JP3171685B2 - Purification method of 1,1,1,2 tetrafluoroethane - Google Patents
Purification method of 1,1,1,2 tetrafluoroethaneInfo
- Publication number
- JP3171685B2 JP3171685B2 JP22183392A JP22183392A JP3171685B2 JP 3171685 B2 JP3171685 B2 JP 3171685B2 JP 22183392 A JP22183392 A JP 22183392A JP 22183392 A JP22183392 A JP 22183392A JP 3171685 B2 JP3171685 B2 JP 3171685B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- hydrofluoric acid
- tetrafluoroethane
- temperature
- extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/38—Separation; Purification; Stabilisation; Use of additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、トリクロルエチレン
(以下CCl2=CHClまたはトリクレンと記す)と
HFとを反応せしめて1,1,1,2テトラフルオロエ
タン(以下CF3CH2FまたはF134aと記す)を製
造するに際し、反応生成物を蒸留処理して得られるHF
を含有する濃縮されたF134aから、HFをあと利用
可能な状態で除去するF134aの精製法に関する。BACKGROUND OF THE INVENTION The present invention relates to a method of reacting trichloroethylene (hereinafter referred to as CCl 2 CCHCl or trichlene) with HF to form 1,1,1,2 tetrafluoroethane (hereinafter referred to as CF 3 CH 2 F or F134a). HF obtained by subjecting the reaction product to a distillation treatment.
The present invention relates to a method for purifying F134a, which removes HF from the concentrated F134a containing HF in a state that can be used later.
【0002】[0002]
【従来の技術】一般にトリクレンとHFを原料としてF
134aを製造する場合には式(1)に示すトリクレン
とHFとを反応させて1,1,1トリフルオロ−2クロ
ロエタン(以下CF3 CH2 ClまたはF133aと記
す)を生成せしめる第1段の反応、 CHCl=CCl2 +3HF→CF3 CH2 Cl+2HCl…(1) および(2)式に示すF133aとHFとを反応させる
第2段の反応によって行われている。 CF3 CH2 Cl+HF→CF3 CH2 F+HCl…(2)2. Description of the Related Art Generally, tricrene and HF are used as raw materials for F
In the case of producing 134a, the first step of reacting tricrene represented by the formula (1) with HF to produce 1,1,1 trifluoro-2-chloroethane (hereinafter referred to as CF 3 CH 2 Cl or F133a) is performed. The reaction is performed by a second-stage reaction in which F133a and HF shown in the formula (1) and (2) are reacted with CHCl = CCl 2 + 3HF → CF 3 CH 2 Cl + 2HCl. CF 3 CH 2 Cl + HF → CF 3 CH 2 F + HCl (2)
【0003】上記反応はいずれもアルミナ、クロミナ触
媒の存在下で行われるが、その反応条件は異なり、第1
段の反応においては圧力4kg/cm2 G(以下圧力は
Gで表す)、温度250℃、HF/トリクレンのモル比
6、第2段の反応においては、圧力4kg/cm2 、温
度350℃、HF/F133aのモル比4で行われる。
反応生成物は蒸留によって分離される。これには種々な
蒸留システムがあるが、いずれの蒸留システムにおいて
も、HClは副生HClとして別途使用され、HF及び
F133aは反応原料としてリサイクルされる。目的生
成物のF134aはこの蒸留で濃縮され、小量のF13
3a及びHFを含んだ状態で分離される。[0003] All of the above reactions are carried out in the presence of an alumina or chromina catalyst, but the reaction conditions are different.
In the second-stage reaction, the pressure was 4 kg / cm 2 G (hereinafter, the pressure is represented by G), the temperature was 250 ° C., the molar ratio of HF / trichlene was 6, and in the second-stage reaction, the pressure was 4 kg / cm 2 , the temperature was 350 ° C. The HF / F133a is performed at a molar ratio of 4.
The reaction products are separated by distillation. There are various distillation systems. In any of the distillation systems, HCl is separately used as by-product HCl, and HF and F133a are recycled as a reaction raw material. The desired product, F134a, is concentrated in this distillation to produce a small amount of F13a.
3a and HF are separated.
【0004】このように生成物F134aが小量のF1
33a及びHFを含有するのは、上記F133aとH
F、及びF134aとHFが共に最低共沸点を有してお
り、第2段反応における圧力4kg/cm2 において、
前者は共沸点41℃、この共沸点における成分割合は、
F133a(62mol%):HF(38mol%)、
また後者は共沸点14℃、この共沸点における成分割合
は、F134a(87mol%):HF(13mol
%)であることによる。[0004] Thus, the product F134a is a small amount of F1
33a and HF are contained in the above-mentioned F133a and H
F, F134a and HF both have the lowest azeotropic point, and at a pressure of 4 kg / cm 2 in the second stage reaction,
The former has an azeotropic point of 41 ° C., and the component ratio at this azeotropic point is
F133a (62 mol%): HF (38 mol%),
The latter has an azeotropic point of 14 ° C., and the component ratio at this azeotropic point is F134a (87 mol%): HF (13 mol%).
%).
【0005】このような理由から、蒸留のみではF13
4aからF133aあるいはHFを除去することができ
ないので、従来はアルカリ洗浄によってHFを除去して
いた。HFが除去されれば、F133aその他のフロン
類はF134aと共沸関係がないから蒸留分離が可能で
ある。For these reasons, distillation alone results in F13
Since F133a or HF cannot be removed from 4a, HF was conventionally removed by alkali washing. When HF is removed, F133a and other fluorocarbons do not have an azeotropic relationship with F134a, and can be separated by distillation.
【0006】[0006]
【発明が解決しようとする課題】従来は上記のようにF
134a濃縮留分からアルカリ洗浄によってHFを除去
していた。しかしこのためにはアルカリを必要とするば
かりでなく、高価なHFが無駄に排出され、しかもその
排水処理が要求されるという不都合があった。従って本
発明の目的は、濃縮された小量のF133a及びHFを
含有するF134aから経済的にHFを回収することの
できるF134aの精製法を提供することにある。Conventionally, as described above, F
HF was removed from the concentrated fraction of 134a by alkali washing. However, this requires not only the need for alkali, but also the disadvantage that expensive HF is wasted and wastewater treatment is required. Accordingly, an object of the present invention is to provide a method for purifying F134a that can economically recover HF from F134a containing a small amount of concentrated F133a and HF.
【0007】[0007]
【課題を解決するための手段】本発明は、小量のF13
3a及びHFを含有するF134aと、水−HFの共沸
点における濃度以上のHF濃度のフッ酸を抽出剤として
低温下で接触させ、次いでこれを二層分離して下層のF
134aを取出すことによって、HFを有効利用可能な
状態でかつ経済的に分離することができるF134aの
精製法を提供する。このとき、抽出剤として使用するフ
ッ酸の濃度を38〜70重量%とし、かつ抽出及び二層
分離する際の操作温度を−35〜35℃とすることが好
ましい。According to the present invention, a small amount of F13
3a and F134a containing HF and hydrofluoric acid having an HF concentration equal to or higher than the concentration at the azeotropic point of water-HF as an extractant, and then contacted at a low temperature.
By removing 134a, there is provided a method for purifying F134a in which HF can be effectively used and economically separated. At this time, it is preferable that the concentration of hydrofluoric acid used as the extracting agent is 38 to 70% by weight, and the operating temperature at the time of extraction and separation into two layers is −35 to 35 ° C.
【0008】次に本発明の方法を実施例にもとづいて説
明する。図1は、本発明に係るF134aの精製法の一
実施例を示すもので、図中の符号1は、反応器及び蒸留
塔よりなる反応システムである。反応システム1のフロ
ーには種々あるが、いずれの反応システムによっても、
これから流出する濃縮F134aは小量のHF、F13
3a等を含有し、ほぼ同じ成分構成となっている。この
濃縮F134a;11は、抽出塔2に導かれる。Next, the method of the present invention will be described based on embodiments. FIG. 1 shows one embodiment of a method for purifying F134a according to the present invention, and reference numeral 1 in the figure denotes a reaction system comprising a reactor and a distillation column. Although there are various flows in the reaction system 1, any reaction system
Concentrated F134a flowing out from this is a small amount of HF, F13
3a and the like, and have substantially the same composition. This concentrated F134a; 11 is led to the extraction column 2.
【0009】抽出塔2には、最高共沸点が112.4℃
であり、このときの成分比がHF(35.8mol
%):H2O(64.2mol%)となるHF/水系
の、共沸点におけるHF濃度より高いHF濃度を有する
フッ酸(HF回収塔6のボトム液、後記)が抽出剤15
として導入され、低温に保持され、抽出が行われる。The extraction column 2 has a maximum azeotropic point of 112.4 ° C.
And the component ratio at this time is HF (35.8 mol
%): The hydrofluoric acid (bottom liquid of the HF recovery tower 6, described later) having an HF concentration higher than the HF concentration at the azeotropic point of the HF / water system to be H 2 O (64.2 mol%) is the extractant 15
And kept at low temperature to perform the extraction.
【0010】抽出が終了し、抽出塔2のボトムより流出
した液;12は第1デカンター3に送られ、二層分離さ
れ、下層の流出液;13は洗浄塔4においてアルカリ洗
浄され、残留する微量のHF及びHClが除去される。
洗浄塔4のボトムから流出した液は第2デカンター5に
導かれ、二層分離され、下層のF134aが取り出さ
れ、上部の水層は排水処理系に送られる。After the completion of the extraction, the liquid flowing out from the bottom of the extraction tower 2; 12 is sent to the first decanter 3, where it is separated into two layers, and the lower layer effluent 13 is washed with alkali in the washing tower 4 and remains. Traces of HF and HCl are removed.
The liquid flowing out from the bottom of the washing tower 4 is guided to the second decanter 5, where it is separated into two layers, the lower F134a is taken out, and the upper aqueous layer is sent to a wastewater treatment system.
【0011】また、第1デカンタ3の上層の、HF濃度
が高くなったフッ酸;14はHF回収塔6に送られ、H
Fが蒸留分離される。この分離されたHFは反応システ
ム1にリサイクルされ反応に用いられる。上記HF回収
塔6のボトム液は、HFと水との共沸成分濃度以上のH
Fを含むフッ酸であり、抽出塔2の抽出剤;15として
使用される。Further, the hydrofluoric acid 14 with an increased HF concentration in the upper layer of the first decanter 3 is sent to the HF recovery tower 6,
F is separated by distillation. The separated HF is recycled to the reaction system 1 and used for the reaction. The bottom liquid of the HF recovery tower 6 has a concentration of H or more that is equal to or higher than the azeotropic component concentration of HF and water.
It is hydrofluoric acid containing F, and is used as an extractant in the extraction tower 2;
【0012】上記の濃縮F134a;11に含まれてい
た小量のF133a、その他のフロン類は、第2デカン
タ5の下層液に含まれるが、HFが存在しない各成分間
には共沸関係がないので、これらはその後の蒸留によっ
て分離精製することが出来る。Although a small amount of F133a and other fluorocarbons contained in the above-mentioned concentrated F134a; 11 are contained in the lower layer liquid of the second decanter 5, the components having no HF have an azeotropic relationship. Since they do not exist, they can be separated and purified by subsequent distillation.
【0013】このような本発明の精製法において、抽出
剤;15として使用されるフッ酸(HF回収塔6のボト
ム液)のHF濃度は、HF回収塔6の蒸留分離能とこれ
に導入される第1デカンタ3上層のフッ酸;14のHF
濃度に依存するが、HFが蒸留分離によって回収される
限り、その下限の濃度は水とHFの最高共沸点における
HF濃度(38重量%)以上の値となる。またフッ酸は
HF濃度の増加にともない液密度が増大するので、以下
に示す抽出分離の操作温度において、抽出剤;15のH
F濃度が70重量%を越えるとフッ酸とF134aの密
度差がなくなり、第一デカンタ3における二層分離が困
難となる。従って、抽出塔2で抽出剤;15として使用
されるフッ酸のHF濃度は、38〜70重量%の範囲に
制御されることが好ましい。さらに好ましくは45〜5
5重量%に制御される。In the purification method of the present invention, the HF concentration of hydrofluoric acid (bottom liquid of the HF recovery tower 6) used as the extractant 15 is determined by the distillation separation ability of the HF recovery tower 6 and the HF concentration. Hydrofluoric acid in the upper layer of the first decanter 3;
Although depending on the concentration, as long as HF is recovered by distillation separation, the lower limit of the concentration is equal to or higher than the HF concentration (38% by weight) at the highest azeotropic point of water and HF. Since the liquid density of hydrofluoric acid increases as the HF concentration increases, the extraction agent: 15 H
When the F concentration exceeds 70% by weight, the density difference between hydrofluoric acid and F134a disappears, and it becomes difficult to separate the two layers in the first decanter 3. Therefore, the HF concentration of hydrofluoric acid used as the extractant 15 in the extraction tower 2 is preferably controlled in the range of 38 to 70% by weight. More preferably 45-5
It is controlled at 5% by weight.
【0014】また、抽出塔2及び第一デカンタ3におけ
る操作温度は、−35〜35℃に制御することが好まし
い。さらに好ましくは5〜25℃に制御する。この操作
温度の下限は、操作圧力及び操作時のHF濃度における
フッ酸の凝固点もしくはF134aの水和物の生成温度
によって制約されるものであり、下限値以下に冷却され
ると、工程ラインに閉塞等の不都合が生じる。一方、フ
ッ酸とF134aは、温度に対する液密度の変化特性が
異なっていて、液温の上昇にともない双方の液密度が次
第に接近し、ついには逆転するに至る。このため、温度
が上記の上限値を越えた場合には第一デカンタ3におけ
る二層分離が不可能となる。The operating temperatures in the extraction column 2 and the first decanter 3 are preferably controlled at -35 to 35 ° C. More preferably, the temperature is controlled at 5 to 25 ° C. The lower limit of the operating temperature is restricted by the freezing point of hydrofluoric acid or the forming temperature of hydrate of F134a at the operating pressure and the HF concentration during the operation. And the like. On the other hand, hydrofluoric acid and F134a have different liquid density change characteristics with respect to temperature. As the liquid temperature rises, both liquid densities gradually approach and eventually reverse. For this reason, if the temperature exceeds the above upper limit, the two-layer separation in the first decanter 3 becomes impossible.
【0015】上記のように、本発明の精製法において選
定し得る抽出剤;15のHF濃度と抽出分離温度は相関
関係にある。この操作条件の範囲に関する概念図を図2
に示す。図2において、線AはそのHF濃度のフッ酸の
凝固点もしくはF134a水和物の生成温度によって規
定される境界線である。線Bは第一デカンタ3におい
て、F134aとフッ酸の密度を逆転させないために、
フッ酸の密度の温度変化にもとづいて規定される境界線
である。線Cはフッ酸中のHF共沸濃度により規定され
る境界線である。操作条件は図2における線A、B及び
Cで囲まれた領域の範囲内で、界面制御が可能な条件の
組合せを適宜選択することができる。As described above, there is a correlation between the HF concentration of the extractant 15 that can be selected in the purification method of the present invention and the extraction separation temperature. FIG. 2 is a conceptual diagram regarding the range of the operation conditions.
Shown in In FIG. 2, line A is a boundary defined by the freezing point of hydrofluoric acid at the HF concentration or the formation temperature of F134a hydrate. Line B is the first decanter 3 so that the density of F134a and hydrofluoric acid are not reversed.
This is a boundary defined based on the temperature change of the density of hydrofluoric acid. Line C is a boundary defined by the HF azeotropic concentration in hydrofluoric acid. As the operating conditions, a combination of conditions capable of controlling the interface can be appropriately selected within a range surrounded by lines A, B, and C in FIG.
【0016】操作圧力に関しては特に限定されるもので
はないが、工程機器の耐圧性等を考慮すると10Kg/
cm2G以下が好ましい。さらに、限定された温度条
件、HF濃度条件を考慮し、工程の操作性及び経済性を
考慮すると、6〜7Kg/cm2とすることが好まし
い。これより高圧にすると高圧用の特殊機器を要するこ
とになるし、低圧にするとF134aの揮発を抑えるた
めの配慮が必要となり、操作条件の選択範囲が狭くな
る。Although there is no particular limitation on the operating pressure, it is 10 kg /
cm 2 G or less is preferred. Furthermore, considering the limited temperature conditions and HF concentration conditions, and considering the operability and economy of the process, it is preferably 6 to 7 kg / cm 2 . If the pressure is higher than this, special equipment for high pressure is required. If the pressure is lower, consideration must be given to suppress the volatilization of F134a, and the selection range of operation conditions is narrowed.
【0017】[0017]
【実施例】図1に示す装置及び工程を用いて、反応シス
テム1からF134aを抽出する実験を行った。このと
きの抽出塔2近傍各部における成分の重量%、および濃
縮F134a;11の流量を100とした場合の各部流
量を表1に示す。EXAMPLE An experiment for extracting F134a from the reaction system 1 was conducted using the apparatus and process shown in FIG. Table 1 shows the weight percentage of the components in each part near the extraction column 2 and the flow rate of each part when the flow rate of the concentrated F134a;
【0018】[0018]
【表1】 [Table 1]
【0019】表1より明らかなように、共沸点における
HF濃度より高い濃度のHFを含有する抽出剤;15を
使用し、抽出分離することによって、濃縮F134a;
11中のHFが大部分回収され、無駄なく再使用され
る。As apparent from Table 1, the extractant containing HF at a higher concentration than the HF concentration at the azeotropic point;
Most of the HF in 11 is recovered and reused without waste.
【0020】[0020]
【発明の効果】以上説明したように、本発明に係るF1
34aの精製法は、蒸留によって分離することができな
いF134a中のHFを、水とHFの共沸点における濃
度以上のHF濃度を有するフッ酸を抽出剤として抽出
し、二層分離することによって、無駄なく循環使用でき
る利点がある。また、抽出剤として使用するフッ酸の濃
度を38〜70重量%とし、抽出分離する際の操作温度
を−35〜35℃とすることによって、HFの分離回収
をさらに円滑に行うことができる。As described above, the F1 according to the present invention is used.
The purification method of 34a is a method of extracting HF in F134a, which cannot be separated by distillation, with hydrofluoric acid having an HF concentration equal to or higher than the concentration at the azeotropic point of water and HF as an extracting agent and separating the wastewater into two layers. There is an advantage that it can be used without circulation Further, by setting the concentration of hydrofluoric acid used as the extractant to 38 to 70% by weight and setting the operation temperature at the time of extraction and separation to -35 to 35 ° C, HF can be separated and recovered more smoothly.
【図1】本発明の方法の一実施例を示す工程図である。FIG. 1 is a process chart showing one embodiment of the method of the present invention.
【図2】本発明を実施する際の操作条件の範囲を示す概
念図である。FIG. 2 is a conceptual diagram showing a range of operating conditions when implementing the present invention.
1…反応システム、 2…抽出塔、 3…第1デカンター、 4…洗浄塔、 5…第2デカンター、 6…HF回収塔、 11…濃縮F134a、 12…抽出塔ボトム流出液、 13…第1デカンター下層の流出液、 14…第1デカンター上層のフッ酸、 15…抽出剤、 A…フッ酸水溶液の凝固点もしくはF134a水和物の
形成温度により規定される境界線、 B…F134a密度と逆転現象を生じさせないためにフ
ッ酸水溶液密度の温度変化にもとづき規定される境界
線、 C…フッ酸水溶液の共沸濃度により規定される境界線。DESCRIPTION OF SYMBOLS 1 ... Reaction system, 2 ... Extraction tower, 3 ... 1st decanter, 4 ... Washing tower, 5 ... 2nd decanter, 6 ... HF recovery tower, 11 ... Concentrated F134a, 12 ... Extraction tower bottom effluent, 13 ... 1st Effluent in the lower layer of the decanter, 14: hydrofluoric acid in the upper layer of the first decanter, 15: extractant, A: boundary line defined by the freezing point of the aqueous hydrofluoric acid solution or the formation temperature of F134a hydrate, B: density of F134a and inversion phenomenon A boundary defined based on the temperature change of the hydrofluoric acid aqueous solution density in order to prevent the occurrence of the following: C: a boundary defined by the azeotropic concentration of the hydrofluoric acid aqueous solution.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 弓削 定義 神奈川県川崎市川崎区扇町5−1 昭和 電工株式会社 川崎工場内 (72)発明者 河合 治之 神奈川県川崎市川崎区扇町5−1 昭和 電工株式会社 川崎工場内 (72)発明者 森戸 康晶 神奈川県川崎市川崎区扇町5−1 昭和 電工株式会社 川崎工場内 (56)参考文献 特開 平2−196734(JP,A) 特開 平2−167803(JP,A) 特開 平5−132434(JP,A) 特開 平6−135867(JP,A) 特開 平5−255144(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 17/38 C07C 19/08 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yuge Definition 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Denko Co., Ltd. Kawasaki Plant (72) Inventor Haruyuki Kawai 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko Inside the Kawasaki Plant (72) Inventor Yasuki Morito 5-1 Ogimachi, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Showa Denko Corporation Kawasaki Plant (56) References JP-A-2-196734 (JP, A) JP-A-2 JP-A-167803 (JP, A) JP-A-5-132434 (JP, A) JP-A-6-135867 (JP, A) JP-A-5-255144 (JP, A) (58) Fields investigated (Int. Cl) . 7, DB name) C07C 17/38 C07C 19/08
Claims (2)
て生成され、蒸留工程を経て濃縮されたHFを含有する
1,1,1,2テトラフルオロエタンの精製法におい
て、上記HFを含有する1,1,1,2テトラフルオロ
エタンを水とHFの共沸点における濃度以上のHF濃度
のフッ酸を抽出剤として、低温下でHFを抽出し、これ
を二層分離して下層の1,1,1,2テトラフルオロエ
タンを回収することを特徴とする1,1,1,2テトラ
フルオロエタンの精製法。1. A method for purifying 1,1,1,1,2-tetrafluoroethane containing HF, which is produced by reacting trichloroethylene with HF and is concentrated through a distillation step. HF was extracted at a low temperature using 1,1,2-tetrafluoroethane as a hydrofluoric acid having an HF concentration equal to or higher than the concentration at the azeotropic point of water and HF. A method for purifying 1,1,1,2 tetrafluoroethane, comprising recovering 1,1, tetrafluoroethane.
るフッ酸の濃度を38〜70重量%とし、かつ抽出及び
二層分離する際の操作温度を−35〜35℃とすること
を特徴とする1,1,1,2テトラフルオロエタンの精
製法。2. The method according to claim 1, wherein the concentration of hydrofluoric acid used as the extractant is 38 to 70% by weight, and the operating temperature at the time of extraction and separation into two layers is −35 to 35 ° C. To purify 1,1,1,2 tetrafluoroethane.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22183392A JP3171685B2 (en) | 1992-02-04 | 1992-08-20 | Purification method of 1,1,1,2 tetrafluoroethane |
TW082102217A TW222617B (en) | 1992-08-20 | 1993-03-24 | |
EP93107385A EP0583551B1 (en) | 1992-08-20 | 1993-05-06 | Process for purifying 1,1,1,2-tetrafluoroethane |
DE69304638T DE69304638T2 (en) | 1992-08-20 | 1993-05-06 | Process for the purification of 1,1,1,2-tetrafluoroethane |
KR1019930008270A KR100288458B1 (en) | 1992-08-20 | 1993-05-14 | Purification of 1,1,1,2-tetrafluoroethane |
CN93106510A CN1034167C (en) | 1992-08-20 | 1993-05-29 | Process for purifying 1,1,1,2-tetrafluoroethane |
US08/216,780 US5382724A (en) | 1992-08-20 | 1994-03-23 | Process for purifying 1,1,1,2-tetrafluoroethane |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-19250 | 1992-02-04 | ||
JP1925092 | 1992-02-04 | ||
JP22183392A JP3171685B2 (en) | 1992-02-04 | 1992-08-20 | Purification method of 1,1,1,2 tetrafluoroethane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05279277A JPH05279277A (en) | 1993-10-26 |
JP3171685B2 true JP3171685B2 (en) | 2001-05-28 |
Family
ID=26356083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22183392A Expired - Lifetime JP3171685B2 (en) | 1992-02-04 | 1992-08-20 | Purification method of 1,1,1,2 tetrafluoroethane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3171685B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3514041B2 (en) | 1996-06-27 | 2004-03-31 | ダイキン工業株式会社 | Method for purifying 1,1,1,3,3-pentafluoropropane |
US9309116B2 (en) * | 2011-09-26 | 2016-04-12 | Honeywell International Inc. | Method for producing high concentration aqueous HF solutions |
JP6104836B2 (en) * | 2014-03-13 | 2017-03-29 | 東京エレクトロン株式会社 | Separation / reproduction apparatus and substrate processing apparatus |
-
1992
- 1992-08-20 JP JP22183392A patent/JP3171685B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05279277A (en) | 1993-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997027163A1 (en) | Azeotrope comprising pentafluoropropane and hydrogen fluoride and method for separating and purifying pentafluoropropane | |
JP3514041B2 (en) | Method for purifying 1,1,1,3,3-pentafluoropropane | |
KR100288458B1 (en) | Purification of 1,1,1,2-tetrafluoroethane | |
JP3279449B2 (en) | Separation method of hydrogen fluoride and difluoromethane | |
JP3085549B2 (en) | Recovery method of hydrochloric acid and copper sulfate from copper chloride waste liquid | |
JP3171685B2 (en) | Purification method of 1,1,1,2 tetrafluoroethane | |
JPH0555445B2 (en) | ||
JPH02229720A (en) | Method for continuously removing impurity from gaseous zirconium and/or hafnium chloride | |
JP3518169B2 (en) | Method for producing 1,1,1,3,3-pentafluoropropane | |
JP2509144B2 (en) | Method for separating hydrogen fluoride from a mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane | |
JP3569921B2 (en) | Method for producing difluoromethane | |
US4208389A (en) | Purification of phosphoric acid | |
JP2576340B2 (en) | Method for separating 1,1,1,2-tetrafluoroethane | |
US4599455A (en) | Process of purifying fluorinated carbonyl compound mixed with hydrogen fluoride | |
JPH06263715A (en) | Production of high-purity methanesulfonyl chloride | |
US9975825B1 (en) | Process for the purification of pentafluoroethane | |
JP2002509899A (en) | Purification of hydrofluorocarbon | |
JP3207928B2 (en) | Method for producing 1,1,1,2-tetrafluoroethane | |
JPH0517160A (en) | Recovery of hydrochloric acid and iron sulfate from waste liquor of ferrous chloride | |
JPH11349523A (en) | Recovery of acetic acid | |
JPH06107570A (en) | Purification of 1,1,1,2-tetrafluoroethane | |
JP2001172246A (en) | Method for producing acrylonitrile | |
KR100500206B1 (en) | Method for purifying 1,1,1,3,3-pentafluoropropane | |
DE1567603C (en) | Process for removing aliphatic fluorocarbon or fluorochlorocarbon contaminants from hydrogen chloride gas | |
JP3028100B2 (en) | Process for producing dimethyl 2,6-naphthalenedicarboxylate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010227 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100323 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110323 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110323 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120323 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120323 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130323 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130323 Year of fee payment: 12 |