JP3198238B2 - Fine powder of titanium oxide and method for producing the same - Google Patents
Fine powder of titanium oxide and method for producing the sameInfo
- Publication number
- JP3198238B2 JP3198238B2 JP24544695A JP24544695A JP3198238B2 JP 3198238 B2 JP3198238 B2 JP 3198238B2 JP 24544695 A JP24544695 A JP 24544695A JP 24544695 A JP24544695 A JP 24544695A JP 3198238 B2 JP3198238 B2 JP 3198238B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- fine
- hydrolysis
- aqueous solution
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000843 powder Substances 0.000 title claims description 51
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 45
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000002245 particle Substances 0.000 claims description 43
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 238000006460 hydrolysis reaction Methods 0.000 claims description 27
- 239000007864 aqueous solution Substances 0.000 claims description 24
- 230000007062 hydrolysis Effects 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 16
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 16
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 16
- 238000010992 reflux Methods 0.000 claims description 8
- 238000009835 boiling Methods 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 238000010304 firing Methods 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000012776 electronic material Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- IYVLHQRADFNKAU-UHFFFAOYSA-N oxygen(2-);titanium(4+);hydrate Chemical compound O.[O-2].[O-2].[Ti+4] IYVLHQRADFNKAU-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- GHPYJLCQYMAXGG-WCCKRBBISA-N (2R)-2-amino-3-(2-boronoethylsulfanyl)propanoic acid hydrochloride Chemical compound Cl.N[C@@H](CSCCB(O)O)C(O)=O GHPYJLCQYMAXGG-WCCKRBBISA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は酸化チタン微粉末及びそ
の製造法に関し、さらに詳しくはコンデンサー、サーミ
スター等の電子材料や化粧品等に好適な酸化チタン微粉
末及びその製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium oxide fine powder and a method for producing the same, and more particularly to a titanium oxide fine powder suitable for electronic materials such as capacitors and thermistors and cosmetics, and a method for producing the same.
【0002】[0002]
【従来の技術】酸化チタン粉末は白色度、着色力に優れ
ていることから白色顔料として古くから用いられ、また
コンデンサー材料、例えばチタン酸バリウムの原料やサ
ーミスターの構成材料等に用いられている。さらに近年
は電子材料の封止材料としても知られている。酸化チタ
ンの製造法は湿式法としては硫酸チタンあるいは四塩化
チタンを加水分解し、酸化チタンの水和物を沈殿させ、
これを濾別、乾燥する方法が一般的に知られている。そ
の他、四塩化チタンを気相で酸化分解する乾式法もあ
る。2. Description of the Related Art Titanium oxide powder has long been used as a white pigment because of its excellent whiteness and coloring power, and has also been used as a capacitor material, for example, a raw material of barium titanate or a constituent material of a thermistor. . In recent years, it is also known as a sealing material for electronic materials. Titanium oxide is produced by hydrolyzing titanium sulfate or titanium tetrachloride as a wet method to precipitate hydrated titanium oxide,
A method of filtering out and drying this is generally known. In addition, there is a dry method in which titanium tetrachloride is oxidatively decomposed in a gas phase.
【0003】酸化チタン粉末の粒径は顔料用としては細
かい方が望ましいが、上記従来の製造法によって得られ
る酸化チタン粉末は特公平7−17376の中に従来技
術として記載されているように0.1〜0.5μm程度
であり、それより細かい粉末は製造できなかった。前記
特許では封止材用として特に適するように四塩化チタン
水溶液の濃度、加水分解温度を特定することにより粒度
の大きい酸化チタン粉末を得ている。The particle size of the titanium oxide powder is desirably fine for pigments. However, the titanium oxide powder obtained by the above-mentioned conventional production method has a particle size of 0 as described in JP-B-7-17376 as a prior art. 0.1 to about 0.5 μm, and a finer powder could not be produced. In the above patent, a titanium oxide powder having a large particle size is obtained by specifying the concentration and hydrolysis temperature of an aqueous solution of titanium tetrachloride so as to be particularly suitable for a sealing material.
【0004】[0004]
【発明が解決しようとする課題】酸化チタン粉末をコン
デンサーの誘導体やサーミスターの材料などの焼結材用
として使用する場合は、粒子は小さい方がよく、さらに
同じ粒径でも比表面積が大きい方がよい。しかし、従来
の製造法では0.1μm迄が限度であり、それより小さ
い粒径の酸化チタン粉末は得られなかった。本発明は焼
結材用として好適な従来にない微細な酸化チタン粉末を
提供することを目的とする。When the titanium oxide powder is used as a sintered material such as a capacitor derivative or a thermistor material, the smaller the particles, the better the specific surface area even with the same particle size. Is good. However, in the conventional production method, the limit is up to 0.1 μm, and a titanium oxide powder having a smaller particle size cannot be obtained. An object of the present invention is to provide an unprecedented fine titanium oxide powder suitable for a sintered material.
【0005】[0005]
【課題を解決するための手段】本発明は特定の条件下で
四塩化チタンを加水分解することにより非常に微細な酸
化チタン粉末を得ることに初めて成功したものである。
即ち、本発明は粒径が0.1μm未満の粒子から実質的
になる酸化チタン微粉末である。実質的とは個数で粒子
の90%以上が0.1μm未満であることを意味する。
そして純度としては99.0%以上が酸化チタンであ
る。 図1に本発明の酸化チタン微粉末の走査型電子顕
微鏡写真(SEM)を示す。粒子の粒径はこの写真から
求めることができる。図からわかるように本発明の酸化
チタン微粉末は粒子が凝集せず、分散性が良好なため単
独で用いる場合以外に他の材料等と混合する場合にも都
合がよい。The present invention has been successful for the first time in obtaining very fine titanium oxide powder by hydrolyzing titanium tetrachloride under specific conditions.
That is, the present invention is a titanium oxide fine powder substantially consisting of particles having a particle size of less than 0.1 μm. Substantially means that 90% or more of the particles are less than 0.1 μm in number.
The titanium oxide has a purity of 99.0% or more. FIG. 1 shows a scanning electron micrograph (SEM) of the titanium oxide fine powder of the present invention. The size of the particles can be determined from this photograph. As can be seen from the figure, the titanium oxide fine powder of the present invention does not agglomerate particles and has good dispersibility, so that it is convenient not only when used alone but also when mixed with other materials.
【0006】本発明の酸化チタン微粉末粒子は多くは、
略球状をなしているが表面には微小な凹凸や気孔が存在
している。そのために粉末の比表面積は粒子径から計算
される比表面積より大きくなっている。この比表面積は
好ましくは20m2 /g以上である。同一粒径の粒子で
も比表面積が大きい方が他の材料と混合し、焼結材料と
して使用する場合、反応性、焼結性が良好となる。[0006] The fine particles of titanium oxide of the present invention are mostly
Although it has a substantially spherical shape, fine irregularities and pores exist on the surface. Therefore, the specific surface area of the powder is larger than the specific surface area calculated from the particle diameter. This specific surface area is preferably at least 20 m 2 / g. Even when particles having the same particle diameter have a large specific surface area, when mixed with another material and used as a sintering material, the reactivity and the sinterability are improved.
【0007】次に製造法の発明について説明する。本発
明の酸化チタン微粉末の製造法は基本的には四塩化チタ
ンの加水分解法である。加水分解は一般的には水溶液を
沸点近くの温度に加熱して行なわれる。加水分解により
酸化チタン水和物と塩化水素が生じ、水溶液は白濁状と
なる。液は加熱されているため従来の方法では発生した
塩化水素は蒸気となって反応槽から逸出する。特公平7
−17376の方法は、この塩化水素の逸出を促進する
ことにより、得られる酸化チタン粉末の粒子を大きくし
たものである。Next, the invention of the manufacturing method will be described. The production method of the titanium oxide fine powder of the present invention is basically a hydrolysis method of titanium tetrachloride. The hydrolysis is generally carried out by heating the aqueous solution to a temperature near the boiling point. The hydrolysis produces titanium oxide hydrate and hydrogen chloride, and the aqueous solution becomes cloudy. Since the liquid is heated, hydrogen chloride generated by the conventional method escapes from the reaction tank as vapor. Tokuho 7
In the method of -17376, the particles of the obtained titanium oxide powder are enlarged by promoting the escape of hydrogen chloride.
【0008】これに反して本発明の方法は、四塩化チタ
ンの加水分解において発生する塩化水素が反応槽から逸
出するのを抑制し、できるだけ水溶液中に残留させるこ
とにより、酸化チタン微粉末の粒径を0.1μm未満と
する方法である。加水分解により発生する塩化水素は完
全に逸出が防止されていなくても抑制されておればよ
い。またその方法も抑制できるものであれば特に限定さ
れず、例えば加圧することによっても可能であるが、最
も容易にして効果的な方法は加水分解の反応槽に還流冷
却器を設置して加水分解を行なう方法である。この装置
を図2に示す。図において1が四塩化チタンの水溶液2
を充填した反応槽で、これに還流冷却器3が設置されて
いる。4は撹拌機、5は温度計、6は反応槽を加熱する
ための装置である。加水分解反応によって水及び塩化水
素の蒸気が発生するが、その大部分は還流冷却器により
凝縮し、反応槽に戻されるので反応槽から外に塩化水素
が逸出することは殆どない。On the other hand, the method of the present invention suppresses the escape of hydrogen chloride generated in the hydrolysis of titanium tetrachloride from the reaction tank and makes it remain in the aqueous solution as much as possible, so that the titanium oxide fine powder is reduced. In this method, the particle size is less than 0.1 μm. Hydrogen chloride generated by hydrolysis does not have to be completely prevented from escaping, as long as it is suppressed. The method is not particularly limited as long as the method can be suppressed. For example, pressurization can be performed. However, the easiest and most effective method is to install a reflux condenser in a hydrolysis reaction tank and perform hydrolysis. It is a method of performing. This device is shown in FIG. In the figure, 1 is an aqueous solution of titanium tetrachloride 2
And a reflux condenser 3 is installed therein. 4 is a stirrer, 5 is a thermometer, and 6 is a device for heating the reaction tank. Although water and hydrogen chloride vapor are generated by the hydrolysis reaction, most of them are condensed by the reflux condenser and returned to the reaction tank, so that hydrogen chloride hardly escapes from the reaction tank.
【0009】加水分解における温度は50℃以上、水溶
液の沸点迄の範囲が好ましい。50℃未満では加水分解
反応に長時間を要する。加水分解は上記の温度に昇温
し、10分から12時間程度保持して行なわれる。この
保持時間は加水分解の温度が高温側にある程短くてよ
い。水溶液の加水分解は四塩化チタンと水との混合溶液
を反応槽中で所定の温度に加熱してもよく、また水を反
応槽中で予め加熱しておき、これに四塩化チタン水溶液
を添加し、所定の温度にしてもよい。四塩化チタン水溶
液の昇温速度は早い方が得られる粒子が細かくなるの
で、好ましくは0.2℃/min.以上、さらに好まし
くは0.5℃/min.以上である。The temperature in the hydrolysis is preferably 50 ° C. or higher and up to the boiling point of the aqueous solution. If the temperature is lower than 50 ° C., a long time is required for the hydrolysis reaction. The hydrolysis is carried out by raising the temperature to the above-mentioned temperature and holding the temperature for about 10 minutes to 12 hours. This holding time may be shorter as the hydrolysis temperature is higher. For the hydrolysis of the aqueous solution, a mixed solution of titanium tetrachloride and water may be heated to a predetermined temperature in the reaction tank, or water is pre-heated in the reaction tank, and the titanium tetrachloride aqueous solution is added thereto. Alternatively, a predetermined temperature may be set. The higher the temperature rising rate of the titanium tetrachloride aqueous solution, the finer the particles obtained, and therefore, preferably 0.2 ° C./min. Above, more preferably 0.5 ° C / min. That is all.
【0010】四塩化チタン水溶液の四塩化チタンの濃度
は低過ぎると生産性が悪く、またあまり濃度が高いと反
応が激しくなり、かつ得られる酸化チタンの粒子が微細
になりにくいので0.1〜2モル/リットルが好まし
い。反応終了後は反応槽より酸化チタン水和物の沈殿を
含む液を取り出し、例えば公知のローターリフィルター
等で濾過する。本発明の酸化チタン粒子は非常に細かい
ので濾過材は孔の目が0.05〜0.1μm程度のもの
が適する。濾過により得られたフィルターケーキは水洗
後、空気中100℃程度の温度で乾燥される。乾燥は減
圧下で行なうこともできる。乾燥後、解砕して製品とす
る。If the concentration of titanium tetrachloride in the aqueous solution of titanium tetrachloride is too low, the productivity is poor, and if the concentration is too high, the reaction becomes intense and the obtained titanium oxide particles are hard to be fine. 2 mol / l is preferred. After the completion of the reaction, a liquid containing a precipitate of titanium oxide hydrate is taken out of the reaction tank and filtered with, for example, a known rotary filter. Since the titanium oxide particles of the present invention are very fine, a filter material having pores of about 0.05 to 0.1 μm is suitable. The filter cake obtained by filtration is washed with water and then dried in air at about 100 ° C. Drying can also be performed under reduced pressure. After drying, it is crushed to produce a product.
【0011】また、上記における乾燥後のケーキあるい
は解砕後の粉末を焼成して比表面積の調整や結晶性等を
高めることもできる。焼成は温度が高い程粒子が大きく
成長するので、粒径が0.1μm以上にならないように
する必要があり、一般的には250〜500℃が適す
る。焼成はまた粒子中に微量に存在する塩化水素の脱離
作用にも有効である。以上はバッチ式反応について説明
したが、反応槽の上部から水及び四塩化チタンを連続的
に装入し、反応槽の下部から沈殿物を含む液を連続的に
取り出す連続方式や反応管内に反応液を流しながら加熱
して反応させる連続方式も可能である。Further, the dried cake or the crushed powder described above can be fired to adjust the specific surface area and increase the crystallinity. In sintering, the particles grow larger as the temperature is higher. Therefore, it is necessary to keep the particle size from becoming 0.1 μm or more, and generally, 250 to 500 ° C. is suitable. Calcination is also effective in the action of desorbing a small amount of hydrogen chloride present in the particles. Above, the batch type reaction was explained, but water and titanium tetrachloride were continuously charged from the upper part of the reaction tank, and the liquid containing the precipitate was continuously removed from the lower part of the reaction tank, or the reaction was performed in the reaction tube. A continuous system in which the reaction is performed by heating while flowing the liquid is also possible.
【0012】本発明の方法において、加水分解反応中に
水溶液からの塩化水素の逸出を抑制することにより、得
られる酸化チタン微粉末の粒子が微細になる理由は定か
でないが、四塩化チタンが加水分解されて生じるゲル状
の沈殿が塩素イオンにより微細に分断され、多数の結晶
核が生じ、粒子の成長が抑えられるためと考えられる。[0012] In the method of the present invention, the reason why the particles of the obtained fine titanium oxide powder are made finer by suppressing the escape of hydrogen chloride from the aqueous solution during the hydrolysis reaction is not clear. It is considered that the gel-like precipitate generated by the hydrolysis is finely divided by chloride ions, a large number of crystal nuclei are generated, and the growth of particles is suppressed.
【0013】[0013]
【実施例】以下、実施例により具体的に説明する。 (実施例1)四塩化チタン(純度99.9%)に水を加
え、四塩化チタンの濃度が1モル/リットルの水溶液を
調整した。この水溶液3リットルを図2に示す還流冷却
器付きの反応槽に装入し、沸点付近(104℃)まで加
熱し、60分間保持して加水分解した。終了時点で液量
は殆ど変化せず、また液中の塩化水素の濃度は約4モル
/リットルで、塩化水素は反応槽から外に逸出していな
かった。The present invention will be specifically described below with reference to examples. Example 1 Water was added to titanium tetrachloride (purity: 99.9%) to prepare an aqueous solution having a concentration of titanium tetrachloride of 1 mol / liter. 3 liters of this aqueous solution was charged into a reaction vessel equipped with a reflux condenser shown in FIG. 2, heated to near the boiling point (104 ° C.), and held for 60 minutes for hydrolysis. At the time of completion, the amount of the liquid hardly changed, the concentration of hydrogen chloride in the liquid was about 4 mol / l, and the hydrogen chloride did not escape from the reaction tank.
【0014】反応槽から沈殿物を含む液を取り出し、孔
径0.1μmの濾紙を用いて濾過した。濾紙上の沈殿物
を十分に水洗し、その後空気中約100℃に加熱して乾
燥した。乾燥後ボールミルで解砕し微粉末とした。微粉
末の比表面積をBET法で測定したところ120m2 /
gであった。この粒子の走査型電子顕微鏡写真を図1に
示す。図1からわかるように粒子の90%以上は0.1
μm未満である。粒子の平均径(数平均径)はコールタ
ーカウンター法により測定したところ0.06μmであ
った。さらにX線回折装置を用いて前記粒子の固定を行
なったところ99%以上の結晶性酸化チタンであった。The liquid containing the precipitate was taken out of the reaction vessel and filtered using a filter paper having a pore size of 0.1 μm. The precipitate on the filter paper was thoroughly washed with water, and then heated to about 100 ° C. in air and dried. After drying, it was pulverized with a ball mill to obtain fine powder. When the specific surface area of the fine powder was measured by the BET method, it was 120 m 2 /
g. A scanning electron micrograph of the particles is shown in FIG. As can be seen from FIG. 1, more than 90% of the particles are 0.1%.
It is less than μm. The average diameter (number average diameter) of the particles was 0.06 μm as measured by the Coulter counter method. Further, when the particles were fixed using an X-ray diffractometer, 99% or more of crystalline titanium oxide was obtained.
【0015】(実施例2)四塩化チタン水溶液の加水分
解温度を60℃、反応時間を8時間とした以外は、実施
例1と同様の操作を行ない酸化チタン微粉末を得た。微
粉末の比表面積は170m2 /g、平均粒径は0.04
μmで、粒子の90%以上は0.1μm未満であった。(Example 2) The same operation as in Example 1 was carried out except that the hydrolysis temperature of the aqueous solution of titanium tetrachloride was set at 60 ° C and the reaction time was set at 8 hours, to obtain a fine powder of titanium oxide. The specific surface area of the fine powder is 170 m 2 / g, and the average particle size is 0.04.
At μm, more than 90% of the particles were below 0.1 μm.
【0016】(実施例3)四塩化チタン水溶液の四塩化
チタンの濃度を0.5モル/リットルとした以外は、実
施例1と同様の操作を行ない酸化チタン微粉末を得た。
微粉末の比表面積は190m2 /g、平均粒径は0.0
3μmで、粒子の90%以上は0.1μm未満であっ
た。Example 3 The same operation as in Example 1 was carried out except that the concentration of titanium tetrachloride in the aqueous solution of titanium tetrachloride was changed to 0.5 mol / liter, to obtain a fine powder of titanium oxide.
The specific surface area of the fine powder is 190 m 2 / g, and the average particle size is 0.0
At 3 μm, more than 90% of the particles were less than 0.1 μm.
【0017】(実施例4)水0.6リットルを図2の反
応槽に入れ、沸点付近(98℃)に加熱し、次いでこの
反応槽に3.0モル/リットルの四塩化チタン水溶液3
00gを温度が下がらないようにして滴下した(水溶液
の四塩化チタンの濃度1モル/リットル)。前記温度で
30分間保持して加水分解した。その後は実施例1と同
様にして酸化チタン微粉末を得た。微粉末の比表面積は
170m2 /g、平均粒径は0.04μmで、粒子の9
0%以上は0.1μm未満であった。Example 4 0.6 liter of water was placed in the reaction vessel shown in FIG. 2 and heated near the boiling point (98 ° C.). Then, 3.0 mol / liter of an aqueous solution of titanium tetrachloride 3 was added to the reaction vessel.
00 g was added dropwise so that the temperature did not decrease (the concentration of titanium tetrachloride in the aqueous solution was 1 mol / liter). Hydrolysis was carried out at the above temperature for 30 minutes. Thereafter, a titanium oxide fine powder was obtained in the same manner as in Example 1. The specific surface area of the fine powder was 170 m 2 / g, the average particle size was 0.04 μm,
0% or more was less than 0.1 μm.
【0018】(実施例5)実施例4において、加熱する
水の温度を60℃、保持時間を5時間とした以外は実施
例4と同様にして酸化チタン微粉末を得た。微粉末の比
表面積は180m2 /g、平均粒径は0.04μmで、
粒子の90%以上は0.1μm未満であった。Example 5 Titanium oxide fine powder was obtained in the same manner as in Example 4, except that the temperature of the water to be heated was changed to 60 ° C. and the holding time was changed to 5 hours. The specific surface area of the fine powder is 180 m 2 / g, the average particle size is 0.04 μm,
More than 90% of the particles were less than 0.1 μm.
【0019】(実施例6)実施例2と同様に四塩化チタ
ン水溶液を60℃に加熱し、水溶液が白濁しだしたら直
ちに該液を沸点付近(104℃)に加熱し、その温度で
60分間保持して2段階の加水分解反応を行なった。そ
の他は実施例1と同様にして酸化チタン微粉末を得た。
微粉末の比表面積は35m2 /g、平均粒径は0.08
μmで、粒子の90%以上は0.1μm未満であった。Example 6 As in Example 2, an aqueous solution of titanium tetrachloride was heated to 60 ° C., and immediately after the aqueous solution became cloudy, the solution was heated to near the boiling point (104 ° C.) and kept at that temperature for 60 minutes. While maintaining the temperature, a two-stage hydrolysis reaction was performed. Otherwise, the procedure of Example 1 was repeated to obtain a fine titanium oxide powder.
The specific surface area of the fine powder is 35 m 2 / g, and the average particle size is 0.08.
At μm, more than 90% of the particles were below 0.1 μm.
【0020】(実施例7)実施例1と同様にして得られ
た沈殿物を水洗、乾燥後、空気中400℃で30分間加
熱し、その後粉砕して酸化チタン微粉末を得た。微粉末
の比表面積は40m2 /g、平均粒径は0.06μm
で、粒子の90%以上は0.1μm未満であった。以上
の実施例2〜7の酸化チタン微粉末はX線回折装置によ
り固定したところ99%以上の結晶性酸化チタンであっ
た。Example 7 The precipitate obtained in the same manner as in Example 1 was washed with water, dried, heated in air at 400 ° C. for 30 minutes, and then pulverized to obtain a fine titanium oxide powder. The specific surface area of the fine powder is 40 m 2 / g, and the average particle size is 0.06 μm.
90% or more of the particles were less than 0.1 μm. When the titanium oxide fine powders of Examples 2 to 7 were fixed by an X-ray diffractometer, 99% or more of crystalline titanium oxide was obtained.
【0021】(比較例1)図2において、還流冷却器を
装着せず反応槽を開放したまま、他は実施例1と同様に
して酸化チタン粉末を得た。四塩化チタン水溶液は初め
3リットル装入したが加水分解反応後は2.3リットル
となり、またその中の塩化水素の濃度は1.5モル/リ
ットルに減少し、塩化水素がかなり逸出していた。得ら
れた酸化チタン粉末の比表面積は0.5m2 /g、平均
粒径は13μmであった。(Comparative Example 1) In FIG. 2, a titanium oxide powder was obtained in the same manner as in Example 1 except that the reaction vessel was opened without installing a reflux condenser. Initially, 3 liters of the titanium tetrachloride aqueous solution was charged, but after the hydrolysis reaction, it became 2.3 liters, and the concentration of hydrogen chloride therein was reduced to 1.5 mol / l, and hydrogen chloride had considerably escaped. . The specific surface area of the obtained titanium oxide powder was 0.5 m 2 / g, and the average particle size was 13 μm.
【0022】[0022]
【発明の効果】本発明により平均粒径が0.1μm未満
の微細な酸化チタン粉末が得られる。この粉末は粒子が
凝集していないのでコンデンサーやサーミスター等の原
料として他の原料例えばBaCO3 ,Nd2 O3 ,Fe
2 O3 などと混合する場合に分散性がよい。そして微細
でありかつ分散性がよいので焼結材用として好適であ
る。その結果、小型で高性能のコンデンサ等の製品が得
られる。その他化粧品、電子材料の封止材、太陽電池材
料などにも使用できる。四塩化チタンの加水分解反応に
は還流冷却器が設置され、発生する塩化水素が反応槽外
に出ないので、塩化水素ガスの補集装置も不要となり、
装置的にも有利である。According to the present invention, fine titanium oxide powder having an average particle size of less than 0.1 μm can be obtained. Since this powder is not aggregated, other raw materials such as BaCO 3 , Nd 2 O 3 , Fe
Good dispersibility when mixed with 2 O 3 and the like. Since it is fine and has good dispersibility, it is suitable for a sintered material. As a result, a product such as a small and high-performance capacitor can be obtained. In addition, it can be used for cosmetics, sealing materials for electronic materials, solar cell materials, and the like. A reflux condenser is installed for the hydrolysis reaction of titanium tetrachloride, and the generated hydrogen chloride does not go out of the reaction tank.
It is also advantageous in terms of equipment.
【図1】本発明の酸化チタン微粉末の走査型電子顕微鏡
写真(5万倍)である。FIG. 1 is a scanning electron micrograph (× 50,000) of a titanium oxide fine powder of the present invention.
【図2】本発明の方法に用いられる反応槽の概略断面図
である。FIG. 2 is a schematic sectional view of a reaction vessel used in the method of the present invention.
1 反応槽 2 四塩化チタン水溶液 3 還流冷却器 4 撹拌機 5 温度計 6 加熱装置 Reference Signs List 1 reaction tank 2 titanium tetrachloride aqueous solution 3 reflux cooler 4 stirrer 5 thermometer 6 heating device
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−187677(JP,A) 特開 平6−340421(JP,A) 特開 平4−280816(JP,A) 特開 平2−196028(JP,A) 特公 平5−24866(JP,B2) 揚ら「高純度酸化チタン粉末」FCr eport、日本ファインセラミックス 協会、1991年6月、vol.9、No. 6、p.235−237 (58)調査した分野(Int.Cl.7,DB名) C01G 23/053 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-187677 (JP, A) JP-A-6-340421 (JP, A) JP-A-4-280816 (JP, A) JP-A-2- 196028 (JP, A) JP 5-24866 (JP, B2) Fried high-purity titanium oxide powder FCCr report, Japan Fine Ceramics Association, June 1991, vol. 9, No. 6, p. 235-237 (58) Field surveyed (Int. Cl. 7 , DB name) C01G 23/053
Claims (6)
化チタン微粉末の製造法において、加水分解により発生
する塩化水素の反応槽からの逸出を抑制しながら加水分
解を行なうことを特徴とする酸化チタン微粉末の製造
法。1. A method for producing titanium oxide fine powder by hydrolysis of an aqueous solution of titanium tetrachloride, wherein the hydrolysis is carried out while suppressing escape of hydrogen chloride generated by hydrolysis from a reaction tank. Manufacturing method of titanium fine powder.
し、発生する塩化水素の反応槽からの逸出を抑制するこ
とからなる請求項1に記載の酸化チタン微粉末の製造
法。2. The method for producing fine titanium oxide powder according to claim 1, wherein a reflux condenser is installed in the hydrolysis reaction tank to suppress escape of generated hydrogen chloride from the reaction tank.
水溶液の沸点の範囲である請求項1又は2に記載の酸化
チタン微粉末の製造法。3. The process for producing fine titanium oxide powder according to claim 1, wherein the hydrolysis temperature is in the range of 50 ° C. to the boiling point of the aqueous solution of titanium tetrachloride.
濃度が0.1〜2モル/リットルである請求項1〜3の
いずれかに記載の酸化チタン微粉末の製造法。4. The process for producing fine titanium oxide powder according to claim 1, wherein the concentration of titanium tetrachloride in the aqueous solution of titanium tetrachloride is 0.1 to 2 mol / l.
微粉末を250〜500℃で焼成することからなる酸化
チタン微粉末の製造法。5. A method for producing fine titanium oxide powder, comprising firing the fine powder obtained according to claim 1 at 250 to 500 ° C.
未満の粒子から実質的になり、比表面積が20m2/g
以上である請求項1〜5のいずれかに記載の酸化チタン
微粉末の製造法。6. The titanium oxide fine powder has a particle size of 0.1 μm.
Less than particles having a specific surface area of 20 m 2 / g
The method for producing a fine titanium oxide powder according to any one of claims 1 to 5, which is as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24544695A JP3198238B2 (en) | 1995-08-30 | 1995-08-30 | Fine powder of titanium oxide and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24544695A JP3198238B2 (en) | 1995-08-30 | 1995-08-30 | Fine powder of titanium oxide and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0967125A JPH0967125A (en) | 1997-03-11 |
JP3198238B2 true JP3198238B2 (en) | 2001-08-13 |
Family
ID=17133791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24544695A Expired - Fee Related JP3198238B2 (en) | 1995-08-30 | 1995-08-30 | Fine powder of titanium oxide and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3198238B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3165509A4 (en) * | 2014-07-02 | 2018-06-27 | Ishihara Sangyo Kaisha, Ltd. | Titanium oxide fine particles and method for producing same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1127844B1 (en) * | 1998-08-19 | 2012-08-01 | Showa Denko K.K. | Finely particulate titanium-containing substance, coating fluid containing the same, processes for producing these, and molded article having thin film comprising the substance |
WO2000018686A1 (en) * | 1998-09-28 | 2000-04-06 | Tao Inc. | Method for production of amorphous titanium peroxide solution and anatase titanium oxide sol |
US6919029B2 (en) * | 2002-02-14 | 2005-07-19 | Trustees Of Stevens Institute Of Technology | Methods of preparing a surface-activated titanium oxide product and of using same in water treatment processes |
KR100475551B1 (en) * | 2002-10-08 | 2005-03-10 | (주)아해 | Preparation of Nanosized brookite-phase Titanium Dioxide Powder from Titanium Tetrachloride and Aqueous Hydrochloric Acid |
JP4841202B2 (en) * | 2005-08-30 | 2011-12-21 | 株式会社田中化学研究所 | Method for producing titanium oxide |
US8741431B2 (en) | 2010-08-02 | 2014-06-03 | Showa Denko K.K. | Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same |
JP2023532589A (en) * | 2020-07-06 | 2023-07-28 | 寧波極微納新材料科技有限公司 | Method for making titania and method for improving dispersibility of titania |
-
1995
- 1995-08-30 JP JP24544695A patent/JP3198238B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
揚ら「高純度酸化チタン粉末」FCreport、日本ファインセラミックス協会、1991年6月、vol.9、No.6、p.235−237 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3165509A4 (en) * | 2014-07-02 | 2018-06-27 | Ishihara Sangyo Kaisha, Ltd. | Titanium oxide fine particles and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPH0967125A (en) | 1997-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0641740B1 (en) | Process for the synthesis of crystalline ceramic powders of perovskite compounds | |
Her et al. | Preparation of well-defined colloidal barium titanate crystals by the controlled double-jet precipitation | |
JP2634210B2 (en) | Method for producing powdery barium titanate | |
US4810680A (en) | Preparation of high purity, homogeneous zirconia mixtures | |
JP3198238B2 (en) | Fine powder of titanium oxide and method for producing the same | |
JP2726439B2 (en) | Method for producing ceramic powder having perovskite structure | |
KR102590443B1 (en) | Nano barium titanate microcrystals and method for producing the same and barium titanate powder and method for producing the same | |
US8715614B2 (en) | High-gravity reactive precipitation process for the preparation of barium titanate powders | |
JP3314944B2 (en) | Sinterable barium titanate fine particle powder and method for producing the same | |
JP3319807B2 (en) | Perovskite-type compound fine particle powder and method for producing the same | |
CN105727922B (en) | A kind of Li adulterates SrTiO3The preparation method and product of ten octahedron nanometer particles | |
JPS6328845B2 (en) | ||
JP2004521850A (en) | Method for producing high quality barium titanate powder | |
JPH0246531B2 (en) | ||
JP3486156B2 (en) | Method for producing crystalline barium titanate powder | |
JP3772354B2 (en) | Manufacturing method of ceramic powder | |
KR100562520B1 (en) | Method for producing barium titanate particles using titanium dioxide sol | |
JP3708216B2 (en) | Titanium oxide fine particles and production method thereof | |
JPH0239451B2 (en) | ||
JPWO2003004415A1 (en) | Barium titanate powder and method for producing the same | |
JPH0558633A (en) | Production of strontium titanate | |
JPS61146713A (en) | Production of barium-strontium titanate solid solution or barium titanate | |
JPH0873219A (en) | Production of powdery ceramic | |
JPH04238814A (en) | Preparation of titanate of bi- or tri-valent cation | |
KR20040038443A (en) | Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100608 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120608 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120608 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130608 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140608 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |