[go: up one dir, main page]

JP3133812B2 - Boiling water reactor and start-up method thereof - Google Patents

Boiling water reactor and start-up method thereof

Info

Publication number
JP3133812B2
JP3133812B2 JP04055398A JP5539892A JP3133812B2 JP 3133812 B2 JP3133812 B2 JP 3133812B2 JP 04055398 A JP04055398 A JP 04055398A JP 5539892 A JP5539892 A JP 5539892A JP 3133812 B2 JP3133812 B2 JP 3133812B2
Authority
JP
Japan
Prior art keywords
pressure
cooling water
reactor
pressure vessel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04055398A
Other languages
Japanese (ja)
Other versions
JPH0572387A (en
Inventor
政隆 日高
道雄 村瀬
明彦 湊
重人 村田
良之 片岡
俊次 中尾
詳一郎 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04055398A priority Critical patent/JP3133812B2/en
Publication of JPH0572387A publication Critical patent/JPH0572387A/en
Application granted granted Critical
Publication of JP3133812B2 publication Critical patent/JP3133812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は沸騰水型原子炉に係わ
り、特に、炉心内外の静水頭差により循環流量が確保さ
れる沸騰水型原子炉の起動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling water reactor and, more particularly, to a method for starting a boiling water reactor in which a circulation flow is ensured by a difference in hydrostatic head inside and outside a reactor core.

【0002】[0002]

【従来の技術】現行の沸騰水型原子炉は、原子炉の冷態
停止後の起動時において、再循環ポンプで冷却水を炉心
に循環し、制御棒を引き抜き核加熱により冷却水を昇
温、昇圧する。この時、炉心は強制循環によって冷却さ
れているので、冷却水は高温になるまで単相流状態であ
り、冷却水は加熱に伴って単相流状態から二相流状態へ
単調に遷移し、原子炉の安定した起動が可能となる。
2. Description of the Related Art In a current boiling water reactor, when a reactor is started after a cold shutdown, cooling water is circulated to a reactor core by a recirculation pump, a control rod is pulled out, and the cooling water is heated by nuclear heating. , Boost. At this time, since the core is cooled by forced circulation, the cooling water is in a single-phase flow state until the temperature becomes high, and the cooling water monotonically transitions from a single-phase flow state to a two-phase flow state with heating. Stable start-up of the reactor becomes possible.

【0003】これに対し、起動時において、少なくと
も、未臨界の状態から隔離弁が開いて原子炉から蒸気が
吐出されるまでの期間は冷却水の自然循環によって炉心
を冷却するタイプの沸騰水型原子炉があり、例えば再循
環ポンプを備わっていない自然循環型原子炉では、炉心
における冷却水の自然循環は、炉心を囲むシュラウド内
外の静水頭を駆動力としている。このため、原子炉の冷
態停止後の起動時に炉心で冷却水を核加熱すると、シュ
ラウド内外の冷却水は温度差による密度差を駆動力とし
て低流速で循環し、水温が上昇して炉心入口の冷却水サ
ブクール度が物性および循環流速で決まる沸騰開始最大
サブクール度より小さくなると炉心で沸騰が生じる。こ
の時、蒸気泡の発生でシュラウド内外の静水頭差が増加
し、冷却水の循環速度が増加する。これにより、炉心の
冷却量が増加して炉心内の冷却水が単相流状態に戻り、
これらが繰り返されて二相流と単相流状態が交番し、流
動変動が生じる。この不安定現象は、気液の密度比の大
きい低温時に顕著になり、炉心入口の冷却水のサブクー
ル度が不安定発生限界サブクール度より小さくなるまで
継続する。
On the other hand, at the time of start-up, at least during the period from the subcritical state to the opening of the isolation valve and the discharge of steam from the reactor, a boiling water type of a type in which the core is cooled by natural circulation of cooling water. In a natural circulation type reactor having a nuclear reactor, for example, without a recirculation pump, the natural circulation of cooling water in the core is driven by a hydrostatic head inside and outside a shroud surrounding the core. For this reason, when the cooling water is nuclear-heated in the core at the time of start-up after the cold shutdown of the reactor, the cooling water inside and outside the shroud circulates at a low flow velocity with the density difference due to the temperature difference as the driving force, and the water temperature rises and the core inlet When the cooling water subcooling degree becomes smaller than the maximum boiling start subcooling degree determined by the physical properties and the circulation flow rate, boiling occurs in the core. At this time, the difference in hydrostatic head inside and outside the shroud increases due to the generation of steam bubbles, and the circulation speed of the cooling water increases. As a result, the cooling amount of the core increases, and the cooling water in the core returns to a single-phase flow state,
These are repeated, and the two-phase flow and the single-phase flow state alternate, and flow fluctuation occurs. This unstable phenomenon becomes remarkable at a low temperature where the gas-liquid density ratio is large, and continues until the subcool degree of the cooling water at the core inlet becomes smaller than the unstable generation limit subcool degree.

【0004】この低温二相流の不安定現象においては、
流動変動の発生によって核燃料のボイド反応度も変動す
るため、炉心の安定性も向上しない問題がある。
[0004] In this unstable phenomenon of low-temperature two-phase flow,
Since the void reactivity of nuclear fuel also fluctuates due to the flow fluctuation, there is a problem that the stability of the core is not improved.

【0005】また、沸騰開始を遅らせて冷却水をできる
だけ高温まで単相流状態で昇温して、低温二相流の不安
定現象を回避するためには、冷却水を極めて低い核加熱
量で長時間を要して加熱しなければならない。しかし、
この方法においては、炉心内の循環流速が微小であるた
め、圧力容器内の下部プレナム内の冷却水に温度成層化
が起こり、低温水が下部プレナム内に停滞する。したが
って、冷却水の大部分が高温になって沸騰を開始したと
きに、炉心循環流速の増加によって下部プレナム内の低
温水が炉心内に流入して同様の不安定現象が発生する。
更に、低い核加熱量で冷却水を加熱するため、原子炉の
起動に長大な時間を要し、原子炉運転に係わる経済性が
大幅に悪化する。
In order to avoid the instability of the low-temperature two-phase flow by raising the temperature of the cooling water to the highest possible temperature in a single-phase flow by delaying the start of boiling, the cooling water must be cooled at a very low nuclear heating rate. It must be heated for a long time. But,
In this method, since the circulation flow velocity in the core is very small, the cooling water in the lower plenum in the pressure vessel undergoes thermal stratification, and the low-temperature water stagnates in the lower plenum. Therefore, when most of the cooling water becomes high in temperature and starts boiling, low temperature water in the lower plenum flows into the core due to an increase in the core circulation flow rate, and the same unstable phenomenon occurs.
Further, since the cooling water is heated with a low nuclear heating amount, it takes a long time to start the reactor, and the economics associated with the operation of the reactor deteriorates significantly.

【0006】上記低温二相流の不安定現象の発生を防止
するための従来の装置は、特開昭59−143997号
公報および特開昭59−217188号公報に記載のよ
うに、自然循環型原子炉の起動時において、定期点検時
用熱供給用ボイラからの熱を原子炉圧力容器内の冷却水
に供給することにより、冷却水を昇温した後、核加熱を
開始し、低温低圧二相流状態の流動不安定に起因する炉
心安定性の低下を防止していた。また、他の従来の方法
として、特開昭60−69598号公報に記載のよう
に、熱交換器を介して圧力容器内部の冷却材を昇温して
炉心入口のサブクール度を不安定発生限界サブクール度
よりも小さい範囲に設定した後、出力上昇を開始するこ
とにより原子炉起動時の炉心安定性を確保していた。
A conventional apparatus for preventing the occurrence of the unstable phenomenon of the low-temperature two-phase flow is disclosed in Japanese Unexamined Patent Publication Nos. 59-143997 and 59-217188. When the reactor is started, heat from the heat supply boiler for periodic inspection is supplied to the cooling water in the reactor pressure vessel to raise the temperature of the cooling water. This prevented the core stability from deteriorating due to the unstable flow in the phase flow state. Further, as another conventional method, as described in JP-A-60-69598, the temperature of the coolant inside the pressure vessel is increased through a heat exchanger to reduce the degree of subcooling at the core inlet to an unstable occurrence limit. After setting the range to be smaller than the subcool degree, the core stability at the time of starting the reactor was secured by starting the power increase.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術は、いず
れも格納容器内外の機器で熱を供給するものであり、原
子炉一次冷却系自体の機器、起動方法および起動特性を
改善したものではない。また、冷却水の昇温に核熱を用
いておらず、ボイラによる熱発生と熱の輸送により熱損
失が発生するだけでなく、核加熱と同様の加熱量を得る
ために大型のボイラが必要となるか、または原子炉の起
動に多大の時間を要し、経済性が低下する。また、格納
容器内外あるいは圧力容器内に熱交換器と熱供給系を設
けて冷却水を昇温するものであり、配管群、制御系を必
要とし、原子炉の構造が複雑になるため経済性と信頼性
が向上しない問題があった。
In the above prior arts, heat is supplied by equipment inside and outside the containment vessel, and none of them improves the equipment, starting method and starting characteristics of the primary cooling system of the reactor itself. . Also, since nuclear heat is not used to raise the temperature of the cooling water, a large boiler is needed to obtain the same amount of heat as nuclear heating, in addition to generating heat and transferring heat by the boiler. Or it takes a lot of time to start up the reactor, and the economic efficiency decreases. In addition, a heat exchanger and heat supply system are provided inside and outside the containment vessel or inside the pressure vessel to raise the temperature of the cooling water, requiring piping groups and control systems, and complicating the structure of the reactor, resulting in economical efficiency. There was a problem that reliability did not improve.

【0008】また、低温二相流の不安定現象を回避する
ため冷却水を極めて低い核加熱量で長時間を要して加熱
する方法をとった場合においても、原子炉の起動に多大
な時間を要し、原子炉の起動に係わる経済性が向上しな
い問題が生じる。
[0008] Even if the cooling water is heated with an extremely low nuclear heating amount for a long time in order to avoid the unstable phenomenon of the low-temperature two-phase flow, it takes a long time to start up the reactor. Therefore, there arises a problem that the economical efficiency related to the start of the nuclear reactor is not improved.

【0009】本発明の主目的は、原子炉の起動時に低温
二相流の不安定現象の発生による流動変動および炉心安
定性の低下を防止し、安定した原子炉の起動を可能にす
る沸騰水型原子炉の起動方法およびその方法を実施する
ための装置を提供することである。
It is a primary object of the present invention to prevent a flow fluctuation and a decrease in core stability due to the occurrence of an unstable phenomenon of a low-temperature two-phase flow at the time of starting a nuclear reactor, and to provide a boiling water that enables a stable nuclear reactor startup. It is an object of the present invention to provide a method for starting a nuclear reactor and an apparatus for carrying out the method.

【0010】本発明の他の目的は、原子炉の起動時間を
短縮し経済性および信頼性に優れた沸騰水型原子炉の起
動方法およびその方法を実施するための装置を提供する
ことである。
It is another object of the present invention to provide a method for starting a boiling water reactor which is excellent in economy and reliability by shortening the start-up time of the reactor, and an apparatus for implementing the method. .

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の第1の概念によれば、核燃料からなる炉心
を内蔵し、内部に冷却水を保有すると共に内部で蒸気を
発生する圧力容器を備えた沸騰水型原子炉の起動方法に
おいて、圧力容器内の冷却水を昇温する際に、圧力容器
内を原子炉の定格運転圧力より低くかつ昇温中の冷却水
温度に対応する飽和圧力よりも高くし、その後圧力容器
内の圧力を昇温中の冷却水温度に対応する飽和圧力にす
ることを特徴とする沸騰水型原子炉の起動方法が提供さ
れる。
According to a first aspect of the present invention, there is provided a fuel cell system having a built-in reactor core made of nuclear fuel, containing cooling water therein, and generating steam therein. In the method for starting a boiling water reactor equipped with a vessel, when the temperature of the cooling water in the pressure vessel is raised, the pressure vessel
Lower inner than the rated operating pressure of the reactor and higher comb than saturation pressure that corresponds to the coolant temperature of NoboriAtsushichu, then the pressure in the pressure vessel to a saturation pressure corresponding to the coolant temperature of NoboriAtsushichu A method for starting a boiling water reactor is provided.

【0012】また、上記目的を達成するため、本発明の
第2の概念によれば、核燃料からなる炉心を内蔵し、内
部に冷却水を保有すると共に内部で蒸気を発生する圧力
容器を備えた沸騰水型原子炉の起動方法において、圧力
容器内の冷却水を昇温する際に、圧力容器内の冷却水の
温度に対応する冷却水の飽和圧力よりも圧力容器内の圧
力を高くし、その状態で加熱し、その後圧力容器内の圧
力を圧力容器内の冷却水温度に対応する飽和圧力にし、
その状態で冷却水を加熱することを特徴とする沸騰水型
原子炉の起動方法が提供される。
In order to achieve the above object, according to a second aspect of the present invention, there is provided a pressure vessel which has a built-in core made of nuclear fuel, holds cooling water inside, and generates steam inside. In the startup method of the boiling water reactor, when raising the temperature of the cooling water in the pressure vessel, the pressure in the pressure vessel is made higher than the saturation pressure of the cooling water corresponding to the temperature of the cooling water in the pressure vessel, Heat in that state, and then set the pressure in the pressure vessel to a saturation pressure corresponding to the cooling water temperature in the pressure vessel,
There is provided a method for starting a boiling water reactor, wherein cooling water is heated in that state.

【0013】更に、上記目的を達成するため、本発明の
第3の概念によれば、核燃料からなる炉心を内蔵し、内
部に冷却水を保有すると共に内部で蒸気を発生する圧力
容器を備えた沸騰水型原子炉の起動方法において、
(a)原子炉の起動時に、圧力容器内の加圧を圧力容器
外部から行いながら、冷却水を単相流状態に保って加熱
する第1の手順と;(b)前記第1の手順の後、圧力容
器内の冷却水を前記単相流状態から二相流状態に遷移さ
せる第2の手順と;(c)この二相流状態で冷却水を加
熱する第3の手順と;を有することを特徴とする沸騰水
型原子炉の起動方法が提供される。
Further, in order to achieve the above object, according to a third concept of the present invention, there is provided a pressure vessel which contains a reactor core made of nuclear fuel, holds cooling water inside, and generates steam inside. In the method of starting a boiling water reactor,
(A) a first procedure of heating the cooling water while maintaining the cooling water in a single-phase flow state while pressurizing the inside of the pressure vessel from outside the pressure vessel when the reactor is started; Thereafter, a second procedure for changing the cooling water in the pressure vessel from the single-phase flow state to the two-phase flow state; and (c) a third procedure for heating the cooling water in the two-phase flow state. A method for starting a boiling water reactor is provided.

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】[0018]

【0019】[0019]

【0020】[0020]

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】[0024]

【0025】[0025]

【0026】[0026]

【0027】[0027]

【0028】更に、上記目的を達成するため、本発明の
第4の概念によれば、核燃料からなる炉心を内蔵し、内
部に冷却水を保有すると共に内部で蒸気を発生する圧力
容器と、圧力容器外に配置されて圧力容器に連絡され、
圧力容器内を加圧する圧力調整手段と、原子炉起動時に
前記圧力調整手段を動作させ上記の起動方法を実施する
制御手段とを備えることを特徴とする沸騰水型原子炉が
提供される。
Further, according to a fourth aspect of the present invention, there is provided a pressure vessel which contains a core made of nuclear fuel, holds cooling water therein and generates steam therein, Placed outside the vessel and communicated to the pressure vessel,
A boiling water reactor comprising: a pressure adjusting means for pressurizing the inside of a pressure vessel; and a control means for operating the pressure adjusting means at the time of starting the reactor and performing the above-described starting method. Is done.

【0029】[0029]

【0030】[0030]

【0031】[0031]

【0032】[0032]

【0033】[0033]

【作用】以上のように構成した本発明の作用は次の通り
である。まず、本発明の第1及び第2の概念において、
圧力容器内の冷却水を昇温する際に、圧力容器内の冷却
水の温度に対応する冷却水の飽和圧力よりも圧力容器内
の圧力を高くすることにより、圧力容器内の冷却水のサ
ブクール度が大きくなるため冷却水の沸騰が防止され、
冷却水は単相流状態のまま高温まで加熱される。このた
め、気液の密度比が減少し、単相流状態と二相流状態と
での密度差が小さくなり、流動変動が小さくなる。ま
た、冷却水温度自体も高いので、単相流状態から二相流
状態への遷移が容易となり、流動変動が小さくなる。し
たがって、その後圧力容器内の圧力を圧力容器内の冷却
水温度に対応する飽和圧力にすることにより、不安定の
発生が抑制された状態で冷却水は二相流状態に遷移す
る。その後または並行して、この冷却水を加熱すること
により沸騰が生じ、容易に原子炉定格運転温度および圧
力が得られる。
The operation of the present invention constructed as described above is as follows. First, in the first and second concepts of the present invention,
When raising the temperature of the cooling water in the pressure vessel, the subcooling of the cooling water in the pressure vessel is performed by making the pressure in the pressure vessel higher than the saturation pressure of the cooling water corresponding to the temperature of the cooling water in the pressure vessel. As the degree of cooling increases, the boiling of cooling water is prevented,
The cooling water is heated to a high temperature in a single-phase flow state. For this reason, the gas-liquid density ratio is reduced, the density difference between the single-phase flow state and the two-phase flow state is reduced, and the flow fluctuation is reduced. Further, since the cooling water temperature itself is high, the transition from the single-phase flow state to the two-phase flow state becomes easy, and the flow fluctuation is reduced. Therefore, after that, by setting the pressure in the pressure vessel to a saturation pressure corresponding to the temperature of the cooling water in the pressure vessel, the cooling water transitions to a two-phase flow state in a state where occurrence of instability is suppressed. Thereafter or concurrently, the cooling water is heated to cause boiling, so that the rated operating temperature and pressure of the reactor can be easily obtained.

【0034】以上の起動方法により、沸騰水型原子炉の
起動時に低温二相流の不安定現象の発生による流動変動
および炉心安定性の低下を防止し、安定した信頼性の高
い原子炉の起動を可能にする。また、原子炉の起動時間
を短縮し、経済性を向上できる。
With the above-described starting method, it is possible to prevent a flow fluctuation and a decrease in core stability due to the occurrence of an unstable phenomenon of a low-temperature two-phase flow at the time of starting a boiling water reactor, and to start a stable and highly reliable reactor. Enable. In addition, the startup time of the reactor can be shortened, and the economic efficiency can be improved.

【0035】また、本発明の第3の概念においては、第
1の手順で圧力容器内を加圧して加熱することにより、
圧力容器内の冷却水の温度に対応する冷却水の飽和圧力
よりも圧力容器内の圧力が高くなり、上記の作用が得ら
れ、その結果、第2の手順で二相流に遷移させる際に、
不安定の発生が抑制される。その後、第3の手順で二相
流状態で冷却水を加熱することにより、冷却水のサブク
ール度が減少して沸騰が生じ、容易に原子炉定格運転温
度および圧力が得られる。
In the third concept of the present invention, the pressure in the pressure vessel is heated and heated in the first step.
The pressure in the pressure vessel becomes higher than the saturation pressure of the cooling water corresponding to the temperature of the cooling water in the pressure vessel, and the above-described action is obtained. As a result, when the two-phase flow is changed in the second procedure, ,
The occurrence of instability is suppressed. Thereafter, by heating the cooling water in a two-phase flow state in the third procedure, the subcooling degree of the cooling water is reduced to cause boiling, and the reactor rated operating temperature and pressure can be easily obtained.

【0036】第1の手順で、圧力容器内の冷却水の温度
に対応する冷却水の飽和圧力よりも圧力容器内の圧力が
高くなるように圧力容器内の圧力を制御して、冷却水を
単相流状態に保つことにより、冷却水を高温まで確実に
単相流状態に保つことができる。
In the first procedure, the pressure in the pressure vessel is controlled so that the pressure in the pressure vessel becomes higher than the saturation pressure of the cooling water corresponding to the temperature of the cooling water in the pressure vessel, and the cooling water is discharged. By maintaining the single-phase flow state, the cooling water can be reliably maintained in the single-phase flow state up to a high temperature.

【0037】また、第1の手順で、冷却水の加熱を開始
すると同時に圧力容器内の加圧を開始し、冷却水の加熱
と圧力容器内の加圧を同時平行的に連続して行うことに
より、最初に圧力容器内の加圧を単独で行う手順に比べ
て、起動時間を短縮することができる。
In the first procedure, the heating of the cooling water is started and the pressurization in the pressure vessel is started at the same time, and the heating of the cooling water and the pressurization in the pressure vessel are simultaneously and continuously performed. Accordingly, the start-up time can be reduced as compared with the procedure in which the pressure in the pressure vessel is independently applied first.

【0038】第2の手順で、少なくとも圧力容器内の圧
力を制御することにより冷却水を単相流状態から二相流
状態に遷移させること、より具体的には、原子炉定格運
転圧力以下の所定の圧力に到達するまで、圧力容器内の
圧力が圧力容器内の冷却水温度に対応する飽和圧力に漸
近するように圧力容器内の圧力を制御することにより、
冷却水を二相流状態に遷移させることにより、冷却水を
確実に二相流状態に遷移させることができる。この場
合、圧力容器内の圧力をほぼ一定に保つか、または圧力
容器内を減圧することにより飽和圧力に漸近させること
により、圧力容器内の圧力が原子炉定格運転圧力に達す
る前に、冷却水を確実に飽和状態にすることができるの
で、早期に炉心内の冷却水を二相流状態に遷移させるこ
とができ、二相流状態へ遷移する時間の短縮と、その後
の飽和状態での沸騰による昇温時間の短縮により、起動
時間を更に短縮できる。
In the second procedure, the cooling water is changed from the single-phase flow state to the two-phase flow state by controlling at least the pressure in the pressure vessel. By controlling the pressure in the pressure vessel so that the pressure in the pressure vessel approaches the saturation pressure corresponding to the cooling water temperature in the pressure vessel until a predetermined pressure is reached,
By shifting the cooling water to the two-phase flow state, the cooling water can be reliably shifted to the two-phase flow state. In this case, by keeping the pressure in the pressure vessel almost constant, or reducing the pressure in the pressure vessel to approach the saturation pressure, the cooling water is cooled before the pressure in the pressure vessel reaches the reactor rated operating pressure. The cooling water in the core can be transitioned to the two-phase flow state early, and the time required to transition to the two-phase flow state can be shortened, and the boiling in the saturated state after that can be achieved. , The startup time can be further reduced.

【0039】また、圧力の制御に際して、冷却水の加熱
量を減らすか、冷却水の加熱を一旦中止することによ
り、炉心における加熱が抑制されて沸騰が生じないた
め、不安定現象の発生を完全に防止した状態で二相流状
態に遷移させることができ、更に安定した原子炉の起動
を可能になる。
When controlling the pressure, the heating amount of the cooling water is reduced or the heating of the cooling water is temporarily stopped, so that the heating in the core is suppressed and the boiling does not occur. It is possible to make a transition to the two-phase flow state in a state where the reactor is prevented, and it is possible to start the reactor more stably.

【0040】また、第1の手順で、冷却水の温度、圧力
容器内の圧力および前記炉心の流量の計測値に基づいて
単相流の限界熱出力を演算し、炉心の熱出力がこの限界
熱出力より小となるように前記炉心の出力を制御する制
御棒の引き抜き量を設定すると共に、第3の手順で、冷
却水の温度、圧力容器内の圧力および炉心の流量の計測
値に基づいて二相流の限界熱出力を演算し、炉心の熱出
力がこの限界熱出力より小となるように制御棒の引き抜
き量を設定することにより、原子炉の安全な起動と起動
時間の更なる短縮が可能となる。
In the first procedure, the critical heat output of the single-phase flow is calculated based on the measured values of the temperature of the cooling water, the pressure in the pressure vessel, and the flow rate of the core. Along with setting the withdrawal amount of the control rod for controlling the output of the core so as to be smaller than the heat output, the third procedure is based on the measured values of the temperature of the cooling water, the pressure in the pressure vessel, and the flow rate of the core. By calculating the critical heat output of the two-phase flow and setting the control rod withdrawal amount so that the core heat output is less than this critical heat output, the safe start-up of the reactor and further increase of the start-up time Shortening becomes possible.

【0041】更に、圧力容器、主蒸気管および給水管の
少なくとも1つに電気ヒータを設置し、第1〜第3の手
順の少なくとも1つの手順で、冷却水を核加熱すると共
に、この電気ヒータにより冷却水を加熱することによ
り、または第1〜第3の手順の少なくとも1つの手順
で、冷却水を核加熱すると共に、給水ポンプを運転し、
ポンプ回転による入熱により冷却水を加熱することによ
り、核加熱とそれ以外の手順の併用で原子炉の起動時間
が更に短縮される。
Further, an electric heater is installed in at least one of the pressure vessel, the main steam pipe and the water supply pipe, and the cooling water is nuclear-heated in at least one of the first to third procedures. By heating the cooling water by nuclear heating of the cooling water or in at least one of the first to third procedures, and operating the water supply pump;
By heating the cooling water by the heat input by the rotation of the pump, the start-up time of the nuclear reactor is further shortened by using nuclear heating and other procedures in combination.

【0042】また、給水管を分岐して起動用給水止め弁
を有する起動用給水管を設置し、この起動用給水管の冷
却水出口を圧力容器内の炉心下方に接続し、第1〜第3
の手順の少なくとも1つの手順で、冷却水を核加熱する
と共に、この起動用給水管を介して給水ポンプにより冷
却水を炉心に強制循環して炉心流量を増加させることに
よっても、核加熱とそれ以外の手順の併用で原子炉起動
時の炉心安定性が更に向上する。
Further, a water supply pipe is branched and a water supply pipe for starting having a water supply stop valve for water supply is installed, and a cooling water outlet of the water supply pipe for startup is connected to a lower part of a core in a pressure vessel, and the first to the first water supply pipes are connected. 3
In at least one of the above procedures, the nuclear heating of the cooling water is carried out, and the cooling water is forcibly circulated to the core by the water supply pump through the starting water supply pipe to increase the core flow rate, thereby making the nuclear heating and the nuclear heating possible. The core stability at the time of starting the reactor is further improved by using other procedures in combination.

【0043】また、本発明の第4及び第5の概念におい
ては、圧力調整手段又は圧力調整手段及びその制御手段
を設けることにより、本発明の上記起動方法を実施する
ことができる。
In the fourth and fifth concepts of the present invention, the start-up method of the present invention can be carried out by providing the pressure adjusting means or the pressure adjusting means and its control means.

【0044】[0044]

【実施例】本発明は、原子炉起動時において、少なくと
も、未臨界の状態から蒸気が原子炉より吐出される前ま
での期間が冷却水の自然循環によって炉心を冷却するタ
イプの沸騰水型原子炉に適用することができる。以下に
述べる本発明の実施例は、自然循環型原子炉を例にとっ
て説明する。原子炉の起動は、未臨界状態から臨界状態
へ、その後の昇温昇圧操作、原子炉出力上昇、原子炉か
らタービンへの蒸気供給および定格原子炉出力到達と言
った操作が順次行われる。本発明は原子炉起動時のうち
特に原子炉を定格温度、定格圧力の状態にする昇温昇圧
操作に関係するものである。昇温昇圧操作は、自然循環
状態で行われる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a boiling water type atomic reactor in which the core is cooled by natural circulation of cooling water at least during a period from the subcritical state to before steam is discharged from the nuclear reactor at the time of starting the reactor. Can be applied to furnaces. The embodiments of the present invention described below will be described by taking a natural circulation type reactor as an example. The reactor is started from a subcritical state to a critical state, and thereafter, operations such as a temperature raising and pressure raising operation, a reactor power increase, steam supply from the reactor to the turbine, and reaching a rated reactor output are sequentially performed. The present invention particularly relates to a temperature raising operation for raising the temperature of a reactor to a rated temperature and a rated pressure during the start-up of the reactor. The temperature raising / pressurizing operation is performed in a natural circulation state.

【0045】第1の実施例 本発明の第1の実施例を図1〜図5により説明する。図
1および図3から図5において、黒塗の弁は弁が閉じた
状態を示し、白抜きの弁は弁が開いた状態を示す。ま
た、図2は、原子炉起動時の系圧力、冷却水温度、炉心
入口サブクール度の時間変化を示す。
First Embodiment A first embodiment of the present invention will be described with reference to FIGS. In FIGS. 1 and 3 to 5, a black-painted valve indicates a state in which the valve is closed, and a white valve indicates a state in which the valve is open. FIG. 2 shows a time change of the system pressure, the cooling water temperature, and the core inlet subcool degree at the time of starting the reactor.

【0046】図1において、圧力容器1には核燃料を装
荷した炉心2が内蔵されており、炉心出力は制御棒3を
出し入れすることにより制御される。圧力容器1とター
ビン8は主蒸気隔離弁4、タービン蒸気止め弁6および
タービン蒸気流量調整弁7を有する主蒸気管5で接続さ
れている。タービン8には発電機25が連結されてい
る。タービン駆動後の蒸気は復水器11で凝縮され、復
水器11は給水ポンプ12と給水止め弁13を有する給
水管14で圧力容器1に接続される。主蒸気隔離弁4か
らタービン蒸気止め弁6までの主蒸気管5は復水器11
の入口にタービンバイパス止め弁10を有するタービン
バイパス流路9で接続され、給水ポンプ12の吐出側の
給水管14と復水器11の入口は給水バイパス止め弁1
6を有する給水バイパス流路15で接続されている。
In FIG. 1, a core 2 loaded with nuclear fuel is built in a pressure vessel 1, and the core power is controlled by moving a control rod 3 in and out. The pressure vessel 1 and the turbine 8 are connected by a main steam pipe 5 having a main steam isolation valve 4, a turbine steam stop valve 6 and a turbine steam flow regulating valve 7. A generator 25 is connected to the turbine 8. The steam after turbine driving is condensed in a condenser 11, and the condenser 11 is connected to the pressure vessel 1 by a water supply pipe 14 having a water supply pump 12 and a water supply stop valve 13. The main steam pipe 5 from the main steam isolation valve 4 to the turbine steam stop valve 6 is connected to a condenser 11.
The water supply pipe 14 on the discharge side of the water supply pump 12 and the inlet of the condenser 11 are connected to a water supply bypass stop valve 1
6 are connected by a water supply bypass flow path 15 having the same.

【0047】圧力容器1と給水止め弁13の間の給水管
14には圧力容器1内を加圧するための圧力調整装置4
4が接続されている。圧力調整装置44は、弁18を介
して給水管14に接続された加圧タンク17と、加圧タ
ンク17には弁20および流路21を介して高圧気体を
供給する高圧気体タンク19と、加圧タンク17を高圧
気体タンク19とを接続し、加圧タンクから気体を排出
して減圧するための圧縮機22と弁23、流路24とで
構成されている。なお、加圧タンク17内の気体を原子
炉格納容器内の気体処理系に直接排出して減圧する構成
であってもよい。高圧気体タンク19は交換可能なボン
ベ方式とすることが好ましい。
A water supply pipe 14 between the pressure vessel 1 and the water supply stop valve 13 has a pressure adjusting device 4 for pressurizing the inside of the pressure vessel 1.
4 are connected. The pressure adjusting device 44 includes a pressurized tank 17 connected to the water supply pipe 14 via the valve 18, a high-pressure gas tank 19 for supplying high-pressure gas to the pressurized tank 17 via the valve 20 and the flow path 21, The pressurized tank 17 is connected to a high-pressure gas tank 19, and includes a compressor 22 for discharging gas from the pressurized tank to reduce the pressure, a valve 23, and a flow path 24. The gas in the pressurized tank 17 may be directly discharged to the gas treatment system in the containment vessel to reduce the pressure. The high-pressure gas tank 19 is preferably of a replaceable cylinder type.

【0048】また、給水管14は給水ポンプ12の吐出
側において復水給排水弁33および復水ポンプ36を有
する復水給排水流路32を介して復水貯蔵タンク34に
接続されている。
The water supply pipe 14 is connected to a condensate storage tank 34 on the discharge side of the water supply pump 12 via a condensate water supply / drainage passage 32 having a condensate water supply / drainage valve 33 and a condensate pump 36.

【0049】上記の自然循環型原子炉の起動方法を図2
から図5を合わせて参照して説明する。
FIG. 2 shows a method of starting the above natural circulation type reactor.
This will be described with reference to FIG.

【0050】原子炉の冷態停止後の起動時には、まず主
蒸気隔離弁4、タービン蒸気止め弁6、給水止め弁13
およびタービンバイパス止め弁10を開けた状態で、例
えば復水給排水弁33を開け、復水ポンプ36を駆動し
て復水貯蔵タンク34より復水を供給することにより、
圧力容器1、主蒸気管5および給水管14からなる原子
炉一次冷却水系を水張りする。このとき、圧力容器1か
ら蒸気隔離弁4に至る主蒸気管5の管路部分は通常上方
に傾斜し、レベルが高くなっていることから、圧力容器
1内の主蒸気管5の接続部以上のレベルまでの水張りが
可能である。なお、主蒸気管5のレベルが十分でない場
合は、例えば圧力容器1の頂部にベント弁を設け、この
ベント弁を開放して同様の水張りを行えばよい。
When the reactor is started after a cold shutdown, first, the main steam isolation valve 4, the turbine steam stop valve 6, the water supply stop valve 13
With the turbine bypass stop valve 10 open, for example, by opening the condensate supply / drain valve 33 and driving the condensate pump 36 to supply condensate from the condensate storage tank 34,
The reactor primary cooling water system consisting of the pressure vessel 1, the main steam pipe 5, and the water supply pipe 14 is filled with water. At this time, the pipe section of the main steam pipe 5 from the pressure vessel 1 to the steam isolation valve 4 is normally inclined upward and the level is high, so that the connection portion of the main steam pipe 5 in the pressure vessel 1 It is possible to fill up to the water level. If the level of the main steam pipe 5 is not sufficient, for example, a vent valve may be provided at the top of the pressure vessel 1, and the vent valve may be opened to perform similar water filling.

【0051】水張りが完了した後、図1に示すように主
蒸気隔離弁4、タービン蒸気止め弁6、給水止め弁13
およびタービンバイパス止め弁10を閉じ、原子炉一次
冷却系を隔離する。次いで、好ましくは、給水バイパス
止め弁16を開いて給水ポンプ12を運転して給水を復
水器11に循環させることにより、冷却水をポンプ加熱
しかつ冷却水を予備的に循環させ、給水系を待機状態に
置く。次いで、圧力調整装置44で圧力容器1内を圧力
P1に加圧する(図2中の1−参照)。以下、圧力容
器1内の圧力P1を適宜「系圧力」という。図2の例で
は系圧力P1は0.5MPaである。また、系圧力P1
に対応する飽和温度をT1とすると、P1が0.5MP
aではT1は151゜Cである。
After the water filling is completed, as shown in FIG. 1, the main steam isolation valve 4, the turbine steam stop valve 6, the water supply stop valve 13
And the turbine bypass stop valve 10 is closed to isolate the reactor primary cooling system. Next, preferably, the cooling water is pump-heated and the cooling water is preliminarily circulated by opening the water supply bypass stop valve 16 and operating the water supply pump 12 to circulate the water supply to the condenser 11. Put on standby. Next, the inside of the pressure vessel 1 is pressurized to a pressure P1 by the pressure adjusting device 44 (see 1 in FIG. 2). Hereinafter, the pressure P1 in the pressure vessel 1 is appropriately referred to as “system pressure”. In the example of FIG. 2, the system pressure P1 is 0.5 MPa. Also, the system pressure P1
Assuming that the saturation temperature corresponding to T1 is T1, P1 is 0.5MP
In a, T1 is 151 ° C.

【0052】以上のように原子炉一次冷却水を加圧した
後、制御棒3を引き抜いて炉心2で発生する核熱によっ
て冷却水を加熱する(図2中の1−参照)。ここで、
系圧力P1は上記のように0.5PMaで、対応する飽
和温度T1は151℃であり、炉心2における核加熱に
よって冷却水温度T2が100℃まで上昇した場合にお
いても、炉心2の入口の冷却水サブクール度は50℃以
上あり、冷却水は単相流状態のままである。
After pressurizing the reactor primary cooling water as described above, the control rod 3 is pulled out and the cooling water is heated by nuclear heat generated in the reactor core 2 (see 1 in FIG. 2). here,
As described above, the system pressure P1 is 0.5 PMa, the corresponding saturation temperature T1 is 151 ° C., and even when the cooling water temperature T2 rises to 100 ° C. due to the nuclear heating in the core 2, the cooling of the inlet of the core 2 is performed. The water subcooling degree is 50 ° C. or higher, and the cooling water remains in a single-phase flow state.

【0053】以上の手順で更に冷却水を核加熱し、冷却
水温度T2を200℃まで増加する(図2中の1−参
照)。この過程において、圧力調整装置44によって系
圧力P1を冷却水温度T2に対応する飽和圧力P2より
も常に高くする(P1>P2)と共に、次式の条件を満
足するような値とすることにより、高温高圧状態まで冷
却水を単相流のまま加熱する。
In the above procedure, the cooling water is further subjected to nuclear heating to increase the cooling water temperature T2 to 200 ° C. (see 1 in FIG. 2). In this process, the system pressure P1 is always made higher than the saturation pressure P2 corresponding to the cooling water temperature T2 by the pressure adjusting device 44 (P1> P2), and the system pressure P1 is set to a value satisfying the following condition. The cooling water is heated to a high-temperature high-pressure state with a single-phase flow.

【0054】 T2<T1−Tb …(1) ここで、Tbは冷却水温度、系圧力、流量および核加熱
量等に依存する沸騰開始最大炉心入口サブクール度であ
る。図2の例では、冷却水温度T2が150℃では、系
圧力P1を1.6MPa(対応する飽和温度200℃)
とし、また冷却水温度T2が200℃では、系圧力P1
を4.1MPa(対応する飽和温度250℃)とし、炉
心入口サブクール度を50℃以上としている。
T2 <T1−Tb (1) Here, Tb is the maximum subcooling at the start of the boiling core, which depends on the cooling water temperature, the system pressure, the flow rate, the nuclear heating amount, and the like. In the example of FIG. 2, when the cooling water temperature T2 is 150 ° C., the system pressure P1 is set to 1.6 MPa (corresponding saturation temperature 200 ° C.).
When the cooling water temperature T2 is 200 ° C., the system pressure P1
Is set to 4.1 MPa (corresponding saturation temperature 250 ° C.), and the core inlet subcool degree is set to 50 ° C. or more.

【0055】以上のように冷却水温度T2を上昇させる
ことにより、二相流状態に遷移しても不安定現象の発生
が抑制される状態となる。すなわち、冷却水温度が上昇
することにより、気液の密度比が減少し、単相流状態と
二相流状態とでの密度差が小さくなり、流動変動が小さ
くなる。また、冷却水温度自体も高いので、単相流状態
から二相流状態への遷移が容易となり、流動変動が小さ
くなる。
By raising the cooling water temperature T2 as described above, a state in which the occurrence of an unstable phenomenon is suppressed even when the state transits to the two-phase flow state. That is, as the cooling water temperature increases, the gas-liquid density ratio decreases, the density difference between the single-phase flow state and the two-phase flow state decreases, and the flow fluctuation decreases. Further, since the cooling water temperature itself is high, the transition from the single-phase flow state to the two-phase flow state becomes easy, and the flow fluctuation is reduced.

【0056】以上のように冷却水温度T2を上昇させた
後、圧力調整装置44で圧力容器1内の圧力P1を冷却
水温度T2に対応する飽和圧力P2に漸近させる(図2
中の1−参照)。図2の例では、制御棒は継続して引
き抜かれ、冷却水は炉心2で発生する核熱によって加熱
されており、冷却水温度T2が定格運転温度に達する時
点(すなわち、冷却水温度T2に対応する飽和圧力P2
が定格運転圧力に達する時点)において、系圧力P1が
ほぼ定格運転圧力に達するように、圧力調整装置44で
系圧力を調整している。この過程で炉心入口サブクール
度は減少し、炉心2内の冷却水は、高温で気液密度比が
小さく不安定現象が抑制された状態を経て、二相流状態
に遷移する。冷却水が二相流状態に遷移する時点は、系
圧力が定格運転圧力以下の所定の圧力に達した時点であ
り、ほぼ以下の条件を満足した時点に対応する。
After the cooling water temperature T2 is increased as described above, the pressure P1 in the pressure vessel 1 is gradually approached to the saturation pressure P2 corresponding to the cooling water temperature T2 by the pressure adjusting device 44 (FIG. 2).
1-). In the example of FIG. 2, the control rod is continuously pulled out, the cooling water is heated by nuclear heat generated in the core 2, and when the cooling water temperature T2 reaches the rated operation temperature (that is, the cooling water temperature T2 Corresponding saturation pressure P2
At the time when the pressure reaches the rated operating pressure), the system pressure is adjusted by the pressure regulator 44 so that the system pressure P1 almost reaches the rated operating pressure. In this process, the degree of subcooling at the core inlet decreases, and the cooling water in the core 2 transitions to a two-phase flow state through a state in which the gas-liquid density ratio is small at a high temperature and the unstable phenomenon is suppressed. The point in time when the cooling water transitions to the two-phase flow state is a point in time when the system pressure reaches a predetermined pressure equal to or lower than the rated operating pressure, and corresponds to a point in time when the following conditions are almost satisfied.

【0057】 P1>P2、 T1<T2+Ts …(2) ここで、Tsは冷却水温度、系圧力、流量および核加熱
量等に依存する安定沸騰領域最大サブクール度である。
P1> P2, T1 <T2 + Ts (2) Here, Ts is the maximum subcool degree in the stable boiling region depending on the cooling water temperature, system pressure, flow rate, nuclear heating amount, and the like.

【0058】また、この過程(図2中の1−)では、
圧力調整装置44による加圧を解除すると共に、図3に
示すように、主蒸気隔離弁4およびタービンバイパス止
め弁10を開いて冷却水の加圧を解除し、圧力容器1内
に水位を形成することにより、定格運転状態へ円滑に移
行できるようにする。このとき、圧力容器1内の水位が
適性水位となるように、復水給排水弁33および給水止
め弁13を開閉して当該水位を調整する。
In this process (1- in FIG. 2),
While the pressurization by the pressure adjusting device 44 is released, as shown in FIG. 3, the main steam isolation valve 4 and the turbine bypass stop valve 10 are opened to release the pressurization of the cooling water, and a water level is formed in the pressure vessel 1. By doing so, it is possible to smoothly transition to the rated operation state. At this time, the condensate water supply / drainage valve 33 and the water supply stop valve 13 are opened and closed so that the water level in the pressure vessel 1 becomes an appropriate water level.

【0059】なお、「圧力調整装置44による加圧を解
除する」とは、図1において弁23を開け、圧縮機22
を駆動して加圧タンク17から気体を排出することであ
り、加圧タンク17内の気体を原子炉格納容器内の気体
処理系に直接排出して減圧する構成を供える場合は、そ
の排出のことである。また、この圧力制御は、図2の系
圧力の特性線図において、実線の系圧力P1と破線の冷
却水温度T2に対応する飽和圧力P2との差を小さくす
ることに対応する。
"Release the pressurization by the pressure adjusting device 44" means that the valve 23 is opened in FIG.
Is driven to discharge gas from the pressurized tank 17. When a configuration is provided in which the gas in the pressurized tank 17 is directly discharged to the gas treatment system in the containment vessel to reduce the pressure, That is. This pressure control corresponds to reducing the difference between the system pressure P1 indicated by the solid line and the saturation pressure P2 corresponding to the coolant temperature T2 indicated by the broken line in the characteristic diagram of the system pressure in FIG.

【0060】次いで、系圧力および冷却水温度が定格運
転圧力および温度に達するのに伴い、図4に示すよう
に、給水止め弁13を開いて圧力容器1への給水を開始
し、図5に示すように、タービン蒸気止め弁6およびタ
ービン蒸気流量調整弁7を開き、タービンバイパス止め
弁10を閉じてタービン8の回転を開始する。この時の
給水流量は、炉心2の核加熱量および循環水と給水の熱
バランスから決定され、給水止め弁13と給水バイパス
止め弁16で調整される。
Next, as the system pressure and the cooling water temperature reach the rated operating pressure and temperature, as shown in FIG. 4, the water supply stop valve 13 is opened to start supplying water to the pressure vessel 1, and FIG. As shown, the turbine steam stop valve 6 and the turbine steam flow control valve 7 are opened, the turbine bypass stop valve 10 is closed, and the rotation of the turbine 8 is started. The feedwater flow rate at this time is determined from the nuclear heating amount of the reactor core 2 and the heat balance between the circulating water and the feedwater, and is adjusted by the feedwater stop valve 13 and the feedwater bypass stop valve 16.

【0061】以上の起動方法により、冷却水が低温の時
には単相流状態で加熱し、冷却水が高温になってから二
相流状態に遷移させ、二相流状態で加熱するため、低温
二相流の流動不安定現象を回避することができる。ま
た、圧力容器1内を加圧して冷却水を加熱するので、冷
却水を単相流状態で高温にするのに要する時間を短縮で
き、起動時間を短縮できる。
According to the above-described starting method, when the cooling water is at a low temperature, the cooling water is heated in a single-phase flow state. When the cooling water is heated to a high temperature, the cooling water is changed to a two-phase flow state. The flow instability of the phase flow can be avoided. Further, since the inside of the pressure vessel 1 is pressurized and the cooling water is heated, the time required for raising the temperature of the cooling water in the single-phase flow state can be reduced, and the startup time can be reduced.

【0062】本実施例によれば、自然循環型原子炉の起
動時に低温二相流の不安定現象の発生による流動変動お
よび炉心安定性の低下を防止し、安定した信頼性の高い
原子炉の起動を可能にする効果がある。また、原子炉の
起動時間を短縮でき、経済性を向上できる。
According to this embodiment, it is possible to prevent a flow fluctuation and a decrease in core stability due to the occurrence of a low-temperature two-phase flow instability at the time of startup of a natural circulation type reactor. This has the effect of enabling startup. Further, the start-up time of the reactor can be shortened, and the economy can be improved.

【0063】変形例 上記第1の実施例の変形例を図6により説明する。上記
第1の実施例では、原子炉一次冷却水の加熱開始時に、
圧力調整装置44によって系圧力を予め増加させたが
(図2中の1−)、図6の例では、冷却水の加熱開始
と共に、徐々に連続的に系圧力を増加させ(図6中の2
−)、冷却水を単相流のまま高温にするものである。
本実施例によれば、第1の実施例の加圧のみの手順(図
2中の1−)が省略できるので、原子炉の起動時間を
より短縮できる効果がある。
Modification A modification of the first embodiment will be described with reference to FIG. In the first embodiment, at the start of heating the primary cooling water of the reactor,
Although the system pressure was previously increased by the pressure adjusting device 44 (1 in FIG. 2), in the example of FIG. 6, the system pressure was gradually and continuously increased with the start of the cooling water heating (in FIG. 6). 2
-), The cooling water is heated to a high temperature with a single-phase flow.
According to the present embodiment, the procedure of only pressurization in the first embodiment (1 in FIG. 2) can be omitted, and thus there is an effect that the start-up time of the reactor can be further reduced.

【0064】第2の実施例 本発明の第2の実施例を図7により説明する。第1の実
施例では、自然循環型原子炉の起動手順において、高温
高圧状態まで冷却水を単相流のまま核加熱し、冷却水温
度T2が上昇し、気液の密度比が十分に減少して不安定
現象の発生が抑制される状態に達した後、圧力調整装置
44で圧力容器1内の圧力P1を制御しながら冷却水温
度T2に対応する飽和圧力P2に漸近させる。図7の例
では、この系圧力P1を飽和圧力P2に漸近させるとき
に、系圧力をほぼ一定かあるいはやや増加傾向として飽
和圧力P2に漸近させている(図7中の3−参照)。
これにより、系圧力P1が定格運転圧力に達する前に、
冷却水を確実に飽和状態にすることができるので、早期
に炉心2内の冷却水を二相流状態に遷移させることがで
きる。冷却水が二相流状態に遷移する時点は、系圧力が
定格運転圧力以下のほぼ以下の条件を満足した時点に対
応する。
Second Embodiment A second embodiment of the present invention will be described with reference to FIG. In the first embodiment, in the start-up procedure of the natural circulation reactor, the cooling water is heated in a single-phase flow to a high-temperature and high-pressure state by nuclear heating, the cooling water temperature T2 rises, and the gas-liquid density ratio decreases sufficiently. Then, after reaching the state in which the occurrence of the unstable phenomenon is suppressed, the pressure regulator 44 controls the pressure P1 in the pressure vessel 1 to gradually approach the saturation pressure P2 corresponding to the cooling water temperature T2. In the example of FIG. 7, when the system pressure P1 is gradually approached to the saturation pressure P2, the system pressure is almost constant or gradually approached to the saturation pressure P2 as slightly increasing (see 3- in FIG. 7).
As a result, before the system pressure P1 reaches the rated operating pressure,
Since the cooling water can be surely brought into the saturated state, the cooling water in the core 2 can be shifted to the two-phase flow state at an early stage. The point in time when the cooling water transitions to the two-phase flow state corresponds to the point in time when the system pressure satisfies approximately the following condition that is equal to or lower than the rated operating pressure.

【0065】 P1=P2、 T1<T2+Ts …(3) ここで、Tsは冷却水温度、系圧力、流量および核加熱
量等に依存する安定沸騰領域最大サブクール度である。
P1 = P2, T1 <T2 + Ts (3) where Ts is the maximum subcool degree in the stable boiling region depending on the cooling water temperature, system pressure, flow rate, nuclear heating amount, and the like.

【0066】なお、上記圧力の制御では、第1の実施例
と同様、圧力調整装置44による加圧を解除すると共
に、図3に示すように、主蒸気隔離弁4およびタービン
バイパス止め弁10を開いて圧力容器1内の加圧を解除
し、圧力容器1内に水位を形成することにより、定格運
転状態へ円滑に移行できるようにする。このとき、圧力
容器1内の水位が適性水位となるように、復水給排水弁
33および給水止め弁13を開閉して当該水位を調整す
る。
In the control of the pressure, as in the first embodiment, the pressurization by the pressure adjusting device 44 is released, and the main steam isolation valve 4 and the turbine bypass stop valve 10 are switched as shown in FIG. By opening and releasing the pressurization in the pressure vessel 1 and forming a water level in the pressure vessel 1, it is possible to smoothly shift to the rated operation state. At this time, the condensate water supply / drainage valve 33 and the water supply stop valve 13 are opened and closed so that the water level in the pressure vessel 1 becomes an appropriate water level.

【0067】以降、制御棒3の引き抜きを継続し、炉心
2で発生する核熱によって冷却水を二相流状態で加熱
し、原子炉定格運転温度及び圧力を得る(図7中の3−
参照)。その後の手順は、第1の実施例と同じであ
る。
Thereafter, the control rod 3 is continuously pulled out, and the cooling water is heated in a two-phase flow state by nuclear heat generated in the reactor core 2 to obtain the rated operating temperature and pressure of the reactor (3--3 in FIG. 7).
reference). Subsequent procedures are the same as in the first embodiment.

【0068】したがって、本実施例では、早期に炉心2
内の冷却水を二相流状態に遷移させることができるの
で、二相流状態で沸騰が生じ炉心における熱伝達が向上
するため、核加熱量を増加することができ、系圧力P1
が定格運転圧力に達するまでの冷却水の昇温時間を短縮
できる(図7中の3−参照)。また、図7において、
冷却水の炉心入口サブクール度が沸騰開始最大サブクー
ル度Tbと安定沸騰領域最大サブクールドTsの間を通
過する時間も短縮される。したがって、原子炉の起動に
係わる経済性が向上すると共に、第1の実施例以上に低
温二相流の流動不安定現象の回避が容易となり、原子炉
の起動に係わる信頼性が向上する。
Therefore, in this embodiment, the core 2
Since the cooling water in the inside can be changed to the two-phase flow state, boiling occurs in the two-phase flow state and heat transfer in the core is improved, so that the amount of nuclear heating can be increased, and the system pressure P1
The time required for the cooling water to rise until the pressure reaches the rated operating pressure can be shortened (see 3- in FIG. 7). Also, in FIG.
The time required for the cooling water core inlet subcool degree to pass between the boiling start maximum subcool degree Tb and the stable boiling region maximum subcooled Ts is also reduced. Therefore, the economics involved in starting the reactor are improved, and the flow instability of the low-temperature two-phase flow is more easily avoided than in the first embodiment, and the reliability related to starting the reactor is improved.

【0069】本実施例によれば、第1の実施例による効
果に加えて、更に安定した原子炉の起動を可能にする効
果と、原子炉起動時間を更に短縮する効果がある。
According to the present embodiment, in addition to the effects of the first embodiment, there is an effect of enabling a more stable start-up of the reactor and an effect of further shortening the reactor start-up time.

【0070】変形例 第2の実施例の変形例を図8により説明する。図7の実
施例では、系圧力P1を飽和圧力P2に漸近させるとき
に、系圧力をほぼ一定かあるいはやや増加傾向としたが
(図7中の3−参照)、この例では系圧力を減少、す
なわち減圧させながら飽和圧力P2に漸近させている
(図8中の4−参照)。これにより、図7の場合より
も更に短時間で冷却水を飽和状態にすることができるの
で、より早期に炉心内の冷却水を二相流状態に遷移させ
ることができ、系圧力P1が定格運転圧力に達するまで
の冷却水の昇温時間を更に短縮できる(図8中の4−
参照)。また、冷却水の炉心入口サブクール度が沸騰開
始最大サブクール度Tbと安定沸騰領域最大サブクール
ドTsの間を通過する時間も更に短縮される(図8中の
4−参照)。したがって、本実施例によれば、原子炉
の起動に係わる経済性が向上すると共に、図7の場合以
上に低温二相流の流動不安定現象の回避が容易となり、
原子炉の起動に係わる信頼性が向上する。
Modification A modification of the second embodiment will be described with reference to FIG. In the embodiment of FIG. 7, when the system pressure P1 is gradually approached to the saturation pressure P2, the system pressure is almost constant or slightly increased (see 3- in FIG. 7). That is, the pressure is asymptotically approached to the saturation pressure P2 while being reduced (see 4- in FIG. 8). As a result, the cooling water can be brought into the saturated state in a shorter time than in the case of FIG. 7, so that the cooling water in the core can be changed to the two-phase flow state earlier, and the system pressure P1 can be reduced to the rated value. The time for raising the temperature of the cooling water until the operating pressure is reached can be further shortened (4-- in FIG. 8).
reference). Further, the time required for the cooling water core inlet subcool degree to pass between the boiling start maximum subcool degree Tb and the stable boiling region maximum subcooled Ts is further reduced (see 4- in FIG. 8). Therefore, according to the present embodiment, the economy related to the start of the nuclear reactor is improved, and the flow instability of the low-temperature two-phase flow can be more easily avoided than in the case of FIG.
The reliability related to the start of the reactor is improved.

【0071】第3の実施例 本発明の第3の実施例を図9により説明する。図8に示
した実施例では、自然循環型原子炉の起動手順におい
て、図8中の4−の過程で制御棒3を引き続き引き抜
き、冷却水温度T2の上昇を許しながら、圧力調整装置
44で系圧力P1を減圧している。図9の例では、一旦
炉心2に制御棒3を挿入し、炉心2の出力を減少させる
と共に、圧力調整装置44で系圧力P1を減圧する(図
9中の4−)。これにより、系圧力P1の減圧時には
炉心2における核加熱が抑制されて沸騰が生じないた
め、不安定現象の発生を完全に防止した状態で、安定沸
騰領域最大サブクールドTs以下に炉心入口サブクール
度を減少させることができる。系圧力P1が飽和圧力P
2に漸近し、前述の(3)式を満足させることにより冷
却水に減圧沸騰を誘起させた後、再び制御棒3を引き抜
き炉心2において核加熱することにより、冷却水を二相
流状態で昇温することができる(図9中の4−)。図
9の例では、冷却水の炉心入口サブクール度が沸騰開始
最大サブクール度Tbと安定沸騰領域最大サブクール度
Tsの間を通過するときに炉心2において沸騰が生じな
いので、流動不安定現象の発生が完全に防止される。
Third Embodiment A third embodiment of the present invention will be described with reference to FIG. In the embodiment shown in FIG. 8, in the start-up procedure of the natural circulation reactor, the control rod 3 is continuously pulled out in the process 4 in FIG. 8, and the pressure adjusting device 44 is used while allowing the cooling water temperature T2 to rise. The system pressure P1 has been reduced. In the example of FIG. 9, the control rod 3 is once inserted into the core 2, the output of the core 2 is reduced, and the system pressure P <b> 1 is reduced by the pressure adjusting device 44 (4 in FIG. 9). As a result, when the system pressure P1 is reduced, the core heating in the core 2 is suppressed and boiling does not occur. Therefore, in a state in which the occurrence of the unstable phenomenon is completely prevented, the core inlet subcooling degree is set to be equal to or less than the stable boiling region maximum subcooled Ts. Can be reduced. System pressure P1 is saturated pressure P
After asymptotically approaching 2 and satisfying the above expression (3), the cooling water is induced to boil under reduced pressure. Then, the control rod 3 is pulled out again and the core is heated in the core 2 so that the cooling water is in a two-phase flow state. The temperature can be raised (4- in FIG. 9). In the example of FIG. 9, since the core 2 does not boil when the cooling water core inlet subcool degree passes between the boiling start maximum subcool degree Tb and the stable boiling region maximum subcool degree Ts, the flow unstable phenomenon occurs. Is completely prevented.

【0072】なお、減圧時の核加熱の抑制は、制御棒3
を部分的に挿入し冷却水の核加熱量を減らしてもよい
し、核加熱を一旦中止してもよい。図9では後者の例を
示し、冷却水の温度はほぼ一定となっている。
The suppression of nuclear heating during depressurization is achieved by the control rod 3
May be partially inserted to reduce the nuclear heating amount of the cooling water, or the nuclear heating may be temporarily stopped. FIG. 9 shows the latter example, in which the temperature of the cooling water is substantially constant.

【0073】本実施例によれば、第2の実施例の効果に
加えて、更に安定した原子炉の起動を可能にする効果が
ある。
According to the present embodiment, in addition to the effect of the second embodiment, there is an effect that enables a more stable start-up of the nuclear reactor.

【0074】変形例 冷却水を単相流のまま高温にするまでの手順に関する幾
つかの変形例を図10〜図12により説明する。図10
は、冷却水の加熱開始時に、圧力調整装置44によって
系圧力を予め増加させるとき、直接前述の(1)式を満
足するレベルまで系圧力P1を増加させ(図10中の5
−参照)、その後、冷却水が目標温度まで上昇するま
では、圧力調整装置44による加圧を停止する。その結
果、冷却水温の上昇にともない飽和蒸気圧力が増加する
にしたがい、系圧力は自然上昇する(図10中の5−
参照)。その後の手順は第3の実施例とほぼ同じであ
る。図11は、図10の実施例において、系圧力P1を
増加させた後、冷却水が目標温度まで上昇するまでは、
圧力調整装置44による加圧を解除して飽和蒸気圧力の
増加を抑制し、系圧力を一定に保つようにしたものであ
る(図11中の6−参照)。また、図12は、冷却水
を単相流から二相流に遷移する過程でも、連続して系圧
力を一定に保つようにしたものであり(図12中の7−
参照)、図11の例の6−と図7の例の3−
との組み合わせに相当する。これら実施例によっても、
第2の実施例または第3の実施例と同様の効果が得られ
ると共に、冷却水の加熱開始時に、予め必要な圧力を得
るのでその後の圧力制御が容易となり、起動手順が簡略
化される効果がある。
Modifications Several modifications relating to the procedure for raising the temperature of the cooling water to a single-phase flow will be described with reference to FIGS. FIG.
When the system pressure is previously increased by the pressure adjusting device 44 at the start of cooling water heating, the system pressure P1 is directly increased to a level that satisfies the above equation (1) (5 in FIG. 10).
Thereafter, the pressurization by the pressure adjusting device 44 is stopped until the cooling water rises to the target temperature. As a result, the system pressure naturally rises as the saturated steam pressure increases as the cooling water temperature rises (5--5 in FIG. 10).
reference). The subsequent procedure is almost the same as in the third embodiment. FIG. 11 shows that, in the embodiment of FIG. 10, after the system pressure P1 is increased, until the cooling water rises to the target temperature,
The pressurization by the pressure adjusting device 44 is released to suppress the increase in the saturated steam pressure and keep the system pressure constant (see 6 in FIG. 11). Further, FIG. 12 shows that the system pressure is continuously kept constant even in the process of changing the cooling water from the single-phase flow to the two-phase flow (see 7-7 in FIG. 12).
11) and 3- in the example of FIG.
This corresponds to the combination with According to these examples,
The same effect as that of the second or third embodiment can be obtained, and the necessary pressure is obtained in advance at the time of starting the heating of the cooling water, so that the subsequent pressure control becomes easy and the starting procedure is simplified. There is.

【0075】第4の実施例 本発明の第4の実施例を図13により説明する。本実施
例の自然循環型原子炉は、第1の実施例で示した自然循
環型原子炉に、さらに、原子炉各部の状態量の計測値に
基づいて最適弁制御量と制御棒挿入量を演算し、主蒸気
隔離弁4、タービン蒸気止め弁6、タービンバイパス止
め弁10、給水止め弁13、給水バイパス止め弁16、
復水給排水弁33、タービン蒸気流量調整弁7、弁1
8、弁20および弁23の開閉と制御棒駆動機構27を
制御する演算制御器26を備えた構成となっている。原
子炉各部の状態量としては、圧力容器1内の圧力を圧力
計28、水位を水位計29、水温を水温計43で計測
し、炉心2の入口の冷却水温および循環流量を流量計4
2および水温計30で計測し、炉心2の出力を中性子検
出器31で計測する。
Fourth Embodiment A fourth embodiment of the present invention will be described with reference to FIG. The natural circulation reactor according to the present embodiment further includes an optimum valve control amount and a control rod insertion amount based on the measured values of the state quantities of the respective parts of the reactor, in addition to the natural circulation reactor described in the first embodiment. The main steam isolation valve 4, turbine steam stop valve 6, turbine bypass stop valve 10, water supply stop valve 13, water supply bypass stop valve 16,
Condensate supply / drain valve 33, turbine steam flow control valve 7, valve 1
8, an arithmetic and control unit 26 for controlling the opening and closing of the valve 20 and the valve 23 and the control rod driving mechanism 27 is provided. As the state quantities of each part of the reactor, the pressure in the pressure vessel 1 is measured by a pressure gauge 28, the water level is measured by a water level gauge 29, and the water temperature is measured by a water temperature gauge 43, and the cooling water temperature and the circulation flow rate at the inlet of the reactor core 2 are measured by a flow meter 4.
2 and the water thermometer 30, and the output of the reactor core 2 is measured by the neutron detector 31.

【0076】以下に、演算制御器26を用いた本実施例
による原子炉起動方法の一例として、第1の実施例の図
2に示す起動方法について説明する。
Hereinafter, as an example of the reactor start-up method according to the present embodiment using the arithmetic and control unit 26, the start-up method shown in FIG. 2 of the first embodiment will be described.

【0077】原子炉の冷態停止後の起動時には、まず圧
力容器1、主蒸気管5および給水管14からなる原子炉
一次冷却水系を水張りした後、主蒸気隔離弁4、タービ
ン蒸気止め弁6、給水止め弁13およびタービンバイパ
ス止め弁10を閉じる。また、給水バイパス止め弁16
を開いて給水ポンプ12を運転して給水を復水器11に
循環する。次いで、演算制御器26により弁20を開
き、圧力計28で計測された圧力容器1内の圧力に応じ
て弁20の開度を調整しながら、加圧調整装置44で圧
力容器1内の圧力P1を増加させる。図2の例では、系
圧力P1は0.5MPaまで増加させる。
When the reactor is started after the cold shutdown, first, the reactor primary cooling water system including the pressure vessel 1, the main steam pipe 5 and the water supply pipe 14 is filled with water, and then the main steam isolation valve 4, the turbine steam stop valve 6 and the like. Then, the water supply stop valve 13 and the turbine bypass stop valve 10 are closed. In addition, the water supply bypass stop valve 16
Is opened and the water supply pump 12 is operated to circulate the water supply to the condenser 11. Next, the valve 20 is opened by the arithmetic and control unit 26, and while the opening degree of the valve 20 is adjusted according to the pressure in the pressure vessel 1 measured by the pressure gauge 28, the pressure in the pressure vessel 1 is adjusted by the pressure adjusting device 44. Increase P1. In the example of FIG. 2, the system pressure P1 is increased to 0.5 MPa.

【0078】次いで、演算制御器26により圧力計2
8、中性子検出器31、水温計43、水温計30および
流量計42で圧力容器1内の圧力、炉心2の出力、冷却
水の温度、炉心2の入口の冷却水温度(炉心入口サブク
ール度)および流量を監視しながら、制御棒3を引き抜
いて炉心2で発生する核熱によって冷却水を加熱する。
このとき、最適核加熱量を圧力計28、中性子検出器3
1、水温計43、水温計30および流量計42の計測値
から演算制御器26で計算し、制御棒駆動機構27に制
御信号を送って制御棒3の引き抜き量を設定する。ここ
で、制御棒3の引き抜き量は、炉心熱出力が冷却水温
度、系圧力、炉心流量から計算した単相流の限界熱出力
より小となるように設定される。この時、冷却水は加圧
状態であるため、サブクール度が沸騰開始最大炉心入口
サブクール度Tbより大きく、単相流状態のままであ
る。
Next, the operation controller 26 controls the pressure gauge 2.
8. The pressure in the pressure vessel 1, the output of the core 2, the temperature of the cooling water, the cooling water temperature at the inlet of the core 2 (core cooling subcooling degree) with the neutron detector 31, the water thermometer 43, the water thermometer 30, and the flow meter 42 While monitoring the flow rate and the flow rate, the control rod 3 is pulled out and the cooling water is heated by nuclear heat generated in the core 2.
At this time, the optimal nuclear heating amount is measured by the pressure gauge 28 and the neutron detector 3.
1. The arithmetic controller 26 calculates from the measured values of the water thermometer 43, the water thermometer 30, and the flow meter 42, and sends a control signal to the control rod drive mechanism 27 to set the amount of pull-out of the control rod 3. Here, the withdrawal amount of the control rod 3 is set so that the core heat output is smaller than the critical heat output of the single-phase flow calculated from the cooling water temperature, the system pressure, and the core flow rate. At this time, since the cooling water is in a pressurized state, the subcooling degree is larger than the maximum core entrance subcooling degree Tb at the start of boiling, and remains in a single-phase flow state.

【0079】次いで、冷却水温度が100℃を越え、上
昇して行くにしたがって、演算制御器26で監視してい
る圧力計29、水温計43、水温計30の計測値から、
系圧力P1が冷却水の飽和圧力よりも常に高く、かつ炉
心入口サブクール度が沸騰開始最大炉心入口サブクール
度Tbより大きくなるように演算制御器26から圧力調
整装置44に制御信号を送り、加圧状態を保つ。冷却水
温度が上昇し、低温二相流の不安定現象の発生が抑制さ
れる温度に達した後(図5の例では約200℃)、演算
制御器26により、系圧力P1が冷却水温度に対応する
飽和圧力に漸近するように、加圧状態を解除する制御信
号を圧力調整装置44に送ると共に、冷却水温度と圧力
の計測値を監視しながら主蒸気隔離弁4およびタービン
バイパス止め弁10の開度を調整する制御信号を送る。
これにより、主蒸気管5の一部およびタービンバイパス
流路9内に高温の冷却水が流入し、蒸発して蒸気相が生
じ、圧力容器1内に水位が形成される。また、炉心入口
サブクール度が減少して安定沸騰領域最大炉心入口サブ
クール度Tsより小さくなり、冷却水は高温かつ低サブ
クール状態となり、容易に沸騰が生じる。この過程で
は、また、水位計29の計測値をもとに、圧力容器1内
の水位が適性水位となるように、演算制御器26により
復水給排水弁33および給水止め弁13へ開閉の制御信
号を送り、圧力容器1内の水位を調整する。上記の手順
により、炉心2において冷却水の沸騰が生じ、炉心2内
の冷却水は単相流状態から二相流状態に遷移する。
Next, as the cooling water temperature exceeds 100 ° C. and rises, the measured values of the pressure gauge 29, the water thermometer 43, and the water thermometer 30 monitored by the arithmetic and control unit 26 are:
The control signal is sent from the arithmetic and control unit 26 to the pressure adjusting device 44 so that the system pressure P1 is always higher than the saturation pressure of the cooling water and the core inlet subcool degree becomes larger than the maximum core inlet subcool degree Tb at which boiling starts. Keep state. After the cooling water temperature rises and reaches a temperature at which the occurrence of the unstable phenomenon of the low-temperature two-phase flow is suppressed (about 200 ° C. in the example of FIG. 5), the arithmetic controller 26 reduces the system pressure P1 to the cooling water temperature. A control signal for releasing the pressurized state is sent to the pressure adjusting device 44 so as to asymptotically approach the saturation pressure corresponding to the main steam isolation valve 4 and the turbine bypass stop valve while monitoring the measured values of the coolant temperature and the pressure. A control signal for adjusting the opening degree of No. 10 is sent.
As a result, high-temperature cooling water flows into a part of the main steam pipe 5 and into the turbine bypass flow path 9, evaporates to generate a vapor phase, and a water level is formed in the pressure vessel 1. Further, the core inlet subcool degree decreases to become smaller than the maximum core inlet subcool degree Ts in the stable boiling region, and the cooling water is in a high temperature and low subcool state, so that boiling easily occurs. In this process, the arithmetic controller 26 controls the condensate water supply / drainage valve 33 and the water supply stop valve 13 based on the measured value of the water level gauge 29 so that the water level in the pressure vessel 1 becomes an appropriate water level. A signal is sent to adjust the water level in the pressure vessel 1. By the above procedure, the boiling of the cooling water occurs in the core 2, and the cooling water in the core 2 transitions from the single-phase flow state to the two-phase flow state.

【0080】また、このとき、最適核加熱量を圧力計2
8、中性子検出器31、水温計43、水温計30および
流量計42の計測値から演算制御器26で計算し、制御
棒駆動機構27に制御信号を送って制御棒3の引き抜き
量を設定する。ここで、制御棒3の引き抜き量は、炉心
熱出力が冷却水温度、系圧力、炉心流量から計算した二
相流の限界熱出力より小となるように設定される。
At this time, the optimum amount of nuclear heating was measured with a pressure gauge 2
8. The arithmetic controller 26 calculates from the measured values of the neutron detector 31, the water thermometer 43, the water thermometer 30, and the flow meter 42, and sends a control signal to the control rod drive mechanism 27 to set the amount of pull-out of the control rod 3. . Here, the withdrawal amount of the control rod 3 is set so that the core heat output is smaller than the critical heat output of the two-phase flow calculated from the cooling water temperature, the system pressure, and the core flow rate.

【0081】系圧力および温度が定格運転圧力および温
度に漸近するにしたがい、演算制御器26により給水止
め弁13を開いて圧力容器1内に給水を開始すると共
に、演算制御器26により、系圧力および冷却水温度が
定格運転圧力および温度に達するとタービン蒸気止め弁
6およびタービン蒸気流量調整弁7を開き、タービンバ
イパス止め弁10を閉じてタービン8の回転を開始す
る。この時、圧力容器1内の圧力、温度および水位が一
定となるように、演算制御器26によって給水止め弁1
3とタービン蒸気流量調整弁7の開度を調整する。
As the system pressure and temperature asymptotically approach the rated operating pressure and temperature, the water supply stop valve 13 is opened by the operation controller 26 to start water supply into the pressure vessel 1, and the operation controller 26 controls the system pressure. When the cooling water temperature reaches the rated operating pressure and temperature, the turbine steam stop valve 6 and the turbine steam flow regulating valve 7 are opened, the turbine bypass stop valve 10 is closed, and the rotation of the turbine 8 is started. At this time, the operation controller 26 controls the water supply stop valve 1 so that the pressure, temperature and water level in the pressure vessel 1 are constant.
3 and the opening degree of the turbine steam flow control valve 7 is adjusted.

【0082】本実施例によれば、第1、第2、第3の実
施例による効果に加えて、自然循環型原子炉の起動時の
起動手順が簡略化される効果と、圧力、水温、圧力容器
内水位の制御性を向上できる効果がある。
According to this embodiment, in addition to the effects of the first, second, and third embodiments, the effect of simplifying the start-up procedure at the time of starting the natural circulation reactor, and the effects of pressure, water temperature, This has the effect of improving the controllability of the water level in the pressure vessel.

【0083】第5の実施例 本発明の第5の実施例を図14により説明する。本実施
例の自然循環型原子炉は、第1の実施例の構成に加え
て、圧力容器1内の炉心2下方の下部プレナムに電気加
熱されるヒータ35をさらに備えている。
Fifth Embodiment A fifth embodiment of the present invention will be described with reference to FIG. The natural circulation type nuclear reactor of this embodiment further includes a heater 35 for electrically heating the lower plenum below the reactor core 2 in the pressure vessel 1 in addition to the configuration of the first embodiment.

【0084】原子炉の冷態停止後の起動時に、ヒータ3
5を補助的に用いて圧力容器1内の冷却水を低温二相流
不安定現象の発生しない水温まで加熱する。ヒータ35
による補助的な加熱は、図2の例では手順1−、1−
、1−、1−の全プロセスに渡って行ってもよい
し、そのうちの一部、例えば加圧後の1−、1−の
手順で行ってもよく、ヒータ35の補助的加熱を併用し
て、安定した高温二相流状態を得る。次いで、冷却水温
の増加後に制御棒3を継続して引き抜き核加熱により冷
却水を二相流状態で加熱し、所定のタービン運転蒸気温
度および圧力を得た後、タービン蒸気止め弁6およびタ
ービン蒸気流量調整弁7を開き、タービンバイパス止め
弁10を閉じてタービンの回転を開始する。
When the reactor is started after the cold shutdown, the heater 3
The cooling water in the pressure vessel 1 is heated to a water temperature at which the low-temperature two-phase flow instability does not occur using the auxiliary 5. Heater 35
In the example of FIG. 2, the auxiliary heating by
, 1-, 1-, or a part of them, for example, the procedure of 1-, 1- after pressurization. To obtain a stable high-temperature two-phase flow state. Then, after the cooling water temperature is increased, the control rod 3 is continuously pulled out and the cooling water is heated in a two-phase flow state by nuclear heating to obtain a predetermined turbine operating steam temperature and pressure. The flow control valve 7 is opened, the turbine bypass stop valve 10 is closed, and the rotation of the turbine is started.

【0085】本実施例によれば、第1の実施例による効
果に加えて、原子炉の起動時間を短縮できる効果があ
る。
According to this embodiment, in addition to the effect of the first embodiment, there is an effect that the start-up time of the reactor can be shortened.

【0086】第6の実施例 本発明の第6の実施例を図15により説明する。図15
において、黒塗の弁は弁が閉じた状態を示し、白抜きの
弁は弁が開いた状態を示す。本実施例においては、原子
炉の冷態停止後の起動時に、主蒸気隔離弁4およびター
ビンバイパス止め弁10を開き、タービン蒸気止め弁6
を閉じる。給水ポンプ12を運転して給水を給水管1
4、圧力容器1、主蒸気管5、タービンバイパス流路9
に循環する。この時、ポンプ回転による冷却水への入熱
により冷却水を加熱し、この入熱による冷却水の加熱を
併用して、圧力容器1内の冷却水を低温二相流不安定現
象の発生しない水温まで加熱する。すなわち、図2の例
では手順1−、1−、1−、1−の全プロセス
またはそのうちの一部、例えば1−、1−の手順で
ポンプ回転の入熱による冷却水の加熱を併用して、安定
した高温二相流状態を得る。次いで、冷却水温の増加後
に制御棒3を継続して引き抜き核加熱により冷却水を二
相流状態で加熱し、所定のタービン運転蒸気温度および
圧力を得た後、タービン蒸気止め弁6およびタービン蒸
気流量調整弁7を開き、タービンバイパス止め弁10を
閉じてタービンの回転を開始する。
Sixth Embodiment A sixth embodiment of the present invention will be described with reference to FIG. FIG.
, A black valve indicates a state where the valve is closed, and a white valve indicates a state where the valve is open. In the present embodiment, when the reactor is started after a cold shutdown, the main steam isolation valve 4 and the turbine bypass stop valve 10 are opened, and the turbine steam stop valve 6 is opened.
Close. Operate the water supply pump 12 to supply water to the water supply pipe 1
4, pressure vessel 1, main steam pipe 5, turbine bypass flow path 9
Circulates. At this time, the cooling water is heated by the heat input to the cooling water by the rotation of the pump, and the cooling water in the pressure vessel 1 is not subjected to the low-temperature two-phase flow instability phenomenon by using the cooling water heating by the heat input. Heat to water temperature. That is, in the example of FIG. 2, the heating of the cooling water by the heat input of the pump rotation is used in combination with the entire process of the procedures 1, 1, 1, 1, or a part thereof, for example, the procedure of 1, 1- To obtain a stable high-temperature two-phase flow state. Then, after the cooling water temperature is increased, the control rod 3 is continuously pulled out and the cooling water is heated in a two-phase flow state by nuclear heating to obtain a predetermined turbine operating steam temperature and pressure. The flow control valve 7 is opened, the turbine bypass stop valve 10 is closed, and the rotation of the turbine is started.

【0087】本実施例によっても、第1の実施例による
効果に加えて、原子炉の起動時間を短縮できる効果があ
る。
According to this embodiment, in addition to the effect of the first embodiment, there is an effect that the start-up time of the reactor can be shortened.

【0088】第7の実施例 本発明の第7の実施例を図16により説明する。図16
において、黒塗の弁は弁が閉じた状態を示し、白抜きの
弁は弁が開いた状態を示す。本実施例の自然循環型原子
炉は、第1の実施例の図1に示す構成に加え、給水管1
4を分岐して起動用給水管37を設け、起動用給水管3
7に起動用給水止め弁38を設け、起動用給水管37の
冷却水出口を圧力容器1内の炉心2下方の下部プレナム
に接続する。原子炉の冷態停止後の起動時に、給水止め
弁13を閉じ、弁38を開き、給水ポンプ12を運転し
て給水を炉心2に注水する。これにより、現行の沸騰水
型原子炉と同様に、強制循環により冷却水を炉心2に循
環することができ、この起動用給水管37による強制循
環を併用して、圧力容器1内の冷却水を低温二相流不安
定現象の発生しない水温まで加熱する。すなわち、図2
の例では手順1−、1−、1−、1−の全プロ
セスまたはそのうちの一部、例えば1−、1−の手
順で上記強制循環を併用して、安定した高温二相流状態
を得る。循環流量は給水バイパス止め16により調整可
能である。所定の原子炉定格運転蒸気温度および圧力を
得た後、タービン蒸気止め弁6、タービン蒸気流量調整
弁7を開き、タービンバイパス止め弁10を閉じてター
ビンの回転を開始する。
Seventh Embodiment A seventh embodiment of the present invention will be described with reference to FIG. FIG.
, A black valve indicates a state where the valve is closed, and a white valve indicates a state where the valve is open. The natural circulation type nuclear reactor of the present embodiment has a water supply pipe 1 in addition to the configuration of the first embodiment shown in FIG.
4 is provided with a starting water supply pipe 37, and the starting water supply pipe 3 is provided.
A startup water supply stop valve 38 is provided at 7, and a cooling water outlet of the startup water supply pipe 37 is connected to a lower plenum below the core 2 in the pressure vessel 1. When the reactor is started after a cold shutdown, the water supply stop valve 13 is closed, the valve 38 is opened, and the water supply pump 12 is operated to supply water to the reactor core 2. As a result, the cooling water can be circulated to the reactor core 2 by forced circulation, similarly to the existing boiling water reactor, and the cooling water in the pressure vessel 1 is used together with the forced circulation by the starting water supply pipe 37. Is heated to a water temperature at which low temperature two-phase flow instability does not occur. That is, FIG.
In the above example, a stable high-temperature two-phase flow state is obtained by using the forced circulation in combination with the entire process of steps 1-, 1-, 1- and 1- or a part thereof, for example, the steps 1- and 1-. . The circulation flow rate can be adjusted by the water supply bypass stop 16. After obtaining the predetermined reactor rated operation steam temperature and pressure, the turbine steam stop valve 6 and the turbine steam flow regulating valve 7 are opened, the turbine bypass stop valve 10 is closed, and the rotation of the turbine is started.

【0089】本実施例によれば、第1の実施例による効
果に加えて、現行の強制循環型原子炉と同様に、炉心安
定性の向上できる効果がある。
According to the present embodiment, in addition to the effects of the first embodiment, there is an effect that the core stability can be improved as in the current forced circulation reactor.

【0090】その他の実施例 本発明の第8の実施例を図17により説明する。図17
において、黒塗の弁は弁が閉じた状態を示し、白抜きの
弁は弁が開いた状態を示す。本実施例の自然循環型原子
炉は、第1の実施例で示した自然循環型原子炉におい
て、圧力調整手段として、原子炉一次冷却水系に接続さ
れ流路42、弁39、定圧ポンプ40、冷却水タンク4
1からなる、圧力容器1および原子炉一次冷却水系の水
密試験系44Aを用いて、原子炉の冷態停止後の起動時
に圧力容器1、主蒸気管5および給水管14からなる原
子炉一次冷却水系を加圧する。
Another Embodiment An eighth embodiment of the present invention will be described with reference to FIG. FIG.
, A black valve indicates a state where the valve is closed, and a white valve indicates a state where the valve is open. The natural circulation type nuclear reactor of the present embodiment is the same as the natural circulation type reactor shown in the first embodiment, except that the pressure adjusting means is connected to the reactor primary cooling water system, the flow path 42, the valve 39, the constant pressure pump 40, Cooling water tank 4
The primary cooling of the reactor consisting of the pressure vessel 1, the main steam pipe 5 and the feed water pipe 14 at the time of start-up after cold shutdown of the reactor using the pressure vessel 1 and the watertight test system 44 A of the reactor primary cooling water system consisting of Pressurize the water system.

【0091】本実施例によれば、定期点検用の設備を用
いているため、起動に係る機器を簡素化することがで
き、この機器の簡素化により、経済性および信頼性が向
上する効果がある。
According to the present embodiment, since the equipment for the periodic inspection is used, the equipment for starting can be simplified, and the simplification of the equipment has the effect of improving the economy and reliability. is there.

【0092】本発明の第9の実施例を図18により説明
する。本実施例では、第1から第8の実施例で示した自
然循環型原子炉において、圧力調整装置の構造を、現行
の加圧水型原子炉の加圧器と同様の構造としたものであ
る。すなわち、加圧水型原子炉の加圧器は、図18に示
すように、内部にヒータ46を有する加圧タンク45を
弁47を介して原子炉一次冷却水系と接続した構造をし
ており、本実施例では、これを圧力調整装置44Bとし
て使用する。本実施例では、原子炉起動開始時の加圧過
程においては(図2の例では1−、1−に対応)、
ヒータ46に通電し、加圧タンク45内の水及び蒸気を
加熱することにより加圧する。また、系圧力P1を冷却
水温度T2の対応する飽和圧力に漸近させる過程におい
ては(図2の例では1−に対応)、ヒータ46による
加熱を停止するか、図示しない散水器により加圧タンク
45内に水を散水して温度を下げることにより圧力を調
整する。
A ninth embodiment of the present invention will be described with reference to FIG. In this embodiment, in the natural circulation type reactor shown in the first to eighth embodiments, the structure of the pressure adjusting device is the same as that of the pressurizer of the existing pressurized water reactor. That is, as shown in FIG. 18, the pressurizer of the pressurized water reactor has a structure in which a pressurized tank 45 having a heater 46 therein is connected to the primary cooling water system of the reactor via a valve 47. In the example, this is used as the pressure adjusting device 44B. In the present embodiment, during the pressurization process at the start of reactor startup (corresponding to 1- and 1- in the example of FIG. 2),
The heater 46 is energized to heat the water and steam in the pressurized tank 45 to pressurize it. In the process of gradually approaching the system pressure P1 to the saturation pressure corresponding to the cooling water temperature T2 (corresponding to 1 in the example of FIG. 2), the heating by the heater 46 is stopped, or the pressurized tank is opened by a sprinkler (not shown). The pressure is adjusted by sprinkling water in 45 and lowering the temperature.

【0093】本実施例によれば、圧力調整に係わる機器
を簡素化できるので、原子炉起動の信頼性が向上する効
果がある。
According to the present embodiment, the equipment related to the pressure adjustment can be simplified, so that the reliability of starting the reactor is improved.

【0094】本発明の第10の実施例を図19により説
明する。本実施例では、第1から第8の実施例で示した
自然循環型原子炉において、圧力調整装置44Cを高圧
気体タンク48と弁49と流路50で構成し、原子炉一
次冷却水系、例えば圧力容器1と接続する。本実施例で
は、原子炉起動開始時の加圧過程においては(図2の例
では1−、1−に対応)、高圧気体タンク48から
弁49、流路50を通して高圧気体を圧力容器1を含む
原子炉一次冷却水系に供給することにより加圧する。ま
た、系圧力P1を冷却水温度T2の対応する飽和圧力に
漸近させる過程においては(図2の例では1−に対
応)、原子炉一次冷却水系内の高圧気体を、主蒸気隔離
弁4、ターベンバイパス止め弁10を介して脱気系51
に抜くことにより圧力を調整する。または、圧力容器1
にベントがある場合には、ベントから排気してもよい。
A tenth embodiment of the present invention will be described with reference to FIG. In the present embodiment, in the natural circulation type reactor shown in the first to eighth embodiments, the pressure adjusting device 44C is configured by the high-pressure gas tank 48, the valve 49, and the flow path 50, and the reactor primary cooling water system, for example, Connect to pressure vessel 1. In the present embodiment, during the pressurization process at the start of the reactor startup (corresponding to 1- and 1- in the example of FIG. 2), the high-pressure gas is supplied from the high-pressure gas tank 48 through the valve 49 and the flow path 50 to the pressure vessel 1. The reactor is pressurized by supplying it to the primary cooling water system. In the process of asymptotically setting the system pressure P1 to the saturation pressure corresponding to the cooling water temperature T2 (corresponding to 1 in the example of FIG. 2), the high-pressure gas in the reactor primary cooling water system is removed by the main steam isolation valve 4, Deaeration system 51 via Turben bypass stop valve 10
Adjust the pressure by pulling in. Or pressure vessel 1
If there is a vent, it may be exhausted from the vent.

【0095】本実施例によれば、圧力調整に係わる器機
を簡素化できるので、原子炉起動の信頼性が向上する効
果がある。
According to the present embodiment, the equipment related to the pressure adjustment can be simplified, so that the reliability of starting the reactor is improved.

【0096】本発明の第11の実施例を図20により説
明する。本実施例は、図19に示す圧力調整装置44C
を圧力容器1と主蒸気隔離弁4との間の主蒸気管5に接
続したものである。本実施例によっても第10の実施例
と同様の効果が得られる。
An eleventh embodiment of the present invention will be described with reference to FIG. This embodiment is different from the pressure adjusting device 44C shown in FIG.
Is connected to the main steam pipe 5 between the pressure vessel 1 and the main steam isolation valve 4. According to this embodiment, effects similar to those of the tenth embodiment can be obtained.

【0097】[0097]

【発明の効果】以上説明したように、本発明によれば、
自然循環型原子炉の起動時に低温二相流の不安定現象の
発生による流動変動および炉心安定性の低下を防止し、
安定した原子炉の起動を可能にする効果がある。また、
原子炉起動時間を短縮し、経済性および信頼性を向上す
る効果がある。
As described above, according to the present invention,
Prevent flow fluctuations and decrease in core stability due to the instability of low-temperature two-phase flow when starting a natural circulation reactor,
This has the effect of enabling stable start-up of the reactor. Also,
This has the effect of shortening the reactor start-up time and improving economy and reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例による起動方法を実施す
るための自然循環型原子炉の全体構成およびその起動方
法の一手順を示す系統図である。
FIG. 1 is a system diagram showing an entire configuration of a natural circulation reactor for carrying out a start-up method according to a first embodiment of the present invention and a procedure of the start-up method.

【図2】本発明の第1の実施例による起動方法における
原子炉系の圧力、温度および炉心入口サブクール度の時
間変化を示す図である。
FIG. 2 is a diagram showing a time change of a reactor system pressure, a temperature, and a core inlet subcool degree in a startup method according to a first embodiment of the present invention.

【図3】本発明の第1の実施例による起動方法の他の手
順を示す図1と同様な系統図である。
FIG. 3 is a system diagram similar to FIG. 1, showing another procedure of a starting method according to the first embodiment of the present invention.

【図4】本発明の第1の実施例による起動方法のさらに
他の手順を示す図1と同様な系統図である。
FIG. 4 is a system diagram similar to FIG. 1, showing still another procedure of the activation method according to the first embodiment of the present invention.

【図5】本発明の第1の実施例による起動方法のさらに
他の手順を示す図1と同様な系統図である。
FIG. 5 is a system diagram similar to FIG. 1, showing still another procedure of the activation method according to the first embodiment of the present invention.

【図6】本発明の第1の実施例の変形による起動方法に
おける原子炉系の圧力、温度および炉心入口サブクール
度の時間変化を示す図である。
FIG. 6 is a diagram showing changes over time in pressure, temperature, and core inlet subcool degree of a reactor system in a startup method according to a modification of the first embodiment of the present invention.

【図7】本発明の第2の実施例による起動方法における
原子炉系の圧力、温度および炉心入口サブクール度の時
間変化を示す図である。
FIG. 7 is a diagram showing a temporal change of a pressure, a temperature, and a core inlet subcool degree of a reactor system in a startup method according to a second embodiment of the present invention.

【図8】本発明の第2の実施例の変形による起動方法に
おける原子炉系の圧力、温度および炉心入口サブクール
度の時間変化を示す図である。
FIG. 8 is a diagram showing a temporal change of a pressure, a temperature, and a core inlet subcool degree of a reactor system in a startup method according to a modification of the second embodiment of the present invention.

【図9】本発明の第3の実施例による起動方法における
原子炉系の圧力、温度および炉心入口サブクール度の時
間変化を示す図である。
FIG. 9 is a diagram showing a temporal change of a reactor system pressure, a temperature and a core inlet subcool degree in a startup method according to a third embodiment of the present invention.

【図10】本発明の他の変形例による起動方法における
原子炉系の圧力、温度および炉心入口サブクール度の時
間変化を示す図である。
FIG. 10 is a diagram showing a temporal change of a reactor system pressure, a temperature, and a core inlet subcool degree in a startup method according to another modified example of the present invention.

【図11】本発明の更に他の変形例による起動方法にお
ける原子炉系の圧力、温度および炉心入口サブクール度
の時間変化を示す図である。
FIG. 11 is a diagram showing a temporal change of a reactor system pressure, a temperature and a core inlet subcool degree in a start-up method according to still another modified example of the present invention.

【図12】本発明の更に他の変形例による起動方法にお
ける原子炉系の圧力、温度および炉心入口サブクール度
の時間変化を示す図である。
FIG. 12 is a diagram showing a temporal change of a reactor system pressure, a temperature, and a core inlet subcool degree in a start-up method according to still another modified example of the present invention.

【図13】本発明の第4の実施例による起動方法を実施
するための自然循環型原子炉の全体構成およびその起動
方法の一手順を示す系統図である。
FIG. 13 is a system diagram showing an entire configuration of a natural circulation reactor for carrying out a starting method according to a fourth embodiment of the present invention and a procedure of the starting method.

【図14】本発明の第5の実施例による起動方法を実施
するための自然循環型原子炉の全体構成およびその起動
方法の一手順を示す系統図である。
FIG. 14 is a system diagram showing an entire configuration of a natural circulation reactor for carrying out a starting method according to a fifth embodiment of the present invention and a procedure of the starting method.

【図15】本発明の第6の実施例による起動方法を実施
するための自然循環型原子炉の全体構成およびその起動
方法の一手順を示す系統図である。
FIG. 15 is a system diagram showing an overall configuration of a natural circulation reactor for carrying out a startup method according to a sixth embodiment of the present invention and a procedure of the startup method.

【図16】本発明の第7の実施例による起動方法を実施
するための自然循環型原子炉の全体構成およびその起動
方法の一手順を示す系統図である。
FIG. 16 is a system diagram showing an overall configuration of a natural circulation reactor for carrying out a start-up method according to a seventh embodiment of the present invention and a procedure of the start-up method.

【図17】本発明の第8の実施例による起動方法を実施
するための自然循環型原子炉の全体構成およびその起動
方法の一手順を示す系統図である。
FIG. 17 is a system diagram showing an entire configuration of a natural circulation reactor for carrying out a start-up method according to an eighth embodiment of the present invention and a procedure of the start-up method.

【図18】本発明の第9の実施例を変形した起動方法を
実施するための自然循環型原子炉の全体構成およびその
起動方法の一手順を示す系統図である。
FIG. 18 is a system diagram showing an entire configuration of a natural circulation reactor for carrying out a startup method modified from the ninth embodiment of the present invention and a procedure of the startup method.

【図19】本発明の第10の実施例による起動方法を実
施するための自然循環型原子炉の全体構成およびその起
動方法の一手順を示す系統図である。
FIG. 19 is a system diagram showing an entire configuration of a natural circulation reactor for carrying out a start-up method according to a tenth embodiment of the present invention and a procedure of the start-up method.

【図20】本発明の第11の実施例による起動方法を実
施するための自然循環型原子炉の全体構成およびその起
動方法の一手順を示す系統図である。
FIG. 20 is a system diagram showing an overall configuration of a natural circulation reactor for carrying out a start-up method according to an eleventh embodiment of the present invention and a procedure of the start-up method.

【符号の説明】[Explanation of symbols]

1 圧力容器 2 炉心 3 制御棒 4 主蒸気隔離弁 5 主蒸気管 6 タービン蒸気止め弁 7 タービン蒸気流量調整弁 8 タービン 9 タービンバイパス流路 10 タービンバイパス止め弁 11 復水器 12 給水ポンプ 13 給水止め弁 14 給水管 15 給水バイパス流路 16 給水バイパス止め弁 17 加圧タンク 19 高圧気体タンク 26 演算制御器 27 制御棒駆動機構 28 圧力計 29 水位計 30 水温計 31 中性子検出器 32 復水給排水流路 33 復水給排水弁 34 復水貯蔵タンク 35 ヒータ 36 復水給排水ポンプ 37 起動用給水管 38 起動用給水止め弁 39 弁 40 定圧ポンプ 41 冷却水タンク 42 流路 44 圧力調整装置 DESCRIPTION OF SYMBOLS 1 Pressure vessel 2 Core 3 Control rod 4 Main steam isolation valve 5 Main steam pipe 6 Turbine steam stop valve 7 Turbine steam flow control valve 8 Turbine 9 Turbine bypass flow path 10 Turbine bypass stop valve 11 Condenser 12 Water supply pump 13 Water supply stop Valve 14 Water supply pipe 15 Water supply bypass flow path 16 Water supply bypass stop valve 17 Pressurized tank 19 High pressure gas tank 26 Operation controller 27 Control rod drive mechanism 28 Pressure gauge 29 Water level gauge 30 Water temperature gauge 31 Neutron detector 32 Condensed water supply / drainage flow path 33 condensate water supply / drain valve 34 condensate water storage tank 35 heater 36 condensate water supply / drainage pump 37 starting water supply pipe 38 starting water supply stop valve 39 valve 40 constant pressure pump 41 cooling water tank 42 flow path 44 pressure regulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 重人 茨城県日立市森山町1168番地 株式会社 日立製作所 エネルギー研究所内 (72)発明者 片岡 良之 茨城県日立市森山町1168番地 株式会社 日立製作所 エネルギー研究所内 (72)発明者 中尾 俊次 茨城県日立市森山町1168番地 株式会社 日立製作所 エネルギー研究所内 (72)発明者 木下 詳一郎 茨城県日立市幸町3丁目1番1号 株式 会社 日立製作所 日立工場内 (56)参考文献 特開 昭63−180896(JP,A) 特開 昭56−180896(JP,A) 特開 昭56−26297(JP,A) 特開 昭57−84394(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21D 3/00 G21D 3/08 ──────────────────────────────────────────────────の Continued on front page (72) Inventor Shigeto Murata 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Energy Research Laboratory (72) Inventor Yoshiyuki Kataoka 1168 Moriyama-machi, Hitachi City, Ibaraki Prefecture Energy, Hitachi, Ltd. In the laboratory (72) Inventor Shunji Nakao 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Energy Research Laboratory Co., Ltd. (72) Inventor Shoichiro Kinoshita 3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. (56) References JP-A-63-180896 (JP, A) JP-A-56-180896 (JP, A) JP-A-56-26297 (JP, A) JP-A-57-84394 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G21D 3/00 G21D 3/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】核燃料からなる炉心を内蔵し、内部に冷却
水を保有すると共に内部で蒸気を発生する圧力容器を備
えた沸騰水型原子炉の起動方法において、 圧力容器内の冷却水を昇温する際に、圧力容器内を原子
炉の定格運転圧力より低くかつ昇温中の冷却水温度に対
応する飽和圧力よりも高くし、その後圧力容器内の圧力
昇温中の冷却水温度に対応する飽和圧力にすることを
特徴とする沸騰水型原子炉の起動方法。
1. A method for starting a boiling water reactor having a reactor core containing a nuclear fuel and having a pressure vessel for holding cooling water therein and generating steam therein, wherein the cooling water in the pressure vessel is raised. When heating , atoms in the pressure vessel
High comb than saturation pressure that corresponds to the coolant temperature of the low and NoboriAtsushichu than the rated operating pressure of the furnace, to the saturation pressure then the corresponding pressure in the pressure vessel to the cooling water temperature of NoboriAtsushichu Characteristic method of starting a boiling water reactor.
【請求項2】核燃料からなる炉心を内蔵し、内部に冷却
水を保有すると共に内部で蒸気を発生する圧力容器を備
えた沸騰水型原子炉の起動方法において、 圧力容器内の冷却水を昇温する際に、圧力容器内の冷却
水の温度に対応する冷却水の飽和圧力よりも圧力容器内
の圧力を高くし、その状態で加熱し、その後圧力容器内
の圧力を圧力容器内の冷却水温度に対応する飽和圧力に
し、その状態で冷却水を加熱することを特徴とする沸騰
水型原子炉の起動方法。
2. A method for starting a boiling water reactor having a pressure vessel which contains a reactor core made of nuclear fuel, has a cooling water inside, and generates steam therein, wherein the cooling water in the pressure vessel is raised. When heating, the pressure in the pressure vessel is made higher than the saturation pressure of the cooling water corresponding to the temperature of the cooling water in the pressure vessel, and heating is performed in that state, and then the pressure in the pressure vessel is cooled in the pressure vessel. A method for starting a boiling water reactor, comprising setting a saturation pressure corresponding to a water temperature and heating cooling water in that state.
【請求項3】核燃料からなる炉心を内蔵し、内部に冷却
水を保有すると共に内部で蒸気を発生する圧力容器を備
えた沸騰水型原子炉の起動方法において、 (a)原子炉の起動時に、圧力容器内の加圧を圧力容器
外部から行いながら、冷却水を単相流状態に保って加熱
する第1の手順と; (b)前記第1の手順の後、圧力容器内の冷却水を前記
単相流状態から二相流状態に遷移させる第2の手順と; (c)この二相流状態で冷却水を加熱する第3の手順
と; を有することを特徴とする沸騰水型原子炉の起動方法。
3. A method for starting a boiling water reactor having a built-in reactor core made of nuclear fuel and having a pressure vessel for holding cooling water therein and generating steam therein, comprising: (a) when starting up the reactor; A first step of heating the cooling water while maintaining the single-phase flow while cooling the inside of the pressure vessel from outside the pressure vessel; and (b) cooling the water inside the pressure vessel after the first procedure. (C) a third step of heating the cooling water in the two-phase flow state; and a boiling water type comprising: How to start the reactor.
【請求項4】核燃料からなる炉心を内蔵し、内部に冷却
水を保有すると共に内部で蒸気を発生する圧力容器と、
圧力容器外に配置されて圧力容器に連絡され、圧力容器
内を加圧する圧力調整手段と、原子炉起動時に前記圧力
調整手段を動作させ請求項1〜3のいずれか1項記載の
起動方法を実施する制御手段とを備えることを特徴とす
る沸騰水型原子炉。
4. A pressure vessel having a core made of nuclear fuel therein, having a cooling water therein and generating steam therein,
The pressure adjusting means which is arranged outside the pressure vessel and is connected to the pressure vessel to pressurize the inside of the pressure vessel, and the pressure adjusting means is operated at the time of starting the nuclear reactor, and the pressure adjusting means is operated .
And a control means for performing a start-up method .
JP04055398A 1991-03-14 1992-03-13 Boiling water reactor and start-up method thereof Expired - Fee Related JP3133812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04055398A JP3133812B2 (en) 1991-03-14 1992-03-13 Boiling water reactor and start-up method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4955091 1991-03-14
JP3-49550 1991-03-14
JP04055398A JP3133812B2 (en) 1991-03-14 1992-03-13 Boiling water reactor and start-up method thereof

Publications (2)

Publication Number Publication Date
JPH0572387A JPH0572387A (en) 1993-03-26
JP3133812B2 true JP3133812B2 (en) 2001-02-13

Family

ID=26389960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04055398A Expired - Fee Related JP3133812B2 (en) 1991-03-14 1992-03-13 Boiling water reactor and start-up method thereof

Country Status (1)

Country Link
JP (1) JP3133812B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785558B2 (en) * 2006-02-24 2011-10-05 日立Geニュークリア・エナジー株式会社 Reactor monitoring device
JP4850537B2 (en) * 2006-02-27 2012-01-11 日立Geニュークリア・エナジー株式会社 Temperature detector for natural circulation boiling water reactor
JP2007232503A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Reactor system and reactor control method
JP4916569B2 (en) * 2010-09-17 2012-04-11 日立Geニュークリア・エナジー株式会社 Reactor system and reactor control method
JP7169134B2 (en) * 2018-09-07 2022-11-10 三菱重工業株式会社 Nuclear reactor plant, operating method of nuclear reactor plant

Also Published As

Publication number Publication date
JPH0572387A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
US8291704B2 (en) Operation method of nuclear power plant
WO2002095768A1 (en) A brayton cycle nuclear power plant and a method of starting the brayton cycle
CN103117101A (en) Start-stop auxiliary device used in integral reactor and cold starting method of integral reactor
US4424186A (en) Power generation
US20110200155A1 (en) Nuclear Reactor System and Nuclear Reactor Control Method
US5271044A (en) Boiling water nuclear reactor and start-up process thereof
JP3133812B2 (en) Boiling water reactor and start-up method thereof
JP2004101492A (en) Natural circulation reactor and its starting method
US4343682A (en) Plant having feed water heating means for nuclear units during plant start up and method of operating the same
US20090141847A1 (en) Method for operating nuclear power generation plant and nuclear power generation plant
CN110186026B (en) Dry thermal start method for once-through steam generator
US20050220253A1 (en) Nuclear power plant and operation method thereof
JPH0894793A (en) Start up method for natural circulation boiling water reactor
JP7508389B2 (en) Nuclear power plant output control device and output control method
JPH06265665A (en) Natural circulation type boiling water reactor
JP3061900B2 (en) Reactor
JPH09112801A (en) Pressurized fluidized bed boiler power generation system
JPH05256991A (en) Activation method for natural circulation type reactor
CN117393185B (en) Starting method and system of modular high-temperature gas cooled reactor unit
JP4521367B2 (en) Reactor power control method and reactor plant
JP4556883B2 (en) Reactor power controller
JP4982270B2 (en) Reactor operating method and nuclear power plant
JPH0529278B2 (en)
JP3835778B2 (en) Grand steam generator
JP3044159B2 (en) High-speed standby operation device of fast reactor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees