[go: up one dir, main page]

JP3208254B2 - Heat pump equipment - Google Patents

Heat pump equipment

Info

Publication number
JP3208254B2
JP3208254B2 JP19310094A JP19310094A JP3208254B2 JP 3208254 B2 JP3208254 B2 JP 3208254B2 JP 19310094 A JP19310094 A JP 19310094A JP 19310094 A JP19310094 A JP 19310094A JP 3208254 B2 JP3208254 B2 JP 3208254B2
Authority
JP
Japan
Prior art keywords
heat
refrigerant
heat exchanger
separator
exchangers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19310094A
Other languages
Japanese (ja)
Other versions
JPH0861796A (en
Inventor
靖夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP19310094A priority Critical patent/JP3208254B2/en
Publication of JPH0861796A publication Critical patent/JPH0861796A/en
Application granted granted Critical
Publication of JP3208254B2 publication Critical patent/JP3208254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプ装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump device.

【0002】[0002]

【従来の技術】従来、ヒートポンプ装置において、二つ
の熱交換器N1,N2を冷媒蒸発器として吸熱機能させ
るのに、図2に示すように、膨張手段EXからの冷媒の
全量を一方の熱交換器N1に供給するとともに、その一
方の熱交換器N1を通過した冷媒の全量を他方の熱交換
器N2に供給するようにした形式、すなわち、冷媒蒸発
器として機能させる二つの熱交換器N1,N2を直列接
続した形式がある。
2. Description of the Related Art Conventionally, in a heat pump apparatus, when the two heat exchangers N1 and N2 are made to function as a refrigerant evaporator, the entire amount of the refrigerant from the expansion means EX is exchanged with one of the heat exchangers as shown in FIG. A type in which the entire amount of the refrigerant that has passed through one heat exchanger N1 is supplied to the other heat exchanger N2, that is, two heat exchangers N1 and N2 that function as a refrigerant evaporator. There is a type in which N2 is connected in series.

【0003】つまり、膨張手段EXからの供給冷媒のう
ち上流側熱交換器N1の通過過程では充分な蒸発に至ら
なかったものを下流側熱交換器N2の通過過程で蒸発さ
せるようにしたものであり、冷媒蒸発器として機能させ
る二つの熱交換器N1,N2に対し冷媒を並列的に分配
供給する形式に比べ、それら熱交換器の冷媒蒸発能力比
の変化に伴う冷媒分配比の調整が不要となる。
That is, the refrigerant supplied from the expansion means EX, which has not been sufficiently evaporated during the passage through the upstream heat exchanger N1, is evaporated during the passage through the downstream heat exchanger N2. There is no need to adjust the refrigerant distribution ratio due to the change in the refrigerant evaporation capacity ratio between the two heat exchangers N1 and N2, which function as refrigerant evaporators, in comparison with the type in which the refrigerant is distributed and supplied in parallel to the two heat exchangers N1 and N2. Becomes

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の如き従
来の直列接続形式では、上流側熱交換器N1の通過過程
で充分に蒸発した冷媒(すなわち、下流側の熱交換器N
2に送る必要が無い冷媒)についても、蒸発不充分な冷
媒とともに下流側熱交換器N2に送るため、下流側熱交
換器N2の圧力損失が大きくなり、また、下流側熱交換
器N2での冷媒蒸発圧力が高くなり、これらのことから
ヒートポンプの運転効率が低くなる問題があった。
However, in the above-described conventional series connection type, the refrigerant which has sufficiently evaporated in the process of passing through the upstream heat exchanger N1 (that is, the downstream heat exchanger N1).
2) is also sent to the downstream heat exchanger N2 together with the insufficiently evaporated refrigerant, so that the pressure loss of the downstream heat exchanger N2 increases, and the pressure in the downstream heat exchanger N2 increases. There has been a problem that the refrigerant evaporation pressure is increased, and the operating efficiency of the heat pump is reduced due to these.

【0005】以上の実情に対し、本発明の目的は次の通
りである。
[0005] In view of the above circumstances, the object of the present invention is as follows.

【0006】本発明の第1目的は、二つの熱交換器を直
列接続形式で蒸発器として機能させる吸熱運転におい
て、高い運転効率を得られるようにし、
A first object of the present invention is to obtain high operation efficiency in an endothermic operation in which two heat exchangers are connected in series to function as an evaporator ,

【0007】また合わせて、吸熱運転の機能性・応用性
を向上させる点にある。
[0007] In addition, the functionality and applicability of endothermic operation
The point is to improve .

【0008】本発明の第2目的は、吸熱運転において運
転効率の向上を効果的に達成するとともに運転安定性の
向上を合わせ図る点にある。
[0008] A second object of the present invention is to effectively improve the operation efficiency in the heat absorption operation and to improve the operation stability.

【0009】本発明の第目的は、吸熱運転との切換実
施として、二つの熱交換器を凝縮器として機能させる放
熱運転も高い運転効率で実施できるようにする点にあ
る。
[0009] A third object of the present invention is to make it possible to perform a heat-dissipating operation in which two heat exchangers function as a condenser with high operating efficiency as a switching operation between the heat-absorbing operation.

【0010】本発明の第目的は、吸熱運転との切り換
えで実施する上記放熱運転の機能性・応用性を向上させ
る点にある。
[0010] A fourth object of the present invention is to improve the functionality and applicability of the heat dissipation operation performed by switching to the heat absorption operation.

【0011】本発明の第目的は、二つの熱交換器を直
列接続形態とすることの利点を生かして、安定的な吸熱
転を行えるようにする点にある。
[0011] A fifth object of the present invention, taking advantage of the benefits of a series connection form the two heat exchanger lies in that allows a stable endothermic <br/> OPERATION.

【0012】[0012]

【課題を解決するための手段】〔第1特徴構成〕 本発明の第1特徴構成は、二つの熱交換器の双方又はい
ずれか一方を冷媒蒸発器として機能させる吸熱運転にお
いて前記熱交換器の双方を冷媒蒸発器として機能させる
運転モードの実施構成として、膨張手段を通過した冷媒
を一方の熱交換器に導く吸熱運転用導入路と、その一方
の熱交換器を通過した冷媒を高蒸発度の冷媒と低蒸発度
の冷媒とに分離する吸熱運転用分離器と、その吸熱運転
用分離器で分離した低蒸発度冷媒を他方の熱交換器(N
2)に導く吸熱運転用中間路と、前記吸熱運転用分離器
で分離した高蒸発度冷媒と他方の熱交換器を通過した冷
媒を圧縮機に導く吸熱運転用導出路とを設け、 前記吸熱
運転において前記熱交換器のうちのいずれか一方を冷媒
蒸発器として機能させる運転モードの切り換え実施構成
として、 前記熱交換器のうちのいずれか一方の選択を可
能にして、その一方の熱交換器、及び、前記吸熱運転用
分離器に対し冷媒を迂回させる冷媒循環で他方の熱交換
器に前記膨張手段からの冷媒を供給する回路状態を形成
する吸熱運転用選択手段を設けてあることにある。
Means for Solving the Problems [First characteristic configuration] A first characteristic configuration of the present invention is a heat absorbing operation in which both or one of two heat exchangers functions as a refrigerant evaporator.
To make both of the heat exchangers function as refrigerant evaporators
As an embodiment of the operation mode , an endothermic operation introduction path that guides the refrigerant that has passed through the expansion means to one heat exchanger, and the refrigerant that has passed through one heat exchanger is converted into a high-evaporation refrigerant and a low-evaporation refrigerant. And a low-evaporation-phase refrigerant separated by the heat-absorbing operation separator into the other heat exchanger (N
An intermediate path for heat absorption operation leading to 2), the only set an endothermic operation for separator in guiding the refrigerant passing through the separate high degree of evaporation refrigerant and the other heat exchanger to the compressor heat absorbing operation for deriving channel, wherein Heat absorption
In operation, one of the heat exchangers is
Operation mode switching configuration to function as an evaporator
As a choice, either one of the heat exchangers can be selected.
And one of the heat exchangers and the heat absorbing operation
Heat exchange with the other in the refrigerant circuit that bypasses the refrigerant to the separator
Circuit state for supplying refrigerant from the expansion means to the vessel
In other words, the heat absorbing operation selecting means is provided .

【0013】〔第2特徴構成〕 本発明の第2特徴構成は、上記の第1特徴構成の実施に
おいて好適な具体構成を特定するものであり、前記吸熱
運転用中間路に副膨張手段を介装してあることにある。
[Second feature configuration] A second feature configuration of the present invention specifies a preferred specific configuration in the implementation of the above-mentioned first feature configuration. Ru near that you have to do so.

【0014】〔第特徴構成〕 本発明の第特徴構成は、上記の第1又は第2特徴構成
の実施において好適な具体構成を特定するものであり、
前記吸熱運転との切り換えとして、前記熱交換器の双方
又はいずれか一方を冷媒凝縮器として機能させる放熱運
転に運転状態を切り換える切換手段を設け、その放熱運
において前記熱交換器の双方を冷媒凝縮器として機能
させる運転モードの実施構成として、前記圧縮機が吐出
した冷媒を一方の熱交換器に導く放熱運転用導入路と、
その一方の熱交換器を通過した冷媒を高凝縮度の冷媒と
低凝縮度の冷媒とに分離する放熱運転用分離器と、その
放熱運転用分離器で分離した低凝縮度冷媒を他方の熱交
換器に導く放熱運転用中間路と、前記放熱運転用分離器
で分離した高凝縮度冷媒と他方の熱交換器を通過した冷
媒を前記膨張手段に導く放熱運転用導出路とを設けたこ
とにある。
[0014] Third, wherein Configuration of third characterizing feature of the present invention is to identify a specific preferred configuration in the practice of the first or second characteristic feature of the above,
As switching with the heat absorbing operation, switching means for switching an operation state to a heat radiation operation in which both or one of the heat exchangers functions as a refrigerant condenser is provided, and in the heat radiation operation , both of the heat exchangers are condensed with refrigerant. Function as a vessel
As an implementation configuration of the operation mode to be performed , a heat-dissipation operation introduction path that guides the refrigerant discharged from the compressor to one of the heat exchangers,
A heat-dissipation operation separator that separates the refrigerant that has passed through one heat exchanger into a high-condensation degree refrigerant and a low-condensation degree refrigerant, and converts the low-condensation degree refrigerant separated by the heat-dissipation operation separator into the other heat An intermediate path for heat dissipation operation leading to the heat exchanger, and an outlet path for heat dissipation operation for guiding the high-condensed refrigerant separated by the heat dissipation operation separator and the refrigerant passed through the other heat exchanger to the expansion means. It is in.

【0015】〔第特徴構成〕 本発明の第特徴構成は、上記の第特徴構成の実施に
おいて好適な具体構成を特定するものであり、前記の放
熱運転において前記熱交換器のうちのいずれか一方を冷
媒凝縮器とし て機能させる運転モードの切り換え実施構
成として、前記熱交換器のうちのいずれか一方の選択を
可能にして、その一方の熱交換器、及び、前記放熱運転
用分離器に対し冷媒を迂回させる冷媒循環で他方の熱交
換器に前記圧縮機からの冷媒を供給する回路状態を形成
する放熱運転用選択手段を設けたことにある。
[0015] The fourth characterizing feature of the Fourth characterizing feature The present invention is intended to identify the specific preferred construction in the practice of the third characterizing feature described above, of the heat exchanger in the radiating operation of the Cool either one
Switching exemplary configuration of the operation mode to function as a medium condenser
As formed, the one selected one of the heat exchanger
Enabling one of the heat exchangers and the heat dissipation operation
Heat exchange by the refrigerant circulation to bypass the refrigerant
The heat exchanger is provided with a heat-dissipation operation selecting means for forming a circuit state for supplying the refrigerant from the compressor to the heat exchanger.

【0016】〔第特徴構成〕 本発明の第特徴構成は、上記の第1、第2、第3又は
第4特徴構成の実施において好適な具体構成を特定する
ものであり、前記熱交換器の双方を冷媒蒸発器として機
能させる運転モードでの前記吸熱運転において、それら
熱交換器のうち、 前記吸熱運転用分離器の上流側に位置
させて前記膨張手段からの冷媒を供給する上流側の熱交
換器は気体熱源を熱交換対象とする対気体用熱交換器と
し、かつ、前記吸熱運転用分離器の下流側に位置させて
その吸熱運転用分離器で分離した低蒸発度冷媒を供給す
る下流側の熱交換器は液体熱源を熱交換対象とする対液
体用熱交換器としてあることにある。
[0016] Fifth, characterized Configuration] The fifth characterizing feature of the present invention, first the second, third or
The present invention specifies a preferred specific configuration in the implementation of the fourth characteristic configuration, and uses both of the heat exchangers as refrigerant evaporators.
In the endothermic operation in the operating mode
Of the heat exchanger , located upstream of the endothermic operation separator
Heat exchange on the upstream side to supply the refrigerant from the expansion means.
The heat exchanger is a heat exchanger for gas with a gas heat source as a heat exchange target, and is located downstream of the heat absorbing operation separator.
The low-evaporation refrigerant separated by the endothermic operation separator is supplied.
The heat exchanger on the downstream side is a heat exchanger for liquid with a liquid heat source as a heat exchange target.

【0017】[0017]

【作用】〔第1特徴構成の作用〕 第1特徴構成では、二つの熱交換器の双方又はいずれか
一方を冷媒蒸発器として機能させる吸熱運転において、
それら熱交換器の双方を冷媒蒸発器として機能さえる運
転モード(すなわち、後述の第1吸熱運転モード)を
の如く実施する。
[Operation] [Operation of the first characteristic configuration] In the first characteristic configuration, in the heat absorption operation in which both or one of the two heat exchangers functions as a refrigerant evaporator ,
In order for both of these heat exchangers to function as refrigerant evaporators,
The reverse mode (that is, a first heat absorbing operation mode described later) is performed as follows.

【0018】膨張手段を通過した冷媒を吸熱運転用導入
路により一方の熱交換器に導き、この一方の熱交換器で
可能な量だけ冷媒を蒸発させる。
The refrigerant that has passed through the expansion means is led to one heat exchanger by an endothermic driving introduction path, and the refrigerant is evaporated by an amount possible in the one heat exchanger.

【0019】その一方の熱交換器を通過した冷媒は吸熱
運転用分離器により、高蒸発度の冷媒(すなわち、蒸発
が充分な冷媒)と低蒸発度の冷媒(すなわち、蒸発が不
充分な冷媒)とに分離する。
The refrigerant having passed through one of the heat exchangers is separated by a heat-absorbing operation separator into a refrigerant having a high evaporation degree (that is, a refrigerant having sufficient evaporation) and a refrigerant having a low evaporation degree (that is, a refrigerant having an insufficient evaporation). ) And separated into.

【0020】分離した低蒸発度の冷媒は吸熱運転用中間
路を介し他方の熱交換器に導いて、この他方の熱交換器
で可能な量だけ蒸発させる。
The separated low-evaporation refrigerant is led to the other heat exchanger through the intermediate path for endothermic operation, and is evaporated by an amount possible in the other heat exchanger.

【0021】分離した高蒸発度の冷媒と他方の熱交換器
を通過した冷媒とは吸熱運転用導出路により圧縮機に導
く。
The separated refrigerant having a high degree of evaporation and the refrigerant having passed through the other heat exchanger are guided to the compressor through an endothermic operation outlet path.

【0022】また、第1特徴構成では、吸熱運転におい
て、二つの熱交換器の双方を冷媒蒸発器として吸熱機能
させる上記の運転モードとは別に、いずれか一方の熱交
換器を選択して、その一方の熱交換器及び吸熱運転用分
離器に対し冷媒を迂回させる冷媒循環で、他方の熱交換
器に膨張手段からの冷媒を供給して、それら二つの熱交
換器のうち他方の熱交換器のみを冷媒蒸発器として吸熱
機能させるといった運転モード(すなわち、後述の第2
又は第3吸熱運転モード)を選択的に実施することがで
きる。
Further , in the first characteristic configuration, in the endothermic operation,
Heat absorption function using both heat exchangers as refrigerant evaporators
In addition to the above operation modes,
Heat exchanger and one for heat absorption operation
In the refrigerant circulation that bypasses the refrigerant to the separator, the other heat exchange
Supply the refrigerant from the expansion means to the two heat exchangers.
Heat absorption using only the other heat exchanger of the heat exchanger as a refrigerant evaporator
Operating mode (ie, a second
Or the third heat absorbing operation mode) can be selectively executed.
Wear.

【0023】〔第2特徴構成の作用〕 第2特徴構成では、上記の吸熱運転用分離器により分離
した低蒸発度の冷媒を、副膨張手段により減圧・膨張さ
せた上で下流側の他方熱交換器に送って蒸発させる。
[Operation of the Second Characteristic Configuration] In the second characteristic configuration, the low evaporating refrigerant separated by the endothermic operation separator is decompressed and expanded by the sub-expansion means, and then the other heat on the downstream side is removed. Send to exchanger to evaporate.

【0024】〔第特徴構成の作用〕 第特徴構成では、前記吸熱運転との切り換えとして、
熱交換器の双方又はいずれか一方を冷媒凝縮器として機
能させる放熱運転を実施することにおいて、それら熱交
換器の双方を冷媒凝縮器として機能させる運転モード
(すなわち、後述の第1放熱運転モード)を次の如く実
施する。
[0024] In Third working aspect Configuration of third characterizing feature, as switching between the heat absorption operation,
In performing a heat radiation operation in which both or one of the heat exchangers functions as a refrigerant condenser , the heat exchange
Mode in which both heat exchangers function as refrigerant condensers
(That is, a first heat dissipation operation mode described later) is performed as follows.

【0025】圧縮機が吐出した冷媒を放熱運転用導入路
により一方の熱交換器に導き、この一方の熱交換器で可
能な量だけ冷媒を凝縮させる。
The refrigerant discharged from the compressor is led to one of the heat exchangers through the heat-dissipating operation introduction path, and the refrigerant is condensed by an amount possible with the one heat exchanger.

【0026】その一方の熱交換器を通過した冷媒は放熱
運転用分離器により、高凝縮度の冷媒(すなわち、凝縮
が充分な冷媒)と低凝縮度の冷媒(すなわち、凝縮が不
充分な冷媒)とに分離する。
The refrigerant that has passed through one of the heat exchangers is separated by a heat-dissipating separator into a high-condensation refrigerant (ie, a refrigerant with sufficient condensation) and a low-condensation refrigerant (ie, a refrigerant with insufficient condensation). ) And separated into.

【0027】分離した低凝縮度の冷媒は放熱運転用中間
路を介し他方の熱交換器に導いて、この他方の熱交換器
で可能な量だけ凝縮させる。
The separated low-condensation refrigerant is led to the other heat exchanger via the heat-dissipating intermediate passage, and is condensed by an amount possible in the other heat exchanger.

【0028】分離した高凝縮度の冷媒と他方の熱交換器
を通過した冷媒とは放熱運転用導出路により膨張手段に
導く。
The separated high-condensation refrigerant and the refrigerant that has passed through the other heat exchanger are guided to the expansion means by a heat-radiating operation outlet path.

【0029】〔第特徴構成の作用〕 第特徴構成では、吸熱運転との切り換えで実施する放
熱運転において、二つの熱交換器の双方を冷媒凝縮器と
して放熱機能させる上記の運転モードとは別に、いずれ
か一方の熱交換器を選択して、その一方の熱交換器及び
放熱運転用分離器に対し冷媒を迂回させる冷媒循環で、
他方の熱交換器に圧縮機からの吐出冷媒を供給して、そ
れら二つの熱交換器のうち他方の熱交換器のみを冷媒凝
縮器として放熱機能させるといった運転モード(すなわ
ち、後述の第2又は第3放熱運転モード)を選択的に実
施することができる。
[0029] In the Fourth action feature configuration] Fourth characterizing feature, the radiating operation implemented in switching between the heat absorption operation, and the operation mode of dissipating function both of the two heat exchanger as a refrigerant condenser separately, by selecting one of the heat exchanger, while heat exchanger and
In the refrigerant circulation to bypass the refrigerant to the heat dissipation operation separator,
The refrigerant discharged from the compressor is supplied to the other heat exchanger, and
An operation mode in which only the other one of these two heat exchangers functions as a refrigerant condenser (ie,
That is, a second or third heat dissipation operation mode described later is selectively executed.
Can Hodokosuru.

【0030】〔第特徴構成の作用〕 第特徴構成では、二つ熱交換器の双方を冷媒蒸発器と
して機能させる運転モードでの前記吸熱運転において、
それら熱交換器のうち、吸熱運転用分離器の上流側に位
置させる一方の熱交換器は気体熱源を熱交換対象とし、
これに対し、吸熱運転用分離器の下流側に位置させる他
方の熱交換器は温度変化特性等の熱源特性が気体熱源と
は異なる液体熱源を熱交換対象とすることにより、例え
ば二つの熱交換器の熱交換対象をともに気体熱源とする
場合や、ともに液体熱源とする場合に比べ、二つの熱交
換器の能力(吸熱運転では冷媒蒸発能力、放熱運転では
冷媒凝縮能力)が熱源側の状況変化に起因して同時に大
きく低下するといった事態を生じ難くすることができ
る。
[Operation of Fifth Characteristic Configuration] In the fifth characteristic configuration, both of the two heat exchangers are connected to the refrigerant evaporator.
In the endothermic operation in the operation mode to function as
Of these heat exchangers, it is located upstream of the separator for endothermic operation.
One of the heat exchangers is a gas heat source for heat exchange,
On the other hand, in addition to being located downstream of the endothermic operation separator,
The other heat exchanger uses a liquid heat source whose heat source characteristics such as temperature change characteristics are different from the gas heat source as heat exchange targets.For example, when the heat exchange targets of the two heat exchangers are both gas heat sources, Compared to the case of using a liquid heat source, it is less likely that the capacity of the two heat exchangers (the refrigerant evaporation capacity in the heat absorption operation and the refrigerant condensation capacity in the heat dissipation operation) will be greatly reduced at the same time due to a change in the situation on the heat source side. be able to.

【0031】また、このように気体熱源と液体熱源を採
用することで、それら熱源の個別の状況変化により二つ
の熱交換器の能力比が変化するにしても、これら熱交換
器は直列接続形態であるから、この能力比変化に対し、
並列接続形態の場合に必要となるような冷媒分配比の調
整操作は不要である。
Further, by adopting the gas heat source and the liquid heat source in this way, even if the capacity ratio of the two heat exchangers changes due to the individual situation change of the heat sources, these heat exchangers are connected in series. Therefore, for this change in capacity ratio,
It is not necessary to adjust the refrigerant distribution ratio as required in the case of the parallel connection.

【0032】[0032]

【発明の効果】〔第1特徴構成の効果〕 本発明の第1特徴構成によれば、上流側熱交換器の通過
冷媒のうち分離した低蒸発度の冷媒のみを下流側の熱交
換器に送るから、下流側熱交換器の圧力損失を小さくす
ることができ、また、下流側熱交換器での冷媒蒸発圧力
を低下させることができ、これらのことから、吸熱運転
において高い運転効率を得ることができる。
According to the first aspect of the present invention, only the separated low-evaporation refrigerant among the refrigerant passing through the upstream heat exchanger is transferred to the downstream heat exchanger. As a result, the pressure loss in the downstream heat exchanger can be reduced, and the refrigerant evaporation pressure in the downstream heat exchanger can be reduced. As a result, high operating efficiency can be obtained in the heat absorbing operation. be able to.

【0033】また合わせて、吸熱運転で、二つの熱交換
器の双方を吸熱機能させる、あるいは、選択した一方の
熱交換器のみを吸熱機能させるといった運転モードを適
宜に切換実施できることで、高い機能性・応用性を得る
ことができる。
In addition, two heat exchanges are performed by the endothermic operation.
Heats both the heat sinks or one of the selected ones
An operation mode in which only the heat exchanger functions to absorb heat
High functionality and applicability can be achieved by switching
be able to.

【0034】〔第2特徴構成の効果〕 本発明の第2特徴構成によれば、副膨張手段での減圧・
膨張により、下流側の他方熱交換器での低蒸発度冷媒の
蒸発を促進でき、これにより、前記の第1特徴構成によ
る作用・効果とあいまって吸熱運転における運転効率の
向上を効果的に達成できる。
[Effect of Second Characteristic Configuration] According to the second characteristic configuration of the present invention, the pressure reduction /
The expansion can promote the evaporation of the low-evaporation refrigerant in the other heat exchanger on the downstream side, thereby effectively improving the operation efficiency in the heat absorption operation in combination with the operation and effect of the first characteristic configuration. it can.

【0035】また、圧縮機に低蒸発度の冷媒が戻ること
を抑止する機能も奏し、これにより、吸熱運転の運転安
定性を合わせ向上し得る。
Further, a function of preventing the refrigerant having a low evaporation degree from returning to the compressor is also exhibited, whereby the operation stability of the heat absorption operation can be improved.

【0036】〔第特徴構成の効果〕 本発明の第特徴構成によれば、吸熱運転との切り換え
で放熱運転を実施できることにより、高い機能性を得る
ことができる。
[Effects of the third characteristic configuration] According to the third characteristic configuration of the present invention, high functionality can be obtained by performing the heat radiation operation by switching to the heat absorption operation.

【0037】そして、その放熱運転においても、上流側
熱交換器の通過冷媒のうち分離した低凝縮度の冷媒のみ
を下流側の熱交換器に送るから、下流側熱交換器の圧力
損失を小さくすることができて高い運転効率を得ること
ができる。
In the heat radiation operation, only the separated low-condensation refrigerant of the refrigerant passing through the upstream heat exchanger is sent to the downstream heat exchanger, so that the pressure loss of the downstream heat exchanger is reduced. And high operating efficiency can be obtained.

【0038】〔第特徴構成の効果〕 本発明の第特徴構成によれば、吸熱運転と放熱運転と
の切り換えによる機能性向上に加え、その放熱運転で、
二つの熱交換器の双方を放熱機能させる、あるいは、選
択した一方の熱交換器のみを放熱機能させるといった運
モードを適宜に切換実施できることにより、一層高い
機能性・応用性を得ることができる。
[Effect of Fourth Characteristic Configuration] According to the fourth characteristic configuration of the present invention, in addition to the functional improvement by switching between the heat absorption operation and the heat radiation operation, the heat radiation operation
Since the operation mode in which both of the two heat exchangers have the heat radiation function or only the selected one of the heat exchangers has the heat radiation function can be appropriately switched and executed, higher functionality and applicability can be obtained.

【0039】〔第特徴構成の効果〕 本発明の第特徴構成によれば、二つの熱交換器の能力
(冷媒蒸発能力ないし冷媒凝縮能力)が熱源側の状況変
化に起因して同時に大きく低下するといった事態が生じ
難いことにより、また、熱源側の状況変化に伴う冷媒分
配比の調整操作も不要であることにより、前記の吸熱運
転ないし放熱運転を極めて安定的に実施得る。
[Effect of Fifth Characteristic Configuration] According to the fifth characteristic configuration of the present invention, the capabilities (refrigerant evaporation capability or refrigerant condensing capability) of the two heat exchangers increase simultaneously due to a change in the situation on the heat source side. by hardly occurs a situation may deteriorate, and it makes be very stably performed endothermic operation or radiating operation of the adjusting operation of the refrigerant distribution ratio caused by the situation change of the heat source side is not necessary.

【0040】[0040]

【実施例】図1はヒートポンプ装置の回路構成を示し、
CMは圧縮機、Vsは四方弁、Niは内部熱交換器、E
X1は主膨張手段としての第1膨張弁、N1は外気等の
気体熱源Aを熱交換対象とする対気体用熱交換器として
の第1外部熱交換器、N2は水やブライン等の液体熱源
Lを熱交換対象とする対液体用熱交換器としての第2外
部熱交換器である。
FIG. 1 shows a circuit configuration of a heat pump device.
CM is a compressor, Vs is a four-way valve, Ni is an internal heat exchanger, E
X1 is a first expansion valve as a main expansion means, N1 is a first external heat exchanger as a heat exchanger for gas with a gas heat source A such as outside air as a heat exchange target, and N2 is a liquid heat source such as water or brine. This is a second external heat exchanger as a heat exchanger for liquid with L as a heat exchange target.

【0041】EX2は副膨張手段としての第2膨張弁、
S1は放熱運転用分離器としての第1分離器、S2は吸
熱運転用分離器としての第2分離器、V1は第1三方
弁、V2は第2三方弁、T1〜T4の夫々は逆止弁であ
る。
EX2 is a second expansion valve as auxiliary expansion means,
S1 is a first separator as a separator for heat dissipation operation, S2 is a second separator as a separator for heat absorption operation, V1 is a first three-way valve, V2 is a second three-way valve, and T1 to T4 are non-return valves. It is a valve.

【0042】また、冷媒流路として、r1は圧縮機CM
と内部熱交換器Niとを接続する第1流路、r2は内部
熱交換器Niと第1膨張弁EX1とを接続する第2流
路、r3は第1膨張弁EX1と第1外部熱交換器N1と
を接続する第3流路、r4は第1逆止弁T1を介して第
1膨張弁EX1と第1分離器S1とを接続する第4流
路、r5は第1膨張弁EX1と第1三方弁V1とを接続
する第5流路である。
Further, as the refrigerant flow path, r1 is the compressor CM
A first flow path connecting the internal heat exchanger Ni with the first heat exchanger Ni, a second flow path r2 connecting the internal heat exchanger Ni and the first expansion valve EX1, and r3 a first heat exchange element with the first expansion valve EX1. A third flow path connecting the device N1, a fourth flow path r4 connecting the first expansion valve EX1 and the first separator S1 via the first check valve T1 , and a r5 is a fourth flow path connecting the first expansion valve EX1. It is a fifth flow path connecting the first three-way valve V1.

【0043】r6は第2三方弁V2と圧縮機CMとを接
続する第6流路、r7は第2逆止弁T2を介して第2分
離器S2と圧縮機CMとを接続する第7流路、r8は第
2外部熱交換器N2と圧縮機CMとを接続する第8流路
であり、さらに、r9は第1外部熱交換器N1と第2三
方弁V2とを接続する第9流路、r10は第2外部熱交
換器N2と第1三方弁V1とを接続する第10流路であ
る。
R6 is a sixth flow path connecting the second three-way valve V2 and the compressor CM, and r7 is a seventh flow path connecting the second separator S2 and the compressor CM via the second check valve T2. A path r8 is an eighth flow path connecting the second external heat exchanger N2 and the compressor CM, and r9 is a ninth flow path connecting the first external heat exchanger N1 and the second three-way valve V2. The path r10 is a tenth flow path connecting the second external heat exchanger N2 and the first three-way valve V1.

【0044】そして、第1三方弁V1と第1分離器S1
とは第11流路r11により接続し、第1分離器S1と
第9流路r9とは第3逆止弁T3を介する第12流路r
12により接続し、また、第2三方弁V2と第2分離器
S2とは第13流路r13により接続し、第2分離器S
2と第10流路r10とは第4逆止弁T4及び第2膨張
弁EX2を介する第14流路r14により接続してあ
る。
Then, the first three-way valve V1 and the first separator S1
Are connected by an eleventh flow path r11, and the first separator S1 and the ninth flow path r9 are connected to a twelfth flow path r via a third check valve T3.
12, the second three-way valve V2 and the second separator S2 are connected by a thirteenth flow path r13, and the second separator S
The second and tenth flow paths r10 are connected by a fourteenth flow path r14 via a fourth check valve T4 and a second expansion valve EX2.

【0045】運転ついては、四方弁Vsを図中実線の弁
流路状態にして実施する吸熱運転と、四方弁Vsを図中
破線の弁流路状態にして実施する放熱運転とを実施で
き、吸熱運転においては、二つの外部熱交換器N1,N
2の双方又はいずれか一方を蒸発器として機能させて気
体熱源Aや液体熱源Lに対し吸熱作用させながら、内部
熱交換器Niを凝縮器として機能させて暖房用途や物品
加熱用途等で加熱対象に対し加熱作用させ、これに対
し、放熱運転においては、二つの外部熱交換器N1,N
2の双方又はいずれか一方を凝縮器として機能させて気
体熱源Aや液体熱源Lに対し放熱作用させながら、内部
熱交換器Niを蒸発器として機能させて冷房用途や物品
冷却用途等で冷却対象に対し冷却作用させる。
As for the operation, a heat absorbing operation in which the four-way valve Vs is in the valve flow path state indicated by the solid line in the figure and a heat radiation operation in which the four-way valve Vs is operated in the valve flow path state indicated by the broken line in the figure can be performed. In operation, two external heat exchangers N1, N
2 and / or one of them functions as an evaporator to cause the gas heat source A and the liquid heat source L to absorb heat, while the internal heat exchanger Ni functions as a condenser to be heated in a heating application or article heating application. In the heat dissipation operation, on the other hand, the two external heat exchangers N1, N
While the internal heat exchanger Ni functions as an evaporator while both or one of the two functions as a condenser and radiates heat to the gas heat source A and the liquid heat source L, the object to be cooled is used for cooling or article cooling. For cooling.

【0046】そして、上記の吸熱運転では第1ないし第
3の吸熱運転モードを択一的に実施し、また、上記の放
熱運転では第1ないし第3の放熱運転モードを択一的に
実施する構成としてあり、次に、これら各運転モードを
説明する。
In the above-mentioned heat absorbing operation, the first to third heat absorbing operation modes are selectively executed, and in the heat dissipation operation, the first to third heat discharging operation modes are selectively executed. Next, each of these operation modes will be described.

【0047】(第1吸熱運転モード) 第1吸熱運転モードでは、圧縮機CMから吐出される冷
媒(高圧の乾き蒸気冷媒)を四方弁Vs及び第1流路r
1を介して内部熱交換器Niに送り、この内部熱交換器
Niで凝縮させ、内部熱交換器Niを通過した冷媒(主
に液相冷媒)は第2流路r2を介して第1膨張弁EX1
に送り、この第1膨張弁EX1で減圧・膨張させる。
(First Heat Absorbing Operation Mode) In the first heat absorbing operation mode, the refrigerant (high-pressure dry vapor refrigerant) discharged from the compressor CM is supplied to the four-way valve Vs and the first flow path r.
1 through the internal heat exchanger Ni, condensed in the internal heat exchanger Ni, and the refrigerant (mainly liquid-phase refrigerant) that has passed through the internal heat exchanger Ni undergoes the first expansion through the second flow path r2. Valve EX1
And the pressure is reduced and expanded by the first expansion valve EX1.

【0048】第1膨張弁EX1を通過した冷媒(主に低
圧の湿り蒸気冷媒)は第3流路r3を介して第1外部熱
交換器N1に送り、この第1外部熱交換器N1において
気体熱源Aとの熱交換により可能な量を蒸発させ、そし
て、第1外部熱交換器N1を通過した冷媒は、第9流路
r9、第2三方弁V2、及び第13流路r13を介して
第2分離器S2に送る。
The refrigerant (mainly a low-pressure wet vapor refrigerant) that has passed through the first expansion valve EX1 is sent to the first external heat exchanger N1 via the third flow path r3, where the gas is supplied to the first external heat exchanger N1. The amount of heat that can be evaporated by heat exchange with the heat source A is evaporated, and the refrigerant that has passed through the first external heat exchanger N1 passes through the ninth flow path r9, the second three-way valve V2, and the thirteenth flow path r13. It is sent to the second separator S2.

【0049】第2分離器S2は、高蒸発度の冷媒(すな
わち乾き度の高い冷媒)と低蒸発度の冷媒(すなわち乾
き度が低い冷媒及び液冷媒)とを分離する機能を有し、
分離された高蒸発度冷媒は第7流路r7に送出され、ま
た、分離された低蒸発度冷媒は第14流路r14に送出
される。
The second separator S2 has a function of separating a refrigerant having a high evaporation degree (that is, a refrigerant having a high dryness) and a refrigerant having a low evaporation degree (ie, a refrigerant having a low dryness and a liquid refrigerant).
The separated high-evaporation-grade refrigerant is sent to the seventh flow path r7, and the separated low-evaporation-grade refrigerant is sent to the fourteenth flow path r14.

【0050】第14流路r14に送出された低蒸発度冷
媒は、第2膨張弁EX2でさらに減圧・膨張させた上で
第10流路r10を介して第2外部熱交換器N2に送
り、この第2外部熱交換器N2において液体熱源Lとの
熱交換により蒸発させる。
The low-evaporation degree refrigerant sent to the fourteenth flow path r14 is further decompressed and expanded by the second expansion valve EX2, and then sent to the second external heat exchanger N2 via the tenth flow path r10. The second external heat exchanger N2 evaporates by heat exchange with the liquid heat source L.

【0051】そして、第7流路r7に送出された高蒸発
度冷媒と、第2外部熱交換器N2を通過して第8流路r
8に送出された冷媒とを合流させ、その合流冷媒(主に
低圧の乾き蒸気冷媒)を四方弁Vsを介し圧縮機CMの
吸入口に戻す。
Then, the high-evaporation refrigerant sent to the seventh flow path r7 and the refrigerant flowing through the second external heat exchanger N2 to the eighth flow path r7
The refrigerant that has been sent to the outlet 8 is merged, and the merged refrigerant (mainly, low-pressure dry vapor refrigerant) is returned to the suction port of the compressor CM via the four-way valve Vs.

【0052】なお、この第1吸熱運転モードにおいて、
第1三方弁V1は第5流路r5、第10流路r10、並
びに、第11流路r11のうちの少なくとも二流路に対
して閉弁状態とし、かつ、第2三方弁V2は第6流路r
6に対してのみ閉弁状態とする。すなわち、この第1吸
熱運転モードでは、対気体用熱交換器としての第1外部
熱交換器N1、吸熱運転用分離器としての第2分離器S
2、及び、対液体用熱交換器としての第2外部熱交換器
N2に対し、その順で直列に冷媒通過させる冷媒循環
で、第1及び第2外部熱交換器N1,N2の双方を冷媒
蒸発器として吸熱機能させる。
In the first heat absorbing operation mode,
The first three-way valve V1 closes at least two of the fifth flow path r5, the tenth flow path r10, and the eleventh flow path r11, and the second three-way valve V2 controls the sixth flow path r5. Road
Only 6 is closed. That is, the first suction
In the thermal operation mode, the first external heat exchanger for gas is used.
Heat exchanger N1, second separator S as separator for endothermic operation
2 and a second external heat exchanger as a heat exchanger for liquids
Refrigerant circulation for passing refrigerant in series in this order to N2
And both the first and second external heat exchangers N1 and N2
Endothermic function as evaporator.

【0053】(第2吸熱運転モード) 第2吸熱運転モードでは、圧縮機CMから吐出される冷
媒(高圧の乾き蒸気冷媒)を四方弁Vs及び第1流路r
1を介し内部熱交換器Niに送り、この内部熱交換器N
iで凝縮させ、内部熱交換器Niを通過した冷媒(主に
液相冷媒)は第2流路r2を介して第1膨張弁EX1に
送り、この第1膨張弁EX1で減圧・膨張させる。
(Second Endothermic Operation Mode) In the second endothermic operation mode, the refrigerant (high-pressure dry vapor refrigerant) discharged from the compressor CM is supplied to the four-way valve Vs and the first flow path r.
1 to the internal heat exchanger Ni, and the internal heat exchanger N
The refrigerant (mainly liquid-phase refrigerant) that has been condensed at i and passed through the internal heat exchanger Ni is sent to the first expansion valve EX1 via the second flow path r2, and decompressed and expanded by the first expansion valve EX1.

【0054】第1膨張弁EX1を通過した冷媒(主に低
圧の湿り蒸気冷媒)は第3流路r3を介して第1外部熱
交換器N1に送り、この第1外部熱交換器N1において
気体熱源Aとの熱交換により蒸発させる。
The refrigerant (mainly a low-pressure wet-vapor refrigerant) that has passed through the first expansion valve EX1 is sent to the first external heat exchanger N1 via the third flow path r3, where the gas is supplied to the first external heat exchanger N1. Evaporate by heat exchange with heat source A.

【0055】そして、第1外部熱交換器N1を通過した
冷媒の全量(主に低圧の乾き蒸気冷媒)を、第9流路r
9、第2三方弁V2、第6流路r6、及び四方弁Vsを
介し圧縮機CMの吸入口に戻す。
Then, the entire amount of refrigerant (mainly, low-pressure dry vapor refrigerant) that has passed through the first external heat exchanger N1 is transferred to the ninth flow path r.
9. Return to the suction port of the compressor CM via the second three-way valve V2, the sixth flow path r6, and the four-way valve Vs.

【0056】なお、この第2吸熱運転モードにおいて、
第1三方弁V1は第5流路r5、第10流路r10、並
びに、第11流路r11のうちの少なくとも二流路に対
して閉弁状態とし、かつ、第2三方弁V2は第13流路
r13に対してのみ閉弁状態とする。すなわち、この第
2吸熱運転モードでは、対液体用熱交換器としての第2
外部熱交換器N2及び吸熱運転用分離器としての第2分
離器S2に対し冷媒を迂回させる冷媒循環で、対気体用
熱交換器としての第1外部熱交換器N1に第1膨張弁E
X1からの冷媒を供給して、第1及び第2外部熱交換器
N1,N2のうち第1外部熱交換器N1のみを冷媒蒸発
器として吸熱機能させる。
In the second heat absorbing operation mode,
The first three-way valve V1 closes at least two of the fifth flow path r5, the tenth flow path r10, and the eleventh flow path r11, and the second three-way valve V2 controls the thirteenth flow path. Only the path r13 is closed. That is, this
2 In the heat absorbing operation mode, the second heat exchanger for liquid is used.
The second heat exchanger N2 and the second heat exchanger as an endothermic separator
A refrigerant circulation for bypassing the refrigerant to the separator S2, for gas
A first expansion valve E is connected to a first external heat exchanger N1 as a heat exchanger.
The first and second external heat exchangers supplying the refrigerant from X1
Refrigerant evaporates only the first external heat exchanger N1 out of N1 and N2
Heat absorption function as a vessel.

【0057】(第3吸熱運転モード) 第3吸熱運転モードでは、圧縮機CMから吐出される冷
媒(高圧の乾き蒸気冷媒)を四方弁Vs及び第1流路r
1を介し内部熱交換器Niに送り、この内部熱交換器N
iで凝縮させ、内部熱交換器Niを通過した冷媒(主に
液相冷媒)は第2流路r2を介して第1膨張弁EX1に
送り、この第1膨張弁EX1で減圧・膨張させる。
(Third Endothermic Operation Mode) In the third endothermic operation mode, the refrigerant (high-pressure dry vapor refrigerant) discharged from the compressor CM is supplied to the four-way valve Vs and the first flow path r.
1 to the internal heat exchanger Ni, and the internal heat exchanger N
The refrigerant (mainly liquid-phase refrigerant) that has been condensed at i and passed through the internal heat exchanger Ni is sent to the first expansion valve EX1 via the second flow path r2, and decompressed and expanded by the first expansion valve EX1.

【0058】第1膨張弁EX1を通過した冷媒(主に低
圧の湿り蒸気冷媒)は、第5流路r5、第1三方弁V
1、及び、第10流路r10を介して第2外部熱交換器
N2に送り、この第2外部熱交換器N2において液体熱
源Lとの熱交換により蒸発させる。
The refrigerant (mainly a low-pressure wet vapor refrigerant) that has passed through the first expansion valve EX1 is supplied to the fifth flow path r5 and the first three-way valve V
1, and sent to the second external heat exchanger N2 via the tenth flow path r10, where it is evaporated by heat exchange with the liquid heat source L in the second external heat exchanger N2.

【0059】そして、第2外部熱交換器N2を通過した
冷媒の全量(主に低圧の乾き蒸気冷媒)を第8流路r8
及び四方弁Vsを介して圧縮機CMの吸入口に戻す。
Then, the entire amount of refrigerant (mainly low-pressure dry vapor refrigerant) that has passed through the second external heat exchanger N2 is transferred to the eighth flow path r8.
And return to the suction port of the compressor CM via the four-way valve Vs.

【0060】なお、この第3吸熱運転モードにおいて、
第1三方弁V1は第11流路r11に対してのみ閉弁状
態とし、かつ、第2三方弁V2は第6流路r6、第9流
路r9、並びに、第13流路r13のうちの少なくとも
二流路に対して閉弁状態とする。すなわち、この第3吸
熱運転モードでは、対気体用熱交換器としての第1外部
熱交換器N1及び吸熱運転用分離器としての第2分離器
S2に対し冷媒を迂回さ せる冷媒循環で、対液体用熱交
換器としての第2外部熱交換器N2に第1膨張弁EX1
からの冷媒を供給して、第1及び第2外部熱交換器N
1,N2のうち第2外部熱交換器N2のみを冷媒蒸発器
として吸熱機能させる。
In this third heat absorbing operation mode,
The first three-way valve V1 is in a closed state only with respect to the eleventh flow path r11, and the second three-way valve V2 is one of the sixth flow path r6, the ninth flow path r9, and the thirteenth flow path r13. At least two flow paths are closed. That is, the third suction
In the thermal operation mode, the first external heat exchanger for gas is used.
Heat exchanger N1 and second separator as endothermic operation separator
In the refrigerant circulation that bypasses the refrigerant to S2, heat exchange for liquid
A first expansion valve EX1 is connected to a second external heat exchanger N2 as a heat exchanger.
From the first and second external heat exchangers N
1 and N2, only the second external heat exchanger N2 is a refrigerant evaporator
As an endothermic function.

【0061】(第1放熱運転モード) 第1放熱運転モードでは、圧縮機CMから吐出される冷
媒(高圧の乾き蒸気冷媒)を四方弁Vs及び第8流路r
8を介して第2外部熱交換器N2に送り、この第2外部
熱交換器N2において液体熱源Lとの熱交換により可能
な量を凝縮させ、そして、第2外部熱交換器N2を通過
した冷媒は、第10流路r10、第1三方弁V1、及び
第11流路r11を介して第1分離器S1に送る。
(First Radiation Operation Mode) In the first radiation operation mode, the refrigerant (high-pressure dry vapor refrigerant) discharged from the compressor CM is supplied to the four-way valve Vs and the eighth flow path r.
8 to a second external heat exchanger N2, where the possible amount of heat exchange with the liquid heat source L is condensed and passed through the second external heat exchanger N2. The refrigerant is sent to the first separator S1 via the tenth flow path r10, the first three-way valve V1, and the eleventh flow path r11.

【0062】第1分離器S1は、高凝縮度の冷媒(すな
わち液冷媒及び湿り度の高い冷媒)と低凝縮度の冷媒
(すなわち湿り度が低い冷媒)とを分離する機能を有
し、分離された高凝縮度冷媒は第4流路r4に送出さ
れ、また、分離された低凝縮度冷媒は第12流路r12
に送出される。
The first separator S1 has a function of separating a refrigerant with a high degree of condensation (ie, a liquid refrigerant and a refrigerant with a high degree of wetness) from a refrigerant with a low degree of condensation (ie, a refrigerant with a low degree of wetness). The separated high-condensation refrigerant is sent to the fourth flow path r4, and the separated low-condensation refrigerant is discharged to the twelfth flow path r12.
Sent to

【0063】第12流路r12に送出された低凝縮度冷
媒は、第9流路r9を介して第1外部熱交換器N1に送
り、この第1外部熱交換器N1において気体熱源Aとの
熱交換により凝縮させる。
The low-condensation refrigerant sent to the twelfth flow path r12 is sent to the first external heat exchanger N1 via the ninth flow path r9. Condensed by heat exchange.

【0064】そして、第4流路r4に送出された高凝縮
度冷媒と、第1外部熱交換器N1を通過して第3流路r
3に送出された冷媒とを合流させ、その合流冷媒(主に
液冷媒)を第1膨張弁EX1に送り、この第1膨張弁E
X1で減圧・膨張させる。
Then, the high-condensation refrigerant sent to the fourth flow path r4 and the third flow path r passing through the first external heat exchanger N1
3 and the combined refrigerant (mainly liquid refrigerant) is sent to the first expansion valve EX1, and the first expansion valve E1
Decompress and expand with X1.

【0065】第1膨張弁EX1を通過した冷媒(主に低
圧の湿り蒸気冷媒)は第2流路r2を介して内部熱交換
器Niに送り、この内部熱交換器Niで蒸発させ、そし
て、内部熱交換器Niを通過した冷媒(主に低圧の乾き
蒸気冷媒)を第1流路r1及び四方弁Vsを介して圧縮
機CMの吸入口に戻す。
The refrigerant (mainly a low-pressure wet vapor refrigerant) that has passed through the first expansion valve EX1 is sent to the internal heat exchanger Ni via the second flow path r2, and is evaporated in the internal heat exchanger Ni. The refrigerant (mainly a low-pressure dry vapor refrigerant) that has passed through the internal heat exchanger Ni is returned to the suction port of the compressor CM via the first flow path r1 and the four-way valve Vs.

【0066】なお、この第1放熱運転モードにおいて、
第2三方弁V2は、第6流路r6、第9流路r9、並び
に、第13流路r13のうちの少なくとも二流路に対し
て閉弁状態とし、かつ、第1三方弁V1は、第5流路r
5に対してのみ閉弁状態とする。すなわち、この第1放
熱運転モードでは、対液体用熱交換器としての第2外部
熱交換器N2、放熱運転用分離器としての第1分離器S
1、及び、対気体用熱交換器としての第1外部熱交換器
N1に対し、その順で直列に冷媒通過させる冷媒循環
で、第1及び第2外部熱交換器N1,N2の双方を冷媒
凝縮器として放熱機能させる。
In this first heat dissipation operation mode,
The second three-way valve V2 closes at least two of the sixth channel r6, the ninth channel r9, and the thirteenth channel r13, and the first three-way valve V1 5 channels r
Only 5 is closed. That is, this first release
In the thermal operation mode, the second external heat exchanger for liquid is used.
Heat exchanger N2, first separator S as separator for heat dissipation operation
1. and a first external heat exchanger as a heat exchanger for gas
Refrigerant circulation for passing refrigerant in series to N1 in that order
And both the first and second external heat exchangers N1 and N2
Heat dissipation function as condenser.

【0067】(第2放熱運転モード) 第2放熱運転モードでは、圧縮機CMから吐出される冷
媒(高圧の乾き蒸気冷媒)を四方弁Vs及び第8流路r
8を介して第2外部熱交換器N2に送り、この第2外部
熱交換器N2において液体熱源Lとの熱交換により凝縮
させ、第2外部熱交換器N2を通過した冷媒(主に液冷
媒)は、その全量を第10流路r10、第1三方弁V
1、及び第5流路r5を介して第1膨張弁EX1に送
り、この第1膨張弁EX1で減圧・膨張させる。
(Second heat dissipation operation mode) In the second heat dissipation operation mode, the refrigerant (high-pressure dry vapor refrigerant) discharged from the compressor CM is supplied to the four-way valve Vs and the eighth flow path r.
8 through the second external heat exchanger N2, condenses by heat exchange with the liquid heat source L in the second external heat exchanger N2, and passes through the second external heat exchanger N2 (mainly liquid refrigerant). ) Indicates that the entire amount is in the tenth flow path r10 and the first three-way valve V
The first and the fifth flow path r5 are sent to the first expansion valve EX1 to be decompressed and expanded by the first expansion valve EX1.

【0068】第1膨張弁EX1を通過した冷媒(主に低
圧の湿り蒸気冷媒)は第2流路r2を介して内部熱交換
器Niに送り、この内部熱交換器Niで蒸発させ、そし
て、内部熱交換器Niを通過した冷媒(主に低圧の乾き
蒸気冷媒)を第1流路r1及び四方弁Vsを介して圧縮
機CMの吸入口に戻す。
The refrigerant (mainly a low-pressure wet vapor refrigerant) that has passed through the first expansion valve EX1 is sent to the internal heat exchanger Ni via the second flow path r2, and evaporated in the internal heat exchanger Ni. The refrigerant (mainly a low-pressure dry vapor refrigerant) that has passed through the internal heat exchanger Ni is returned to the suction port of the compressor CM via the first flow path r1 and the four-way valve Vs.

【0069】なお、この第2放熱運転モードにおいて、
第2三方弁V2は、第6流路r6、第9流路r9、並び
に、第13流路r13のうちの少なくとも二流路に対し
て閉弁状態とし、かつ、第1三方弁V1は、第11流路
r11に対してのみ閉弁状態とする。すなわち、この第
2放熱運転モードでは、対気体用熱交換器としての第1
外部熱交換器N1及び放熱運転用分離器としての第1分
離器S1に対し冷媒を迂回さ せる冷媒循環で、対液体用
熱交換器としての第2外部熱交換器N2に圧縮機CMか
らの吐出冷媒を供給して、第1及び第2外部熱交換器N
1,N2のうち第2外部熱交換器N2のみを冷媒凝縮器
として放熱機能させる。
In this second heat dissipation operation mode,
The second three-way valve V2 closes at least two of the sixth channel r6, the ninth channel r9, and the thirteenth channel r13, and the first three-way valve V1 Only the eleventh channel r11 is closed. That is, this
2 In the heat dissipation operation mode, the first heat exchanger for gas
The first heat exchanger N1 and the first heat exchanger as a separator for heat dissipation operation
A refrigerant circulation for bypassing the refrigerant to the separator S1, for liquid
The second external heat exchanger N2 as a heat exchanger has a compressor CM
And the first and second external heat exchangers N
1 and N2, only the second external heat exchanger N2 is a refrigerant condenser
As a heat radiation function.

【0070】(第3放熱運転モード) 第3放熱運転モードでは、圧縮機CMから吐出される冷
媒(高圧の乾き蒸気冷媒)を、四方弁Vs、第6流路r
6、第2三方弁V2、及び、第9流路r9を介して第1
外部熱交換器N1に送り、この第1外部熱交換器N1に
おいて気体熱源Aとの熱交換により凝縮させ、第1外部
熱交換器N1を通過した冷媒(主に液冷媒)は、その全
量を第3流路r3を介して第1膨張弁EX1に送り、こ
の第1膨張弁EX1で減圧・膨張させる。
(Third Heat Release Operation Mode) In the third heat release operation mode, the refrigerant (high-pressure dry vapor refrigerant) discharged from the compressor CM is supplied to the four-way valve Vs and the sixth flow path r.
6, the first through the second three-way valve V2 and the ninth flow path r9
The refrigerant (mainly liquid refrigerant) that has been sent to the external heat exchanger N1 and condensed by heat exchange with the gas heat source A in the first external heat exchanger N1 and has passed through the first external heat exchanger N1 has a total amount of The pressure is sent to the first expansion valve EX1 via the third flow path r3, and the pressure is reduced and expanded by the first expansion valve EX1.

【0071】第1膨張弁EX1を通過した冷媒(主に低
圧の湿り蒸気冷媒)は第2流路r2を介して内部熱交換
器Niに送り、この内部熱交換器Niで蒸発させ、そし
て、内部熱交換器Niを通過した冷媒(主に低圧の乾き
蒸気冷媒)を第1流路r1及び四方弁Vsを介して圧縮
機CMの吸入口に戻す。
The refrigerant (mainly a low-pressure wet vapor refrigerant) that has passed through the first expansion valve EX1 is sent to the internal heat exchanger Ni via the second flow path r2, and is evaporated in the internal heat exchanger Ni. The refrigerant (mainly a low-pressure dry vapor refrigerant) that has passed through the internal heat exchanger Ni is returned to the suction port of the compressor CM via the first flow path r1 and the four-way valve Vs.

【0072】なお、この第3放熱運転モードにおいて、
第2三方弁V2は第13流路r13に対して閉弁状態と
し、かつ、第1三方弁V1は、第5流路r5、第10流
路r10、並びに、第11流路r11のうちの少なくと
も二流路に対して閉弁状態とする。すなわち、この第3
放熱運転モードでは、対液体用熱交換器としての第2外
部熱交換器N2及び放熱運転用分離器としての第1分離
器S1に対し冷媒を迂回させる冷媒循環で、対気体用熱
交換器としての第1外部熱交換器N1に圧縮機CMから
の吐出冷媒を供給して、第1及び第2外部熱交換器N
1,N2のうち第1外部熱交換器N1のみを冷媒凝縮器
として放熱機能させる。
In this third heat dissipation operation mode,
The second three-way valve V2 is in a closed state with respect to the thirteenth flow path r13, and the first three-way valve V1 is one of the fifth flow path r5, the tenth flow path r10, and the eleventh flow path r11. At least two flow paths are closed. That is, this third
In the heat radiation operation mode, the second outer heat exchanger for liquid is used.
Separation as Partial Heat Exchanger N2 and Separator for Radiation Operation
The refrigerant circulation bypassing the refrigerant to the heater S1 produces heat for gas.
From the compressor CM to the first external heat exchanger N1 as an exchanger
And the first and second external heat exchangers N
1 and N2, only the first external heat exchanger N1 is a refrigerant condenser
As a heat radiation function.

【0073】以上要するに、上記の「第1吸熱運転モー
ド」において、第3流路r3は、膨張手段としての第1
膨張弁EX1を通過した冷媒を二つの外部熱交換器N
1,N2のうちの一方の熱交換器N1に導く吸熱運転用
導入路を構成し、第2分離器S2は、その一方の熱交換
器N1を通過した冷媒を高蒸発度の冷媒と低蒸発度の冷
媒とに分離する吸熱運転用分離器を構成し、第14流路
r14及び第10流路r10は、吸熱運転用分離器とし
ての第2分離器S2で分離した低蒸発度冷媒を二つの外
部熱交換器N1,N2のうちの他方の熱交換器N2に導
く吸熱運転用中間路を構成し、そして、第7流路r7及
び第8流路r8は、吸熱運転用分離器としての第2分離
器S2で分離した高蒸発度冷媒と上記他方の熱交換器N
2を通過した冷媒を圧縮機CMに導く吸熱運転用導出路
を構成する。
In short, in the above-mentioned "first heat absorbing operation mode", the third flow path r3 is connected to the first flow path as the expansion means.
The refrigerant that has passed through the expansion valve EX1 is transferred to two external heat exchangers N.
1 and N2, constitutes an endothermic operation introduction path leading to one of the heat exchangers N1. The second separator S2 separates the refrigerant having passed through the one heat exchanger N1 into a high-evaporation refrigerant and a low-evaporation refrigerant. Flow path r14 and the tenth flow path r10 are configured to separate the low-evaporation degree refrigerant separated by the second separator S2 as the heat absorption operation separator. An intermediate path for heat absorption operation leading to the other heat exchanger N2 of the two external heat exchangers N1 and N2 is formed, and the seventh flow path r7 and the eighth flow path r8 serve as a heat absorption operation separator. The high-evaporation refrigerant separated in the second separator S2 and the other heat exchanger N
An outlet path for heat absorption operation that guides the refrigerant that has passed through 2 to the compressor CM is configured.

【0074】また、吸熱運転において「第1ないし第3
吸熱運転モード」の択一的な切り換え実施を可能にする
第1,第2三方弁V1,V2、及び、第5,第6流路r
5,r6は、二つの外部熱交換器N1,N2のうちのい
ずれか一方の選択を可能にして、その一方の熱交換器及
び吸熱運転用分離器S2(第2分離器)に対し冷媒を迂
回させる冷媒循環で他方の熱交換器に膨張手段としての
第1膨張弁EX1からの冷媒を供給する、といった回路
状態を形成する吸熱運転用選択手段を構成し、例えば、
二つの外部熱交換器N1,N2のうちの一つを吸熱作用
させながら、他の一つを休止状態として、その休止状態
の熱交換器に対する熱源系のメンテナンスを行う場合
や、中間季等で必要吸熱量が少ないことに対応して二つ
の外部熱交換器N1,N2のうちの一つを休止させると
いった場合に、この吸熱運転用選択手段による上記の択
一的切換を実施する。
In the endothermic operation, the “first to third”
First and second three-way valves V1 and V2 that enable alternate switching of the heat absorption operation mode ”, and fifth and sixth flow paths r
5, r6 allow one of the two external heat exchangers N1, N2 to be selected, and
The refrigerant to the heat and heat absorbing operation separator S2 (second separator)
In the circulation of the circulated refrigerant, the refrigerant from the first expansion valve EX1 as the expansion means is supplied to the other heat exchanger, and a heat absorbing operation selecting means for forming a circuit state such as, for example,
When one of the two external heat exchangers N1 and N2 is made to absorb heat while the other is in a resting state, and the heat source system is maintained for the heat exchanger in the resting state, or in the middle season, etc. In the case where one of the two external heat exchangers N1 and N2 is stopped in response to the small amount of required heat absorption, the above-mentioned alternative switching by the heat absorbing operation selecting means is performed.

【0075】さらに、四方弁Vsは、吸熱運転との切り
換えとして、二つの外部熱交換器N1,N2の双方又は
いずれか一方を冷媒凝縮器として機能させる放熱運転に
運転状態を切り換える切換手段を構成し、前記の「第1
放熱運転モード」において、第8流路r8は、圧縮機C
Mが吐出した冷媒を二つの外部熱交換器N1,N2のう
ちの一方の熱交換器N2に導く放熱運転用導入路を構成
し、第1分離器S1は、その一方の熱交換器N2を通過
した冷媒を高凝縮度の冷媒と低凝縮度の冷媒とに分離す
る放熱運転用分離器を構成し、第12流路r12及び第
9流路r9は、放熱運転用分離器としての第1分離器S
1で分離した低凝縮度冷媒を二つの外部熱交換器N1,
N2のうちの他方の熱交換器N1に導く放熱運転用中間
路を構成し、そして、第3流路r3及び第4流路r4
は、放熱運転用分離器としての第1分離器S1で分離し
た高凝縮度冷媒と上記他方の熱交換器N1を通過した冷
媒を膨張手段としての第1膨張弁EX1に導く放熱運転
用導出路を構成する。
Further, the four-way valve Vs constitutes a switching means for switching the operation state to a heat radiation operation in which both or one of the two external heat exchangers N1 and N2 functions as a refrigerant condenser as a switch between the heat absorption operation and the heat absorption operation. And the "1st
In the “radiation operation mode”, the eighth flow path r8 is connected to the compressor C
A heat-dissipation operation introduction path that guides the refrigerant discharged by M to one of the two external heat exchangers N1 and N2 is configured as a heat-dissipation operation introduction path, and the first separator S1 connects the one heat exchanger N2 to the heat exchanger N2. A radiating operation separator that separates the passed refrigerant into a high-condensation degree refrigerant and a low-condensation degree refrigerant is configured. The twelfth flow path r12 and the ninth flow path r9 are the first radiator operation separator. Separator S
The low-condensation degree refrigerant separated in 1 is divided into two external heat exchangers N1,
An intermediate path for heat dissipation operation leading to the other heat exchanger N1 of N2 is formed, and a third flow path r3 and a fourth flow path r4
Is a radiating operation lead-out path for guiding the high-condensation degree refrigerant separated by the first separator S1 as the radiating operation separator and the refrigerant having passed through the other heat exchanger N1 to the first expansion valve EX1 as expansion means. Is configured.

【0076】また、放熱運転において「第1ないし第3
放熱運転モード」の択一的な切り換え実施を可能にする
第1,第2三方弁V1,V2、及び、第5,第6流路r
5,r6は、二つの外部熱交換器N1,N2のうちのい
ずれか一方の選択を可能にして、その一方の熱交換器及
び放熱運転用分離器S1(第1分離器)に対し冷媒を迂
回させる冷媒循環で他方の熱交換器に圧縮機CMからの
冷媒を供給する、といった回路状態を形成する放熱運転
用選択手段を構成し、例えば、二つの外部熱交換器N
1,N2のうちの一つを放熱作用させながら、他の一つ
を休止状態として、その休止状態の熱交換器に対する熱
源系のメンテナンスを行う場合や、中間季等で必要放熱
量が少ないことに対応して二つの外部熱交換器N1,N
2のうちの一つを休止させるといった場合に、この放熱
運転用選択手段による上記の択一的切換を実施する。
In the heat dissipation operation, the “first to third”
The first and second three-way valves V1 and V2 that enable the alternative switching of the “radiation operation mode” and the fifth and sixth flow paths r
5, r6 allow one of the two external heat exchangers N1, N2 to be selected, and
Bypasses refrigerant to the heat and heat dissipation operation separator S1 (first separator)
A radiating operation selecting means for forming a circuit state in which the refrigerant from the compressor CM is supplied to the other heat exchanger by the circulating refrigerant circulation, for example, two external heat exchangers N
When one of N1 and N2 is radiating heat while the other is in a halt state, and the heat source system for the heat exchanger in the halt state is maintained, or the required amount of heat radiation is small in the middle season, etc. Corresponding to the two external heat exchangers N1, N
In the case where one of the two is stopped, the above-mentioned alternative switching is performed by the heat radiation operation selecting means.

【0077】なお、前記の各運転モードの間での第1及
び第2三方弁V1,V2の切り換え操作にあたっては、
第1ないし第4逆止弁T1〜T4の逆止機能とあいまっ
て第1膨張弁EX1と圧縮機CMとの間が一時的にせよ
完全な流路遮断状態となることを回避するように、これ
ら三方弁V1,V2の一方をその接続三流路のうちの二
流路に対して開弁状態としたのち数秒の経過時点で、他
方を接続三流路のうちの二流路ないし三流路に対して閉
弁状態とする弁操作構成を採用してある。
When switching between the first and second three-way valves V1 and V2 between the above-mentioned operation modes,
Combined with the check function of the first to fourth check valves T1 to T4, the flow path between the first expansion valve EX1 and the compressor CM is prevented from being completely, even temporarily, completely shut off. One of these three-way valves V1 and V2 is opened for two of the three connected flow paths, and a few seconds later, the other is closed for two or three of the three connected flow paths. A valve operation configuration for setting the valve state is adopted.

【0078】〔別実施例〕 次に別実施例を列記する。[Another Embodiment] Next, another embodiment will be described.

【0079】(1)本発明によるヒートポンプ装置は、
暖房や冷房等の空調用途、あるいは、物品加熱や物品冷
却等の用途を初め種々の用途に適用できる。
(1) The heat pump device according to the present invention
The present invention can be applied to various applications including an air-conditioning application such as heating and cooling, and an application such as article heating and article cooling.

【0080】(2)吸熱運転において双方又は一方を冷
媒蒸発器として機能させ、また、放熱運転において双方
又は一方を冷媒凝縮器として機能させる二つの熱交換器
N1,N2の熱交換対象は、気体Aと液体Lとに相違さ
せるに代えて、双方ともに気体としてもよく、また、液
体としてもよい。
(2) In the heat absorbing operation, both or one of them functions as a refrigerant evaporator, and in the heat radiating operation, both or one of them functions as a refrigerant condenser. Instead of making A and the liquid L different, both may be gas or liquid.

【0081】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
Incidentally, reference numerals are written in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例を示す回路構成図FIG. 1 is a circuit diagram showing an embodiment.

【図2】従来例を示す回路構成図FIG. 2 is a circuit configuration diagram showing a conventional example.

【符号の説明】 N1 熱交換器,対気体用熱交換器 N2 熱交換器,対液体用熱交換器 EX1 膨張手段 r3 吸熱運転用導入路 S2 吸熱運転用分離器 r14,r10 吸熱運転用中間路 CM 圧縮機 r7,r8 吸熱運転用導出路 EX2 副膨張手段 V1,V2 吸熱運転用選択手段,放熱運転用選
択手段 r5,r6 吸熱運転用選択手段,放熱運転用選
択手段 Vs 切換手段 r8 放熱運転用導入路 S1 放熱運転用分離器 r12,r9 放熱運転用中間路 r3,r4 放熱運転用導出路 A 気体熱源 L 液体熱源
[Explanation of Signs] N1 heat exchanger, heat exchanger for gas N2 heat exchanger, heat exchanger for liquid EX1 expansion means r3 heat absorbing operation introduction path S2 heat absorbing operation separator r14, r10 heat absorbing operation intermediate path CM compressor r7, r8 Heat extraction operation outlet path EX2 Subexpansion means V1, V2 Heat absorption operation selection means, heat radiation operation selection means r5, r6 Heat absorption operation selection means, heat radiation operation selection means Vs switching means r8 Heat dissipation operation Introduction path S1 Separator for heat dissipation operation r12, r9 Intermediate path for heat dissipation operation r3, r4 Outlet path for heat dissipation operation A Gas heat source L Liquid heat source

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二つの熱交換器(N1),(N2)の双
方又はいずれか一方を冷媒蒸発器として機能させる吸熱
運転において前記熱交換器(N1),(N2)の双方を
冷媒蒸発器として機能させる運転モードの実施構成とし
て、 膨張手段(EX1)を通過した冷媒を一方の熱交換器
(N1)に導く吸熱運転用導入路(r3)と、 その一方の熱交換器(N1)を通過した冷媒を高蒸発度
の冷媒と低蒸発度の冷媒とに分離する吸熱運転用分離器
(S2)と、 その吸熱運転用分離器(S2)で分離した低蒸発度冷媒
を他方の熱交換器(N2)に導く吸熱運転用中間路(r
14),(r10)と、 前記吸熱運転用分離器(S2)で分離した高蒸発度冷媒
と他方の熱交換器(N2)を通過した冷媒を圧縮機(C
M)に導く吸熱運転用導出路(r7),(r8)とを設
け、 前記吸熱運転において前記熱交換器(N1),(N2)
のうちのいずれか一方を冷媒蒸発器として機能させる運
転モードの切り換え実施構成として、 前記熱交換器(N1),(N2)のうちのいずれか一方
の選択を可能にして、その一方の熱交換器、及び、前記
吸熱運転用分離器(S2)に対し冷媒を迂回させる冷媒
循環で他方の熱交換器に前記膨張手段(EX1)からの
冷媒を供給する回路状態を形成する吸熱運転用選択手段
(V1),(V2),(r5),(r6)を設けてある
ヒートポンプ装置。
In an endothermic operation in which both or one of the two heat exchangers (N1) and (N2) functions as a refrigerant evaporator, both of the heat exchangers (N1) and (N2) are operated .
As an embodiment of an operation mode for functioning as a refrigerant evaporator , an endothermic operation introduction path (r3) that guides the refrigerant that has passed through the expansion means (EX1) to one heat exchanger (N1), and one of the heat exchangers ( N1), an endothermic operation separator (S2) that separates the refrigerant having passed through the refrigerant into a high-evaporation refrigerant and a low-evaporation refrigerant, and the low-evaporation refrigerant separated by the endothermic operation separator (S2). Heat-receiving intermediate path (r) leading to the heat exchanger (N2)
14), (r10), the high-evaporation refrigerant separated by the heat-absorbing operation separator (S2) and the refrigerant having passed through the other heat exchanger (N2).
M) lead-out paths (r7) and (r8) for heat-absorbing operation.
In the heat absorbing operation, the heat exchangers (N1) and (N2)
Operation to function as one of the refrigerant evaporators
One of the heat exchangers (N1) and (N2) as a switching mode switching implementation configuration
To allow the selection of one of the heat exchangers, and
Refrigerant that bypasses refrigerant to heat-absorbing operation separator (S2)
The other heat exchanger is circulated from the expansion means (EX1) to the other heat exchanger.
Heat absorbing operation selecting means for forming a circuit state for supplying a refrigerant
A heat pump device provided with (V1), (V2), (r5), and (r6) .
【請求項2】 前記吸熱運転用中間路(r14)に副膨
張手段(EX2)を介装してある請求項1記載のヒート
ポンプ装置。
2. The heat pump device according to claim 1, wherein a sub-expansion means (EX2) is interposed in the intermediate path for heat absorption operation (r14).
【請求項3】 前記吸熱運転との切り換えとして、前記
熱交換器(N1),(N2)の双方又はいずれか一方を
冷媒凝縮器として機能させる放熱運転に運転状態を切り
換える切換手段(Vs)を設け、 その放熱運転において前記熱交換器(N1),(N2)
の双方を冷媒凝縮器として機能させる運転モードの実施
構成として、 前記圧縮機(CM)が吐出した冷媒を一方の熱交換器
(N2)に導く放熱運転用導入路(r8)と、 その一方の熱交換器(N2)を通過した冷媒を高凝縮度
の冷媒と低凝縮度の冷媒とに分離する放熱運転用分離器
(S1)と、 その放熱運転用分離器(S1)で分離した低凝縮度冷媒
を他方の熱交換器(N1)に導く放熱運転用中間路(r
12),(r9)と、 前記放熱運転用分離器(S1)で分離した高凝縮度冷媒
と他方の熱交換器(N1)を通過した冷媒を前記膨張手
段(EX1)に導く放熱運転用導出路(r3),(r
4)とを設けた請求項1又は2記載のヒートポンプ装
置。
3. A switching means (Vs) for switching an operation state to a heat radiation operation in which both or one of the heat exchangers (N1) and (N2) functions as a refrigerant condenser as a switch to the heat absorption operation. The heat exchangers (N1), (N2)
As an implementation configuration of an operation mode in which both functions as a refrigerant condenser, a heat-dissipation operation introduction path (r8) that guides refrigerant discharged from the compressor (CM) to one heat exchanger (N2). A heat-dissipation separator (S1) for separating the refrigerant having passed through one of the heat exchangers (N2) into a refrigerant with a high degree of condensation and a refrigerant with a low degree of condensation; A heat-dissipating operation intermediate path (r) for guiding the separated low-condensation refrigerant to the other heat exchanger (N1).
12), (r9), a heat-dissipation operation derivation that guides the high-condensation refrigerant separated by the heat-dissipation operation separator (S1) and the refrigerant that has passed through the other heat exchanger (N1) to the expansion means (EX1). Road (r3), (r
The heat pump device according to claim 1 or 2, further comprising (4).
【請求項4】 前記の放熱運転において前記熱交換器
(N1),(N2)のうちのいずれか一方を冷媒凝縮器
として機能させる運転モードの切り換え実施構成とし
て、 前記熱交換器(N1),(N2)のうちのいずれか一方
の選択を可能にして、その一方の熱交換器、及び、前記
放熱運転用分離器(S1)に対し冷媒を迂回させる冷媒
循環で他方の熱交換器に前記圧縮機(CM)からの冷媒
を供給する回路状態を形成する放熱運転用選択手段(V
1),(V2),(r5),(r6)を設けた請求項
記載のヒートポンプ装置。
4. The heat exchanger in the heat dissipation operation .
One of (N1) and (N2) is a refrigerant condenser
Operation mode switching configuration to function as
And one of the heat exchangers (N1) and (N2)
To allow the selection of one of the heat exchangers, and
Refrigerant that bypasses refrigerant to heat-dissipating operation separator (S1)
Means for selecting a radiating operation (V) that forms a circuit state for supplying the refrigerant from the compressor (CM) to the other heat exchanger in circulation.
4. The method according to claim 3 , wherein (1), (V2), (r5), and (r6) are provided.
The heat pump device as described in the above.
【請求項5】 前記熱交換器(N1),(N2)の双方
を冷媒蒸発器として機能させる運転モードでの前記吸熱
運転において、それら熱交換器(N1),(N2)のう
ち、 前記吸熱運転用分離器(S2)の上流側に位置させて前
記膨張手段(EX1)からの冷媒を供給する上流側の熱
交換器 (N1)は気体熱源(A)を熱交換対象とする対
気体用熱交換器とし、 かつ、前記吸熱運転用分離器(S2)の下流側に位置さ
せてその吸熱運転用分離器(S2)で分離した低蒸発度
冷媒を供給する下流側の熱交換器(N2)は液体熱源
(L)を熱交換対象とする対液体用熱交換器としてある
請求項1、2、3又は4記載のヒートポンプ装置。
5. Both of the heat exchangers (N1) and (N2)
Heat absorption in an operation mode in which the refrigerant functions as a refrigerant evaporator
In operation, the heat exchangers (N1) and (N2)
And, it is located upstream of the endothermic operation separator (S2).
Heat on the upstream side for supplying the refrigerant from the expansion means (EX1)
The heat exchanger (N1) is a heat exchanger for gas with the gas heat source (A) as a heat exchange target, and is located downstream of the heat absorbing operation separator (S2).
And the low evaporation rate separated by the endothermic operation separator (S2)
Refrigerant heat exchanger downstream supplies (N2) is a heat pump apparatus according to claim 1, 2, 3 or 4, wherein there a liquid heat source (L) as a heat exchanger to liquid to be heat exchanged.
JP19310094A 1994-08-17 1994-08-17 Heat pump equipment Expired - Fee Related JP3208254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19310094A JP3208254B2 (en) 1994-08-17 1994-08-17 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19310094A JP3208254B2 (en) 1994-08-17 1994-08-17 Heat pump equipment

Publications (2)

Publication Number Publication Date
JPH0861796A JPH0861796A (en) 1996-03-08
JP3208254B2 true JP3208254B2 (en) 2001-09-10

Family

ID=16302244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19310094A Expired - Fee Related JP3208254B2 (en) 1994-08-17 1994-08-17 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP3208254B2 (en)

Also Published As

Publication number Publication date
JPH0861796A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
KR100893117B1 (en) Method and apparatus for defrosting steam compression system
JP7251229B2 (en) In-vehicle temperature controller
CN102466374B (en) Heat pump type water heating apparatus
KR101015640B1 (en) Vehicle air conditioning system
US20170203635A1 (en) Air conditioning device for vehicle
JPWO2015011919A1 (en) Air conditioner for vehicles
CN117320901A (en) Vehicle thermal management system
US11892203B2 (en) Method of operating refrigeration cycle device
JP3140333B2 (en) Heat pump equipment
JP2006509991A (en) Refrigerant circuit and refrigeration system
KR20090102478A (en) Heat pump system for vehicles
JP2009192155A (en) Air conditioning system for vehicle
JP3208254B2 (en) Heat pump equipment
JP2000002494A (en) Plate type heat exchanger and refrigeration cycle system
JP2018192968A (en) Vehicle air conditioning system
US11852379B2 (en) Water heating system
JP2004251557A (en) Refrigeration system using carbon dioxide as refrigerant
KR102718100B1 (en) Automotive air conditioning system
JPH05240531A (en) Room cooling/heating hot water supplying apparatus
JPH09318178A (en) Air conditioner
WO2022202840A1 (en) Refrigerant circuit and vehicle heat pump device
JP2019014471A (en) Vehicular air conditioner
JP2000146355A (en) Composite heat transfer system
JPH0674589A (en) Multichamber room cooler/heater
JPH10306954A (en) Engine driven refrigerant compression circulation type heat transfer device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees