JPH09112801A - Pressurized fluidized bed boiler power generation system - Google Patents
Pressurized fluidized bed boiler power generation systemInfo
- Publication number
- JPH09112801A JPH09112801A JP27228695A JP27228695A JPH09112801A JP H09112801 A JPH09112801 A JP H09112801A JP 27228695 A JP27228695 A JP 27228695A JP 27228695 A JP27228695 A JP 27228695A JP H09112801 A JPH09112801 A JP H09112801A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- water
- water tank
- steam
- fluidized bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 369
- 238000002347 injection Methods 0.000 claims description 22
- 239000007924 injection Substances 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 19
- 238000005304 joining Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 7
- 229920006395 saturated elastomer Polymers 0.000 abstract description 3
- 238000003860 storage Methods 0.000 abstract description 3
- 239000006200 vaporizer Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 238000004088 simulation Methods 0.000 description 9
- 238000005086 pumping Methods 0.000 description 8
- 230000005514 two-phase flow Effects 0.000 description 7
- 230000005484 gravity Effects 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003657 drainage water Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、加圧流動層ボイラ
発電システムに係り、特にポンプ配管設備の構成を合理
化して加圧流動層ボイラの低出力時、又は緊急停止時に
層内伝熱管への注水を確保するのに好適な加圧流動層ボ
イラ発電システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized bed boiler power generation system, and more particularly, to a structure of pump piping equipment to reduce the output of the pressurized fluidized bed boiler or to an in-bed heat transfer tube when an emergency stop occurs. The present invention relates to a pressurized fluidized bed boiler power generation system suitable for ensuring water injection.
【0002】[0002]
【従来の技術】加圧流動層ボイラの緊急停止時におい
て、層内伝熱管を冷却することを目的としたシステム構
成の例としては、例えば米国特許4911107 号明細書に記
載のものが知られている。この従来の技術では、プラン
ト緊急停止時に給水する代わりに温水を注入するために
設けられたガスで加圧された非常用温水タンクと、過熱
器(以下SHと略す)、及び再熱器(以下、RHと略
す)の冷却蒸気流量を確保するために設けられた大気放
出弁等からなる伝熱管保護システムの構成が示されてい
る。また、特開平6−281103 号公報には、貯水を加熱す
る温水タンクを設置し、非常時に温水タンク内の温水を
重力差によって伝熱管部へ供給する構成例が示されてい
る。2. Description of the Related Art As an example of a system configuration for cooling an in-bed heat transfer tube at the time of an emergency stop of a pressurized fluidized bed boiler, one disclosed in U.S. Pat. No. 4,911,107 is known. There is. In this conventional technique, an emergency hot water tank pressurized with gas, which is provided to inject hot water instead of supplying water when the plant is shut down, a superheater (hereinafter abbreviated as SH), and a reheater (hereinafter , RH) for the purpose of ensuring a flow rate of cooling steam. Further, Japanese Patent Laid-Open No. 6-281103 discloses a configuration example in which a hot water tank for heating stored water is installed and hot water in the hot water tank is supplied to the heat transfer tube section by gravity difference in an emergency.
【0003】特開平6−281103 号公報に記載の加圧流動
層ボイラ発電システムは、図2に示すようになってい
る。非常用温水タンクを高所に設置して重力水頭を持た
せたこの構成例によれば、緊急停止の初期時に給水ポン
プに代えて非常用温水タンク1から水冷壁3,蒸発器4
の伝熱管に注水し、同時にSH/RH出口の大気放出弁
12A,12Bを開放して、層内伝熱管を冷却してい
る。また、注水することにより非常用温水タンク1の貯
水量が無くなると、非常用給水ポンプ20からの給水に
切り替える。火炉停止後、時間の経過と共に火炉層の温
度が低下して層内伝熱管の吸収熱量が減少すると、蒸発
器出口で二相流となるので、汽水分離器5に温水がたま
る。この場合には、汽水分離器5の出口側にある循環ラ
インに設置されているボイラ循環ポンプ8を起動する
か、又はバイパス弁6を開操作して、温水を循環させ
る。なお、通常運転の低出力時においても蒸発器出口で
二相流となるので、ボイラ循環ポンプ8を運転して、温
水を循環させるようになっている。又、特開平6−14740
5 号公報には、ヘッドタンクを設け、水の給水ポンプの
吐出水の一部を熱交換器で昇温してヘッドタンクへ導
き、この吐出水を汽水分離器に導いて緊急時に供給する
ものが記載されている。The pressurized fluidized bed boiler power generation system described in JP-A-6-281103 is as shown in FIG. According to this configuration example in which the emergency hot water tank is installed at a high place and has a gravity head, the emergency hot water tank 1 to the water cooling wall 3 and the evaporator 4 are replaced in place of the water supply pump at the initial stage of the emergency stop.
Water is injected into the heat transfer tube of No. 2 and at the same time, the atmosphere release valves 12A and 12B at the SH / RH outlet are opened to cool the in-layer heat transfer tube. When the amount of water stored in the emergency hot water tank 1 is exhausted by pouring water, the emergency water supply pump 20 is switched to water supply. When the temperature of the furnace layer decreases with the lapse of time after the furnace is stopped and the amount of heat absorbed by the in-layer heat transfer tubes decreases, a two-phase flow occurs at the evaporator outlet, so hot water accumulates in the steam separator 5. In this case, the hot water is circulated by activating the boiler circulation pump 8 installed in the circulation line on the outlet side of the brackish water separator 5 or opening the bypass valve 6. It should be noted that the boiler circulation pump 8 is operated to circulate the hot water because a two-phase flow is generated at the evaporator outlet even at the time of low output in the normal operation. In addition, JP-A-6-14740
In JP No. 5 publication, a head tank is provided, a part of the discharge water of the water supply pump is heated by a heat exchanger and guided to the head tank, and this discharge water is guided to a brackish water separator to be supplied in an emergency. Is listed.
【0004】[0004]
【発明が解決しようとする課題】上記従来の技術である
加圧流動層ボイラ発電システムでは、非常用温水タンク
1の内部に設置したヒータ22を用いて通電加熱し、タ
ンク水を常時飽和温度近くに保つ必要がある。あるいは
熱交換を通して昇温させる必要がある。一方、通常運転
時には、定格運転中ボイラ起動から出力上昇,停止操作
中は、非常用温水タンクを用いて注水する必要はなく、
非常用温水タンクの設備稼働効率はかなり低いものであ
る。また、ボイラ緊急停止時には、非常用温水タンクの
出口弁を開いて注水する運転モードから、ボイラ循環ポ
ンプのバイパス弁を開いてボイラ循環ラインを使用する
運転モードへ切り替えが必要であり、運転操作はやや複
雑になるものであった。In the above-mentioned conventional pressurized fluidized bed boiler power generation system, the heater 22 installed inside the emergency hot water tank 1 is used to electrically heat the tank water so that the tank water is always close to the saturation temperature. Need to keep. Alternatively, it is necessary to raise the temperature through heat exchange. On the other hand, during normal operation, it is not necessary to inject water using the emergency hot water tank during output increase from the boiler start during rated operation and during stop operation.
The facility operation efficiency of the emergency hot water tank is quite low. In addition, at the time of emergency stop of the boiler, it is necessary to switch from the operation mode in which the outlet valve of the emergency hot water tank is opened for water injection to the operation mode in which the bypass valve of the boiler circulation pump is opened and the boiler circulation line is used. It was a little complicated.
