux from a deflection point
Optics that forms an image on the surface to be scanned with a scanning lens composed of
A system, a first and second surfaces are both aspherical the scanning lens, the scanning optical system, characterized by further satisfying the following condition; r 1 <0 r 1 / r 2> 0 a ymax <a ′ 0 <a / G <0.15 0 <t / G <0.25 1.1 <L / G <1.5 1.2 < | f | / G <1.5 where r 1 : paraxial radius of curvature of the first surface r 2 : Paraxial radius of curvature of the second surface aymax : distance measured parallel to the optical axis from the deflection point position to the position where the light beam passing through the upper limit position of the effective lens height passes through the first surface a ' : from deflection point position, to the position where the light flux passing through the upper limit position of the lens effective height passes extended spherical paraxial curvature radius r 1 from the axis of the first surface, measured parallel to the optical axis Distance G: Distance from deflection point to image plane a: Distance from deflection point to first surface t: Lens center thickness L: Scan width f: Focal length
JP10110294A 1993-08-30 1994-05-16 Scanning optical system Expired - Fee Related JP3287111B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10110294A JP3287111B2 (en) 1994-05-16 1994-05-16 Scanning optical system
US08/296,020 US5563729A (en) 1993-08-30 1994-08-25 Image forming light scanning apparatus
US08/620,103 US5721631A (en) 1993-08-30 1996-03-21 Image forming light scanning apparatus
US08/948,852 US5926306A (en) 1993-08-30 1997-10-10 Image forming light scanning apparatus
US08/949,921 US5828480A (en) 1993-08-30 1997-10-14 Image forming light scanning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10110294A JP3287111B2 (en) 1994-05-16 1994-05-16 Scanning optical system

Publications (2)

Publication Number Publication Date
JPH07311336A JPH07311336A (en) 1995-11-28
JP3287111B2 true JP3287111B2 (en) 2002-05-27

Family

ID=14291729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10110294A Expired - Fee Related JP3287111B2 (en) 1993-08-30 1994-05-16 Scanning optical system

Country Status (1)

Country Link
JP (1) JP3287111B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080108219A (en) * 2006-04-11 2008-12-12 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Lens and laser processing equipment for BA laser, fiber laser

Also Published As

Publication number Publication date
JPH07311336A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
JP3397624B2 (en) Scanning optical device and laser beam printer having the same
JP4227334B2 (en) Scanning optical system
US6396640B2 (en) Collimator lens and optical scanning apparatus using the same
JP3235306B2 (en) Scanning optical system
JPH09318874A (en) Scanning optical device
JP2865009B2 (en) Scanning lens and optical scanning device
JP3287111B2 (en) Scanning optical system
US4755030A (en) Lens for facsimile or laser printer
JP3627781B2 (en) Laser scanner
JP4349500B2 (en) Optical scanning optical system
JPH08240768A (en) Scanning optical system
JP3392984B2 (en) Scan lens
JP3500873B2 (en) Scanning optical system
JP3121452B2 (en) Optical scanning device
JP3576817B2 (en) Scanning optical device
JP3221244B2 (en) Scanning optical system
JP3441624B2 (en) Scanning optical system and optical scanning device
JP2811949B2 (en) Optical scanning optical system
JP3375397B2 (en) Scanning optical system
JP3804886B2 (en) Imaging optical system for optical scanning device
JPH0968664A (en) Optical system for light beam scanning
JPH07174965A (en) Scanning optical system
JPH116954A (en) Line image forming lens and optical scanner
JP3728256B2 (en) Scanning optical device
JPH07146437A (en) Light beam scanning optical system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees