[go: up one dir, main page]

JP3229025B2 - Gas diffusion electrode manufacturing method - Google Patents

Gas diffusion electrode manufacturing method

Info

Publication number
JP3229025B2
JP3229025B2 JP20327792A JP20327792A JP3229025B2 JP 3229025 B2 JP3229025 B2 JP 3229025B2 JP 20327792 A JP20327792 A JP 20327792A JP 20327792 A JP20327792 A JP 20327792A JP 3229025 B2 JP3229025 B2 JP 3229025B2
Authority
JP
Japan
Prior art keywords
raw material
material powder
gas diffusion
carbon black
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20327792A
Other languages
Japanese (ja)
Other versions
JPH0652864A (en
Inventor
勇夫 平田
卓也 森賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20327792A priority Critical patent/JP3229025B2/en
Publication of JPH0652864A publication Critical patent/JPH0652864A/en
Application granted granted Critical
Publication of JP3229025B2 publication Critical patent/JP3229025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体高分子電解質型電解
セル、特に燃料電池に用いるガス拡散電極の製造法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid polymer electrolyte type electrolytic cell, in particular, a gas diffusion electrode used for a fuel cell.

【0002】[0002]

【従来の技術】従来の固体高分子電解質型燃料電池用ガ
ス拡散電極の製造法としては親水性及び疎水性のカーボ
ンブラックとポリ四弗化エチレンよりなる反応層原料粉
末にソルベントを配合し、圧延シート成形したものと、
疎水性カーボンブラックとポリ四弗化エチレンよりなる
拡散層原料粉末にソルベントナフサを配合し圧延シート
成形したものを積層し、更に繰返し圧延し、シート状に
成形したものがある。
2. Description of the Related Art As a conventional method for producing a gas diffusion electrode for a solid polymer electrolyte fuel cell, a solvent is blended with a raw material powder of a reaction layer composed of hydrophilic and hydrophobic carbon black and polytetrafluoroethylene and rolled. Sheet molded,
There is a laminate obtained by mixing a solvent naphtha with a raw material powder of a diffusion layer composed of hydrophobic carbon black and polytetrafluoroethylene, forming a rolled sheet, and further rolling the sheet repeatedly to form a sheet.

【0003】[0003]

【発明が解決しようとする課題】従来のガス拡散電極の
製造法はカーボンブラックまたは親水性及び疎水性のカ
ーボンブラック、ポリ四弗化エチレンの混合物にソルベ
ントナフサを溶剤として加え、ロールなどにより繰返し
圧延しシート状にするためガス拡散通路がつぶされ、ガ
ス拡散性が低下し、燃料電池の性能が低下するという問
題があった。
A conventional method for manufacturing a gas diffusion electrode is to repeat rolling by adding a solvent naphtha as a solvent to carbon black or a mixture of hydrophilic and hydrophobic carbon black and polytetrafluoroethylene and using a roll or the like. There is a problem that the gas diffusion path is crushed to form a sheet, the gas diffusion property is reduced, and the performance of the fuel cell is reduced.

【0004】従って、触媒が担持された反応層側はガス
拡散性を上げるために、反応層の厚さをできるだけ薄く
することが試みられているが、製造上に限界があると共
に、薄くなる程、圧延回数が増加するため、ガス拡散通
路の減少が進み、その効果は小さい。また拡散層側にお
いても、繰返しの圧延によりガス通路がつぶされ、ガス
拡散性が低下するためガス拡散抵抗による限界電流が小
さい欠点がある。
Therefore, in order to increase gas diffusivity on the reaction layer side on which the catalyst is supported, attempts have been made to reduce the thickness of the reaction layer as much as possible. Since the number of times of rolling increases, the number of gas diffusion paths decreases, and the effect is small. Also, on the diffusion layer side, the gas passage is crushed by repeated rolling, and the gas diffusivity is reduced, so that there is a disadvantage that the limiting current due to gas diffusion resistance is small.

【0005】かかるガス拡散性は燃料極である水素供給
側では水素の拡散性が大きいため、その影響は小さい
が、空気極側では反応層及び拡散層中の酸素の拡散性及
び反応による生成水の排出の必要性から著しく電池の性
能を左右する。
[0005] Such gas diffusivity has a small effect on the hydrogen supply side, which is the fuel electrode, because the hydrogen diffusivity is large. The performance of the battery is significantly affected by the necessity of discharging the battery.

【0006】本発明は上記技術水準に鑑み、従来技術に
おけるような不具合のないガス拡散電極の製造法を提供
しようとするものである。
The present invention has been made in view of the above-mentioned state of the art, and has as its object to provide a method for manufacturing a gas diffusion electrode free from defects as in the prior art.

【0007】[0007]

【課題を解決するための手段】本発明は、予め、親水性
カーボンブラック、疎水性カーボンブラック及びポリ四
弗化エチレンからなる反応層原料粉末と、疎水性カーボ
ンブラック及びポリ四弗化エチレンからなる拡散層原料
粉末を用意し、支持板上に上記の反応層原料粉末又は拡
散層原料粉末を篩を介してふりかけ、その上に多孔性炭
素質基材を載せ、さらにその上に上記の拡散層原料粉末
又は反応層原料粉末を篩を介してふりかけた後、全体を
冷間成形し、次いでホットプレスで焼結することを特徴
とするガス拡散電極の製造法である。
Means for Solving the Problems The present invention, in advance, hydrophilic carbon black, a reaction layer material powder of hydrophobic carbon black and polytetrafluoroethylene, a hydrophobic carbon black and polytetrafluoroethylene Diffusion layer raw material powder is prepared, and the above reaction layer raw material powder or
Goldenrod raw material powder sprinkled through a sieve, porous carbon thereon
Place the base material, and further place the diffusion layer raw material powder on it
Alternatively , a method for producing a gas diffusion electrode, comprising sprinkling a raw material powder for a reaction layer through a sieve, forming the whole in a cold state , and then sintering by hot pressing .

【0008】[0008]

【作用】基材に、炭素繊維織物、カーボンペーパー、ポ
ーラスカーボンなどの多孔性炭素質基材を用いることに
より充分なガス通路が確保される。また、反応層、拡散
層共に、ロール法などのような繰返し伸展加工を受けて
いないため、各々の層共に多孔質でガス拡散通路が確保
されるため、固体高分子電解質型燃料電池に使用した場
合、反応生成水の除去及びガス拡散性の向上により単位
面積当りの電流密度が著しく大きくなる。
By using a porous carbonaceous substrate such as carbon fiber woven fabric, carbon paper, or porous carbon as a substrate, a sufficient gas passage is ensured. In addition, since both the reaction layer and the diffusion layer have not been subjected to the repetitive stretching process such as the roll method, each of the layers has a porous gas diffusion path, and is used for a solid polymer electrolyte fuel cell. In this case, the current density per unit area is significantly increased due to the removal of reaction water and the improvement of gas diffusivity.

【0009】[0009]

【実施例】【Example】

(実施例)平織り1K(Kとは炭素繊維の性質の中のフ
ィラメント数、K=1000)の炭素繊維織物を基材と
し、親水性カーボンブラック(バルカンXC−72R:
Cabot社商品名)35%、疎水性カーボンブラック
(デンカブラック:電気化学工業社商品名)35%、ポ
リ四弗化エチレン30%を混合乾燥した反応層原料粉
末、及び疎水性カーボンブラック(デンカブラック)6
5%、ポリ四弗化エチレン35%を混合乾燥した拡散層
原料粉末をコーヒミルで微粉化し、まずステンレス薄板
の表面に100メッシュの篩を介して拡散層粉末を15
0g/m2 の割合で均等にふりかけ、その上に平織り1
Kの炭素繊維織物を重ねた。更に、その炭素繊維織物の
上に、同様に100メッシュの篩を介して反応層粉末を
60g/m2 の割合でふりかけた。
(Example) A plain weave 1K (K is the number of filaments in the properties of carbon fiber, K = 1000) carbon fiber fabric as a base material, and hydrophilic carbon black (Vulcan XC-72R:
A reaction layer raw material powder obtained by mixing and drying 35% of Cabot Corporation (trade name), 35% of hydrophobic carbon black (Denka Black: trade name of Denki Kagaku Kogyo Co., Ltd.) and 30% of polytetrafluoroethylene, and hydrophobic carbon black (Denka Black) ) 6
5% and 35% of polytetrafluoroethylene were mixed and dried, and the raw material powder of the diffusion layer was finely pulverized with a cohimill.
Sprinkle evenly at a rate of 0 g / m 2 and place a plain weave
K carbon fiber fabrics were stacked. Further, a powder of the reaction layer was sprinkled on the carbon fiber fabric at a rate of 60 g / m 2 through a sieve of 100 mesh similarly.

【0010】その後、油圧プレスを用いて、30kg/
cm2 の面圧で冷間成形し、150mm×150mm×
0.5mmtの予備成形シートを作成した。反応層粉末
及び拡散層粉末は原料調整過程でカーボンブラックとポ
リ四弗化エチレンの分散性を高めるため、トライントン
( Triton X−100:商品名)などの界面活性剤を使
用しているため280℃×3時間の脱界面活性剤除去処
理を実施した。その後、電極の撥水性を賦与するために
380℃×10kg/cm2 ×2分のホットプレスで焼
結しガス拡散電極を得た。
[0010] Then, using a hydraulic press, 30kg /
and cold forming at a surface pressure of cm 2, 150mm × 150mm ×
A preformed sheet of 0.5 mmt was prepared. The reaction layer powder and the diffusion layer powder use a surfactant such as Triton X-100 (trade name) in order to enhance the dispersibility of carbon black and polytetrafluoroethylene in the raw material preparation process. A desurfactant removal treatment was performed at 3 ° C. × 3 hours. Thereafter, in order to impart water repellency to the electrode, sintering was performed by hot pressing at 380 ° C. × 10 kg / cm 2 × 2 minutes to obtain a gas diffusion electrode.

【0011】(比較例)親水性カーボンブラック(バル
カンXC−72R)35%、疎水性カーボンブラック
(デンカブラック)35%、ポリ四弗化エチレン30%
を混合乾燥した反応層原料粉末にソルベントナフサを
1:1.8の割合で混合し、3mmtの予備成形シート
からロール法により0.2mmtの反応層シートを得
た。疎水性カーボンブラック(デンカブラック)65
%、ポリ四弗化エチレン35%を混合乾燥した拡散層原
料粉末にソルベントナフサを1:1.6の割合で混合
し、7mmtの予備成形シートからロール法により1m
mtの拡散層シートを得た。0.2mmtの反応層シー
トと1mmtの拡散層シートを積層し、ロールによって
更に0.7mmtまで圧延し、280℃×30分の脱界
面活性剤後、380℃×175kg/cm2 ×3秒で焼
結し、従来法による拡散電極を得た。
Comparative Example 35% hydrophilic carbon black (Vulcan XC-72R), 35% hydrophobic carbon black (DENKA black), 30% polytetrafluoroethylene
Was mixed with the reaction layer raw material powder at a ratio of 1: 1.8, and a 0.2 mmt reaction layer sheet was obtained from a 3 mmt preformed sheet by a roll method. Hydrophobic carbon black (DENKA BLACK) 65
% And polytetrafluoroethylene 35% were mixed and dried, and solvent naphtha was mixed at a ratio of 1: 1.6 with a diffusion layer raw material powder.
mt of the diffusion layer sheet was obtained. A reaction layer sheet of 0.2 mmt and a diffusion layer sheet of 1 mmt are laminated, rolled further to 0.7 mmt by a roll, and after removing the surfactant at 280 ° C. × 30 minutes, at 380 ° C. × 175 kg / cm 2 × 3 seconds. After sintering, a conventional diffusion electrode was obtained.

【0012】(実験例)前記実施例のガス拡散電極と上
記従来型ガス拡散電極上に、塩化白金酸を吸引塗布し、
酸化、H2 中雰囲気での還元処理を行ない、2mg/c
2 の白金を反応層に担持し、触媒担持電極を得た。次
いで、触媒担持電極の間に固体高分子電解質膜(ナフィ
オン117:Du Pont社製商品名)をはさみ14
0℃×60秒のホットプレスで接合しセルを得た。
(Experimental Example) Chloroplatinic acid was applied by suction onto the gas diffusion electrode of the above embodiment and the above-mentioned conventional gas diffusion electrode.
Oxidation, reduction treatment in H 2 atmosphere, 2mg / c
m 2 of platinum was supported on the reaction layer to obtain a catalyst-carrying electrode. Then, a solid polymer electrolyte membrane (Nafion 117: trade name, manufactured by Du Pont) is sandwiched between the catalyst-carrying electrodes.
The cells were joined by hot pressing at 0 ° C. × 60 seconds to obtain cells.

【0013】本発明の実施例ガス拡散電極と従来の方法
で製作したガス拡散電極について、ガス拡散性の評価と
して、電極を隔てて片側に酸素ガス(ヘリウムキャリ
ア)を、もう一方に純ヘリウムガスを流し、酸素ガスの
純ヘリウム気流中への拡散をガスクロマトグラフで分析
しガス拡散係数を求めた。また、反応面積180cm2
の単セルでの発電試験を行ない、I−V曲線を求めた。
表1に発電試験の条件を表2に拡散係数の測定結果を示
す。
Examples of the present invention For gas diffusion electrodes and gas diffusion electrodes manufactured by a conventional method, oxygen gas (helium carrier) was placed on one side of the electrode and pure helium gas was placed on the other side, with the electrodes separated. And the diffusion of oxygen gas into the pure helium gas stream was analyzed by gas chromatography to determine the gas diffusion coefficient. The reaction area is 180 cm 2
A power generation test was performed using a single cell, and an IV curve was obtained.
Table 1 shows the conditions of the power generation test and Table 2 shows the measurement results of the diffusion coefficient.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】表2の結果から本発明実施例のガス拡散電
極のガス拡散性が向上し、それに伴ない図1に示すよう
に電極の性能が著しく改善されることが明らかになっ
た。
From the results shown in Table 2, it was found that the gas diffusivity of the gas diffusion electrode of the present invention was improved, and the performance of the electrode was significantly improved as shown in FIG.

【0017】[0017]

【発明の効果】以上のように本発明によれば、電極のガ
ス拡散性が向上し、電池性能の高い固体高分子電解質型
燃料電池用電極が提供できる。
As described above, according to the present invention, it is possible to provide an electrode for a solid polymer electrolyte fuel cell in which the gas diffusivity of the electrode is improved and the cell performance is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のガス拡散電極と従来のガス
拡散電極のI−V曲線を対比して示す図表。
FIG. 1 is a table showing a comparison between an IV curve of a gas diffusion electrode according to an embodiment of the present invention and a conventional gas diffusion electrode.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 予め、親水性カーボンブラック、疎水性
カーボンブラック及びポリ四弗化エチレンからなる反応
原料粉末と、疎水性カーボンブラック及びポリ四弗化
エチレンからなる拡散層原料粉末を用意し、支持板上に
上記の反応層原料粉末又は拡散層原料粉末を篩を介して
ふりかけ、その上に多孔性炭素質基材を載せ、さらにそ
の上に上記の拡散層原料粉末又は反応層原料粉末を篩を
介してふりかけた後、全体を冷間成形し、次いでホット
プレスで焼結することを特徴とするガス拡散電極の製造
法。
1. A reaction layer raw material powder comprising hydrophilic carbon black , hydrophobic carbon black and polytetrafluoroethylene and a diffusion layer raw material powder comprising hydrophobic carbon black and polytetrafluoroethylene are prepared in advance . On the support plate
The raw material powder for the reaction layer or the raw material powder for the diffusion layer is sprinkled through a sieve, and a porous carbonaceous substrate is placed thereon.
Sieve the above-mentioned diffusion layer raw material powder or reaction layer raw material powder
After sprinkling through, the whole is cold formed , then hot
A method for producing a gas diffusion electrode, comprising sintering by pressing .
JP20327792A 1992-07-30 1992-07-30 Gas diffusion electrode manufacturing method Expired - Fee Related JP3229025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20327792A JP3229025B2 (en) 1992-07-30 1992-07-30 Gas diffusion electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20327792A JP3229025B2 (en) 1992-07-30 1992-07-30 Gas diffusion electrode manufacturing method

Publications (2)

Publication Number Publication Date
JPH0652864A JPH0652864A (en) 1994-02-25
JP3229025B2 true JP3229025B2 (en) 2001-11-12

Family

ID=16471391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20327792A Expired - Fee Related JP3229025B2 (en) 1992-07-30 1992-07-30 Gas diffusion electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP3229025B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280871B1 (en) * 1999-10-12 2001-08-28 Cabot Corporation Gas diffusion electrodes containing modified carbon products
JP2002313359A (en) * 2001-04-17 2002-10-25 Mitsubishi Heavy Ind Ltd Polymer electrolyte fuel cell
JP4333246B2 (en) 2003-08-28 2009-09-16 日産自動車株式会社 Fuel cell system
JP4837298B2 (en) * 2005-03-10 2011-12-14 日本ゴア株式会社 Humidity adjustment film
JP6439263B2 (en) * 2014-03-20 2018-12-19 東レ株式会社 Gas diffusion electrode manufacturing equipment
CN118773947B (en) * 2024-09-03 2024-11-05 江苏碳丰氢能源科技有限公司 Fuel cell gas diffusion layer carbon paper and preparation method thereof

Also Published As

Publication number Publication date
JPH0652864A (en) 1994-02-25

Similar Documents

Publication Publication Date Title
CN110380063B (en) Gas diffusion layer for proton exchange membrane fuel cell, preparation method of gas diffusion layer and proton exchange membrane fuel cell
EP0791974B1 (en) Catalytically active gas diffusion electrodes comprising a nonwoven fibrous structure
US6576363B1 (en) Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
KR101351142B1 (en) Microporous layer
JP3549241B2 (en) Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte
US10707494B2 (en) Gas diffusion layer for fuel cell, method for manufacturing said layer, membrane-electrode assembly, and fuel cell
JP5326185B2 (en) Gas diffusion electrode material and manufacturing method thereof
CA2368258C (en) Gas diffusion substrates
KR100723280B1 (en) Gas diffusion structure and gas diffusion electrode for polymer electrolyte fuel cell
JPH09199138A (en) METHOD FOR PRODUCING FUEL CELL ELECTRODE OR ELECTRODE / ELECTROLYTE MEMBRANE ASSEMBLY, AND FUEL CELL ELECTRODE
US20230268539A1 (en) Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell
EP1875538B1 (en) Method for the production of gas diffusion electrodes
JPH05283082A (en) Gas diffused electrode and manufacture thereof
US8017284B2 (en) Electrode for a fuel cell, and a membrane-electrode assembly and fuel cell system comprising the same
EP1165885B1 (en) Nonwoven web
JPH07220734A (en) Manufacture of gas diffusion electrode
JP3229025B2 (en) Gas diffusion electrode manufacturing method
US9444106B2 (en) Simultaneous coating of fuel cell components
KR100708732B1 (en) Anode for fuel cell, manufacturing method thereof and fuel cell having same
EP1365464B1 (en) Continuous process for manufacture of gas diffusion layers for fuel cells
US20030008195A1 (en) Fluid diffusion layers for fuel cells
EP2769429B1 (en) Gas diffusion substrate
CN117650250A (en) Independent microporous layer and preparation method and application thereof
US20140261981A1 (en) Cathode composite structure and methods thereof for improved fuel cell performance under high humidity
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010731

LAPS Cancellation because of no payment of annual fees