【0005】本発明の第1の目的は、運転コストの上昇
となるヒータによる非常用温水タンク貯水の常時加熱を
必要としないで、温水を貯水する加圧流動層ボイラ発電
システムを提供することである。A first object of the present invention is to provide a pressurized fluidized bed boiler power generation system for storing hot water without requiring constant heating of the emergency hot water tank storage by a heater which increases operating costs. is there.
【0006】本発明の第2の目的は、非常用温水タンク
設備を通常運転の起動停止においても活用でき、温水タ
ンクからの注水とボイラ循環ライン使用への切り替え操
作を必要としない加圧流動層ボイラ発電システムを提供
することである。A second object of the present invention is to utilize the emergency hot water tank facility even during starting and stopping of normal operation, and to eliminate the need for the operation of pouring water from the hot water tank and switching to the boiler circulation line. It is to provide a boiler power generation system.
【0007】[0007]
【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の加圧流動層ボイラ発電システムは、
加圧流動層ボイラと、該加圧流動層ボイラの流動層内の
層と熱交換する水冷壁と、該水冷壁の後流側に設置され
た蒸発器と、該蒸発器の出口側に設けられた水と蒸気を
分離する汽水分離器と、該汽水分離器の出口側に設置さ
れた過熱器および再熱器と、過熱器および再熱器よりの
蒸気により駆動される蒸気タービンと、該蒸気タービン
により駆動される発電機と、前記水冷壁,蒸発器,過熱
器および再熱器に給水する給水系と、層内伝熱管に温水
を注水する温水タンクを備えた加圧流動層ボイラ発電シ
ステムであって、前記汽水分離器より発生する温水が前
記温水タンクに給水されるように構成されていることを
特徴とするものである。In order to achieve the first object, the pressurized fluidized bed boiler power generation system of the present invention comprises:
A pressurized fluidized bed boiler, a water cooling wall that exchanges heat with a layer in the fluidized bed of the pressurized fluidized bed boiler, an evaporator installed on the downstream side of the water cooling wall, and an outlet side of the evaporator. And a steam turbine for separating steam and water, a superheater and a reheater installed on the outlet side of the steam water separator, a steam turbine driven by steam from the superheater and the reheater, and Pressurized fluidized bed boiler power generation including a generator driven by a steam turbine, a water supply system for supplying water to the water cooling wall, the evaporator, the superheater and the reheater, and a hot water tank for injecting hot water into the in-bed heat transfer tubes. The system is characterized in that hot water generated from the brackish water separator is supplied to the hot water tank.
【0008】上記第2の目的を達成するために、本発明
の加圧流動層ボイラ発電システムは、前記温水タンクの
上部に前記汽水分離器を接合して一体化した汽水分離機
能付温水タンクを構成したものである。又、前記汽水分
離器と前記温水タンクとの間にポンプ及び温水タンク出
口弁が設けられるものであって、前記汽水分離器より発
生する温水を前記温水タンク出口弁開度を調整して前記
温水タンクに注水し流量を制御するものである。又、前
記温水タンクの注水ラインにポンプを備えたものであ
る。In order to achieve the above-mentioned second object, the pressurized fluidized bed boiler power generation system of the present invention comprises a hot water tank with a brackish water separating function, which is integrally formed by joining the brackish water separator to the upper part of the hot water tank. It is composed. A pump and a hot water tank outlet valve are provided between the brackish water separator and the hot water tank, and hot water generated from the brackish water separator is adjusted by adjusting the opening degree of the hot water tank outlet valve. It controls the flow rate by pouring water into the tank. A pump is provided in the water injection line of the hot water tank.
【0009】上記のように構成しているので、温水タン
クの貯水を飽和温度近くに保つ手段として、小量の飽和
水を供給して貯水と交換することにより、タンク表面よ
り放散する熱損失量を補う。ボイラの定格運転中は、蒸
発器出口で蒸気の単相流となるが、この場合でも汽水分
離器には小量の高温のドレン水が常時発生する。本発明
は、このような知見により、汽水分離器のドレン水を継
続的に温水タンクで取り込むことにより、ヒータ設備な
しに温水タンクの貯水を常時飽和温度近くの値に保つこ
とができる。With the above-mentioned structure, as a means for keeping the stored water in the hot water tank near the saturation temperature, a small amount of saturated water is supplied and exchanged with the stored water, whereby the amount of heat loss dissipated from the tank surface. To make up for. During the rated operation of the boiler, there is a single-phase flow of steam at the evaporator outlet, but even in this case, a small amount of high-temperature drain water is constantly generated in the brackish water separator. Based on such knowledge, the present invention can always keep the stored water in the hot water tank at a value close to the saturation temperature without using heater equipment by continuously taking in the drain water of the brackish water separator in the hot water tank.
【0010】一方、通常運転の起動後出力上昇中、又は
停止に至る出力降下中の低出力時においては、蒸発器出
口で二相流となるので汽水分離器で多量の温水が発生す
る。このため、従来の技術では、汽水分離器のドレン水
を伝熱管へ循環させるために循環ラインを設け、循環ラ
イン途中にボイラ循環ポンプおよび同バイパス弁を設け
たシステム構成としている。これに対して、本発明で
は、温水タンクの注水ラインでもって従来技術のボイラ
循環ラインを代用可能であることに着目し、通常運転中
の低出力時にも汽水分離器で発生するドレン水を温水タ
ンクで取り込み、タンク出口弁を開して貯水を伝熱管へ
注水することとした。これにより、ボイラ緊急停止時の
温水タンク注水ラインからボイラ循環ライン使用への切
り替え操作が不要となり、かつ従来のボイラ循環ライン
の配管,ポンプ設備も不要となるので、システム構成を
合理化することができる。On the other hand, when the output is increasing after the start of the normal operation, or when the output is decreasing until it stops, a two-phase flow is generated at the evaporator outlet, so that a large amount of hot water is generated in the brackish water separator. For this reason, in the conventional technique, a circulation line is provided to circulate the drain water of the brackish water separator to the heat transfer tube, and the boiler circulation pump and the bypass valve are provided in the middle of the circulation line. On the other hand, in the present invention, focusing on the fact that the boiler circulation line of the prior art can be substituted by the water injection line of the hot water tank, the drain water generated in the brackish water separator is warmed even during low output during normal operation. It was taken in by the tank, and the tank outlet valve was opened to inject the stored water into the heat transfer tube. This eliminates the need to switch from the hot water tank water injection line to the boiler circulation line when an emergency boiler is stopped, and the conventional boiler circulation line piping and pump equipment are not required, so the system configuration can be rationalized. .
【0011】[0011]
【発明の実施の形態】本発明の一実施例を図1から図2
により説明する。図1は、本実施例の加圧流動層ボイラ
発電システムの構成図、図2は、本実施例の加圧流動層
ボイラ発電システムのボイラ緊急停止のシュミレーショ
ン結果を示す図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention is shown in FIGS.
This will be described below. FIG. 1 is a configuration diagram of a pressurized fluidized bed boiler power generation system of this embodiment, and FIG. 2 is a diagram showing a simulation result of a boiler emergency stop of the pressurized fluidized bed boiler power generation system of this embodiment.
【0012】図1に示すように、本実施例の加圧流動層
ボイラ発電システムは、主としてガスタービン13,図
示しない加圧流動層ボイラ,蒸気タービン14,発電機
17,蒸気タービンの低圧側の下流側に設けられた復水
器18、及び水・蒸気系統などから構成されている。ガ
スタービン13の圧縮機からの吐出空気は、加圧流動層
ボイラに供給され、加圧流動層ボイラで石炭の燃焼に用
いられ、燃焼ガスはガスタービン13のタービンに導入
された後、排熱回収ボイラ内の過熱器10,再熱器11
で排熱を回収されて蒸気タービン14を駆動するように
なっている。As shown in FIG. 1, the pressurized fluidized bed boiler power generation system of the present embodiment mainly comprises a gas turbine 13, a pressurized fluidized bed boiler (not shown), a steam turbine 14, a generator 17, and a low pressure side of the steam turbine. It is composed of a condenser 18 provided on the downstream side, a water / steam system, and the like. The discharge air from the compressor of the gas turbine 13 is supplied to a pressurized fluidized bed boiler and used for combustion of coal in the pressurized fluidized bed boiler. The combustion gas is introduced into the turbine of the gas turbine 13 and then exhaust heat is removed. Superheater 10 and reheater 11 in the recovery boiler
The exhaust heat is recovered by the above and drives the steam turbine 14.
【0013】水・蒸気系統は、次のように構成されてい
る。復水器18の下流側には、復水ポンプ19,ボイラ
給水ポンプ21及びこのボイラ給水ポンプ21と並列に
非常用給水ポンプ20が設けられており、この下流側で
分岐され、一方はスプレイ弁26に、他方は給水流量調
節弁36を介して順次水冷壁3,蒸発器4,汽水分離器
5と接続されている。汽水分離器5の下方側は流量調節
弁29を介して温水タンク27と、汽水分離器5の上方
側は過熱器10と、及び弁9を介して再熱器11と接続
されている。汽水分離器5と過熱器10の間では分岐さ
れており、弁7を介して温水タンク27と接続されてい
る。又、温水タンク27の下方側は、タンク出口弁2を
介して給水流量調節弁36と水冷壁3との間の配管に接
続されている。温水タンク27の水位と汽水分離器の水
位は、それぞれ信号線34,35によりタンク・流量・
水位制御器27に接続されており、温水タンク27とタ
ンク出口弁2との間に設けられたドレン弁28,タンク
出口弁2,給水流量調節弁36をそれぞれ制御するよう
になっている。ここで、温水タンク27は、緊急停止時
にポンプ等の動力を使用することなく、重力水頭で十分
な注水流量を確保可能なように高所に設置されている。The water / steam system is constructed as follows. On the downstream side of the condenser 18, there are provided a condensate pump 19, a boiler feed pump 21, and an emergency feed pump 20 in parallel with the boiler feed pump 21, which is branched on the downstream side and one of which is a spray valve. 26, the other is connected to the water cooling wall 3, the evaporator 4, and the brackish water separator 5 sequentially through the feed water flow rate control valve 36. The lower side of the brackish water separator 5 is connected to the hot water tank 27 via the flow rate control valve 29, the upper side of the brackish water separator 5 is connected to the superheater 10, and the reheater 11 via the valve 9. It is branched between the brackish water separator 5 and the superheater 10, and is connected to the hot water tank 27 via the valve 7. The lower side of the hot water tank 27 is connected to the pipe between the water supply flow rate control valve 36 and the water cooling wall 3 via the tank outlet valve 2. The water level of the hot water tank 27 and the water level of the brackish water separator are indicated by the signal lines 34 and 35, respectively.
It is connected to the water level controller 27 and controls the drain valve 28, the tank outlet valve 2, and the feed water flow rate control valve 36 provided between the hot water tank 27 and the tank outlet valve 2. Here, the warm water tank 27 is installed at a high place so that a sufficient amount of water to be injected can be secured by the gravity head without using power such as a pump at the time of emergency stop.
【0014】過熱器10は、途中に大気放出弁12A,
高圧タービン加減弁15が設けられた配管を介して蒸気
タービン13の高圧タービンの入口側と接続されてお
り、高圧タービンの出口側は、再熱器11と接続されて
いる。再熱器11の下流側は大気放出弁128,中低圧
タービン加減弁16を介して蒸気タービン13の中圧タ
ービンに接続される一方、バイパス弁24を介して復水
器18に接続されている。又、この復水器18には、上
記したドレン弁28の下流側が接続されている。中圧タ
ービンの出口側は、低圧タービンに接続されている。過
熱器10と高圧タービンの中間部と、高圧タービンと再
熱器11の中間部とはバイパス弁23,スプレイ25を
介して接続されており、スプレイ25には上記したスプ
レイ弁26が接続されている。The superheater 10 has an air release valve 12A,
The steam turbine 13 is connected to the inlet side of the high pressure turbine via a pipe provided with the high pressure turbine control valve 15, and the outlet side of the high pressure turbine is connected to the reheater 11. The downstream side of the reheater 11 is connected to the intermediate pressure turbine of the steam turbine 13 via the atmosphere release valve 128 and the medium / low pressure turbine control valve 16, while being connected to the condenser 18 via the bypass valve 24. . Further, the condenser 18 is connected to the downstream side of the drain valve 28 described above. The outlet side of the medium pressure turbine is connected to the low pressure turbine. The intermediate portion between the superheater 10 and the high pressure turbine and the intermediate portion between the high pressure turbine and the reheater 11 are connected via a bypass valve 23 and a spray 25, and the spray valve 26 is connected to the spray valve 26 described above. There is.
【0015】次に、このように構成された加圧流動層ボ
イラ発電システムの動作について説明する。Next, the operation of the pressurized fluidized bed boiler power generation system configured as described above will be described.
【0016】通常運転時の定格出力時には、給水は復水
ポンプ19およびボイラ給水ポンプ21により定格圧力
まで昇圧され、給水流量調節弁36を通って最初のボイ
ラ伝熱管である水冷壁3に入る。給水は蒸発器4を通っ
て蒸気となり、汽水分離器5に入り、汽水分離器5で発
生する温水を配管により温水タンク27へ導き、流量調
節弁29により配管流量を制御する。過熱器10を通っ
て過熱蒸気となった蒸気は、蒸気タービン14の高圧側
の高圧タービンに入り、高圧タービンを通った蒸気は、
再びボイラに導かれ、再熱器11で過熱されて蒸気ター
ビン14の中低圧側に入る。At the rated output during normal operation, the feed water is boosted to the rated pressure by the condensate pump 19 and the boiler feed water pump 21, and passes through the feed water flow control valve 36 to enter the water cooling wall 3 which is the first boiler heat transfer pipe. The supplied water becomes vapor through the evaporator 4, enters the brackish water separator 5, guides the hot water generated in the brackish water separator 5 to the hot water tank 27 by a pipe, and controls the flow rate of the pipe by the flow rate control valve 29. The steam that has become superheated steam through the superheater 10 enters the high pressure turbine on the high pressure side of the steam turbine 14, and the steam that has passed through the high pressure turbine is
It is again guided to the boiler, overheated by the reheater 11, and enters the medium and low pressure side of the steam turbine 14.
【0017】このプラントで所内全停や給水系トリップ
等の緊急事象が発生すると、まず燃料系がトリップして
火炉流動層の燃焼停止となり、ボイラ緊急停止時には、
温水タンク27のタンク出口弁2が開状態に、蒸気大気
放出弁12A,12Bが開状態に、およびRHクーリン
グ弁9が開状態となる。伝熱管保護システムを動作させ
る目的は、水冷壁3および蒸発器4への給水流量確保
と、過熱器10および再熱器11の冷却蒸気流量の確保
である。まず、水冷壁3および蒸発器4への給水流量確
保は、緊急停止の初期時(約10分間程度)には、温水
タンク27から飽和水に近い温水の注水で行われ、その
後は非常用給水ポンプ21を起動し、給水が追加され
る。初期時に、非常用給水ポンプ21に代わり温水タン
ク27から温水を注水することにより、蒸発器からの蒸
気発生量が増加し、過熱器10および再熱器11の冷却
蒸気流量を増加させている。過熱器10および再熱器1
1の冷却蒸気流量を確保することは、緊急停止時には蒸
気タービン14の高圧タービン加減弁15および中低圧
タービン加減弁16が急閉して蒸気の流れが遮断される
ので、大気放出弁12Aおよび大気放出弁12Bを開状
態にすることにより行われる。When an emergency event such as a total stop of the plant or a trip of the water supply system occurs at this plant, the fuel system first trips to stop combustion of the fluidized bed of the furnace.
The tank outlet valve 2 of the hot water tank 27 is opened, the steam atmosphere release valves 12A and 12B are opened, and the RH cooling valve 9 is opened. The purpose of operating the heat transfer tube protection system is to secure the feed water flow rate to the water cooling wall 3 and the evaporator 4, and to secure the cooling steam flow rate of the superheater 10 and the reheater 11. First, securing the flow rate of water supply to the water cooling wall 3 and the evaporator 4 is performed by injecting warm water close to saturated water from the warm water tank 27 at the initial stage of the emergency stop (about 10 minutes), and then the emergency water supply. The pump 21 is started and water supply is added. By injecting warm water from the warm water tank 27 instead of the emergency water supply pump 21 at the initial stage, the amount of steam generated from the evaporator is increased, and the cooling steam flow rate of the superheater 10 and the reheater 11 is increased. Superheater 10 and reheater 1
Securing the cooling steam flow rate of 1 means that the high-pressure turbine control valve 15 and the medium- and low-pressure turbine control valve 16 of the steam turbine 14 are suddenly closed to block the flow of steam at the time of an emergency stop. This is performed by opening the discharge valve 12B.
【0018】図1のボイラへの給水から汽水分離器5を
経てSH/RH(過熱器/再熱器)に至る太い線で示す
ように、汽水分離器5と温水タンク27を結合させ、温
水タンク注水ラインを用いたボイラ循環ラインの一本化
している。そのため、汽水分離器5で発生する高温のド
レン水を温水タンク27に供給することにより貯水を飽
和温度近くに保つことができる。温水タンク水位が最高
位に達して余った貯水はドレン弁28を開して復水器1
8へ戻す。起動後出力上昇中、又は停止に至る出力降下
中の低出力時においては、温水タンク出口弁2を開して
貯水を伝熱管へ注水し、汽水分離器5より取り込んだ温
水を自然循環させる。As shown by the thick line from the water supply to the boiler in FIG. 1 through the brackish water separator 5 to the SH / RH (superheater / reheater), the brackish water separator 5 and the hot water tank 27 are combined to form hot water. The boiler circulation line using the tank water injection line has been integrated. Therefore, by supplying the high temperature drain water generated in the brackish water separator 5 to the hot water tank 27, the stored water can be maintained near the saturation temperature. When the water level of the hot water tank reaches the highest level and the remaining water is stored, open the drain valve 28 and
Return to 8. At the time of low output power increase after start-up or during output drop to stop, the hot water tank outlet valve 2 is opened to inject the stored water into the heat transfer pipe, and the hot water taken in from the steam separator 5 is naturally circulated.
【0019】なお、ドレン水の流れを確保するために、
本実施例では、汽水分離器5の据付位置高さは温水タン
ク27より高くする場合を説明したが、本発明の他の実
施例で説明するように揚水ポンプを用いる場合はこの限
りではない。In order to secure the flow of drain water,
In the present embodiment, the case where the installation position height of the brackish water separator 5 is set higher than that of the hot water tank 27 has been described, but this is not the case when the pumping pump is used as described in other embodiments of the present invention.
【0020】注水により温水タンク27の水位が低下し
て最低水位となると、タンク出口弁2を閉状態にして注
水を停止する。さらに、ボイラトリップ後時間が経過す
ると火炉層温度の低下に伴い蒸発器4の出口で二相流と
なるので汽水分離器5のドレン水位が上昇し始める。こ
の時点で通常運転の低出力時と同様に、汽水分離器5の
ドレン配管にある流量調節弁29を開して温水タンク2
7へ温水を送り、タンク水位が上昇すると温水タンク出
口弁2を開して貯水を伝熱管へ注水し自然循環させる。When the water level of the hot water tank 27 is lowered to the minimum water level by the water injection, the tank outlet valve 2 is closed to stop the water injection. Furthermore, when the time after the boiler trip elapses, the drain water level of the brackish water separator 5 begins to rise because a two-phase flow is formed at the outlet of the evaporator 4 as the furnace layer temperature decreases. At this point, the flow control valve 29 in the drain pipe of the brackish water separator 5 is opened to open the hot water tank 2 in the same manner as in the low output during normal operation.
7. Hot water is sent to 7, and when the tank water level rises, the hot water tank outlet valve 2 is opened to inject the stored water into the heat transfer pipe and circulate it naturally.
【0021】タンク流量・水位制御器30は、上記した
ような水・蒸気系の弁操作を自動制御する場合に、必要
と考えられる制御系を構成するために設けている。タン
ク流量・水位制御器30は、汽水分離器出口の蒸気流量
33と信号線(温水タンク水位)34を取り込み、信号
線(温水タンク水位)34の目標値との差の絶対値が減
少するように、かつ信号線(温水タンク水位)34が目
標値に一致している場合は、汽水分離器出口の蒸気流量
33と給水流量との差の絶対値が減少するように、ドレ
ン弁の開度要求とタンク出口弁の開度要求と給水流量調
節弁の開度要求を決定し、それぞれ信号線31,32,
35に出力する。なお、本実施例の制御系構成は、自動
的に制御を行う構成の一例を示しているが、運転員によ
って手動操作を行っても良い。The tank flow rate / water level controller 30 is provided to constitute a control system considered necessary when automatically controlling the valve operation of the water / steam system as described above. The tank flow rate / water level controller 30 takes in the steam flow rate 33 at the outlet of the brackish water separator and the signal line (warm water tank water level) 34 so that the absolute value of the difference between the signal line (hot water tank water level) 34 and the target value decreases. And the signal line (hot water tank water level) 34 matches the target value, the opening of the drain valve is adjusted so that the absolute value of the difference between the steam flow rate 33 at the outlet of the brackish water separator and the feed water flow rate decreases. The demand, the opening demand of the tank outlet valve, and the demand demand of the feed water flow control valve are determined, and the signal lines 31, 32, and
35. Note that the control system configuration of the present embodiment shows an example of a configuration in which control is automatically performed, but a manual operation may be performed by an operator.
【0022】加圧流動層ボイラプラントの動特性シミュ
レータを用い、本実施例の加圧流動層ボイラ発電システ
ムと、従来の技術の加圧流動層ボイラ発電システムのボ
イラ緊急停止時のシミュレーションを比較した結果を図
2に示す。図2に示すごとく、本実施例と従来の技術と
もに、ボイラトリップ後の初期時には、温水タンク出口
弁を開として温水タンクより伝熱管へ注水するが、時間
が約580秒経過でタンク貯水が最低水位に達するの
で、タンク出口弁を閉じ、非常用給水ポンプを起動す
る。このケースは、注水流量制御を行っていない場合で
あるので、出口弁の開度は全開としており、初期時には
温水タンクの出口流量は少なく、水冷壁および蒸発器の
流体密度が減少して重力水頭差が上昇するとともに増加
している。時間が約1000秒経過したところから蒸発
器出口で二相流となり、汽水分離器にドレン水が発生す
るので、従来の技術では温水タンクを使用しないため、
汽水分離器の水位が上昇を始めるが、本実施例ではドレ
ン水は温水タンクへ送られるので温水タンク水位が上昇
している。ここで、温水タンクは横置き形状のタンクで
あり、温水タンクの断面積が汽水分離器のそれの約50
倍あるので水位の変化量は少なくなっている。従来の技
術では、時間が約2400秒経過すると汽水分離器水位
が最高水位に達し、非常用給水ポンプは停止し、ボイラ
循環ポンプのバイパス弁は開となって、自然循環モード
になる。Using the dynamic characteristics simulator of the pressurized fluidized bed boiler plant, the simulation of the pressurized fluidized bed boiler power generation system of this embodiment and the conventional pressurized fluidized bed boiler power generation system at the time of emergency stop of the boiler were compared. The results are shown in Figure 2. As shown in FIG. 2, in both the present embodiment and the conventional technology, at the initial stage after the boiler trip, the hot water tank outlet valve is opened to pour water from the hot water tank into the heat transfer tube, but when the time is about 580 seconds, the tank water storage reaches the minimum. Since the water level has been reached, close the tank outlet valve and start the emergency water supply pump. In this case, the flow rate of water injection is not controlled, so the opening of the outlet valve is fully opened, the outlet flow rate of the hot water tank is small at the beginning, and the fluid density of the water cooling wall and the evaporator decreases, and the gravity head It is increasing as the difference rises. Since a two-phase flow occurs at the evaporator outlet after about 1000 seconds has elapsed and drain water is generated in the brackish water separator, the conventional technology does not use a hot water tank.
Although the water level of the brackish water separator starts to rise, in this embodiment, the drain water is sent to the hot water tank, so the hot water tank water level is rising. Here, the hot water tank is a horizontal tank, and the cross-sectional area of the hot water tank is about 50 times that of the brackish water separator.
Since it is double, the change in water level is small. In the conventional technique, when the time has passed about 2400 seconds, the brackish water separator water level reaches the maximum water level, the emergency water supply pump is stopped, the bypass valve of the boiler circulation pump is opened, and the natural circulation mode is set.
【0023】自然循環モードの初期には、汽水分離器の
水位が高いので循環流量が多いが、蒸発による水位低下
とともに流量は減少する。一方、本実施例では、時間が
約2800秒経過した時点で温水タンクの水位が最高水
位に達し、非常用給水ポンプを停止し、温水タンク出口
弁が開となって注水が開始され、自然循環モードにな
る。In the initial stage of the natural circulation mode, the water level in the brackish water separator is high, so the circulation flow rate is large, but the flow rate decreases as the water level decreases due to evaporation. On the other hand, in the present embodiment, the water level of the hot water tank reaches the maximum water level at the time when about 2800 seconds have elapsed, the emergency water supply pump is stopped, the hot water tank outlet valve is opened, and water injection is started to allow natural circulation. Enter the mode.
【0024】過熱器(SH)の蒸気流量および再熱器
(RH)の出口の蒸気流量は、SH/RH出口の大気放
出弁で臨界流となるので、ほぼシステム圧力に比例して
減少している。ここでは、温度上昇が厳しいSH出口の
蒸気温度、およびSH伝熱管に接する火炉固定層温度の
変化を示すが、SH出口の蒸気温度の上昇は小さく、制
限値(ここでは650℃)に対して十分余裕があること
が分かる。Since the steam flow rate of the superheater (SH) and the steam flow rate of the outlet of the reheater (RH) become a critical flow at the atmosphere release valve at the SH / RH outlet, they decrease almost in proportion to the system pressure. There is. Here, changes in the steam temperature at the SH outlet where the temperature rises severely and in the furnace fixed bed temperature in contact with the SH heat transfer tube are shown. However, the rise in the steam temperature at the SH outlet is small, and the limit value (650 ° C here) is exceeded. You can see that there is enough room.
【0025】本発明の第2の実施例を図3により説明す
る。図3は本実施例の加圧流動層ボイラ発電システムの
システム構成を示す図である。A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a diagram showing a system configuration of the pressurized fluidized bed boiler power generation system of the present embodiment.
【0026】本実施例と第1の実施例との相違するとこ
ろは、汽水分離器のドレン水を温水タンクに送る手段と
して、温水タンク27の上部に汽水分離器を接合して一
体化した汽水分離機能付温水タンク40を用いているこ
とであり、この汽水分離器は温水タンク40の下部にバ
イパス弁41とボイラ循環ポンプ42を並列に設けてい
る点である。The difference between this embodiment and the first embodiment is that, as means for sending the drain water of the brackish water separator to the hot water tank, a brackish water separator is integrated by joining a brackish water separator above the hot water tank 27. This is because the hot water tank 40 with a separating function is used, and this brackish water separator has a bypass valve 41 and a boiler circulation pump 42 provided in parallel at the lower portion of the hot water tank 40.
【0027】本実施例の利点は、ドレン配管および流量
調節弁24が不要であり、かつ温水タンクと汽水分離器
を一体化したことにより全体としてコンパクトな形状と
なるので、建築・製造コストを低減できることである。
ここで、本実施例のシステムの機能は、第1の実施例と
同様であり、本質的には変わらなく、通常運転時および
緊急停止時における運転操作内容も同様であるが、本実
施例では図3に示すように、汽水分離機能付温水タンク
40の注水ラインにボイラ循環ポンプ42と、そのバイ
パス弁41を設置した構成としているため、通常運転の
低出力時において蒸発器出口で二相流となるが、注水ラ
インを用いて温水を循環させるような運転状況におい
て、ボイラ循環ポンプ42を使用して安定かつ十分な循
環流量を確保するようになっている。ここで、汽水分離
機能付温水タンク40は、電動ポンプが使用出来ない非
常時でも十分な注水流量を確保するために高所に設置し
ているので、ボイラ循環ポンプ42を使用しない自然循
環の運転モードでも、従来技術のボイラ循環ラインより
も流量は多く得られるようになっている。The advantage of this embodiment is that the drain pipe and the flow control valve 24 are not required, and the hot water tank and the brackish water separator are integrated into a compact shape as a whole, which reduces the construction and manufacturing costs. It is possible.
Here, the function of the system of the present embodiment is the same as that of the first embodiment and is essentially the same, and the contents of the driving operation at the time of normal operation and at the time of emergency stop are also the same, but in the present embodiment, As shown in FIG. 3, since the boiler circulation pump 42 and its bypass valve 41 are installed in the water injection line of the hot water tank 40 with a brackish water separation function, the two-phase flow at the evaporator outlet at the time of low output in normal operation. However, in an operating condition in which hot water is circulated using the water injection line, the boiler circulation pump 42 is used to ensure a stable and sufficient circulation flow rate. Here, the brackish water separation function hot water tank 40 is installed at a high place in order to secure a sufficient water injection flow rate even in an emergency when the electric pump cannot be used. Therefore, the natural circulation operation without using the boiler circulation pump 42 is performed. Even in the mode, a larger flow rate can be obtained than in the conventional boiler circulation line.
【0028】本発明の第3の実施例を図4,図5により
説明する。図4は本実施例の加圧流動層ボイラ発電シス
テムのシステム構成を示す図、図5は、加圧流動層ボイ
ラ発電システムのボイラ緊急停止時のシュミレーション
結果を示す図である。A third embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a diagram showing a system configuration of the pressurized fluidized bed boiler power generation system of the present embodiment, and FIG. 5 is a diagram showing simulation results at the time of an emergency stop of the boiler of the pressurized fluidized bed boiler power generation system.
【0029】本実施例と第1の実施例の相違するところ
は、汽水分離器5の設置する高さは温水タンク27より
も低位置に設置している点であり、ドレン水を温水タン
ク27に送る手段として、揚水ポンプ43を用いている
ことである。そのため、汽水分離器5の設定位置に対す
るプラント建設上の制約が少なくなる利点があるが、揚
水ポンプ43を設置することによるコスト増、およびシ
ステムの運転操作方法が複雑化するという欠点もある。The difference between the present embodiment and the first embodiment is that the brackish water separator 5 is installed at a lower position than the hot water tank 27, and the drain water is installed in the hot water tank 27. That is, the pumping pump 43 is used as a means for sending to. Therefore, there is an advantage that there is less restriction on the plant construction for the set position of the brackish water separator 5, but there are also disadvantages that the installation of the pumping pump 43 increases the cost and the operation method of the system becomes complicated.
【0030】以下、本実施例のシステムの運転操作方法
について述べる。第1の実施例との相違点は、揚水ポン
プ43の運転方法と、これに伴う汽水分離器5の水位制
御方法である。通常運転における定格出力時には、汽水
分離器5で発生する高温のドレン水は小量であるので、
汽水分離器5の水位が目標点迄上昇した時点で流量調節
弁(ポンプ入口弁)44を開にして、間歇的に揚水ポン
プ43を運転し、温水タンク27へ高温水を供給するこ
とにより貯水を飽和温度近くに保つ。温水タンク水位が
最高位に達して余った貯水はドレン弁46を開して復水
器18へ戻す。起動後出力上昇中、又は停止に至る出力
降下中の低出力時においても同様に間歇的に揚水ポンプ
43を運転し、汽水分離器5より取り込んだ温水をタン
ク出口弁2を開にして伝熱管へ注水し、温水を自然循環
させる。The operation method of the system of this embodiment will be described below. The difference from the first embodiment is the method of operating the pump pump 43 and the water level control method of the brackish water separator 5 associated therewith. At the rated output in normal operation, the amount of hot drain water generated in the brackish water separator 5 is small,
When the water level of the brackish water separator 5 rises to the target point, the flow rate control valve (pump inlet valve) 44 is opened, the pump 43 is intermittently operated, and hot water is supplied to the hot water tank 27 to store water. Keep near the saturation temperature. The excess water stored when the water level of the hot water tank reaches the highest level opens the drain valve 46 and returns it to the condenser 18. Similarly, at the time of low output power rising or power output falling to stop, the pump pump 43 is also intermittently operated to open the tank outlet valve 2 of the hot water taken in from the brackish water separator 5 to open the heat transfer tube. Pour water into the water and let warm water circulate.
【0031】ボイラ緊急停止時には、初期時にはタンク
出口弁2を開して温水タンク27から温水を注水し、そ
の後注水により温水タンク27の水位が低下して最低水
位となると、タンク出口弁2を閉して注水を停止する。
さらに、ボイラトリップ後時間が経過して蒸発器4の出
口で二相流となると、汽水分離器5のドレン水位が上昇
し始めるので、通常運転の低出力時と同様に、間歇的に
揚水ポンプ43を運転し、タンク水位が上昇すると温水
タンク出口弁2を開にして貯水を伝熱管へ注水し自然循
環させる。At the time of an emergency stop of the boiler, the tank outlet valve 2 is opened at the initial stage to inject hot water from the hot water tank 27, and when the water level of the hot water tank 27 is lowered by the water injection to reach the minimum water level, the tank outlet valve 2 is closed. And stop water injection.
Furthermore, when a two-phase flow occurs at the outlet of the evaporator 4 after a lapse of time after the boiler trip, the drain water level of the brackish water separator 5 begins to rise, so that the pumping pump is intermittently pumped as in the low output of normal operation. 43 is operated, and when the tank water level rises, the hot water tank outlet valve 2 is opened to inject the stored water into the heat transfer tube and circulate it naturally.
【0032】タンク流量・水位制御器50は、水・蒸気
系システムの弁操作を自動制御するためのものであり、
タンク流量・水位制御器50は、温水タンク27の水位
と汽水分離器の水位をそれぞれ信号線51,52を介し
て取り込み、温水タンク27の水位の目標値との差の絶
対値が減少するように、かつ汽水分離器5の水位が目標
範囲内にあるように、流量調節弁(ポンプ入口弁)44
の開度要求,揚水ポンプの運転要求と、ドレン弁45,
46の開度要求とタンク出口弁2の開度要求を決定し、
それぞれ信号線53,55,54,56,57に出力す
る。なお、本実施例の制御系構成は、構成の一例を示し
たものであり、一部運転員による手動操作によっても、
前記の弁操作が可能なことは言うまでもない。The tank flow rate / water level controller 50 is for automatically controlling the valve operation of the water / steam system,
The tank flow rate / water level controller 50 takes in the water level of the hot water tank 27 and the water level of the brackish water separator via the signal lines 51 and 52, respectively, so that the absolute value of the difference between the target value of the water level of the hot water tank 27 decreases. The flow control valve (pump inlet valve) 44 so that the water level of the brackish water separator 5 is within the target range.
Opening degree request, pumping pump operation request, drain valve 45,
The opening request of 46 and the opening request of the tank outlet valve 2 are determined,
It outputs to the signal lines 53, 55, 54, 56 and 57, respectively. In addition, the control system configuration of the present embodiment is an example of the configuration, even by a manual operation by some operators,
It goes without saying that the valve operation described above is possible.
【0033】本実施例の加圧流動層ボイラ発電システム
のボイラ緊急停止時のシミュレーション結果を示す図5
から分かるように、ボイラトリップ後、温水タンクの出
口弁は開で温水タンクより伝熱管へ注水され、タンク貯
水が最低水位に達してタンク出口弁を閉じ、非常用給水
ポンプを起動する一連のシーケンスは、第1の実施例の
ボイラ緊急停止時のシミュレーションと同一条件で行っ
ており、同様の結果が得られることが分かった。ここ
で、初期時の温水タンク注水ではタンク出口弁全開であ
り、注水流量制御は行っていない。時間が約111秒経
過したところから汽水分離器にドレン水が発生し汽水分
離器の水位が上昇を始めるが、時間が約1500秒経過
した時点で揚水ポンプが起動してドレン水が温水タンク
へ送られるので、汽水分離器の水位が低下し、温水タン
ク水位は上昇している。これ以降、汽水分離器の水位変
化により間歇的に揚水ポンプが起動するので、汽水分離
器水位は鋸刃状に変化している。時間が約2400秒経
過した時点で温水タンク出口弁が開となり、注水流量制
御により、温水タンク出口流量がほぼ目標値に等しく一
定に制御されている。FIG. 5 shows a simulation result of the pressurized fluidized bed boiler power generation system of the present embodiment when the boiler is stopped in an emergency.
As can be seen from the figure, after the boiler trip, the hot water tank outlet valve is opened and water is poured from the hot water tank to the heat transfer pipe, the tank water reaches the minimum water level, the tank outlet valve is closed, and the emergency water supply pump is started. Was performed under the same conditions as the simulation at the time of the emergency stop of the boiler of the first embodiment, and it was found that similar results were obtained. Here, in the hot water tank water injection at the initial stage, the tank outlet valve is fully opened, and the water injection flow rate control is not performed. Drain water is generated in the brackish water separator after about 111 seconds, and the water level in the brackish water separator begins to rise. At about 1500 seconds, the pumping pump is activated and drain water is transferred to the hot water tank. As it is sent, the water level of the brackish water separator has dropped and the water level of the hot water tank has risen. After that, the pumping pump is intermittently activated due to the change in the water level of the brackish water separator, so the water level of the brackish water separator changes like a saw blade. The hot water tank outlet valve opens at the time when about 2400 seconds have elapsed, and the hot water tank outlet flow rate is controlled to be substantially equal to the target value by the water injection flow rate control.
【0034】図5には、ボイラ緊急停止時のシミュレー
ション結果のみを示したが、通常運転の低出力時は、ボ
イラ緊急停止での火炉停止後、時間が経過して火炉層温
度が低下した場合の条件にほぼ等しくなる。シミュレー
ション結果に示したように、本実施例の加圧流動層ボイ
ラ発電システムでは、ボイラ緊急停止時あるいは通常運
転低出力時において、伝熱管への非常時注水およびボイ
ラ給水の安定な自然循環モードが可能となる。FIG. 5 shows only the simulation result at the time of the emergency stop of the boiler, but at the time of the low output of the normal operation, when the time elapses after the stop of the furnace at the emergency stop of the boiler, the temperature of the furnace layer decreases. Is almost equal to the condition. As shown in the simulation results, in the pressurized fluidized bed boiler power generation system of the present embodiment, the emergency natural water injection to the heat transfer tubes and the stable natural circulation mode of the boiler feed water are achieved during the emergency stop of the boiler or the low output of the normal operation. It will be possible.
【0035】本発明の第4の実施例を図6により説明す
る。図6は、本実施例の加圧流動層ボイラ発電システム
のシステム構成を示す図である。A fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram showing a system configuration of the pressurized fluidized bed boiler power generation system of the present embodiment.
【0036】本実施例が上記した第3の実施例と相違す
るところは、温水タンクに加圧調整弁58を介してガス
タンク59を接続し、温水タンクをガス加圧型としたこ
とである。この場合は、温水タンクの設置高さを高所に
する必要がないので、プラント建設上の制約が少なくな
る利点があるが、新たにガスタンクや加圧調整弁等のガ
ス加圧設備が必要となることによるコスト増、およびシ
ステムの運転操作方法が複雑化するという欠点もある。
一方、汽水分離器5のドレン水をガス加圧温水タンク6
0に送る手段としては、第3の実施例と同様に揚水ポン
プ43を用いる必要がある。水・蒸気系システムの運転
操作方法は、前述した第3の実施例と同様であるので、
説明を省略する。This embodiment differs from the third embodiment described above in that a gas tank 59 is connected to the hot water tank via a pressurization adjusting valve 58, and the hot water tank is of a gas pressurizing type. In this case, the hot water tank does not have to be installed at a high height, which has the advantage of reducing restrictions on plant construction, but requires new gas pressurization equipment such as a gas tank and pressurization control valve. However, there is also a drawback that the cost is increased and the operation method of the system is complicated.
On the other hand, the drain water of the brackish water separator 5 is supplied to the gas pressurized hot water tank 6
As in the third embodiment, it is necessary to use the pumping pump 43 as a means for sending to 0. Since the operation method of the water / steam system is the same as that of the third embodiment described above,
Description is omitted.
【0037】[0037]
【発明の効果】以上説明したように、本発明によれば、
汽水分離器のドレン水を継続的に温水タンクで取り込む
ことにより、ヒータ設備なしに温水タンクの貯水を飽和
温度近くの値に保つことができる。また、通常運転中の
低出力時にも汽水分離器で発生するドレン水を温水タン
クで取り込み、タンク出口弁を開にして貯水を伝熱管へ
注水することとし、温水タンクの注水ラインによりボイ
ラ循環ラインを可能とすることができる。これにより、
ボイラ緊急停止時の温水タンク注水ラインからボイラ循
環ライン使用への切り替え操作が不要となり、かつ従来
のボイラ循環ラインの配管,ポンプ設備も不要となるの
で、システム構成を合理化することができる。As described above, according to the present invention,
By continuously taking in the drain water of the brackish water separator in the hot water tank, it is possible to maintain the stored water in the hot water tank at a value close to the saturation temperature without a heater facility. In addition, the drain water generated in the brackish water separator is taken into the hot water tank even during low power output during normal operation, and the tank outlet valve is opened to inject the stored water into the heat transfer tube. Can be possible. This allows
It is not necessary to switch the hot water tank water injection line to the boiler circulation line at the time of emergency stop of the boiler, and the piping and pump equipment of the conventional boiler circulation line are also unnecessary, so that the system configuration can be rationalized.
【図1】本発明の第1の実施例である加圧流動層ボイラ
発電システムの基本構成図である。FIG. 1 is a basic configuration diagram of a pressurized fluidized bed boiler power generation system that is a first embodiment of the present invention.
【図2】本実施例の加圧流動層ボイラ発電システムのボ
イラ緊急停止のシミュレーション結果を示す図である。FIG. 2 is a diagram showing a simulation result of a boiler emergency stop of the pressurized fluidized bed boiler power generation system of the present embodiment.
【図3】本発明の第2の実施例である汽水分離機能付温
水タンクを用いた水・蒸気系のシステム構成図である。FIG. 3 is a system configuration diagram of a water / steam system using a hot water tank with a brackish water separating function according to a second embodiment of the present invention.
【図4】本発明の第3の実施例である汽水分離器のドレ
ン水を温水タンクへ送るために揚水ポンプを用いた水・
蒸気系のシステム構成図である。FIG. 4 is a diagram showing a third embodiment of the present invention in which a drainage water of a brackish water separator is used to send a drain water to a hot water tank;
It is a system configuration diagram of a steam system.
【図5】本実施例の加圧流動層ボイラ発電システムのボ
イラ緊急停止のシミュレーション結果を示す図である。FIG. 5 is a diagram showing a simulation result of a boiler emergency stop of the pressurized fluidized bed boiler power generation system of the present embodiment.
【図6】本発明の第4の実施例であるガス加圧温水タン
クを用いた場合の水・蒸気系のシステム構成図である。FIG. 6 is a system configuration diagram of a water / steam system when a gas pressurized hot water tank according to a fourth embodiment of the present invention is used.
【図7】従来の技術の加圧流動層ボイラ発電システムの
構成図である。FIG. 7 is a configuration diagram of a conventional pressurized fluidized bed boiler power generation system.
8…ボイラ循環ポンプ、15…高圧タービン加減弁、1
6…低圧タービン加減弁、29,44…流量調節弁、3
1,32,34,35,51,52,53,54,5
5,56,57…信号線、33…汽水分離器出口の蒸気
流量、45,46…ドレン弁。8 ... Boiler circulation pump, 15 ... High pressure turbine regulator valve, 1
6 ... Low-pressure turbine control valve, 29, 44 ... Flow control valve, 3
1, 32, 34, 35, 51, 52, 53, 54, 5
5, 56, 57 ... Signal line, 33 ... Steam flow rate at brackish water separator outlet, 45, 46 ... Drain valve.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中谷 康博 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Nakatani 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Factory
Claims (4)
の流動層内の層と熱交換する水冷壁と、該水冷壁の後流
側に設置された蒸発器と、該蒸発器の出口側に設けられ
た水と蒸気を分離する汽水分離器と、該汽水分離器の出
口側に設置された過熱器および再熱器と、過熱器および
再熱器よりの蒸気により駆動される蒸気タービンと、該
蒸気タービンにより駆動される発電機と、前記水冷壁,
蒸発器,過熱器および再熱器に給水する給水系と、層内
伝熱管に温水を注水する温水タンクを備えた加圧流動層
ボイラ発電システムであって、前記汽水分離器より発生
する温水を前記温水タンクに給水されるように構成され
ていることを特徴とする加圧流動層ボイラ発電システ
ム。1. A pressurized fluidized bed boiler, a water cooling wall for exchanging heat with a bed in the fluidized bed of the pressurized fluidized bed boiler, an evaporator installed on the downstream side of the water cooling wall, and the evaporator. Driven by steam from the brackish water separator installed at the outlet side of the steam generator, the superheater and reheater installed at the outlet side of the brackish water separator, and the steam from the superheater and reheater A steam turbine, a generator driven by the steam turbine, the water cooling wall,
A pressurized fluidized bed boiler power generation system comprising a water supply system for supplying water to an evaporator, a superheater and a reheater, and a hot water tank for injecting hot water to an in-layer heat transfer pipe, wherein hot water generated from the brackish water separator is A pressurized fluidized bed boiler power generation system, characterized in that the hot water tank is supplied with water.
接合して一体化した汽水分離機能付温水タンクを構成し
た請求項1に記載の加圧流動層ボイラ発電システム。2. The pressurized fluidized bed boiler power generation system according to claim 1, wherein a hot water tank with a brackish water separating function is configured by joining and integrating the brackish water separator on an upper portion of the hot water tank.
ポンプ及び温水タンク出口弁が設けられるものであっ
て、前記汽水分離器より発生する温水を前記温水タンク
出口弁開度を調整して前記温水タンクに注水流量を制御
する請求項1に記載の加圧流動層ボイラ発電システム。3. A pump and a hot water tank outlet valve are provided between the brackish water separator and the hot water tank, wherein hot water generated from the brackish water separator is adjusted by adjusting the opening degree of the hot water tank outlet valve. The pressurized fluidized bed boiler power generation system according to claim 1, wherein the flow rate of water injection into the hot water tank is controlled.
えた請求項1に記載の加圧流動層ボイラ発電システム。4. The pressurized fluidized bed boiler power generation system according to claim 1, wherein a pump is provided in a water injection line of the hot water tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27228695A JPH09112801A (en) | 1995-10-20 | 1995-10-20 | Pressurized fluidized bed boiler power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27228695A JPH09112801A (en) | 1995-10-20 | 1995-10-20 | Pressurized fluidized bed boiler power generation system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09112801A true JPH09112801A (en) | 1997-05-02 |
Family
ID=17511747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27228695A Pending JPH09112801A (en) | 1995-10-20 | 1995-10-20 | Pressurized fluidized bed boiler power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09112801A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009092372A (en) * | 2007-10-04 | 2009-04-30 | General Electric Co <Ge> | Supercritical steam combined cycle and its method |
KR101006761B1 (en) * | 2008-03-31 | 2011-01-10 | (주)귀뚜라미동광보일러 | Steam boiler installation superheater and hot water heater |
CN102168848A (en) * | 2011-04-18 | 2011-08-31 | 中国科学院电工研究所 | High-temperature concrete heat reservoir capable of generating steam directly |
JP2014084847A (en) * | 2012-10-26 | 2014-05-12 | Mitsubishi Heavy Ind Ltd | Combined cycle plant, its stopping method, and its control method |
CN110010254A (en) * | 2019-04-29 | 2019-07-12 | 西安热工研究院有限公司 | A system and method for three-loop steam-water separation of sodium-cooled fast reactor |
WO2020013309A1 (en) * | 2018-07-13 | 2020-01-16 | 三菱日立パワーシステムズ株式会社 | Combined power generation plant and combined power generation plant control method |
-
1995
- 1995-10-20 JP JP27228695A patent/JPH09112801A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009092372A (en) * | 2007-10-04 | 2009-04-30 | General Electric Co <Ge> | Supercritical steam combined cycle and its method |
KR101006761B1 (en) * | 2008-03-31 | 2011-01-10 | (주)귀뚜라미동광보일러 | Steam boiler installation superheater and hot water heater |
CN102168848A (en) * | 2011-04-18 | 2011-08-31 | 中国科学院电工研究所 | High-temperature concrete heat reservoir capable of generating steam directly |
JP2014084847A (en) * | 2012-10-26 | 2014-05-12 | Mitsubishi Heavy Ind Ltd | Combined cycle plant, its stopping method, and its control method |
WO2020013309A1 (en) * | 2018-07-13 | 2020-01-16 | 三菱日立パワーシステムズ株式会社 | Combined power generation plant and combined power generation plant control method |
JP2020012386A (en) * | 2018-07-13 | 2020-01-23 | 三菱日立パワーシステムズ株式会社 | Combined power plant and control method for combined power plant |
CN112384679A (en) * | 2018-07-13 | 2021-02-19 | 三菱动力株式会社 | Hybrid power generation facility and control method for hybrid power generation facility |
US11415078B2 (en) | 2018-07-13 | 2022-08-16 | Mitsubishi Power, Ltd. | Combined power generation plant and combined power generation plant control method |
CN110010254A (en) * | 2019-04-29 | 2019-07-12 | 西安热工研究院有限公司 | A system and method for three-loop steam-water separation of sodium-cooled fast reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4540472B2 (en) | Waste heat steam generator | |
JP4343427B2 (en) | Steam power plant output adjustment method and its steam power plant | |
US4674285A (en) | Start-up control system and vessel for LMFBR | |
JP5183305B2 (en) | Startup bypass system in steam power plant | |
JP2012102711A (en) | Temperature reducing device steam heat recovery facilities | |
JP2003161164A (en) | Combined cycle power plant | |
JPH09112801A (en) | Pressurized fluidized bed boiler power generation system | |
JP2001329806A (en) | Combined cycle plant | |
JP7403330B2 (en) | Power generation plants and surplus energy thermal storage methods in power generation plants | |
US4656335A (en) | Start-up control system and vessel for LMFBR | |
JP2020176736A (en) | Power generation plant and method for operating the same | |
JP2012102980A (en) | Blow tank and method of using the same | |
JP2012159238A (en) | Steam system | |
CN1138943C (en) | Method for operating boiler with forced circulation and boiler for its implementation | |
JPS6160242B2 (en) | ||
JP3604886B2 (en) | Pressurized fluidized bed combined cycle power plant and power plant | |
JP2000028102A (en) | Auxiliary steam control method for boiler plant for thermal power generation | |
JP2531801B2 (en) | Exhaust heat recovery heat exchanger controller | |
JPH0384301A (en) | Naturally circulating waste heat recovery boiler | |
JPH11294713A (en) | Water supply device for exhaust heat recovery boiler | |
JP2625487B2 (en) | Hot start method of boiler | |
JP3820636B2 (en) | Method and apparatus for controlling feed water temperature in exhaust recombustion combined cycle plant | |
JPH05296407A (en) | After burning type combined cyclic power generating facility | |
JPH0652874A (en) | Fuel cell power generation system | |
JP2708406B2 (en) | Startup control method for thermal power plant |