JP3130996B2 - Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane - Google Patents
Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membraneInfo
- Publication number
- JP3130996B2 JP3130996B2 JP2124092A JP2124092A JP3130996B2 JP 3130996 B2 JP3130996 B2 JP 3130996B2 JP 2124092 A JP2124092 A JP 2124092A JP 2124092 A JP2124092 A JP 2124092A JP 3130996 B2 JP3130996 B2 JP 3130996B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- porous
- micropores
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012528 membrane Substances 0.000 title claims description 223
- 239000012510 hollow fiber Substances 0.000 title claims description 207
- 229920001155 polypropylene Polymers 0.000 title claims description 108
- -1 polypropylene Polymers 0.000 title claims description 105
- 239000004743 Polypropylene Substances 0.000 title claims description 102
- 239000011148 porous material Substances 0.000 title claims description 65
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000178 monomer Substances 0.000 claims description 72
- 238000000034 method Methods 0.000 claims description 65
- 238000011282 treatment Methods 0.000 claims description 35
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 24
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 claims description 24
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 24
- 229920006037 cross link polymer Polymers 0.000 claims description 23
- 230000000717 retained effect Effects 0.000 claims description 18
- 210000001724 microfibril Anatomy 0.000 claims description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 10
- 229910052753 mercury Inorganic materials 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 5
- 238000002074 melt spinning Methods 0.000 claims description 5
- 230000000379 polymerizing effect Effects 0.000 claims description 5
- 238000010622 cold drawing Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 81
- 229920000642 polymer Polymers 0.000 description 57
- 239000000243 solution Substances 0.000 description 44
- 239000002904 solvent Substances 0.000 description 36
- 238000006116 polymerization reaction Methods 0.000 description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 25
- 239000010408 film Substances 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 22
- 238000009987 spinning Methods 0.000 description 21
- 230000035699 permeability Effects 0.000 description 20
- 239000000047 product Substances 0.000 description 17
- 239000003960 organic solvent Substances 0.000 description 16
- 239000003505 polymerization initiator Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 12
- 239000005977 Ethylene Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 238000004132 cross linking Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 238000001914 filtration Methods 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 229920000098 polyolefin Polymers 0.000 description 8
- 238000007127 saponification reaction Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 238000007654 immersion Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000012719 thermal polymerization Methods 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- CCJAYIGMMRQRAO-UHFFFAOYSA-N 2-[4-[(2-hydroxyphenyl)methylideneamino]butyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCCN=CC1=CC=CC=C1O CCJAYIGMMRQRAO-UHFFFAOYSA-N 0.000 description 4
- 239000004342 Benzoyl peroxide Substances 0.000 description 4
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 235000019400 benzoyl peroxide Nutrition 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004887 air purification Methods 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000009998 heat setting Methods 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 238000001471 micro-filtration Methods 0.000 description 3
- 239000012462 polypropylene substrate Substances 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000007602 hot air drying Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000006277 sulfonation reaction Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- ASFDEZUYEYZNGZ-UHFFFAOYSA-N (3-bromobenzoyl) 3-bromobenzenecarboperoxoate Chemical compound BrC1=CC=CC(C(=O)OOC(=O)C=2C=C(Br)C=CC=2)=C1 ASFDEZUYEYZNGZ-UHFFFAOYSA-N 0.000 description 1
- KEOLYBMGRQYQTN-UHFFFAOYSA-N (4-bromophenyl)-phenylmethanone Chemical compound C1=CC(Br)=CC=C1C(=O)C1=CC=CC=C1 KEOLYBMGRQYQTN-UHFFFAOYSA-N 0.000 description 1
- NOBYOEQUFMGXBP-UHFFFAOYSA-N (4-tert-butylcyclohexyl) (4-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CC(C(C)(C)C)CCC1OC(=O)OOC(=O)OC1CCC(C(C)(C)C)CC1 NOBYOEQUFMGXBP-UHFFFAOYSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- FYBFGAFWCBMEDG-UHFFFAOYSA-N 1-[3,5-di(prop-2-enoyl)-1,3,5-triazinan-1-yl]prop-2-en-1-one Chemical compound C=CC(=O)N1CN(C(=O)C=C)CN(C(=O)C=C)C1 FYBFGAFWCBMEDG-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- MIEUQGPIBQNSDB-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid;sodium Chemical compound [Na].CC(=C)C(=O)OCCS(O)(=O)=O MIEUQGPIBQNSDB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- RPBWMJBZQXCSFW-UHFFFAOYSA-N 2-methylpropanoyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(=O)C(C)C RPBWMJBZQXCSFW-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- MKTOIPPVFPJEQO-UHFFFAOYSA-N 4-(3-carboxypropanoylperoxy)-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)OOC(=O)CCC(O)=O MKTOIPPVFPJEQO-UHFFFAOYSA-N 0.000 description 1
- UGVRJVHOJNYEHR-UHFFFAOYSA-N 4-chlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=CC=C1 UGVRJVHOJNYEHR-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NQSMEZJWJJVYOI-UHFFFAOYSA-N Methyl 2-benzoylbenzoate Chemical compound COC(=O)C1=CC=CC=C1C(=O)C1=CC=CC=C1 NQSMEZJWJJVYOI-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- IWTBWSGPDGPTIB-UHFFFAOYSA-N butanoyl butaneperoxoate Chemical compound CCCC(=O)OOC(=O)CCC IWTBWSGPDGPTIB-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- VLAGSAGYAIGJSU-UHFFFAOYSA-N hexanoyl hexaneperoxoate Chemical compound CCCCCC(=O)OOC(=O)CCCCC VLAGSAGYAIGJSU-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- KOPQZJAYZFAPBC-UHFFFAOYSA-N propanoyl propaneperoxoate Chemical compound CCC(=O)OOC(=O)CC KOPQZJAYZFAPBC-UHFFFAOYSA-N 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 239000012966 redox initiator Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Artificial Filaments (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、精密濾過および空気の
浄化等極めて高い濾過流束が要求される分野に適する微
小空孔の孔径が大きく、かつ高空孔率の多孔質ポリプロ
ピレン中空糸膜、その製造方法及び親水化多孔質ポリプ
ロピレン中空糸膜に関する。The present invention relates to a porous polypropylene hollow fiber membrane having a large pore size and a high porosity suitable for fields requiring extremely high filtration flux, such as microfiltration and air purification. The present invention relates to a method for producing the same and a hydrophilic porous polypropylene hollow fiber membrane.
【0002】[0002]
【従来の技術】短冊状微小空孔が積層したポリプロピレ
ンよりなる多孔質中空糸膜は従来より知られており、そ
の技術の詳細は、例えば特開昭52−15627号公報
や特開平2−2849号公報に開示されている。前者に
は、ポリプロピレンを、紡糸温度210〜270℃、紡
糸ドラフト180〜600で溶融紡糸し、次いで155
℃以下で熱処理した後、110℃未満で30〜200%
延伸し、しかる後上記の熱処理温度以上で155℃以下
の温度で再び熱処理することにより、特徴的な短冊状微
小空孔を有し、微小空孔の孔半径の分布曲線が 200
〜1200オングストロームの範囲内に少なくとも一つ
の極大点を有する多孔質中空糸の製造技術が開示されて
いる。また、後者には、溶融紡糸されたポリプロピレン
中空糸を液体窒素中で延伸し、その後高温下(110〜
155℃)で延伸を実施する方法、あるいは溶融紡糸さ
れたポリプロピレン中空糸を高温下(120〜145
℃)で延伸(100〜700%)し、115〜155℃
で熱処理を実施する方法により、短冊状の微小空孔群を
形成するバブルポイント法で測定される孔径が0.1〜
1.0μmの多孔質ポリプロピレン中空糸膜が開示され
ている。2. Description of the Related Art A porous hollow fiber membrane made of polypropylene in which strip-shaped micropores are laminated has been known, and details of the technology are described in, for example, JP-A-52-15627 and JP-A-2-2849. No. 6,086,045. In the former, polypropylene is melt-spun at a spinning temperature of 210 to 270 ° C and a spinning draft of 180 to 600, and then 155.
30-200% at less than 110 ° C after heat treatment below 100 ° C
The film is stretched and then heat-treated at a temperature not lower than the above-mentioned heat treatment temperature and not higher than 155 ° C., thereby having characteristic strip-shaped fine pores and having a distribution curve of the pore radius of the fine pores.
A technique for producing a porous hollow fiber having at least one maximum point in the range of 11200 Å is disclosed. In the latter, a melt-spun polypropylene hollow fiber is stretched in liquid nitrogen, and then heated at a high temperature (110 to 110).
155 ° C.) or melt-spun polypropylene hollow fiber at a high temperature (120 to 145 ° C.).
° C) and stretched (100-700%), 115-155 ° C
The hole diameter measured by the bubble point method for forming a group of strip-shaped micropores is 0.1 to
A 1.0 μm porous polypropylene hollow fiber membrane is disclosed.
【0003】このように、従来技術では平均孔径が1μ
mを超える短冊状の微小空孔を有するポリプロピレン製
多孔質中空糸膜は得られていなかった。As described above, in the prior art, the average pore diameter is 1 μm.
A porous hollow fiber membrane made of polypropylene having strip-shaped micropores exceeding m was not obtained.
【0004】一般に、多孔質膜はその素材の特性により
親水性膜と疎水性膜に大別される。親水性多孔質膜の例
としては、セルロース、セルロース誘導体、ポリビニル
アルコール、エチレン−ビニルアルコール共重合体など
が知られている。親水性多孔質膜の特徴は、膜の細孔表
面が親水性であるため、水に濡れやすく、水系溶液の濾
過が特別の前処理なしに可能な点にある。[0004] In general, porous membranes are roughly classified into hydrophilic membranes and hydrophobic membranes depending on the characteristics of the material. As examples of the hydrophilic porous membrane, cellulose, cellulose derivatives, polyvinyl alcohol, ethylene-vinyl alcohol copolymer and the like are known. The feature of the hydrophilic porous membrane is that since the pore surface of the membrane is hydrophilic, it is easily wetted by water, and the filtration of the aqueous solution can be performed without any special pretreatment.
【0005】しかしながら、親水性膜は湿潤時の機械的
強度の低下、水による膨潤などが大きいという欠点を有
し、さらに湿潤状態から乾燥させると膜性能が低下し、
劣化しやすいという欠点を有する。[0005] However, hydrophilic membranes have the disadvantage that the mechanical strength when wetted and the swelling due to water are large, and furthermore, when dried from a wet state, the membrane performance is reduced.
It has the disadvantage that it is easily deteriorated.
【0006】一方、疎水性多孔質膜は疎水性であるの
で、そのままでは水を透過させることが難しく、水を始
めとする親水性液体を透過させるためには親水化処理が
必要である。特にポリオレフィンの表面改質による親水
化法について種々の方法が検討されているが、表面形状
が複雑な多孔質膜の親水化に対して、表面が滑らかなフ
ィルム状物等の親水化法を単純に適用することはできな
い。On the other hand, since the hydrophobic porous membrane is hydrophobic, it is difficult to permeate water as it is, and a hydrophilic treatment is required to transmit a hydrophilic liquid such as water. In particular, various methods for hydrophilization by surface modification of polyolefins have been studied.However, for hydrophilization of porous membranes with complicated surface shapes, simple methods for hydrophilization of film-like materials with a smooth surface are used. Cannot be applied to
【0007】ポリオレフィン多孔質膜の親水化法として
は、水との相溶性が良好なアルコールやケトン等の有機
溶剤によってポリオレフィン多孔質膜の微細孔部分を含
めた表面全体を湿潤処理した後、この有機溶剤を水で置
換する有機溶剤湿潤・水置換法、ポリエチレングリコー
ルや界面活性剤等の親水性物質を多孔質膜の表面に吸着
させて多孔質膜に親水性を付与する物理的吸着法(特開
昭54−153872号公報、特開昭59−24732
号公報)、あるいは親水性単量体を多孔質フィルムの表
面に保持させた状態で放射線を照射する方法(特開昭5
6−38333号公報)や疎水性樹脂の多孔質構造物を
プラズマ処理する方法(特開昭56−157437号公
報)等の化学的表面変性法が知られている。[0007] As a method for hydrophilizing a polyolefin porous membrane, the entire surface of the polyolefin porous membrane including the micropores is wet-treated with an organic solvent having good compatibility with water, such as alcohol or ketone. An organic solvent wetting / water replacement method in which an organic solvent is replaced with water, a physical adsorption method in which a hydrophilic substance such as polyethylene glycol or a surfactant is adsorbed on the surface of the porous membrane to impart hydrophilicity to the porous membrane ( JP-A-54-153873 and JP-A-59-24732.
Japanese Patent Application Laid-open No. Sho 5 (1994), or a method of irradiating radiation while keeping a hydrophilic monomer on the surface of a porous film.
Chemical surface modification methods such as a method of plasma-treating a porous structure of a hydrophobic resin (Japanese Patent Application Laid-Open No. 56-157737) are known.
【0008】しかし、有機溶剤湿潤・水置換法では、保
存中や使用中に一旦細孔内の水が抜けるとその部分は疎
水性に戻り水を透過できなくなるので、多孔質膜の周囲
に常時水を満たしておくことが必要であり、取り扱いが
煩雑である。物理的吸着法は操作は簡単であるが、長時
間にわたって使用しているうちに親水性物質が脱離する
ので必ずしも充分な親水化法であるとは言えない。ま
た、従来の化学的表面変性法では、放射線を照射する方
法およびプラズマ処理する方法のいずれの場合も、膜厚
方向の均一な親水化が難しく、膜が厚い場合や膜が中空
糸状である場合に膜厚方向の全体にほぼ均一に親水化処
理しようとすると、多孔質膜基質の損傷、機械的強度の
低下が避けられない点等が問題であった。[0008] However, in the organic solvent wet / water replacement method, once water in the pores escapes during storage or use, the portion returns to hydrophobic and cannot pass through water. It needs to be filled with water, and handling is complicated. The physical adsorption method is simple in operation, but is not necessarily a sufficient hydrophilization method because a hydrophilic substance is desorbed over a long period of use. In addition, in the conventional chemical surface modification method, in both cases of the method of irradiating radiation and the method of plasma treatment, it is difficult to uniformly hydrophilize in the film thickness direction, and when the film is thick or the film is hollow fiber-shaped. If the entire surface in the film thickness direction is subjected to a hydrophilic treatment, the porous membrane substrate is damaged and mechanical strength is inevitably reduced.
【0009】また、疎水性多孔質膜をエチレン−酢酸ビ
ニル共重合体のケン化物、すなわちエチレン−ビニルア
ルコール系共重合体で予め親水化処理することが提案さ
れている(特開昭61−125408公報、特開昭61
−271003号公報)。Further, it has been proposed that a hydrophobic porous membrane is previously subjected to a hydrophilization treatment with a saponified product of an ethylene-vinyl acetate copolymer, that is, an ethylene-vinyl alcohol copolymer (JP-A-61-125408). Gazette, JP 61
-271003).
【0010】また、2種の異なるポリマーをブレンドし
て溶融紡糸した後、延伸処理して異種ポリマーの界面を
開裂させて微孔性多孔質中空繊維を形成し、構成ポリマ
ー中に存在する側鎖基の加水分解、スルホン化等の後処
理によって、細孔の表面が親水化された親水性多孔質中
空繊維を製造することが提案されている(特開昭55−
137208号公報)。Also, after blending two different polymers and melt-spinning, they are subjected to a stretching treatment to cleave the interface between the different polymers to form microporous porous hollow fibers, and the side chains existing in the constituent polymers. It has been proposed to produce hydrophilic porous hollow fibers in which the surface of the pores has been made hydrophilic by post-treatments such as group hydrolysis and sulfonation (Japanese Patent Application Laid-Open No. 55-1979).
137208).
【0011】更に、ポリオレフィン多孔質膜の細孔表面
上に親水性の重合体が強固に保持されてなる多孔質膜お
よびその製造方法が提案されている(特開昭63−19
0602号公報)。その技術の詳細は、ジアセトンアク
リルアミドと架橋性モノマーとを含むモノマー類からな
る親水性架橋重合体を、ポリオレフィン多孔質膜の少な
くとも一部の細孔表面上に保持させてなる親水性多孔質
膜であり、また、ジアセトンアクリルアミドと架橋性モ
ノマーとを含むモノマー類をポリオレフィン多孔質膜の
少なくとも一部の細孔表面上に保持させた状態で加熱重
合させる製造方法である。Furthermore, a porous membrane in which a hydrophilic polymer is firmly held on the pore surface of a polyolefin porous membrane and a method for producing the same have been proposed (Japanese Patent Application Laid-Open No. 63-19 / 1988).
No. 0602). The details of the technology are as follows: a hydrophilic cross-linked polymer composed of monomers containing diacetone acrylamide and a cross-linkable monomer is held on at least a part of the pore surface of the polyolefin porous membrane. In addition, this is a production method in which a monomer containing diacetone acrylamide and a crosslinkable monomer is heated and polymerized while being held on at least a part of the pore surfaces of the polyolefin porous membrane.
【0012】[0012]
【発明が解決しようとする課題】しかし、いずれの方法
も従来公知のポリオレフィン多孔質膜を出発原料として
用いているため、高透過流量が要求される用途には性能
不足であった。すなわち高透過流量の親水化多孔質膜を
得るためには、疎水性多孔質膜の微小空孔の大孔径化、
高空孔率化を含めた親水化を考える必要があった。However, all of these methods use a conventionally known polyolefin porous membrane as a starting material, and therefore have insufficient performance for applications requiring a high permeation flow rate. That is, in order to obtain a hydrophilic porous membrane having a high permeation flow rate, it is necessary to increase the diameter of the micropores in the hydrophobic porous membrane,
It was necessary to consider hydrophilization including high porosity.
【0013】精密濾過や空気の浄化分野では、極めて高
い濾過流束が要求されており、ミクロンオーダーの細孔
が高い空孔率で開いている膜や不織布が使用されてい
る。短冊状微小空孔を有する多孔質中空糸は、特公昭6
3−35726号公報にも記載されているように、ガス
透過量や液体透過量が大きく、短冊状微小空孔が積層し
た構造のために、目詰りが生じにくいといった特徴を有
している。しかし、このような短冊状微小空孔を有する
中空糸は、極めて高い濾過流束と低い圧力損失が要求さ
れる無菌無塵エアーフィルター、各種ガスの除塵フィル
ター、無菌水用フィルター等には未だ性能が不充分であ
る。その理由は、このような分野に応用するには未だ孔
径が小さくかつ空孔率が低いからである。In the field of microfiltration and air purification, an extremely high filtration flux is required, and a membrane or nonwoven fabric having micron-order pores opened with a high porosity is used. Porous hollow fibers with strip-shaped micropores are disclosed in
As described in Japanese Patent Application Laid-Open No. 3-35726, the gas permeation amount and the liquid permeation amount are large, and because of the structure in which the strip-shaped micropores are stacked, clogging hardly occurs. However, such hollow fibers having strip-shaped micropores still perform well in sterile dustless air filters, dust filters for various gases, filters for sterile water, etc., which require extremely high filtration flux and low pressure loss. Is insufficient. The reason is that the pore diameter is still small and the porosity is low for application to such fields.
【0014】一方、アルコールや界面活性剤による親水
化処理は一時的な親水化であって、しかも、親水化処理
剤を多孔質膜に付着させたままで濾過等に使用するとア
ルコールや界面活性剤が精製水に移行してこれを汚染す
るので、濾過前にこれらの親水化剤を充分洗浄除去する
必要がある。また、このような状態で乾燥すると膜表面
は疎水性に戻るので一旦親水化処理した後は親水化剤を
水で置換しておき、多孔質膜の細孔表面は常に水に接触
させておかねばならないという問題を有している。On the other hand, the hydrophilization treatment with an alcohol or a surfactant is a temporary hydrophilization, and if the hydrophilization treatment agent is used for filtration or the like while being adhered to the porous membrane, the alcohol or the surfactant becomes Since the water is transferred to and contaminates purified water, it is necessary to sufficiently wash and remove these hydrophilizing agents before filtration. In addition, when dried in such a state, the membrane surface returns to hydrophobic. Therefore, once the hydrophilic treatment is performed, the hydrophilic agent is replaced with water, and the pore surface of the porous membrane is always kept in contact with water. Has the problem of having to do so.
【0015】また、特開昭56−38333号公報に記
載された方法では親水性を発現する基が多孔質膜に化学
的に固定されているため恒久的な親水化が達成される
が、電離放射線で照射する必要があることから大掛かり
な設備を必要とし、工程の安定性も充分とは言い難く、
膜素材を傷めたりする虞もあり、処理工程の操作・管理
が難しいという問題がある。Further, in the method described in JP-A-56-38333, permanent hydrophilicity is achieved because the group exhibiting hydrophilicity is chemically fixed to the porous membrane. Since it is necessary to irradiate with radiation, large-scale equipment is required, and the stability of the process is not sufficient.
There is also a risk that the film material may be damaged, and there is a problem that the operation and management of the processing steps are difficult.
【0016】また、特開昭55−137208号公報に
記載された異種ポリマーのブレンド物を溶融紡糸、延伸
して多孔質化した繊維は概して空孔率が小さいものであ
る。さらに、親水化のための加水分解やスルホン化等の
後処理が必要であり、工程が煩雑になるという問題をも
有している。In addition, fibers obtained by melt-spinning and drawing a blend of different polymers described in JP-A-55-137208 to be porous generally have a low porosity. Further, post-treatments such as hydrolysis and sulfonation for hydrophilization are required, and there is a problem that the process becomes complicated.
【0017】更に特開昭56−38333号公報の技術
を特公昭63−35726号公報の中空糸膜に応用して
も、サブミクロンの孔径の親水化中空糸膜しか得られな
い。また、特開昭61−125408号公報や特開昭6
1−271003号公報の親水性複合多孔質膜で開示さ
れている技術は、孔径に関しては前述の特公昭63−3
5726号公報等の技術水準を何ら越えるものではな
く、その実施例で得られた中空糸における平均孔径は
0.25〜0.70μmである。Further, even if the technique of JP-A-56-38333 is applied to the hollow fiber membrane of JP-B-63-35726, only a hydrophilic hollow fiber membrane having a submicron pore diameter can be obtained. Further, Japanese Patent Application Laid-Open Nos. Sho 61-125408 and
The technology disclosed in Japanese Patent Application Laid-Open No. 1-271003 for a hydrophilic composite porous membrane is disclosed in
The average pore size of the hollow fiber obtained in the example is 0.25 to 0.70 μm, which does not exceed the technical level of 5726 and the like.
【0018】更に、ポリオレフィン多孔質膜の細孔表面
上に、ジアセトンアクリルアミドと架橋性モノマーとを
含むモノマー類からなる親水性架橋重合体を保持させた
のが特開昭63−190602号公報に開示された親水
性多孔質膜である。Japanese Patent Application Laid-Open No. 63-190602 discloses that a hydrophilic cross-linked polymer composed of monomers containing diacetone acrylamide and a cross-linkable monomer is held on the pore surface of a porous polyolefin membrane. 3 is a disclosed hydrophilic porous membrane.
【0019】しかしながら、このような短冊状微小空孔
の細孔表面上に架橋性重合体を保持させた多孔質膜は、
極めて高い濾過流束と低い圧力損失が要求される水系溶
液や水系懸濁液の濾過、電子工業用等の純水の製造、医
薬品製造用原水の除菌等には未だ性能が不充分である。
その理由はこのような分野に応用するには未だ孔径が小
さくかつ空孔率が低いからである。膜の構造が濾過の効
率に優れる短冊状微小空孔の積層構造からなり、しかも
大孔径でかつ高空孔率である多孔質中空糸に、恒久親水
性を付与することができれば、省エネルギーや超クリー
ンな環境の創造等最先端の産業分野に資するところは極
めて大である。However, a porous membrane having a crosslinkable polymer held on the pore surface of such strip-shaped micropores is
Performance is still insufficient for filtration of aqueous solutions and suspensions requiring extremely high filtration flux and low pressure loss, production of pure water for electronics industry, etc., and sterilization of raw water for pharmaceutical production. .
The reason is that the pore diameter is still small and the porosity is low for application to such fields. If the membrane structure is composed of a lamination of strip-shaped micropores with excellent filtration efficiency, and if a porous hollow fiber with a large pore size and high porosity can be given permanent hydrophilicity, energy saving and ultra-clean The contribution to cutting-edge industrial fields such as creation of a safe environment is extremely large.
【0020】このような状況から、本発明者らは短冊状
微小空孔が積層した構造で高空孔率、大孔径でかつ大き
な空気透過量が達成できる多孔質ポリプロピレン中空糸
膜及び恒久親水性を有する高空孔率、大孔径の多孔質ポ
リプロピレン中空糸膜を得るべく鋭意研究した結果、本
発明に到達した。Under these circumstances, the present inventors have developed a porous polypropylene hollow fiber membrane and a permanent hydrophilicity which can achieve a high porosity, a large pore diameter, and a large air permeability with a structure in which strip-shaped micropores are stacked. As a result of intensive research to obtain a porous polypropylene hollow fiber membrane having a high porosity and a large pore size, the present invention has been achieved.
【0021】[0021]
【発明を解決するための手段】すなわち、本発明は、ポ
リプロピレンよりなる多孔質中空糸膜であって、繊維長
方向に配列したミクロフィブリルと、スタックドラメラ
からなる節部とに囲まれて形成される短冊状微小空孔が
中空糸内壁面より外壁面へ相互に連通した積層構造を有
し、水銀ポロシメーターで測定した微小空孔の平均孔径
が1μmを超え10μm以下であり、空孔率が70%〜
95%、空気透過量が4×105 リットル/m2 ・hr
・0.5atm以上であることを特徴とする大孔径多孔
質ポリプロピレン中空糸膜である。That is, the present invention relates to a porous hollow fiber membrane made of polypropylene, which is formed by being surrounded by microfibrils arranged in the fiber length direction and nodes formed by a stack dramella. Has a laminated structure in which the strip-shaped micropores communicate with each other from the inner wall surface of the hollow fiber to the outer wall surface, the average pore diameter of the micropores measured by a mercury porosimeter is more than 1 μm and 10 μm or less, and the porosity is 70% ~
95%, air permeation 4 × 10 5 l / m 2 · hr
-A large-pore-diameter porous polypropylene hollow fiber membrane characterized by being 0.5 atm or more.
【0022】また本発明は、中空糸製造用ノズルを用い
てポリプロピレンを溶融紡糸し、得られた未延伸糸をア
ニール処理した後に冷延伸し、次いで熱延伸することに
より多孔質化する多孔質中空糸の製造方法において、未
延伸糸のアニール処理を120〜165℃の温度で30
分以上実施し、熱延伸時の変形速度を1秒につき10%
以下とし、総延伸量を700%〜2500%とすること
を特徴とする大孔径多孔質ポリプロピレン中空糸膜の製
造方法である。The present invention also relates to a porous hollow fiber which is prepared by melt-spinning polypropylene using a nozzle for producing hollow fibers, annealing the obtained undrawn yarn, cold-drawing, and then hot-drawing to make it porous. In the yarn manufacturing method, the undrawn yarn is annealed at a temperature of 120 to 165 ° C. for 30 minutes.
Min, and the deformation rate during hot stretching is 10% per second.
The following is a method for producing a large-pore-diameter porous polypropylene hollow fiber membrane, wherein the total stretching amount is 700% to 2500%.
【0023】更に本発明は、前記記載の大孔径多孔質ポ
リプロピレン中空糸膜の微小空孔表面の少なくとも一部
に、エチレン−酢酸ビニル共重合体のケン化物を保持さ
せてなる親水化多孔質ポリプロピレン中空糸膜である。Further, the present invention provides a hydrophilic porous polypropylene obtained by retaining a saponified ethylene-vinyl acetate copolymer on at least a part of the surface of the micropores of the large-pore porous polypropylene hollow fiber membrane described above. It is a hollow fiber membrane.
【0024】また更なる本発明は、前記記載の大孔径多
孔質ポリプロピレン中空糸膜の微小空孔表面の少なくと
も一部に、ジアセトンアクリルアミドと架橋性モノマー
とを含むモノマー類を重合さてなる親水性架橋重合体を
保持させてなる親水化多孔質ポリプロピレン中空糸膜で
ある。Still further, the present invention provides a hydrophilic polymer obtained by polymerizing a monomer containing diacetone acrylamide and a crosslinking monomer on at least a part of the surface of the micropores of the large-pore porous polypropylene hollow fiber membrane described above. It is a hydrophilic porous polypropylene hollow fiber membrane holding a crosslinked polymer.
【0025】[0025]
【作用】以下、本発明を更に詳しく説明する。Hereinafter, the present invention will be described in more detail.
【0026】本発明において用いるポリプロピレンは、
アイソタクックまたはシンジオタクチックポリプロピレ
ンであることが好ましい。このポリプロピレンを特定の
条件下で溶融賦型し、さらに特定の条件下で延伸するこ
とにより、比較的大きな孔径の微小空孔が中空糸内壁面
より外壁面にかけて相互につながった多孔質中空糸膜が
得られる。The polypropylene used in the present invention is
Preferably, it is isotactic or syndiotactic polypropylene. This polypropylene is melt-molded under specific conditions and stretched under specific conditions to form porous hollow fiber membranes in which micropores with a relatively large pore diameter are interconnected from the inner wall surface to the outer wall surface of the hollow fiber. Is obtained.
【0027】本発明に用いるポリプロピレンのMI値は
0.1〜10の範囲にあることが好ましい。MI値はA
STMD−1238によって測定される値であり、より
好ましくは0.3〜8の範囲である。MI値が10を超
えるポリプロピレンを用いた場合には、700%以上の
総延伸倍率まで安定に延伸することが困難であり、本発
明の細孔孔径が大でかつ高空孔率の多孔質中空糸膜を得
にくい。また、MI値が0.1未満のポリプロピレンで
は溶融粘度が高過ぎ、安定した紡糸が困難である。安定
した紡糸が可能な範囲で高分子量のポリプロピレンを採
用するのが本発明の重要な点の一つである。The MI value of the polypropylene used in the present invention is preferably in the range of 0.1 to 10. MI value is A
It is a value measured by STMD-1238, more preferably in the range of 0.3 to 8. When a polypropylene having an MI value of more than 10 is used, it is difficult to stretch stably to a total stretching ratio of 700% or more, and the porous hollow fiber having a large pore size and a high porosity according to the present invention is used. It is difficult to obtain a film. On the other hand, polypropylene having an MI value of less than 0.1 has too high a melt viscosity, so that stable spinning is difficult. It is one of the important points of the present invention to employ a polypropylene having a high molecular weight as long as stable spinning is possible.
【0028】本発明においては、上記のようなポリプロ
ピレンを中空糸製造用ノズルを用いて溶融紡糸し、高配
向結晶性の未延伸中空糸を製造する。ノズルは二重管構
造を有するものが偏肉が少く望ましいが、馬蹄型、その
他の構造を有するものでも差し支えない。二重管構造の
ノズルにおいては、中空糸内部へ中空形態を保持するた
めに供給する気体の供給は自然吸入であってもまた強制
吸入であっても差し支えない。In the present invention, the above polypropylene is melt-spun using a nozzle for producing a hollow fiber to produce a highly oriented crystalline undrawn hollow fiber. The nozzle preferably has a double tube structure with less uneven thickness, but may have a horseshoe shape or another structure. In a nozzle having a double-tube structure, the supply of gas to be maintained inside the hollow fiber to maintain the hollow form may be natural suction or forced suction.
【0029】本発明の多孔質中空糸膜を安定して得るた
めには、紡糸温度はポリマーの融点より20〜150℃
高い範囲の温度に設定するのが望ましい。この温度範囲
より低温領域で紡糸した場合は、ポリマーの溶融が不完
全となりメルトフラクチャーが起こりやすく、延伸工程
での安定性が低下する。また、逆にこの温度範囲より高
い温度領域で紡糸を行なう場合は、多孔質中空糸膜の細
孔孔径を大きくしかつ空孔率を高くすることが困難とな
る。In order to stably obtain the porous hollow fiber membrane of the present invention, the spinning temperature is 20 to 150 ° C. below the melting point of the polymer.
It is desirable to set the temperature in a high range. When spinning is performed at a temperature lower than this temperature range, melting of the polymer is incomplete, melt fracture is likely to occur, and stability in the stretching step is reduced. Conversely, when spinning is performed in a temperature range higher than this temperature range, it is difficult to increase the pore diameter and the porosity of the porous hollow fiber membrane.
【0030】適当な紡糸温度で吐出されたポリマーは、
紡糸ドラフト5〜5000の範囲で引き取るのが望まし
い。紡糸ドラフトが5000を超えると700%以上の
総延伸が可能な未延伸中空糸が得られない。紡糸ドラフ
トが5未満では高配向の未延伸中空糸が得られず延伸多
孔化が不可能である。The polymer discharged at an appropriate spinning temperature is:
It is desirable to take the spinning draft in the range of 5 to 5000. When the spinning draft exceeds 5000, an undrawn hollow fiber capable of performing a total drawing of 700% or more cannot be obtained. If the spinning draft is less than 5, a highly oriented undrawn hollow fiber cannot be obtained, and it is impossible to make the drawing porous.
【0031】かくして得られた未延伸中空糸は、繊維軸
方向に高度に配向した未延伸中空糸であり、内径は10
0〜2000μm、膜厚は15〜800μm 程度であ
る。この未延伸中空糸は120〜165℃、より好まし
くは130〜155℃の温度条件下で熱処理し延伸に供
される。必要な熱処理(アニール処理)時間は30分以
上である。このアニール処理により結晶構造はより完全
なものとなり、50%伸長時の弾性回復率は50%以上
が達成される。The undrawn hollow fiber thus obtained is an undrawn hollow fiber highly oriented in the fiber axis direction, and has an inner diameter of 10%.
The thickness is about 0 to 2000 μm and the thickness is about 15 to 800 μm. This undrawn hollow fiber is subjected to a heat treatment under a temperature condition of 120 to 165 ° C, more preferably 130 to 155 ° C, and is subjected to drawing. The required heat treatment (annealing) time is 30 minutes or more. By this annealing treatment, the crystal structure becomes more complete, and the elastic recovery at 50% elongation is at least 50%.
【0032】本発明の製造方法においては、延伸は冷延
伸に引き続いて熱延伸を行なう二段延伸を実施する。冷
延伸では結晶構造を破壊させ均一にミクロクレーズを発
生させるために延伸点を固定させることが好ましく、ま
た変形速度が1秒につき40%以上の高延伸速度で冷延
伸を行なうことが望ましい。さらに結晶構造を緩和させ
ることなく破壊させ、ミクロクレーズを発生させるため
には冷延伸温度は80℃以下とするのが望ましい。In the production method of the present invention, the stretching is performed by two-stage stretching in which hot stretching is performed after cold stretching. In the cold stretching, it is preferable to fix the stretching point in order to break down the crystal structure and uniformly generate microcraze, and it is desirable to perform the cold stretching at a high stretching speed of 40% or more per second. Further, in order to break the crystal structure without relaxing it and to generate microcraze, the cold stretching temperature is desirably 80 ° C. or less.
【0033】このようにして5〜150%程度の冷延伸
を行なった後、120〜165℃の温度領域において熱
延伸を行なう。熱延伸温度がこの範囲を超えると中空糸
が透明化し、望ましい多孔質構造は得られ難く、また、
120℃を下回ると多孔質構造が細かくなって空孔率が
低下し、目的とする大きな細孔孔径を有するものが得ら
れない。更に、熱延伸時の変形速度を1秒につき10%
以下とすることが本発明の極めて重要なポイントであ
る。10%を超える変形速度では、700%以上の総延
伸量をとることが実質的に不可能である。総延伸量は7
00%〜2500%とする必要がある。2500%を超
える延伸においては延伸時の糸切れが多発し、工程安定
性が低下し望ましくない。700%未満の総延伸量では
多孔質構造は形成されているが、本発明の大きな細孔孔
径でかつ高空孔率の中空糸膜は得られない。空孔率を7
0%以上とするためにも700%以上、好ましくは10
00%以上の総延伸量が不可欠である。After performing cold stretching of about 5 to 150% in this way, hot stretching is performed in a temperature range of 120 to 165 ° C. When the hot drawing temperature exceeds this range, the hollow fiber becomes transparent, and it is difficult to obtain a desired porous structure.
If the temperature is lower than 120 ° C., the porous structure becomes fine and the porosity is reduced, and a product having a desired large pore diameter cannot be obtained. Furthermore, the deformation rate during hot stretching is 10% per second.
The following are extremely important points of the present invention. At deformation rates above 10%, it is virtually impossible to achieve a total stretch of 700% or more. Total stretching amount is 7
It is necessary to be 00% to 2500%. If the stretching exceeds 2500%, yarn breakage during stretching frequently occurs, and the process stability is undesirably reduced. With a total stretching amount of less than 700%, a porous structure is formed, but a hollow fiber membrane having a large pore size and a high porosity according to the present invention cannot be obtained. Porosity of 7
In order to make it 0% or more, 700% or more, preferably 10% or more.
A total stretch of at least 00% is essential.
【0034】なお、本発明にいう変形速度とは、延伸区
間における延伸量(%)を、糸が該延伸区間を通過する
時間(秒)で除して求めた値をいう。The deformation speed in the present invention refers to a value obtained by dividing the amount of stretching (%) in the stretching section by the time (second) that the yarn passes through the stretching section.
【0035】得られた多孔質中空糸膜は熱延伸によって
ほぼ形態の安定性が確保されており、必ずしも多孔質構
造の固定を目的とした熱セット工程を必要としない。し
かし、前述の熱延伸温度と同じ温度領域で必要に応じて
緊張下に定長でまたは収縮させつつ熱セットを行っても
よい。The obtained porous hollow fiber membrane has a substantially morphological stability ensured by heat drawing, and does not necessarily require a heat setting step for fixing the porous structure. However, the heat setting may be performed in the same temperature range as the above-mentioned hot stretching temperature under constant tension or at a constant length while shrinking as necessary.
【0036】かくして得られる多孔質ポリプロピレン中
空糸膜は、水銀ポロシメーターで測定した微小空孔の平
均孔径が1μmを超え10μm以下、好ましくは1.2
μm〜10μmで、空孔率が70%〜95%、空気透過
量が4×105 リットル/m 2 ・hr・0.5atm以
上である。また、繊維長方向に配列したミクロフィブリ
ルとスタックドラメラからなる節部とに囲まれて形成さ
れる特徴的な短冊状微小空孔を有し、この微小空孔は中
空糸内壁面より外壁面へ相互に連通し、これら微小空孔
が積層された構造を有している。ミクロフィブリルの平
均的長さは1μmを超え15μm以下である。In the porous polypropylene thus obtained,
The hollow fiber membrane is composed of flat pores measured with a mercury porosimeter.
The pore size is more than 1 μm and 10 μm or less, preferably 1.2
μm to 10 μm, porosity 70% to 95%, air permeability
4 × 10Five Liter / m Two ・ Hr ・ 0.5atm or less
Above. In addition, microfibrils arranged in the fiber length direction
And a node composed of stacked dramers.
Has a characteristic strip-shaped micropore, which is
These small holes communicate with each other from the inner wall to the outer wall.
Are laminated. Microfibril flat
The average length is more than 1 μm and not more than 15 μm.
【0037】本発明の第1のタイプの親水化多孔質中空
糸膜は、上述した特性を有する大孔径多孔質ポリプロピ
レン中空糸膜の微小空孔内表面の少なくとも一部に、エ
チレン−酢酸ビニル共重合体のケン化物(以下、単に
「ケン化物」という)を保持させることによって得るこ
とができるものである。本発明の親水化多孔質中空糸膜
には、基材としての多孔質ポリプロピレン中空糸膜素材
の、大きな孔径及び空孔率を有し、しかも機械的強度が
十分高いといった特性を損なうことなく、ケン化物の保
持によって良好な親水性が付与されている。したがっ
て、本発明の親水化多孔質膜は水系液体の透過性に優れ
ており、特に、高流速処理に好適である。しかも、多孔
質ポリプロピレン中空糸膜が上記の短冊状微小空孔から
なる独特な膜構造を有するので、目詰りが起こりにくい
という利点を有する。The first type of hydrophilized porous hollow fiber membrane of the present invention is characterized in that at least a portion of the inner surface of the micropores of the large-pore porous polypropylene hollow fiber membrane having the above-mentioned properties is coated with ethylene-vinyl acetate. It can be obtained by retaining a saponified polymer (hereinafter simply referred to as "saponified product"). The hydrophilic porous hollow fiber membrane of the present invention has a large pore diameter and porosity of a porous polypropylene hollow fiber membrane material as a base material, and without impairing properties such as sufficiently high mechanical strength. Good hydrophilicity is imparted by holding the saponified compound. Therefore, the hydrophilized porous membrane of the present invention has excellent permeability for aqueous liquids, and is particularly suitable for high flow rate treatment. In addition, since the porous polypropylene hollow fiber membrane has a unique membrane structure composed of the above-mentioned strip-shaped micropores, there is an advantage that clogging hardly occurs.
【0038】本発明の親水化多孔質中空糸膜において、
重合体が保持される原料多孔質中空糸膜の微小空孔表面
の少なくとも一部とは、微小空孔を形成している壁面の
一部あるいは全部をいう。すなわち、通常使用される膜
間差圧によって多孔質膜の微小空孔を水を通過させて使
用するのに支障がない透過流量が得られる程度、重合体
が微小空孔の壁面に保持されていればよく、必ずしも微
小空孔を形成している壁面の全部が重合体で被覆されて
いる必要はない。また、多孔質膜の外表面には重合体は
保持されていてもいなくてもよい。In the hydrophilic porous hollow fiber membrane of the present invention,
At least a part of the surface of the micropores of the raw material porous hollow fiber membrane holding the polymer means a part or all of the wall surface forming the micropores. In other words, the polymer is held on the wall surface of the micropores to such an extent that a permeation flow rate that does not hinder the use of the micropores of the porous membrane through water due to the normally used transmembrane pressure is obtained. It is sufficient that the entire wall surface forming the micropores is not necessarily covered with the polymer. Further, the polymer may or may not be held on the outer surface of the porous membrane.
【0039】保持させてなるとは、保存中や使用中に容
易に脱離しない程度に、重合体が微小空孔を形成してい
る壁面に強固に結合ないし密着されていることをいう。
したがって、重合体が壁面に化学結合していてもよい
し、重合体が壁面にアンカー効果によって密着されてい
てもよいし、短冊状の微小空孔を形成するミクロフィブ
リルや節部等を包むようにして重合体が密着架橋されて
いてもよいし、またこれらの保持状態が混在していても
よい。The term "retained" means that the polymer is firmly bonded or adhered to the wall surface on which the micropores are formed, to such an extent that the polymer is not easily detached during storage or use.
Therefore, the polymer may be chemically bonded to the wall surface, the polymer may be in close contact with the wall surface by an anchor effect, or wrap the microfibrils or nodes forming strip-shaped micropores. The polymer may be tightly cross-linked, or these holding states may be mixed.
【0040】このように、原料中空糸膜の微小空孔を形
成している壁面への重合体の保持状態としては、上記の
任意の状態をとり得る。しかし、重合体を化学結合させ
ることなくアンカー効果や密着架橋等のように物理的に
壁面上に保持させた親水化多孔質膜は、基材である原料
中空糸膜と比較して機械的強度の劣化や微小空孔構造の
変化が殆どないので特に好ましいものである。As described above, the holding state of the polymer on the wall surface forming the micropores of the raw material hollow fiber membrane can take any of the above-mentioned states. However, the hydrophilized porous membrane that physically holds the polymer on the wall surface without chemical bonding, such as an anchor effect or tight cross-linking, has a higher mechanical strength than the raw material hollow fiber membrane that is the base material. This is particularly preferable since there is almost no deterioration of the micropores and no change in the micropore structure.
【0041】本発明において、基材としての多孔質ポリ
プロピレン中空糸膜の微小空孔内表面の少なくとも一部
にケン化物を保持させる方法としては、例えば、ケン化
物を多孔質ポリプロピレン中空糸膜の微小空孔内に直接
供給して保持させる方法、エチレン−酢酸ビニル共重合
体を多孔質ポリプロピレン中空糸膜の微小空孔内に供給
して保持させた後、これをケン化する方法等が利用でき
る。In the present invention, as a method of retaining a saponified substance on at least a part of the inner surface of the micropores of the porous polypropylene hollow fiber membrane as a substrate, for example, A method of directly supplying and holding in the pores, a method of supplying and retaining the ethylene-vinyl acetate copolymer in the micropores of the porous polypropylene hollow fiber membrane, and saponifying the same can be used. .
【0042】ケン化物の形成に用いるエチレン−酢酸ビ
ニル共重合体としては、ランダム、ブロック、グラフト
等種々のタイプのものが利用でき、該ケン化物のタイプ
もエチレン−酢酸ビニル共重合体のタイプに依存する。
エチレン−酢酸ビニル共重合体は、基本的にエチレンと
酢酸ビニルから形成されるが、所望とする特性を損なわ
ない範囲内で他のモノマー成分を混在させてもよい。As the ethylene-vinyl acetate copolymer used for the formation of the saponified product, various types such as random, block, and graft can be used, and the type of the saponified product is also the same as that of the ethylene-vinyl acetate copolymer. Dependent.
The ethylene-vinyl acetate copolymer is basically formed from ethylene and vinyl acetate, but other monomer components may be mixed as long as desired properties are not impaired.
【0043】エチレン−酢酸ビニル共重合体におけるエ
チレン単位の含有量は、エチレン−酢酸ビニル共重合体
やそのケン化物のポリプロピレンへの良好な密着性を得
る上で重要であり、この密着性の点からその含有量は好
ましくは20モル%以上とされる。すなわち、エチレン
単位の含有量が20モル%未満であると、エチレン−酢
酸ビニル共重合体またはそのケン化物を多孔質ポリプロ
ピレン中空糸膜の微小空孔内表面に付着させた際に、付
着物に良好な密着性が得られず、付着物の剥離が起こり
易くなるので好ましくない。一方、エチレン単位の含有
量が多くなりすぎると、最終的に得られるケン化物によ
る多孔質ポリプロピレン中空糸膜への良好な親水性付与
効果が得られないので好ましくない。従って、エチレン
単位の含有量は、好ましくは70モル%以下とされる。
密着性と親水性のより良好なバランスを考慮すれば、エ
チレン単位の含有量が25〜50モル%の範囲内にある
ことが特に好ましい。The content of the ethylene unit in the ethylene-vinyl acetate copolymer is important for obtaining good adhesion of the ethylene-vinyl acetate copolymer and its saponified product to polypropylene. Therefore, its content is preferably at least 20 mol%. That is, when the content of the ethylene unit is less than 20 mol%, when the ethylene-vinyl acetate copolymer or a saponified product thereof is adhered to the inner surface of the micropores of the porous polypropylene hollow fiber membrane, the adhered substance may not be adhered. It is not preferable because good adhesion cannot be obtained and the adhered substance is easily peeled off. On the other hand, if the content of the ethylene unit is too large, the saponified product finally obtained cannot obtain a favorable effect of imparting hydrophilicity to the porous polypropylene hollow fiber membrane, which is not preferable. Therefore, the content of the ethylene unit is preferably set to 70 mol% or less.
In consideration of a better balance between adhesion and hydrophilicity, the content of ethylene units is particularly preferably in the range of 25 to 50 mol%.
【0044】エチレン−酢酸ビニル共重合体のケン化
は、水酸化ナトリウム等のアルカリ水溶液中で必要時間
加熱処理する方法等公知の方法で行なうことができる。
このケン化処理によって、ビニルアセテート部分のアセ
チル基が水酸基に転化され、該共重合体に良好な親水性
が付与される。多孔質中空糸膜に充分な親水性を付与す
るには60モル%以上のケン化度とするのが好ましい。The saponification of the ethylene-vinyl acetate copolymer can be carried out by a known method such as a heat treatment in an aqueous alkali solution such as sodium hydroxide for a required time.
By this saponification treatment, the acetyl group of the vinyl acetate moiety is converted to a hydroxyl group, and the copolymer is given good hydrophilicity. In order to impart sufficient hydrophilicity to the porous hollow fiber membrane, the saponification degree is preferably at least 60 mol%.
【0045】本発明において、多孔質中空糸膜の微小空
孔内表面の一部にケン化物を直接保持させるには、 ケン化物を含有する保持用溶液を、浸漬、塗布等の方
法により基材中空糸膜の少なくとも微小空孔内に供給
し、該溶液の溶媒を蒸発除去する方法、及び ケン化物を含有する保持用溶液を、浸漬、塗布等の方
法により基材中空糸膜の微小空孔内に供給し、これを更
に該ケン化物の凝固剤溶液に浸漬して、これを少なくと
も微小空孔内表面上で急速凝固させ、乾燥させる方法、
などによって行なうことができる。In the present invention, in order to directly hold the saponified material on a part of the inner surface of the micropores of the porous hollow fiber membrane, the holding solution containing the saponified material is immersed or coated by a method such as dipping or coating. A method of supplying the solution into the at least micropores of the hollow fiber membrane and evaporating and removing the solvent of the solution; and a method of immersing and applying a holding solution containing a saponified substance to the micropores of the substrate hollow fiber membrane. And then dipped in a coagulant solution of the saponified product to rapidly solidify it on at least the inner surface of the micropores and dry it.
It can be performed by such as.
【0046】該保持用溶液は、ケン物をそれを溶解でき
る溶媒に溶解して調製することができる。該溶媒として
は、水混和性有機溶剤や、水混和性有機溶剤と水との混
合物などが利用できる。水混和性有機溶剤としては、メ
タノール、エタノール、n−プロパノール、イソプロパ
ノール、sec−ブタノール、t−ブタノール、シクロ
ヘキサノール等のアルコール類;エチレングリコール、
プロピレングリコール、グリセリン等の多価アルコール
類;テトラヒドロフラン、ジオキサン、ジメチルホルム
アミド、ジメチルスルホキシド、ジメチルアセトアミ
ド、ホルムアミド、エチレンクロルヒドリン等が挙げら
れ、その1種または2種以上を組み合わせて用いること
ができる。これらのなかでは、エタノール及びジメチル
スルホキシドがケン化物の溶解性もよく、低毒性である
ことから特に好ましい。The holding solution can be prepared by dissolving a soap in a solvent capable of dissolving it. As the solvent, a water-miscible organic solvent, a mixture of a water-miscible organic solvent and water, and the like can be used. Examples of the water-miscible organic solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, sec-butanol, t-butanol, and cyclohexanol; ethylene glycol,
Polyhydric alcohols such as propylene glycol and glycerin; tetrahydrofuran, dioxane, dimethylformamide, dimethylsulfoxide, dimethylacetamide, formamide, ethylene chlorohydrin and the like, and one or more of these can be used in combination. Among them, ethanol and dimethyl sulfoxide are particularly preferable because of good solubility of the saponified product and low toxicity.
【0047】なお、該溶媒としては、水混和性有機溶剤
と水の混合物が、下記の理由から特に好ましい。すなわ
ち、ケン化物は、非極性で疎水性を示すエチレン単位
と、極性で親水性の酢酸ビニル単位(ケン化によりその
アセチル基が水酸基に転化されたものを含む)により構
成されており、その構成上、極性の強い溶剤系に溶解さ
せた状態でこれを非極性のポリプロピレン基材にコーテ
ィングした場合、形成されるケン化物の薄膜層における
ポリプロピレン基材側の表面に非極性のエチレン単位が
局在し、これに対向する(ポリプロピレン基材と反対
側)の表面に極性の酢酸ビニル単位が局在し易くなると
考えられる。この現象は薄膜層と微小空孔表面を構成す
るポリプロピレンとの密着性が向上し、かつ微小空孔表
面に保持された薄膜層の表面の親水性が向上することか
ら好ましい現象である。そこで、上記の保持用溶液の溶
媒として、水と有機溶剤との混合物を利用することは溶
媒の極性をより強くすることになり、この現象が促進さ
れるので好ましい。混合する水の割合は、該ケン化物の
溶解性を阻害しない範囲内でより大きい方が好ましく、
ケン化物の濃度やそのエチレン部分の含有量、処理温度
などによってその割合は異なるが、例えば5〜60重量
%を好ましい範囲として挙げることができる。As the solvent, a mixture of a water-miscible organic solvent and water is particularly preferred for the following reasons. That is, the saponified product is composed of a non-polar and hydrophobic ethylene unit and a polar and hydrophilic vinyl acetate unit (including one whose acetyl group is converted to a hydroxyl group by saponification). When coated on a non-polar polypropylene substrate while dissolved in a highly polar solvent system, non-polar ethylene units are localized on the surface of the saponified thin film layer on the polypropylene substrate side However, it is considered that the polar vinyl acetate unit is likely to be localized on the surface opposite to this (the side opposite to the polypropylene substrate). This phenomenon is a preferable phenomenon because the adhesion between the thin film layer and the polypropylene constituting the surface of the micropores is improved, and the hydrophilicity of the surface of the thin film layer held on the surface of the micropores is improved. Therefore, it is preferable to use a mixture of water and an organic solvent as the solvent for the above-mentioned holding solution, since the polarity of the solvent is further increased and this phenomenon is promoted. The proportion of water to be mixed is preferably larger as long as the solubility of the saponified product is not impaired,
Although the ratio varies depending on the concentration of the saponified product, the content of the ethylene portion thereof, the treatment temperature, and the like, for example, a preferable range is 5 to 60% by weight.
【0048】上記保持用溶液におけるケン化物の濃度
は、所望とする親水化効果を得るのに必要な程度とさ
れ、基材としての多孔質ポリプロピレン中空糸膜の物性
などを考慮して選択され、例えば、0.1〜5.0重量
%の範囲で用いることが好ましい。該保持用溶液への多
孔質ポリプロピレン中空糸膜の浸漬や塗布等による処理
は、一回の処理で完結しても良いが、ケン化物の比較的
低濃度の保持用溶液を用いて数回に分けて行なっても良
い。なお、ケン化物濃度が、5.0重量%を超えると、
ケン化物の付着量が多くなりすぎて、基材としての多孔
質ポリプロピレン中空糸膜の微小空孔の径を狭めて、液
体の透過性能を減じる場合があるので好ましくない。ま
た、該保持用溶液の温度は、特に限定されないが、一般
に高温の方がケン化物の溶解性がよく、溶液の粘度も低
下するので好ましく、例えば室温から100℃までの範
囲が好ましい。浸漬処理の場合の浸漬時間は、数秒〜数
十分の範囲が好ましい。基材としての多孔質ポリプロピ
レン中空糸膜の微小空孔内に保持された保持用溶液から
の溶媒の除去は、真空乾燥、熱風乾燥等によって行なう
ことができる。乾燥の程度は、基材が熱により変形を受
けない温度であればよく、130℃以下が好ましい。The concentration of the saponified product in the holding solution is set to a level necessary for obtaining a desired hydrophilizing effect, and is selected in consideration of the physical properties of the porous polypropylene hollow fiber membrane as a substrate, and the like. For example, it is preferable to use it in the range of 0.1 to 5.0% by weight. The treatment such as immersion or application of the porous polypropylene hollow fiber membrane in the holding solution may be completed in one treatment, but may be completed several times using a relatively low concentration saponified holding solution. You may perform it separately. When the concentration of the saponified compound exceeds 5.0% by weight,
It is not preferable because the amount of the saponified substance attached becomes too large, and the diameter of the micropores of the porous polypropylene hollow fiber membrane as the base material may be narrowed and the liquid permeability may be reduced. The temperature of the holding solution is not particularly limited, but generally, a higher temperature is preferable because the solubility of the saponified compound is better and the viscosity of the solution is reduced. For example, a temperature range from room temperature to 100 ° C. is preferable. The immersion time in the case of the immersion treatment is preferably in a range of several seconds to several tens of minutes. The removal of the solvent from the holding solution held in the micropores of the porous polypropylene hollow fiber membrane as the substrate can be performed by vacuum drying, hot air drying, or the like. The degree of drying may be a temperature at which the substrate is not deformed by heat, and is preferably 130 ° C. or less.
【0049】次に、基材としての多孔質ポリプロピレン
中空糸膜の微小空孔内表面の少なくとも一部に、先ずエ
チレン−酢酸ビニル共重合体を保持させてから、これを
ケン化する場合の方法の一例について述べる。Next, a method in which an ethylene-vinyl acetate copolymer is first retained on at least a part of the inner surface of the micropores of the porous polypropylene hollow fiber membrane as a substrate, and then saponified. An example will be described.
【0050】基材へのエチレン−酢酸ビニル共重合体の
保持は、上述のケン化物を直接保持させる場合に挙げた
方法、と同様の方法等によって行なうことができ
る。エチレン−酢酸ビニル共重合体のエチレン単位及び
酢酸ビニル単位の含有量は、好ましくは先に述べた範囲
内とされる。エチレン−酢酸ビニル共重合体の保持用溶
液の溶媒としては、先に挙げたケン化物の保持用溶液調
製用のものや、ハロゲン化炭化水素、芳香族炭化水素な
どを用いることができ、特に、ケン化物におけるのと同
様の理由から、水と有機溶剤との混合物が好ましい。保
持用溶液でのエチレン−酢酸ビニル共重合体の濃度は、
例えば1.0〜5.0重量%であることが好ましい。エ
チレン−酢酸ビニル共重合体の保持のための浸漬、塗布
等の処理も、一回で完結させても良いし、比較的低濃度
の保持用液体を用いて数回に分けて行なっても良い。一
回で完結させる場合は、1.0重量%未満ではケン化処
理後に充分な親水性を得ることができないので好ましく
ない。また、5.0重量%を超えると、基材としての多
孔質ポリプロピレン中空糸膜の微小空孔の径を狭めて、
液体の透過性能を減じる場合が多いので好ましくない。The holding of the ethylene-vinyl acetate copolymer on the base material can be carried out by the same method as the method described above for directly holding the saponified product, and the like. The content of the ethylene unit and the vinyl acetate unit in the ethylene-vinyl acetate copolymer is preferably in the above-mentioned range. As the solvent for the solution for holding the ethylene-vinyl acetate copolymer, those for preparing the above-mentioned solution for holding the saponified product, halogenated hydrocarbons, aromatic hydrocarbons, and the like can be used. A mixture of water and an organic solvent is preferred for the same reasons as in the saponified product. The concentration of the ethylene-vinyl acetate copolymer in the holding solution is
For example, the content is preferably 1.0 to 5.0% by weight. The treatment such as immersion and coating for holding the ethylene-vinyl acetate copolymer may be completed in one step, or may be performed several times using a relatively low concentration holding liquid. . In the case where it is completed in one time, if it is less than 1.0% by weight, it is not preferable because sufficient hydrophilicity cannot be obtained after the saponification treatment. On the other hand, if it exceeds 5.0% by weight, the diameter of the micropores of the porous polypropylene hollow fiber membrane as the base material is reduced,
Liquid permeability is often reduced, which is not preferable.
【0051】このようにしてエチレン−酢酸ビニル共重
合体を保持した中空糸膜にケン化処理を行なうことによ
って、本発明の親水化多孔質中空糸膜を得ることができ
る。このケン化処理は、例えばエチレン−酢酸ビニル共
重合体を保持した中空糸膜を水酸化ナトリウム水溶液等
のアルカリ水溶液中で必要な時間加熱処理することによ
って行なうことができる。By performing the saponification treatment on the hollow fiber membrane holding the ethylene-vinyl acetate copolymer as described above, the hydrophilic porous hollow fiber membrane of the present invention can be obtained. This saponification treatment can be performed, for example, by heating the hollow fiber membrane holding the ethylene-vinyl acetate copolymer in an aqueous alkali solution such as an aqueous sodium hydroxide solution for a required time.
【0052】なお、以上述べた各種方法によるケン化物
の中空糸膜の微小空孔表面への保持は、ケン化物が基材
としての多孔質ポリプロピレン中空糸膜の微小空孔内表
面にできるだけ均一に、しかもその保持量を最小限度に
留め、保持による該中空糸膜の微小空孔の孔径の減少や
閉塞をできるだけ少なくすることが好ましい。The retention of the saponified substance on the surface of the micropores of the hollow fiber membrane by the above-described various methods is performed so that the saponified substance is as uniformly as possible on the inner surface of the micropores of the porous polypropylene hollow fiber membrane as a base material. In addition, it is preferable that the holding amount is kept to a minimum and the decrease in the pore diameter and the closing of the minute holes of the hollow fiber membrane due to the holding are minimized.
【0053】また、本発明の第2のタイプの親水化多孔
質ポリプロピレン中空糸膜は、前述した大孔径多孔質ポ
リプロピレン中空糸膜の微小空孔表面の少なくとも一部
に、ジアセトンアクリルアミドと架橋性モノマーを含む
モノマー類を重合してなる親水性架橋重合体を保持して
なるものである。Further, the second type of hydrophilic porous polypropylene hollow fiber membrane of the present invention is characterized in that at least a part of the surface of the micropores of the large-pore porous polypropylene hollow fiber membrane is cross-linkable with diacetone acrylamide. It comprises a hydrophilic crosslinked polymer obtained by polymerizing monomers containing monomers.
【0054】この親水化多孔質ポリプロピレン中空糸膜
においては、大孔径でかつ高空孔率のポリプロピレン多
孔質中空糸膜の微小空孔を形成している壁面上に、ジア
セトンアクリルアミドと架橋性モノマーを含むモノマー
類からなる親水性架橋重合体を保持させるが、これは他
の重合体と比較してこの重合体が、(1)ポリプロピレ
ンに対して強固に保持できること、(2)ポリプロピレ
ン多孔質中空糸膜の微小空孔を形成する壁面のほぼ全体
にわたってほぼ均一に保持できること、(3)適度な親
水性を有していること、および(4)実質的に水不溶性
であることによる。In this hydrophilized porous polypropylene hollow fiber membrane, diacetone acrylamide and a crosslinkable monomer are coated on the wall surface of the porous porous hollow fiber membrane having a large pore size and high porosity, in which minute pores are formed. A hydrophilic cross-linked polymer consisting of monomers containing the polymer is retained. This polymer can be more strongly retained with respect to polypropylene than other polymers. (2) Polypropylene porous hollow fiber This is because the film can be maintained almost uniformly over almost the entire wall surface forming the micropores of the membrane, (3) it has a moderate hydrophilicity, and (4) it is substantially water-insoluble.
【0055】ジアセトンアクリルアミドと架橋性モノマ
ーとを含むモノマー類を重合させてなる親水性架橋重合
体とは、モノマー成分としてのジアセトンアクリルアミ
ドを50重量%以上含有し、かつ架橋性モノマーを含有
する系から得られる架橋重合体であって、モノマー成分
としてはこれらの他に非架橋性モノマーが含まれていて
もよい。The hydrophilic crosslinked polymer obtained by polymerizing monomers containing diacetone acrylamide and a crosslinkable monomer contains diacetone acrylamide as a monomer component in an amount of 50% by weight or more and contains a crosslinkable monomer. It is a crosslinked polymer obtained from the system, and a non-crosslinkable monomer may be contained as a monomer component in addition to these.
【0056】架橋性モノマーとしては、ジアセトンアク
リルアミドと共重合可能なビニル結合やアリル結合等の
重合性不飽和結合を2個以上有するモノマー、あるいは
前記重合性不飽和結合を1個有し、かつ縮合反応等によ
って化学結合を生成可能な官能基を少なくとも1個有す
るモノマーであって、ジアセトンアクリルアミドと共通
の良溶媒を有するモノマーが挙げられる。その例として
は、N,N’−メチレンビスアクリルアミド、N−ヒド
ロキシメチル(メタ)アクリルアミド、トリアリルシア
ヌレート、トリアリルイソシアヌレート、ジビニルベン
ゼン、2,2−ビス(4−メタクリロイロキシポリエト
キシフェニル)プロパン、エチレンジ(メタ)アクリレ
ート、ポリエチレングリコールジ(メタ)アクリレー
ト、トリメチロールプロパントリ(メタ)アクリレー
ト、ペンタエリスリトールテトラ(メタ)アクリレー
ト、トリメチルロールエタントリ(メタ)アクリレー
ト、ブタンジオールジ(メタ)アクリレート、ヘキサン
ジオールジ(メタ)アクリレート、ジアリルフタレー
ト、1,3,5−トリアクリロイルヘキサヒドロ−s−
トリアジン等が挙げられる。As the crosslinkable monomer, a monomer having two or more polymerizable unsaturated bonds such as a vinyl bond or an allyl bond copolymerizable with diacetone acrylamide, or having one polymerizable unsaturated bond, and A monomer having at least one functional group capable of forming a chemical bond by a condensation reaction or the like and having a common good solvent with diacetone acrylamide is exemplified. Examples include N, N'-methylenebisacrylamide, N-hydroxymethyl (meth) acrylamide, triallyl cyanurate, triallyl isocyanurate, divinylbenzene, 2,2-bis (4-methacryloyloxypolyethoxyphenyl) ) Propane, ethylene di (meth) acrylate, polyethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolethane tri (meth) acrylate, butanediol di (meth) acrylate , Hexanediol di (meth) acrylate, diallyl phthalate, 1,3,5-triacryloylhexahydro-s-
Triazine and the like.
【0057】また、非架橋性モノマーとしては、ジアセ
トンアクリルアミドと共重合可能なビニル結合やアリル
結合等の重合性不飽和結合を1個有するモノマーであっ
て、ジアセトンアクリルアミドと共通の良溶媒を有する
モノマーが挙げられる。その例としては、ジメチルアク
リルアミド、ビニルピロリドン、アクリル酸、メタクリ
ル酸、ヒドロキシエチルメタクリレート、スチレンスル
ホン酸、スチレンスルホン酸ナトリウム、スルホエチル
メタクリル酸ナトリウム、ビニルピリジン、ビニルメチ
ルエーテル等が挙げられる。The non-crosslinkable monomer is a monomer having one polymerizable unsaturated bond such as a vinyl bond or an allyl bond copolymerizable with diacetone acrylamide, and a good solvent common to diacetone acrylamide. And a monomer having the same. Examples thereof include dimethyl acrylamide, vinyl pyrrolidone, acrylic acid, methacrylic acid, hydroxyethyl methacrylate, styrene sulfonic acid, sodium styrene sulfonate, sodium sulfoethyl methacrylate, vinyl pyridine, vinyl methyl ether and the like.
【0058】以下、ジアセトンアクリルアミドと併用さ
れるこのような架橋性モノマーと非架橋性モノマーを合
わせて共重合性モノマーと総称する。Hereinafter, such crosslinkable monomers and non-crosslinkable monomers used in combination with diacetone acrylamide are collectively referred to as copolymerizable monomers.
【0059】親水性架橋重合体を生成するジアセトンア
クリルアミドと架橋性モノマーとの組成比としては、ジ
アセトンアクリルアミド100重量部に対し架橋性モノ
マーが0.3〜100重量部であることが好ましく、
0.5〜80重量部であることがより好ましい。また、
共重合性モノマーとの組成比としては、ジアセトンアク
リルアミド100重量部に対し共重合性モノマーが0.
3〜110重量部であることが好ましく、0.5〜10
0重量部であることがより好ましい。The composition ratio of diacetone acrylamide to form a hydrophilic crosslinked polymer and the crosslinkable monomer is preferably 0.3 to 100 parts by weight of the crosslinkable monomer with respect to 100 parts by weight of diacetone acrylamide.
More preferably, the amount is 0.5 to 80 parts by weight. Also,
The composition ratio of the copolymerizable monomer to diacetone acrylamide was 100 parts by weight and the copolymerizable monomer was 0.1 part by weight.
It is preferably 3 to 110 parts by weight, and 0.5 to 10 parts by weight.
More preferably, it is 0 parts by weight.
【0060】本発明においては、大孔径でかつ高空孔率
のポリプロピレン多孔質中空糸膜の微小空孔を形成して
いる壁面の少なくとも一部に保持される重合体が架橋重
合体なので、この重合体は水中での膨潤の程度が小さく
て微小空孔を閉塞する虞れがなく、また、重合体の安定
性が良好であって水中での溶出成分の量が著しく少ない
という利点がある。したがって、本発明の親水化多孔質
膜は、微量の溶出成分が問題となる水処理分野や血液処
理分野等において有効である。これに対し、架橋構造を
有していないジアセトンアクリルアミド系重合体は、水
中において膨潤して微小空孔を閉塞し、また、微量では
あるが水に溶解して溶出成分となるので、このような重
合体を保持させた多孔質膜は使用時において種々の問題
を生じさせる虞れがある。In the present invention, since the polymer retained on at least a part of the wall surface forming the micropores of the polypropylene porous hollow fiber membrane having a large pore size and high porosity is a crosslinked polymer, The merging has the advantage that the degree of swelling in water is small and there is no danger of closing micropores, and the stability of the polymer is good and the amount of components eluted in water is extremely small. Therefore, the hydrophilized porous membrane of the present invention is effective in the field of water treatment or blood treatment where a trace amount of eluted components becomes a problem. In contrast, a diacetone acrylamide-based polymer having no crosslinked structure swells in water to close micropores, and dissolves in a small amount of water to become an eluted component. There is a possibility that the porous membrane holding the various polymers may cause various problems during use.
【0061】また、重合体の親水性の程度が大きい程、
親水化多孔質膜の透水性能が良好であり、使用開始時に
おいて短時間で膜面全体から水が均一に透過するので、
親水性架橋重合体を生成する架橋性モノマーとしては、
親水性の程度が充分な水溶性の架橋性モノマーであるこ
とが好ましい。Further, as the degree of hydrophilicity of the polymer increases,
Since the water permeability of the hydrophilized porous membrane is good and water is uniformly transmitted from the entire membrane surface in a short time at the start of use,
As a crosslinkable monomer that forms a hydrophilic crosslinked polymer,
It is preferable that the water-soluble crosslinkable monomer has a sufficient degree of hydrophilicity.
【0062】このような水溶性の架橋性モノマーとは、
30℃の水に対する溶解度が 1.0g/dl以上であ
る架橋性モノマーであり、その例としてN−ヒドロキシ
メチルアクリルアミド、N−ヒドロキシメチルメタクリ
ルアミド、N,N’−メチレンビスアクリルアミド等を
挙げることができる。Such a water-soluble crosslinkable monomer is
It is a crosslinkable monomer having a solubility in water at 30 ° C of 1.0 g / dl or more, and examples thereof include N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, and N, N'-methylenebisacrylamide. it can.
【0063】本発明の大孔径でかつ高空孔率のポリプロ
ピレン多孔質中空糸膜の微小空孔を形成している壁面の
少なくとも一部に保持されてなる親水性架橋重合体の量
は、ポリプロピレン多孔質中空糸膜の空孔率や細孔径に
も依存するが、ポリプロピレン多孔質中空糸膜の重量に
対しておよそ0.5〜100重量%程度であることが好
ましい。重合体の保持量がこの範囲より少ないと多孔質
中空糸膜に充分な親水性を付与することができず、ま
た、この範囲を超えても多孔質中空糸膜の親水性はさら
に大きくは向上せず、むしろ細孔容積が減少して透水性
能が低下する場合がある。重合体の保持量は0.5〜5
0重量%程度であることがより好ましく、1〜30重量
%程度であることが特に好ましい。The amount of the hydrophilic cross-linked polymer retained on at least a part of the wall surface forming the micropores of the large-pore-diameter, high-porosity polypropylene porous hollow fiber membrane of the present invention is determined by the amount of the polypropylene Although it depends on the porosity and pore diameter of the porous hollow fiber membrane, it is preferably about 0.5 to 100% by weight based on the weight of the porous polypropylene hollow fiber membrane. If the amount of retained polymer is less than this range, sufficient hydrophilicity cannot be imparted to the porous hollow fiber membrane, and even if the amount exceeds this range, the hydrophilicity of the porous hollow fiber membrane is further improved. Instead, the pore volume may be reduced and the water permeability may be reduced. The amount of polymer retained is 0.5 to 5
It is more preferably about 0% by weight, and particularly preferably about 1 to 30% by weight.
【0064】親水性架橋重合体をポリプロピレン多孔質
中空糸膜の微小空孔を形成している壁面の少なくとも一
部に保持させる方法としては、種々の方法を採用するこ
とができる。例えば有機溶剤または水等の適当な溶媒に
ジアセトンアクリルアミドおよび前述の共重合性モノマ
ー(以下、これらを「モノマー類」という)や重合開始
剤を溶解させた溶液を調製し、原料中空糸膜をその溶液
中に浸漬する方法、あるいは原料中空糸膜で膜モジュー
ルを製作した後この溶液を原料中空糸膜内に圧入する方
法等により、モノマー類の溶液を原料中空糸膜に含浸さ
せた後、溶媒を揮発除去させる方法が採用できる。溶媒
で希釈したモノマー類の溶液を用いることによって、多
孔質中空糸膜の微小空孔を塞ぐことなく多孔質中空糸膜
の全体にわたってモノマー類をほぼ均一に付着させるこ
とができる。また、溶液のモノマー類の濃度や溶液の含
浸時間を変化させることにより、モノマー類の付着量が
調整できる。Various methods can be adopted as a method for retaining the hydrophilic cross-linked polymer on at least a part of the wall surface forming the micropores of the porous polypropylene hollow fiber membrane. For example, a solution prepared by dissolving diacetone acrylamide and the above-mentioned copolymerizable monomer (hereinafter, referred to as "monomers") and a polymerization initiator in an appropriate solvent such as an organic solvent or water is prepared, and the raw material hollow fiber membrane is prepared. After impregnating the raw material hollow fiber membrane with a solution of monomers by a method of dipping in the solution, or a method of manufacturing the membrane module with the raw material hollow fiber membrane and then pressing this solution into the raw material hollow fiber membrane, or the like, A method of volatilizing and removing the solvent can be adopted. By using a solution of the monomers diluted with the solvent, the monomers can be adhered almost uniformly over the entire porous hollow fiber membrane without closing the micropores of the porous hollow fiber membrane. Further, by changing the concentration of the monomers in the solution or the impregnation time of the solution, the amount of the attached monomers can be adjusted.
【0065】このようにして原料中空糸膜の微小空孔を
形成している壁面の少なくとも一部にこれらのモノマー
類を保持させた状態で溶媒を除去し、次いで重合させる
ことにより、ポリプロピレン多孔質中空糸膜の微小空孔
を形成してなる壁面の少なくとも一部に親水性架橋重合
体を保持させることができる。The solvent is removed while these monomers are retained on at least a part of the wall surface forming the micropores of the raw material hollow fiber membrane in this manner, and then the polymerization is carried out. The hydrophilic crosslinked polymer can be held on at least a part of the wall surface of the hollow fiber membrane where the micropores are formed.
【0066】上記の溶液を調製する場合の溶媒として
は、モノマー類よりも沸点が低く、かつモノマー類を溶
解することが可能な水または有機溶剤が用いられるが、
重合開始剤を添加する場合は、重合開始剤をも溶解でき
る溶媒を用いることが好ましい。このような有機溶媒と
しては、メタノール、エタノール、プロパノール、イソ
プロパノール等のアルコール類、アセトン、メチルエチ
ルケトン、メチルイソブチルケトン等のケトン類、テト
ラヒドロフラン、ジオキサン等のエーテル類、酢酸エチ
ル等を挙げることができる。有機溶媒の沸点は特に限定
されないが、重合工程前の溶媒除去が容易であることを
考慮すると、100℃以下であることが好ましく、80
℃以下であることがより好ましい。As a solvent for preparing the above solution, water or an organic solvent having a lower boiling point than the monomers and capable of dissolving the monomers is used.
When adding a polymerization initiator, it is preferable to use a solvent that can also dissolve the polymerization initiator. Examples of such organic solvents include alcohols such as methanol, ethanol, propanol, and isopropanol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethers such as tetrahydrofuran and dioxane; and ethyl acetate. The boiling point of the organic solvent is not particularly limited, but is preferably 100 ° C. or lower in consideration of easy removal of the solvent before the polymerization step.
It is more preferable that the temperature is not higher than ° C.
【0067】ポリプロピレン多孔質中空糸膜の表面は疎
水性であるので、特に溶媒として水を用いる場合は、モ
ノマー類を含む水溶液が細孔内に浸透する際にモノマー
類が細孔表面においてその親水性基を外側に向けて配向
吸着されやすいので、重合によってこの状態を固定すれ
ば極めて効率的に親水性を付与することができる。溶媒
として水を用いる場合は、多孔質中空糸膜を直接溶液に
接触させることもできるが、予めアルコール類やケトン
類等で多孔質中空糸膜の微小空孔を形成している壁面を
湿潤処理した後前記溶液を接触させることもできる。Since the surface of the polypropylene porous hollow fiber membrane is hydrophobic, particularly when water is used as a solvent, when the aqueous solution containing the monomer penetrates into the pores, the monomers become hydrophilic on the pore surface. Since the functional group is easily oriented and adsorbed toward the outside, if this state is fixed by polymerization, hydrophilicity can be imparted extremely efficiently. When water is used as the solvent, the porous hollow fiber membrane can be brought into direct contact with the solution.However, the wall surface of the porous hollow fiber membrane where the micropores are formed in advance with alcohols or ketones is wet-treated. After that, the solution can be contacted.
【0068】また、溶媒として有機溶剤を用いる場合
は、溶液が短時間で原料中空糸膜の微小空孔内に浸透す
ること、およびこの微小空孔内からの溶媒除去が容易で
ある等の利点がある。When an organic solvent is used as the solvent, advantages such as the fact that the solution permeates the micropores of the raw material hollow fiber membrane in a short time and the solvent can be easily removed from the micropores are obtained. There is.
【0069】なお、前記配向吸着を利用しないでモノマ
ー類が細孔表面において無秩序に配向した状態で重合が
行なわれた場合においても、形成された親水性架橋重合
体はポリプロピレンと比較すると親水性の程度が大きい
ので、重合体が保持されている微小空孔を形成している
壁面は、重合体が保持されていない微小空孔を形成して
いる壁面と比較すると相対的に親水性を有しており、親
水性が付与されたポリプロピレン多孔質中空糸膜を得る
ことができる。Even when the polymerization is carried out in a state where the monomers are randomly oriented on the surface of the pores without utilizing the above-mentioned orientational adsorption, the formed hydrophilic cross-linked polymer is more hydrophilic than polypropylene. Since the degree is large, the wall surface forming the micropores holding the polymer has a relatively hydrophilic property as compared with the wall surface forming the micropores not holding the polymer. Thus, a polypropylene porous hollow fiber membrane having hydrophilicity can be obtained.
【0070】重合開始剤の要否は重合方法に依存し、熱
重合法や光重合法の場合は重合開始剤が用いられるが、
放射線重合法の場合は重合開始剤を必要としない。The necessity of the polymerization initiator depends on the polymerization method. In the case of a thermal polymerization method or a photopolymerization method, a polymerization initiator is used.
In the case of the radiation polymerization method, no polymerization initiator is required.
【0071】熱重合法の場合は、ラジカル重合開始剤と
して知られている種々の過酸化物、アゾ系化合物、レド
ックス系開始剤を用いることができる。その例として、
2,2’−アゾビスイソブチロニトリル、2,2’−ア
ゾビスシクロプロピルプロピオニトリル、2,2’−ア
ゾビス−2,4−ジメチルバレロニトリル、2,2’−
アゾビス−2,3,3−トリメチルブチロニトリル等の
アゾ系化合物;アセチルパーオキサイド、プロピオニル
パーオキサイド、ブチリルパーオキサイド、イソブチリ
ルパーオキサイド、サクシニルパーオキサイド、ベンゾ
イルパーオキサイド、ベンゾイルイゾブチリルパーオキ
サイド、β−アリロキシプロピオニルパーオキサイド、
ヘキサノイルパーオキサイド、3−ブロモベンゾイルパ
ーオキサイド、ビス−(4−t−ブチルシクロヘキシ
ル)パーオキシジカーボネート等の過酸化物;過硫酸カ
リウム、過硫酸アンモニウム等の過硫酸塩;等を挙げる
ことができる。In the case of the thermal polymerization method, various peroxides, azo compounds and redox initiators known as radical polymerization initiators can be used. As an example,
2,2'-azobisisobutyronitrile, 2,2'-azobiscyclopropylpropionitrile, 2,2'-azobis-2,4-dimethylvaleronitrile, 2,2'-
Azo-based compounds such as azobis-2,3,3-trimethylbutyronitrile; acetyl peroxide, propionyl peroxide, butyryl peroxide, isobutyryl peroxide, succinyl peroxide, benzoyl peroxide, benzoyl azobutyryl peroxide, β -Allyloxypropionyl peroxide,
Peroxides such as hexanoyl peroxide, 3-bromobenzoyl peroxide, and bis- (4-t-butylcyclohexyl) peroxydicarbonate; persulfates such as potassium persulfate and ammonium persulfate; .
【0072】特に溶媒に水を用いた場合には、水溶性の
重合開始剤、例えばアゾビスイソブチラミジン、4,
4’−アゾビス−4−シアノペンタノイックアシドが好
ましいが、モノマー類自体が界面活性を有するため水不
溶性の重合開始剤であっても水中に分散できるので、前
記の水不溶性重合開始剤を用いることもできる。Particularly when water is used as a solvent, a water-soluble polymerization initiator such as azobisisobutyramide,
Although 4'-azobis-4-cyanopentanoic acid is preferred, the above-mentioned water-insoluble polymerization initiator is used since the monomers themselves have surface activity and can be dispersed in water even if they are water-insoluble polymerization initiators. You can also.
【0073】光重合法の場合の重合開始剤としては、ベ
ンゾフェノン、ベンゾインメチルエーテル、ベンジルジ
メチルケタール、フルオレノン、4−ブロモベンゾフェ
ノン、4−クロロベンゾフェノン、メチルO−ベンゾイ
ルベンゾエート、ベンゾイルパーオキサイド、アントラ
キノン、ビアセチル、硝酸ウラニル等を挙げることがで
きる。またこれらを適当に組み合わせて使用することも
可能である。Examples of the polymerization initiator for the photopolymerization method include benzophenone, benzoin methyl ether, benzyldimethyl ketal, fluorenone, 4-bromobenzophenone, 4-chlorobenzophenone, methyl O-benzoylbenzoate, benzoyl peroxide, anthraquinone, and biacetyl. And uranyl nitrate. Further, these can be used in an appropriate combination.
【0074】溶液中におけるモノマー類と溶媒の割合
は、溶媒の種類や目標とする重合体の保持量等を考慮し
て適宜選択すればよく、モノマー類100重量部に対し
て溶媒は50〜10000重量部が好ましく、200〜
5000重量部であることがより好ましい。The ratio of the monomer to the solvent in the solution may be appropriately selected in consideration of the type of the solvent, the target amount of the polymer to be retained, and the like. Parts by weight are preferred, and 200 to
More preferably, it is 5000 parts by weight.
【0075】また、重合開始剤は、モノマー類100重
量部に対して0.001〜100重量部が好ましく、
0.01〜30重量部であることがより好ましく、0.
1〜20重量部であることが特に好ましい。The polymerization initiator is preferably used in an amount of 0.001 to 100 parts by weight based on 100 parts by weight of the monomers.
It is more preferably 0.01 to 30 parts by weight, and 0.1 to 30 parts by weight.
Particularly preferred is 1 to 20 parts by weight.
【0076】モノマー類に対する溶媒の量が前記範囲を
超えると、多孔質中空糸膜の微小空孔を形成している壁
面に保持されるモノマー類の量が少なすぎて充分な量の
重合体を保持させることができず、また前記範囲より少
ないと、重合体の保持量のコントロールが難しく、また
微小空孔を形成している壁面や微小空孔内部に保持され
る重合体の量が多くなり過ぎて微小空孔の閉塞を招くこ
とがあるので好ましくない。When the amount of the solvent with respect to the monomers exceeds the above range, the amount of the monomers held on the wall surface forming the micropores of the porous hollow fiber membrane is too small, and a sufficient amount of the polymer is not obtained. It is not possible to retain, and if it is less than the above range, it is difficult to control the amount of the retained polymer, and the amount of the polymer retained on the wall surface or inside the micropores forming the micropores increases. This is not preferable because it may cause micropores to be closed.
【0077】これらの溶液を用いて原料中空糸に対して
浸漬処理または圧入処理する際の浸漬時間または圧入時
間は、0.5秒〜30分程度であり、原料中空糸に対す
る濡れ特性が良好な溶液を用いた場合程、より短時間で
実施することができる。The immersion time or press-fitting time when immersing or press-fitting the raw material hollow fiber using these solutions is about 0.5 seconds to 30 minutes, and the wettability to the raw material hollow fiber is good. The use of a solution can be performed in a shorter time.
【0078】このようにして、所望により重合開始剤を
含有するモノマー類を、少なくとも一部の微小空孔を形
成している壁面上に保持させたポリプロピレン多孔質中
空糸膜は、周囲の余分な液を除去され、さらに必要に応
じて微小空孔内部の溶媒を蒸発除去された後、次の重合
工程に移される。In this way, the polypropylene porous hollow fiber membrane in which the monomers containing a polymerization initiator as required are retained on the wall surface forming at least a part of the micropores, the surrounding extraneous After the liquid is removed and the solvent inside the micropores is removed by evaporation if necessary, the process is moved to the next polymerization step.
【0079】溶媒の蒸発除去時の温度が高過ぎると溶媒
が残留している間に重合が部分的に進行し、多孔質中空
糸膜の微小空孔を形成している壁面でない微小空孔内部
で重合が起こり、その結果一部の微小空孔が閉塞される
ことがあるので好ましくなく、これを考慮すると溶媒除
去時の温度は10〜40℃であることが好ましい。If the temperature at the time of evaporating and removing the solvent is too high, the polymerization partially proceeds while the solvent remains, and the inside of the micropores other than the wall surface forming the micropores of the porous hollow fiber membrane is formed. In this case, the polymerization occurs, and as a result, some of the micropores may be closed, which is not preferable. In view of this, the temperature at the time of removing the solvent is preferably 10 to 40 ° C.
【0080】本発明の親水化多孔質膜を製造するに際し
ては、熱重合法、光重合法、放射線重合法、プラズマ重
合法等の重合方法を採用することができる。In producing the hydrophilic porous membrane of the present invention, a polymerization method such as a thermal polymerization method, a photopolymerization method, a radiation polymerization method, and a plasma polymerization method can be employed.
【0081】熱重合法の場合、重合温度は前記重合開始
剤の分解温度以上であり、またポリプロピレン多孔質中
空糸膜の膜構造を変化させることなく、かつ膜基質を損
傷しない程度以下の温度とすることが望ましく、通常は
30〜100℃の温度を採用することができる。また加
熱時間は重合開始剤の種類と加熱温度に依存するが、バ
ッチ法では通常は1分〜5時間、より好ましくは15分
〜3時間である。また、連続法では熱伝達効率が高いた
めにより短時間で重合でき、加熱時間は通常10秒〜6
0分、好ましくは20秒〜10分である。In the case of the thermal polymerization method, the polymerization temperature is not lower than the decomposition temperature of the polymerization initiator and not higher than the temperature at which the membrane structure of the porous polypropylene hollow fiber membrane is not changed and the membrane substrate is not damaged. Preferably, a temperature of 30 to 100 ° C. can be employed. The heating time depends on the type of the polymerization initiator and the heating temperature, but is usually 1 minute to 5 hours, more preferably 15 minutes to 3 hours in the batch method. Further, in the continuous method, polymerization can be performed in a shorter time because of high heat transfer efficiency, and the heating time is usually 10 seconds to 6 seconds.
0 minutes, preferably 20 seconds to 10 minutes.
【0082】光重合法の場合、光照射の光源としては紫
外線や可視光線を用いることができ、紫外線源としては
低圧水銀灯、高圧水銀灯、キセノン灯、アーク灯等を用
いることができる。In the case of the photopolymerization method, ultraviolet light or visible light can be used as a light source for light irradiation, and a low-pressure mercury lamp, high-pressure mercury lamp, xenon lamp, arc lamp, or the like can be used as an ultraviolet light source.
【0083】光照射条件としては、例えば水銀灯を光源
として用いる場合は、入力を10〜300W/cmとし
10〜50cmの距離から0.5〜300秒照射するこ
とによって、0.001〜10joule/cm2 、好
ましくは0.05〜1joule/cm2 のエネルギー
を照射する条件が採用される。As the light irradiation conditions, for example, when a mercury lamp is used as a light source, an input is set to 10 to 300 W / cm, and irradiation is performed for 0.5 to 300 seconds from a distance of 10 to 50 cm to obtain 0.001 to 10 joule / cm. 2 , preferably a condition of irradiating energy of 0.05 to 1 joule / cm 2 is employed.
【0084】低照射強度では充分な親水化を達成するこ
とが困難であり、また高照射強度ではポリプロピレン多
孔質中空糸膜の損傷が大きいので、膜厚等を考慮して適
当な光照射条件を慎重に選定することが好ましい。It is difficult to achieve sufficient hydrophilicity at a low irradiation intensity, and the polypropylene porous hollow fiber membrane is greatly damaged at a high irradiation intensity. It is preferable to choose carefully.
【0085】放射線重合の場合は、例えば電子線照射装
置を用い、120℃以下、好ましくは100℃以下の温
度にて、電子線を10〜50Mrad程度照射すること
によって実施できる。In the case of radiation polymerization, the irradiation can be carried out, for example, by irradiating an electron beam at a temperature of 120 ° C. or less, preferably 100 ° C. or less, with an electron beam irradiating device at about 10 to 50 Mrad.
【0086】なお、これらの重合の際、雰囲気内に酸素
が存在すると重合反応が著しく阻害されるので、窒素等
の不活性ガス雰囲気下あるいは真空等の実質的に酸素が
存在しない状態にて重合させることが望ましい。During the polymerization, the presence of oxygen in the atmosphere significantly inhibits the polymerization reaction. Therefore, the polymerization is carried out in an inert gas atmosphere such as nitrogen or in a vacuum-free atmosphere. It is desirable to make it.
【0087】親水性架橋重合体を生成させるに際して
は、架橋反応は重合反応と同時に行なわせてもよく、一
旦共重合体を生成させた後に架橋させてもよい。また、
縮合による架橋反応は、重合反応熱を利用して行なって
もよく、加熱によって行なってもよい。In producing the hydrophilic cross-linked polymer, the cross-linking reaction may be carried out simultaneously with the polymerization reaction, or the cross-linking may be carried out after the formation of the copolymer. Also,
The cross-linking reaction by condensation may be performed using heat of polymerization reaction or may be performed by heating.
【0088】特に縮合による架橋反応を利用する場合
は、予め調製したジアセトンアクリルアミドと架橋性モ
ノマーとの未架橋の共重合体を溶媒に溶解し、次いでポ
リプロピレン多孔質中空糸膜の微小空孔を形成している
壁面上に保持させ、その状態で架橋反応させる方法を用
いてもよい。この場合、未架橋の共重合体の分子量は1
〜50万であることが好ましく、分子量が大きすぎると
共重合体をポリプロピレン多孔質中空糸膜の微小空孔内
部に侵入させることが困難であり好ましくない。分子量
は5〜30万であることがより好ましい。In particular, when a crosslinking reaction by condensation is used, a previously prepared uncrosslinked copolymer of diacetone acrylamide and a crosslinking monomer is dissolved in a solvent, and then the fine pores of the porous polypropylene hollow fiber membrane are removed. A method in which the film is held on the formed wall surface and a crosslinking reaction is performed in that state may be used. In this case, the molecular weight of the uncrosslinked copolymer is 1
If the molecular weight is too large, it is difficult to make the copolymer penetrate into the micropores of the porous polypropylene hollow fiber membrane, which is not preferable. More preferably, the molecular weight is from 50,000 to 300,000.
【0089】本発明の親水化多孔質中空糸膜を製造する
に際しては、上述のように種々の重合法を採用できる
が、熱エネルギーによる方法が最も好ましい。熱エネル
ギーを利用する場合は多孔質中空糸膜の微小空孔部分ま
で均一温度に加熱することができるのでモノマー類が保
持されている全ての微小空孔を形成している壁面上にお
いて均一に重合することができ、かつ重合温度を適度に
設定することによって膜の構造を変化させることなく、
かつ膜基質を劣化させることなく重合することができる
利点がある。一方、光エネルギーを利用する場合は光の
散乱によって多孔質中空糸膜の微細空孔部分まで光が充
分に到達しにくいという問題および光の照射強度を上げ
ると膜基質の劣化が進行しやすいという問題があり、ま
た放射線エネルギーを利用する場合も膜基質の劣化が進
行しやすいという問題がある。したがってこれらの重合
方法を採用する場合は膜基質を劣化させないような重合
条件を慎重に選定することが必要である。In producing the hydrophilic porous hollow fiber membrane of the present invention, various polymerization methods can be employed as described above, but the method using heat energy is most preferable. When thermal energy is used, the porous hollow fiber membrane can be heated to a uniform temperature up to the minute pores, so that the polymer is uniformly polymerized on the wall surface on which all the pores holding the monomers are formed And without changing the structure of the membrane by setting the polymerization temperature appropriately,
In addition, there is an advantage that the polymerization can be performed without deteriorating the membrane substrate. On the other hand, when light energy is used, it is difficult for light to sufficiently reach the pores of the porous hollow fiber membrane due to light scattering, and degradation of the membrane substrate tends to progress when the light irradiation intensity is increased. There is a problem, and also when using radiation energy, there is a problem that the deterioration of the membrane substrate is apt to proceed. Therefore, when employing these polymerization methods, it is necessary to carefully select polymerization conditions that do not degrade the membrane substrate.
【0090】原料中空糸膜の微小空孔を形成している壁
面上に保持されたモノマー類や前記の未架橋の共重合体
は、これらの重合手法によって多孔質膜表面上において
重合・架橋または架橋するので、多孔質中空糸膜の微小
空孔を形成している壁面の少なくともその一部はこれら
の重合体によって被覆される。The monomers and the uncrosslinked copolymer held on the wall surface forming the micropores of the raw hollow fiber membrane are polymerized, crosslinked or crosslinked on the porous membrane surface by these polymerization techniques. Because of the crosslinking, at least a part of the wall surface forming the micropores of the porous hollow fiber membrane is covered with these polymers.
【0091】親水性架橋重合体が生成された後は、適当
な溶媒を用い浸漬法や圧入法によって多孔質中空糸膜の
微小空孔を形成している壁面周囲に存在する未反応モノ
マーや遊離したポリマー等の不要成分を除去することが
望ましい。溶媒としては、水、有機溶剤あるいはそれら
の混合溶媒を単独または併用して用いることができる。After the formation of the hydrophilic cross-linked polymer, the unreacted monomer or free monomer existing around the wall surface forming the micropores of the porous hollow fiber membrane is removed by a dipping method or a press-fitting method using an appropriate solvent. It is desirable to remove unnecessary components such as the removed polymer. As the solvent, water, an organic solvent, or a mixed solvent thereof can be used alone or in combination.
【0092】本発明の親水化多孔質中空糸膜はこのよう
にして製造することができるが、特に好ましい方法とし
て、ジアセトンアクリルアミドと水溶性の架橋性モノマ
ーとを含むモノマー類および重合開始剤を、ポリプロピ
レン多孔質中空糸膜の少なくとも一部の微小空孔を形成
している壁面上に保持させた状態で加熱重合させる方法
を挙げることができる。[0092] The hydrophilized porous hollow fiber membrane of the present invention can be produced in this manner. As a particularly preferable method, a monomer containing diacetone acrylamide and a water-soluble crosslinking monomer and a polymerization initiator are used. And a method of heating and polymerizing the polypropylene porous hollow fiber membrane while holding it on the wall surface where at least a part of the micropores are formed.
【0093】共重合性モノマーとして水溶性の架橋性モ
ノマーを用いると、重合体の水中での膨潤が抑制され、
溶出成分の量を一段と減少させることができると共に親
水化多孔質中空糸膜は優れた透水性能を発揮する。When a water-soluble crosslinking monomer is used as the copolymerizable monomer, swelling of the polymer in water is suppressed,
The amount of the eluted components can be further reduced, and the hydrophilic porous hollow fiber membrane exhibits excellent water permeability.
【0094】また、加熱重合法によって製造される親水
化多孔質中空膜は、膜厚方向における重合体の保持状態
に斑がなく、膜基質の損傷が殆どないという特徴を有し
ている。[0094] The hydrophilic porous hollow membrane produced by the heat polymerization method is characterized in that there is no unevenness in the holding state of the polymer in the thickness direction and there is almost no damage to the membrane substrate.
【0095】以上、各工程について別々に説明してきた
が、本発明の親水化多孔質中空糸膜を製造するに際して
は、ポリプロピレン多孔質中空糸膜の微小空孔を形成し
ている壁面上へのモノマー類等の保持、溶媒除去、重
合、重合後の洗浄等をほぼ連続的に行なうこともでき
る。Although the respective steps have been described separately above, when producing the hydrophilic porous hollow fiber membrane of the present invention, the hydrophilic porous hollow fiber membrane is coated on the wall surface forming the micropores of the polypropylene porous hollow fiber membrane. The retention of the monomers and the like, the removal of the solvent, the polymerization, and the washing after the polymerization can be performed almost continuously.
【0096】[0096]
【実施例】以下、本発明を実施例により具体的に説明す
る。測定方法は以下に示した方法によった。 1.中空糸膜の測定 (1)空気透過量:多孔質中空糸膜50本をU字型に束
ねて中空開口部分をウレタン樹脂で固め、モジュールを
製作した。樹脂包埋部の長さは2.5cm、中空糸有効
長は5cmとした。このモジュールの中空糸膜内部に空
気を0.5atmの圧力を25℃で加え、中空糸膜の壁
面を通過して外部にでる空気の透過量を求めた。膜面積
は内径ベースとした。 (2)弾性回復率:東洋ボールドウイン社製テンシロン
UTM−II型を用いて糸長2cm、試験速度1cm/m
inで測定し、次式により求めた。The present invention will be described below in more detail with reference to examples. The measuring method was as follows. 1. Measurement of Hollow Fiber Membrane (1) Air Permeation: 50 porous hollow fiber membranes were bundled in a U-shape, and the hollow opening was solidified with urethane resin to produce a module. The length of the resin-embedded portion was 2.5 cm, and the effective length of the hollow fiber was 5 cm. Air was applied to the inside of the hollow fiber membrane of this module at a pressure of 0.5 atm at 25 ° C., and the amount of air permeating outside passing through the wall surface of the hollow fiber membrane was determined. The membrane area was based on the inner diameter. (2) Elastic recovery rate: using Tensilon UTM-II manufactured by Toyo Baldwin Co., Ltd., yarn length 2 cm, test speed 1 cm / m
In was measured by the following formula.
【0097】[0097]
【数1】 (3)ミクロフィブリルの平均的長さ:電子顕微鏡写真
から測定した。 2.親水化多孔質中空糸膜の測定 「透水圧」、「アルコール親水化法での水透過率」およ
び「重合体保持後の水透過率」はそれぞれ有効膜面積が
163cm2 の試験膜モジュールを用い次の方法によっ
て測定した。実施例に用いたN−ヒドロキシメチルアク
リルアミド、N,N’−メチレンビスアクリルアミドお
よびトリアリルイソシアヌレートの30℃の水に対する
溶解度はそれぞれ197g/dl、3g/dlおよび
0.1g/dlである。 (1)透水圧:試験膜モジュールの一方(中空糸膜の場
合は中空糸膜の内側)から1分毎に0.1kg/cm2
の割合で水圧を上げながら25℃の水を供給し、積算透
過水量が30mlと50mlになるときの水圧を測定す
る。続いて横軸に水圧または縦軸に透過水量をプロット
し、プロットした2点を結ぶ直線が横軸と交わる点の圧
力値を求めその値を透水圧とした。 (2)アルコール親水化法での水透過率:親水化処理し
ていない試験膜モジュールの一方(中空糸膜の場合は中
空糸膜の内側)からエタノールを25ml/minの流
量で15分間圧入して多孔質膜の細孔内部まで充分にエ
タノールで湿潤させた後、水を100ml/min の
流量で15分間流し、細孔内部に存在するエタノールを
水で置換する。続いて試験膜モジュールの一方(中空糸
膜の場合は中空糸膜の内側)から25℃の水を流して膜
間差圧が50mmHgにおける透過水量を測定し、その
値から水透過率(リットル/m2 ・hr・mmHg)を
求めた。 (3)重合体の保持量:元素分析法によって窒素含有量
を測定し、この窒素が重合体のみに由来し、モノマー組
成比と同一組成比の重合体が形成されているものと仮定
し、ポリエチレン多孔質中空糸膜の単位重量に対して保
持されている親水性架橋重合体の重量%を算出した。 (4)細孔表面の被覆状態の評価:JISK6768
(1971)に記載の表面張力54dyn/cmの濡れ
試験用標準液(青色)中に多孔質膜を1分間浸漬した後
風乾し、該多孔質膜の横切断面を光学顕微鏡によって観
察し着色された重合体の分布状態を調べた。 (5)積算溶出率:多孔質中空糸膜をその重量の10倍
量の65℃の温水中に浸漬し、一定時間毎にその温水中
の全有機炭素量を測定する。この全有機炭素量が前記
(3)で仮定された組成比の親水性架橋重合体のみに由
来するものと仮定して積算溶出量を算出し、溶出処理前
の重合体保持量に対する積算溶出率(重量%)を求め
た。 (6)重合体保持後の水透過率:重合体を保持させた多
孔質中空糸膜で製作した試験膜モジュールの一方(中空
糸膜の場合は中空糸膜の内側)から圧力2kg/cm2
の水を3時間圧入した後、該試験膜のモジュールの一方
から25℃の水を流して膜間差圧が50mmHgにおけ
る透過水量を測定し、その値から水透過率(リットル/
m2 ・hr・mmHg)を求めた。(Equation 1) (3) Average length of microfibrils: measured from electron micrographs. 2. Measurement of hydrophilic porous hollow fiber membrane "water penetration pressure", "water permeability of alcohol hydrophilization" and "water permeability after polymer retention" is the effective membrane area, each with a test membrane module of 163cm 2 It was measured by the following method. The solubility of N-hydroxymethylacrylamide, N, N'-methylenebisacrylamide and triallylisocyanurate in water at 30 ° C. used in the examples is 197 g / dl, 3 g / dl and 0.1 g / dl, respectively. (1) Permeability: 0.1 kg / cm 2 every minute from one of the test membrane modules (in the case of a hollow fiber membrane, inside the hollow fiber membrane)
Is supplied at a temperature of 25 ° C. while increasing the water pressure at a rate of 1. The water pressure when the integrated permeated water amount becomes 30 ml and 50 ml is measured. Subsequently, the water pressure was plotted on the horizontal axis or the amount of permeated water was plotted on the vertical axis, and the pressure value at the point where a straight line connecting the plotted points intersects the horizontal axis was determined as the water pressure. (2) Water permeability by alcohol hydrophilization method: Ethanol was injected at a flow rate of 25 ml / min for 15 minutes from one of the test membrane modules not subjected to hydrophilization (in the case of hollow fiber membrane, inside the hollow fiber membrane). After sufficiently wet the inside of the pores of the porous membrane with ethanol, water is flowed at a flow rate of 100 ml / min for 15 minutes to replace the ethanol present inside the pores with water. Subsequently, water at 25 ° C. was flowed from one of the test membrane modules (in the case of the hollow fiber membrane, inside the hollow fiber membrane), and the amount of permeated water at a transmembrane pressure difference of 50 mmHg was measured. m 2 · hr · mmHg). (3) Retention amount of polymer: The nitrogen content was measured by elemental analysis, and it was assumed that this nitrogen was derived only from the polymer and a polymer having the same composition ratio as the monomer composition ratio was formed. The weight% of the hydrophilic cross-linked polymer held with respect to the unit weight of the polyethylene porous hollow fiber membrane was calculated. (4) Evaluation of coating state of pore surface: JIS K6768
The porous membrane was immersed in a standard solution for wetting test (blue) having a surface tension of 54 dyn / cm described in (1971) for 1 minute, air-dried, and the cross section of the porous membrane was observed under an optical microscope and colored. The distribution state of the polymer thus obtained was examined. (5) Cumulative elution rate: The porous hollow fiber membrane is immersed in hot water of 65 ° C. 10 times its weight, and the total organic carbon content in the hot water is measured at regular intervals. Assuming that the total amount of organic carbon is derived only from the hydrophilic cross-linked polymer having the composition ratio assumed in the above (3), the integrated elution amount was calculated, and the integrated elution ratio with respect to the polymer retention amount before the elution treatment was calculated. (% By weight). (6) Water permeability after holding the polymer: a pressure of 2 kg / cm 2 from one of the test membrane modules (in the case of the hollow fiber membrane, inside the hollow fiber membrane) made of the porous hollow fiber membrane holding the polymer.
Of water for 3 hours, water at 25 ° C. was flowed from one side of the test membrane module, and the amount of permeated water at a transmembrane pressure difference of 50 mmHg was measured.
m 2 · hr · mmHg).
【0098】実施例1 メルトインデックス3のポリプロピレン(UBEポリプ
ロYK121、商品名、宇部興産(株)製)を吐出口径
17.5mm、円環スリット幅が1.5mm、吐出断面
積が0.75cm2 の中空糸賦型用紡糸口金を用い、紡
糸温度200℃、吐出線速度9.24cm/minで紡
糸し、巻取速度40m/min、紡糸ドラフト433で
巻取った。得られた未延伸中空糸の寸法は内径が545
μm、膜厚が72μmであった。Example 1 Polypropylene having a melt index of 3 (UBE Polypro YK121, trade name, manufactured by Ube Industries, Ltd.) has a discharge port diameter of 17.5 mm, a ring slit width of 1.5 mm, and a discharge cross-sectional area of 0.75 cm 2. Was spun at a spinning temperature of 200 ° C. and a discharge linear speed of 9.24 cm / min, and wound up by a spinning draft 433 at a winding speed of 40 m / min. The dimension of the obtained undrawn hollow fiber is 545 in inner diameter.
μm and the film thickness was 72 μm.
【0099】この未延伸中空糸を150℃で24時間、
定長で熱処理した。この未延伸中空糸の弾性回復率は9
2.5%であった。つづいて室温で1秒につき200%
の変形速度で40%延伸した後、155℃に加熱した加
熱函中で総延伸量が1100%(すなわち、総延伸倍率
が12倍)になる迄変形速度が1秒につき2.8%にな
るようにローラー内延伸を行ない、連続的に多孔質中空
糸膜の製造を行なった。The undrawn hollow fiber was heated at 150 ° C. for 24 hours.
Heat treatment was performed at a constant length. The elastic recovery of this undrawn hollow fiber is 9
2.5%. Followed by 200% per second at room temperature
After stretching at a deformation rate of 40%, the deformation rate becomes 2.8% per second until the total stretching amount reaches 1100% (that is, the total stretching ratio is 12 times) in a heating box heated to 155 ° C. As described above, the inside of the roller was drawn to continuously produce a porous hollow fiber membrane.
【0100】得られた多孔質ポリプロピレン中空糸は未
延伸糸に対して12倍に延伸されており、内径は430
μm、膜厚は57μmであり空孔率は81%であった。
水銀ポロシメーターで測定した平均孔径は1.8μmで
空気透過量は190×104リットル/m2 ・hr・
0.5atmであった。走査型電子顕微鏡で観察したと
ころ、特徴的な短冊状微小空孔が無数存在し、ミクロフ
ィブリルの平均的長さは4.1μmであった。The obtained porous polypropylene hollow fiber was stretched 12 times with respect to the undrawn yarn, and had an inner diameter of 430.
μm, the film thickness was 57 μm, and the porosity was 81%.
The average pore size measured by a mercury porosimeter is 1.8 μm and the air permeation amount is 190 × 10 4 liter / m 2 · hr ·
It was 0.5 atm. Observation with a scanning electron microscope revealed that there were numerous characteristic strip-shaped micropores, and the average length of the microfibrils was 4.1 μm.
【0101】実施例2 メルトインデックス0.8のポリプロピレン(UBEポ
リプロB101H、商品名、宇部興産(株)製)を吐出
口径が17.5mm、円環スリット幅が1.5mmの二
重管構造を有し、吐出断面積が0.75cm2 の中空糸
賦型用紡糸口金を用い、紡糸温度220℃吐出線速度
9.24cm/minで紡糸し、巻取速度20m/mi
n、紡糸ドラフト216で巻取った。得られた未延伸中
空糸の寸法は、内径が610μm、膜厚が83μmであ
った。Example 2 Polypropylene having a melt index of 0.8 (UBE Polypro B101H, trade name, manufactured by Ube Industries, Ltd.) was used to form a double tube structure having a discharge port diameter of 17.5 mm and an annular slit width of 1.5 mm. It is spun at a spinning temperature of 220 ° C. at a discharge linear speed of 9.24 cm / min using a spinneret for hollow fiber shaping having a discharge cross-sectional area of 0.75 cm 2 and a winding speed of 20 m / mi.
n, and was wound by a spinning draft 216. Regarding the dimensions of the obtained undrawn hollow fiber, the inner diameter was 610 μm and the film thickness was 83 μm.
【0102】この未延伸中空糸を150℃で24時間、
定長で熱処理した。この未延伸中空糸の弾性回復率は9
1%であった。つづいて40℃で1秒につき200%の
変形速度で35%延伸した後、155℃に加熱した加熱
函中で総延伸量が1900%になる迄変形速度が1秒に
つき0.5%になるようにローラー間延伸を行ない、さ
らに155℃に加熱した加熱函中で60秒間熱セットを
行ない、連続的に多孔質中空糸膜の製造を行なった。The undrawn hollow fiber was heated at 150 ° C. for 24 hours.
Heat treatment was performed at a constant length. The elastic recovery of this undrawn hollow fiber is 9
1%. Subsequently, the film is stretched by 35% at 40 ° C. at a deformation rate of 200% per second, and then, in a heating box heated to 155 ° C., the deformation rate becomes 0.5% per second until the total stretching amount becomes 1900%. As described above, stretching between rollers was performed, and heat setting was further performed in a heating box heated to 155 ° C. for 60 seconds to continuously produce a porous hollow fiber membrane.
【0103】得られた多孔質ポリプロピレン中空糸は、
未延伸糸に対して20倍に延伸されており、内径は54
0μm、膜厚は73μmであり、空孔率は88%であっ
た。水銀ポロシメーターで測定した平均孔径は3.5μ
mで、空気透過量は380×104 リットル/m2 ・h
r・0.5atmであった。走査型電子顕微鏡で観察し
たところ、特徴的な微小空孔が無数存在し、ミクロフィ
ブリルの平均的な長さは7.5μmであった。[0103] The obtained porous polypropylene hollow fiber was
It is stretched 20 times with respect to the undrawn yarn, and the inner diameter is 54
The thickness was 0 μm, the film thickness was 73 μm, and the porosity was 88%. The average pore size measured with a mercury porosimeter is 3.5μ
m, air permeation is 380 × 10 4 liters / m 2 · h
r · 0.5 atm. Observation with a scanning electron microscope revealed that there were numerous characteristic microvoids, and the average length of the microfibrils was 7.5 μm.
【0104】比較例1 メルトインデックス3のポリプロピレン(UBEポリプ
ロYK121、商品名、宇部興産(株)製)を用い、実
施例1と全く同じ条件で中空糸を紡糸した。得られた未
延伸糸の寸法は内径が553μm、膜厚が76μmであ
った。Comparative Example 1 A hollow fiber was spun under the same conditions as in Example 1 using polypropylene having a melt index of 3 (UBE Polypro YK121, trade name, manufactured by Ube Industries, Ltd.). The dimensions of the obtained undrawn yarn were an inner diameter of 553 μm and a film thickness of 76 μm.
【0105】この未延伸中空糸を総延伸量を550%と
したことを除き実施例1と同一の条件で熱処理し、延伸
し、連続的に多孔質中空糸の製造を行ったが、水銀ポロ
シメーターで測定した平均孔径は0.3μmであり、1
μmを超えるものは得られなかった。This undrawn hollow fiber was heat-treated and drawn under the same conditions as in Example 1 except that the total drawing amount was 550%, and a continuous production of a porous hollow fiber was carried out. The average pore diameter measured in the step is 0.3 μm,
Those exceeding μm were not obtained.
【0106】比較例2 メルトインデックス15のポリプロピレン(UBEポリ
プロJ115G、商品名、宇部興産(株)製)ことを除
き、実施例1と全く同一の条件中空糸を紡糸した。得ら
れた未延伸糸の寸法は、内径が580μm、膜厚が78
μmであった。この未延伸中空糸を総延伸量が600%
である以外は実施例1と同一の条件で熱処理、延伸した
が、熱延伸で糸切れが多発し、均一な延伸は不可能であ
った。 実施例3 メルトインデックス3のポリプロピレン(UBEポリプ
ロYK121、商品名、宇部興産(株)製)を吐出口径
17.5mm、円環スリット幅が1.5mm、吐出断面
積が0.75cm2 の中空糸賦型用紡糸口金を用い、紡
糸温度200℃、吐出線速度9.24cm/minで紡
糸し、巻取速度45m/min、紡糸ドラフト489で
巻取った。得られた未延伸中空糸の寸法は内径が540
μm、膜厚が72μmであった。Comparative Example 2 A hollow fiber was spun under exactly the same conditions as in Example 1 except that polypropylene having a melt index of 15 (UBE Polypro J115G, trade name, manufactured by Ube Industries, Ltd.) was used. The dimensions of the obtained undrawn yarn were such that the inner diameter was 580 μm and the film thickness was 78.
μm. This undrawn hollow fiber has a total drawing amount of 600%
The film was heat-treated and stretched under the same conditions as in Example 1, except that the yarn was frequently broken by thermal stretching, and uniform stretching was impossible. Example 3 Polypropylene having a melt index of 3 (UBE Polypro YK121, trade name, manufactured by Ube Industries, Ltd.) is a hollow fiber having a discharge port diameter of 17.5 mm, an annular slit width of 1.5 mm, and a discharge sectional area of 0.75 cm 2 . Using a spinneret for shaping, spinning was performed at a spinning temperature of 200 ° C. and a discharge linear speed of 9.24 cm / min, and winding was performed at a winding speed of 45 m / min and a spinning draft 489. The dimensions of the obtained undrawn hollow fiber have an inner diameter of 540.
μm and the film thickness was 72 μm.
【0107】この未延伸中空糸を150℃で24時間、
定長で熱処理した。この未延伸中空糸の弾性回復率は9
2.5%であった。続いて、室温で1秒につき200%
の変形速度で40%延伸した後、155℃に加熱した加
熱函中で総延伸量が1100%(すなわち、総延伸倍率
が12倍)になる迄変形速度が1秒につき2.8%とな
るようにローラー内延伸を行ない、連続的に多孔質中空
糸膜の製造を行なった。The undrawn hollow fiber was heated at 150 ° C. for 24 hours.
Heat treatment was performed at a constant length. The elastic recovery of this undrawn hollow fiber is 9
2.5%. Then at room temperature 200% per second
After stretching at a deformation rate of 40%, the deformation rate becomes 2.8% per second until the total stretching amount reaches 1100% (that is, the total stretching ratio is 12 times) in a heating box heated to 155 ° C. As described above, the inside of the roller was drawn to continuously produce a porous hollow fiber membrane.
【0108】得られた多孔質ポリプロピレン中空糸膜は
未延伸糸に対して12倍に延伸されており、内径は43
0μm、膜厚は59μmであり、空孔率は80%であっ
た。また、水銀ポロシメーターで測定した平均孔径は
1.7μmで、その空気透過量は105×104 リット
ル/m2 ・hr・0.5atmであった。走査型電子顕
微鏡でその断面構造を分析したところ、特徴的な短冊状
微小空孔が無数存在し、これら微小空孔が中空糸膜内壁
面より外壁面へ相互に連通した積層構造が確認され、ま
たミクロフィブリルの平均的な長さは3.7μmであっ
た。The obtained porous polypropylene hollow fiber membrane was stretched 12 times with respect to the undrawn yarn, and had an inner diameter of 43%.
The thickness was 0 μm, the film thickness was 59 μm, and the porosity was 80%. The average pore size measured by a mercury porosimeter was 1.7 μm, and the air permeation amount was 105 × 10 4 liter / m 2 · hr · 0.5 atm. When the cross-sectional structure was analyzed with a scanning electron microscope, a number of characteristic strip-shaped micropores existed, and a laminated structure in which these micropores were mutually connected from the inner wall surface of the hollow fiber membrane to the outer wall surface was confirmed. The average length of the microfibrils was 3.7 μm.
【0109】一方、エチレン含有33モル%のエチレン
ビニルアルコール共重合体(商品名:ソアノールE、エ
チレン−酢酸ビニル共重合体のケン化物、日本合成化学
工業社製)を75容量%のエタノール水溶液に加熱溶解
させ、1.0重量%溶液とした。この溶液の温度を50
℃に維持し、これに先に得た多孔質ポリプロピレン中空
糸膜を浸漬し、5分間放置した。中空糸膜を溶液から引
き上げ、過剰の溶液を除去した後、50℃の熱風乾燥機
中で2時間乾燥した。On the other hand, ethylene-containing 33 mol% ethylene vinyl alcohol copolymer (trade name: Soarnol E, saponified ethylene-vinyl acetate copolymer, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was converted into a 75% by volume aqueous ethanol solution. The mixture was dissolved by heating to obtain a 1.0% by weight solution. Raise the temperature of this solution to 50
C., and the porous polypropylene hollow fiber membrane obtained earlier was immersed therein and left for 5 minutes. After removing the hollow fiber membrane from the solution and removing the excess solution, it was dried in a hot air dryer at 50 ° C. for 2 hours.
【0110】得られた多孔質中空糸膜は、大孔径でかつ
高空孔率であり、エチレン−酢酸ビニル共重合体のケン
化物が保持されていることによって、良好な親水性を有
していた。この多孔質中空糸膜を水に漬けると容易に濡
れ、特別の処理をすることなくそのままの状態で良好な
透水性を示した。この多孔質中空糸膜の50本をU字型
に束ねてハウジング内に収納し、各多孔質中空糸膜の端
部を開口状態で樹脂によりハウジング内に固定し、各多
孔質中空糸膜の外壁面と接触する領域と、各多孔質中空
糸膜の端部が開口する領域とを液密に仕切り、その透水
量を測定したところ、36リットル/m2 ・hr・mm
Hgであり、優れた透水性を示した。また、この多孔質
中空糸膜に対して乾燥処理と水での湿潤処理を10回ず
つ交互に繰り返したが、透水性の低下や機械的強度等の
特性の変化は認められなかった。 実施例4 エチレン−酢酸ビニル共重合体(組成比55:45)3
重量部をトルエン97重量部に溶解して得た25℃の溶
液中に、実施例1と同様にして得られたポリプロピレン
多孔質中空糸膜を30秒間浸漬した後、真空乾燥により
50℃で3時間乾燥して、溶剤の除去を行なった。The obtained porous hollow fiber membrane had a large pore diameter and a high porosity, and had good hydrophilicity because the saponified ethylene-vinyl acetate copolymer was retained. . When this porous hollow fiber membrane was immersed in water, it was easily wetted and showed good water permeability without any special treatment. Fifty of the porous hollow fiber membranes are bundled in a U-shape and housed in a housing, and the end of each porous hollow fiber membrane is fixed in the housing with a resin in an open state. A region in contact with the outer wall surface and a region where the end of each porous hollow fiber membrane is open were partitioned in a liquid-tight manner, and the amount of water permeation was measured. As a result, 36 l / m 2 · hr · mm
Hg and excellent water permeability. Further, the drying treatment and the wetting treatment with water were alternately repeated 10 times on the porous hollow fiber membrane, but no decrease in water permeability or change in properties such as mechanical strength was observed. Example 4 Ethylene-vinyl acetate copolymer (composition ratio 55:45) 3
The polypropylene porous hollow fiber membrane obtained in the same manner as in Example 1 was immersed in a solution at 25 ° C. obtained by dissolving parts by weight in 97 parts by weight of toluene for 30 seconds. After drying for a time, the solvent was removed.
【0111】次に、水酸化ナトリウム10gを1リット
ルの水に溶解したアルカリ水溶液に浸漬し、70℃で1
時間ケン化処理を行なった後、水洗し、乾燥して親水化
ポリプロピレン多孔質中空糸膜を得た。Next, the substrate was immersed in an aqueous alkali solution obtained by dissolving 10 g of sodium hydroxide in 1 liter of water.
After performing saponification treatment for a time, it was washed with water and dried to obtain a hydrophilic polypropylene porous hollow fiber membrane.
【0112】この多孔質中空糸膜50本を用い実施例3
と同様にしてハウジング内に固定して透水量を測定した
ところ、透水量は32リットル/m2 ・hr・mmHg
であり、優れた透水性を示した。また、実施例3と同様
に多孔質中空糸膜に対して乾燥処理と湿潤処理を10回
ずつ交互に繰り返したが、透水性の低下や機械的強度等
の特性の変化は認められなかった。Example 3 using 50 porous hollow fiber membranes
When the amount of water permeation was measured while being fixed in the housing in the same manner as described above, the amount of water permeation was 32 l / m 2 · hr · mmHg.
And showed excellent water permeability. Further, the drying treatment and the wetting treatment were alternately repeated 10 times for the porous hollow fiber membrane in the same manner as in Example 3, but no decrease in water permeability or change in properties such as mechanical strength was observed.
【0113】実施例5 メルトインデックス3のポリプロピレン(UBEポリプ
ロYK121、商品名、宇部興産(株)製)を吐出口径
17.5mm、円環スリット幅が1.5mm、吐出断面
積が0.75cm2の中空糸賦型用紡糸口金を用い、紡
糸温度215℃、吐出線速度9.24cm/minで紡
糸し、巻取速度50m/min、紡糸ドラフト543で
巻取った。得られた未延伸中空糸の寸法は内径が360
μm、膜厚が65μmであった。Example 5 Polypropylene having a melt index of 3 (UBE Polypro YK121, trade name, manufactured by Ube Industries, Ltd.) having a discharge port diameter of 17.5 mm, a ring slit width of 1.5 mm, and a discharge sectional area of 0.75 cm 2 was used. Using a spinneret for hollow fiber shaping, spinning was performed at a spinning temperature of 215 ° C., a discharge linear speed of 9.24 cm / min, and winding was performed at a winding speed of 50 m / min and a spinning draft 543. The dimensions of the obtained undrawn hollow fiber have an inner diameter of 360.
μm, and the film thickness was 65 μm.
【0114】この未延伸中空糸を150℃で24時間、
定長で熱処理した。この未延伸中空糸の弾性回復率は9
2.5%であった。つづいて室温で1秒につき200%
の変形速度で40%延伸した後、155℃に加熱した加
熱函中で総延伸量が1000%(すなわち、総延伸倍率
が11倍)になる迄変形速度が1秒につき2.8%にな
るようにローラー内延伸を行ない、連続的に多孔質中空
糸膜の製造を行なった。The undrawn hollow fiber was heated at 150 ° C. for 24 hours.
Heat treatment was performed at a constant length. The elastic recovery of this undrawn hollow fiber is 9
2.5%. Followed by 200% per second at room temperature
After stretching at a deformation rate of 40%, the deformation rate becomes 2.8% per second until the total stretching amount becomes 1000% (that is, the total stretching ratio is 11 times) in a heating box heated to 155 ° C. As described above, the inside of the roller was drawn to continuously produce a porous hollow fiber membrane.
【0115】得られた多孔質ポリプロピレン中空糸膜は
未延伸糸に対して11倍に延伸されており、内径は30
0μm、膜厚は57μmであり空孔率は82%であっ
た。水銀ポロシメーターで測定した平均孔径は1.7μ
mで空気透過量は95×104リットル/m2 ・hr・
0.5atmであった。走査型電子顕微鏡で観察したと
ころ、特徴的な短冊状微小空孔が無数存在し、ミクロフ
ィブリルの平均的長さは3.7μmであった。また、ア
ルコール親水化法による水透過率は39l/m2・hr
・mmHgであった。The obtained porous polypropylene hollow fiber membrane was stretched 11 times with respect to the undrawn yarn, and had an inner diameter of 30%.
The thickness was 0 μm, the film thickness was 57 μm, and the porosity was 82%. The average pore size measured with a mercury porosimeter is 1.7μ
m and air permeation rate is 95 × 10 4 liters / m 2 · hr ·
It was 0.5 atm. Observation with a scanning electron microscope revealed that there were numerous characteristic strip-shaped micropores, and the average length of the microfibrils was 3.7 μm. The water permeability by the alcohol hydrophilization method is 39 l / m 2 · hr
-It was mmHg.
【0116】得られた大孔径で、かつ高空孔率のポリプ
ロピレン多孔質中空膜を、ジアセトンアクリルアミド1
00部、N−ヒドロキシメチルアクリルアミド5部、ベ
ンゾイルパーオキサイド1部およびアセトン1000部
からなる処理溶液に12秒間浸漬した後、窒素中にとり
出し5分間風乾した。続いてこの多孔質膜を窒素雰囲気
中において65℃で60分間加熱処理し、次いで水/エ
タノール=50/50(部)混合溶媒に10分間浸漬
し、さらに温水中で2分間超音波洗浄することにより不
要成分を洗浄除去した。次に熱風乾燥により溶媒を除去
し、重合体が保持されたポリプロピレン多孔質中空糸膜
を得た。この多孔質中空糸膜の透水圧、水透過率、重合
体の保持量、積算溶出率等を測定してその結果を表1に
示した。The obtained porous hollow polypropylene membrane having a large pore diameter and a high porosity was treated with diacetone acrylamide 1
It was immersed in a treatment solution consisting of 00 parts, 5 parts of N-hydroxymethylacrylamide, 1 part of benzoyl peroxide and 1000 parts of acetone for 12 seconds, taken out in nitrogen and air-dried for 5 minutes. Subsequently, the porous film is heat-treated at 65 ° C. for 60 minutes in a nitrogen atmosphere, then immersed in a mixed solvent of water / ethanol = 50/50 (parts) for 10 minutes, and further subjected to ultrasonic cleaning in warm water for 2 minutes. The unnecessary components were removed by washing. Next, the solvent was removed by hot air drying to obtain a porous polypropylene hollow fiber membrane holding the polymer. The water permeation pressure, water permeability, retained amount of polymer, integrated elution rate and the like of this porous hollow fiber membrane were measured, and the results are shown in Table 1.
【0117】得られた親水化ポリプロピレン多孔質中空
糸膜の透水性能は良好であり、親水性架橋重合体の被覆
状態について観察したところ、ポリプロピレ多孔質中空
糸膜の微小空孔を形成している壁面のほぼ全面にわたっ
てほぼ均一に重合体が保持されていた。また、積算溶出
率の測定から、24時間以降は実質的に溶出成分がない
ことがわかった。The water-permeability of the obtained hydrophilic polypropylene porous hollow fiber membrane was good, and the state of coating with the hydrophilic cross-linked polymer was observed. As a result, micropores were formed in the porous polypropylene hollow fiber membrane. The polymer was held almost uniformly over almost the entire wall surface. Also, the measurement of the integrated dissolution rate revealed that there was substantially no dissolution component after 24 hours.
【0118】実施例6〜8 架橋性モノマーとして表1に示す量のN−ヒドロキシメ
チルアクリルアミドをそれぞれ使用し、その他の条件は
実施例5と同様にしてポリプロピレン多孔質中空糸膜に
重合体を保持させた。Examples 6 to 8 The amounts of N-hydroxymethylacrylamide shown in Table 1 were used as the crosslinkable monomers, and the other conditions were the same as in Example 5 to hold the polymer in the polypropylene hollow hollow fiber membrane. I let it.
【0119】このようにして得られた親水化ポリプロピ
レン多孔質中空糸膜の性能を評価し、表1の結果を得
た。The performance of the thus-obtained hydrophilic porous polypropylene hollow fiber membrane was evaluated, and the results shown in Table 1 were obtained.
【0120】実施例9 実施例1と同様にして得られたポリプロピレン多孔質中
空糸膜を、処理溶液としてジアセトンアクリルアミド1
00部、N,N’−メチレンビスアクリルアミド5部お
よび2,2’−アゾビスイソブチロニトリル5部および
アセトン800部からなる溶液を用い、また熱処理条件
を65℃で60分間とし、その他は実施例5と同様にし
て重合体を保持させた親水化ポリプロピレン多孔質中空
糸膜を得、その性能を評価し、表1の結果を得た。Example 9 A polypropylene porous hollow fiber membrane obtained in the same manner as in Example 1 was used as a treatment solution for diacetone acrylamide 1
A solution consisting of 00 parts, 5 parts of N, N'-methylenebisacrylamide, 5 parts of 2,2'-azobisisobutyronitrile and 800 parts of acetone was used. The heat treatment was performed at 65 ° C. for 60 minutes. A hydrophilic polypropylene porous hollow fiber membrane holding a polymer was obtained in the same manner as in Example 5, and its performance was evaluated. The results shown in Table 1 were obtained.
【0121】親水性架橋重合体の被覆状態について観察
したところ、微小空孔を形成している壁面のほぼ全面に
わたってほぼ均一に重合体が保持されていた。また、積
算溶出率の測定から24時間以降は実質的に溶出成分が
ないことがわかった。When the coated state of the hydrophilic cross-linked polymer was observed, it was found that the polymer was held almost uniformly over almost the entire wall surface forming the micropores. In addition, it was found from the measurement of the integrated dissolution rate that there was substantially no dissolution component after 24 hours.
【0122】実施例10 ジアセトンアクリルアミド100部、ジビニルベンゼン
1部、ベンゾイルパーオキサイド0.3部、メチルエチ
ルケトン450部からなる溶液を用いて浸漬時間を3秒
間、熱重合条件を70℃で60分とし、その他の条件は
実施例5と全く同様にして重合体をポリプロピレン多孔
質中空糸膜に保持させた。Example 10 Using a solution consisting of 100 parts of diacetone acrylamide, 1 part of divinylbenzene, 0.3 part of benzoyl peroxide and 450 parts of methyl ethyl ketone, the immersion time was 3 seconds and the thermal polymerization conditions were 70 ° C. for 60 minutes. The polymer was held on a polypropylene porous hollow fiber membrane in exactly the same manner as in Example 5 except for the above conditions.
【0123】この親水化ポリプロピレン多孔質中空糸膜
の性能を評価し、表1の結果を得た。親水性架橋重合体
の被覆状態について観察したところ、ポリプロピレン多
孔質中空糸膜の微小空孔を形成している壁面にはほぼ全
面にわたってほぼ均一に重合体が保持されていた。積算
溶出率の測定から、24時間以降は実質的に溶出成分が
ないことがわかった。The performance of the hydrophilic polypropylene porous hollow fiber membrane was evaluated, and the results shown in Table 1 were obtained. Observation of the coated state of the hydrophilic cross-linked polymer revealed that the polymer was held almost uniformly over almost the entire wall surface of the porous hollow fiber membrane forming the micropores. From the measurement of the integrated dissolution rate, it was found that there was substantially no dissolution component after 24 hours.
【0124】[0124]
【表1】 [Table 1]
【0125】[0125]
【発明の効果】本発明の大孔径多孔質ポリプロピレン中
空糸膜は、微小空孔の孔径が大きくかつ高空孔率である
ため、液体の精密濾過用途や空気浄化用途等に好適であ
り、極めてコンパクトなモジュールおよびシステム設計
を可能にするものである。また、溶剤を一切使用しない
溶融紡糸法で製造されるので、極めてクリーンな材料で
あり、被処理流体を汚染することは全くない。The porous polypropylene hollow fiber membrane of the present invention having a large pore size has a large pore size and a high porosity, so that it is suitable for liquid microfiltration or air purification, and is extremely compact. It enables a flexible module and system design. Further, since it is manufactured by a melt spinning method without using any solvent, it is an extremely clean material and does not contaminate the fluid to be processed at all.
【0126】更に本発明の親水化ポリプロピレン多孔質
中空糸膜は、優れた親水性を有しており、エタノール等
による親水化前処理を行なわずとも良好な親水性を示
し、濾過性能の低下は殆ど認められない。また、微小空
孔表面に親水性物質が強固に保持されているので、溶出
成分の量が極めて少ない。したがって、本発明の親水化
ポリプロピレン多孔質中空糸膜は、高温処理をはじめと
する水処理分野等にも使用することができ、その実用的
効果は極めて大きい。Further, the hydrophilic polypropylene porous hollow fiber membrane of the present invention has excellent hydrophilicity, exhibits good hydrophilicity even without pre-hydrophilization treatment with ethanol or the like, and exhibits a decrease in filtration performance. Almost no. Further, since the hydrophilic substance is firmly held on the surface of the micropores, the amount of the eluted components is extremely small. Therefore, the hydrophilic polypropylene porous hollow fiber membrane of the present invention can be used in the field of water treatment including high temperature treatment, and its practical effect is extremely large.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 健司 広島県大竹市御幸町20番1号 三菱レイ ヨン株式会社中央研究所内 (56)参考文献 特開 昭63−28406(JP,A) 特開 平2−112404(JP,A) 特開 平4−300318(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 71/00 - 71/42 D01F 6/06 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Kenji Kondo 20-1, Miyukicho, Otake City, Hiroshima Prefecture Inside Mitsubishi Rayon Co., Ltd. (56) References JP-A-63-28406 (JP, A) JP-A-2-112404 (JP, A) JP-A-4-300318 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 71/00-71/42 D01F 6/06
Claims (8)
であって、繊維長方向に配列したミクロフィブリルと、
スタックドラメラからなる節部とに囲まれて形成される
短冊状微小空孔が中空糸内壁面より外壁面へ相互に連通
した積層構造を有し、水銀ポロシメーターで測定した微
小空孔の平均孔径が1μmを超え10μm以下であり、
空孔率が70%〜95%、空気透過量が4×105 リッ
トル/m2 ・hr・0.5atm以上であることを特徴
とする大孔径多孔質ポリプロピレン中空糸膜。1. A porous hollow fiber membrane made of polypropylene, comprising: microfibrils arranged in a fiber length direction;
It has a laminated structure in which strip-shaped micropores formed by being surrounded by the nodes composed of the stacked dramella communicate with each other from the inner wall surface of the hollow fiber to the outer wall surface, and the average pore diameter of the micropores measured by a mercury porosimeter Is more than 1 μm and 10 μm or less,
A large-pore-diameter porous polypropylene hollow fiber membrane having a porosity of 70% to 95% and an air permeation of 4 × 10 5 liter / m 2 · hr · 0.5 atm or more.
を超え15μm以下である請求項1記載の大孔径多孔質
ポリプロピレン中空糸膜。2. The microfibril has an average length of 1 μm.
2. The large-pore-diameter porous polypropylene hollow fiber membrane according to claim 1, wherein the diameter is larger than 15 μm.
レンを溶融紡糸し、得られた未延伸糸をアニール処理し
た後に冷延伸し、次いで熱延伸することにより多孔質化
する多孔質中空糸の製造方法において、未延伸糸のアニ
ール処理を120〜165℃の温度で30分以上実施
し、熱延伸時の変形速度を1秒につき10%以下とし、
総延伸量を700%〜2500%とすることを特徴とす
る請求項1記載の大孔径多孔質ポリプロピレン中空糸膜
の製造方法。3. Production of a porous hollow fiber which is obtained by melt-spinning polypropylene using a nozzle for producing a hollow fiber, annealing the obtained undrawn yarn, cold-drawing, and then hot-drawing to make it porous. In the method, the annealing treatment of the undrawn yarn is performed at a temperature of 120 to 165 ° C. for 30 minutes or more, and the deformation rate during hot drawing is set to 10% or less per second,
The method for producing a large-pore-diameter porous polypropylene hollow fiber membrane according to claim 1, wherein the total stretching amount is 700% to 2500%.
レン中空糸膜の微小空孔表面の少なくとも一部に、エチ
レン−酢酸ビニル共重合体のケン化物を保持させてなる
親水化多孔質ポリプロピレン中空糸膜。4. A hydrophilized porous polypropylene hollow in which a saponified ethylene-vinyl acetate copolymer is retained on at least a part of the surface of the micropores of the large-pore porous polypropylene hollow fiber membrane according to claim 1. Thread membrane.
物が物理的に保持されてなる請求項4記載の親水化多孔
質ポリプロピレン中空糸膜。5. The hollow fiber membrane of claim 4, wherein the saponified ethylene-vinyl acetate copolymer is physically retained.
レン中空糸膜の微小空孔表面の少なくとも一部に、ジア
セトンアクリルアミドと架橋性モノマーとを含むモノマ
ー類を重合さてなる親水性架橋重合体を保持させてなる
親水化多孔質ポリプロピレン中空糸膜。6. A hydrophilic crosslinked polymer obtained by polymerizing a monomer containing diacetoneacrylamide and a crosslinkable monomer on at least a part of the surface of the micropores of the large-pore porous polypropylene hollow fiber membrane according to claim 1. And a hydrophilic porous polypropylene hollow fiber membrane.
てなる請求項6記載の親水化多孔質ポリプロピレン中空
糸膜。7. The hydrophilic porous polypropylene hollow fiber membrane according to claim 6, wherein the hydrophilic cross-linked polymer is physically retained.
マーである請求項6記載の親水化多孔質ポリプロピレン
中空糸膜。8. The hydrophilized porous polypropylene hollow fiber membrane according to claim 6, wherein the crosslinkable monomer is a water-soluble crosslinkable monomer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2124092A JP3130996B2 (en) | 1991-02-08 | 1992-02-06 | Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3780091 | 1991-02-08 | ||
JP20779191 | 1991-08-20 | ||
JP20909291 | 1991-08-21 | ||
JP3-37800 | 1991-08-21 | ||
JP3-209092 | 1991-08-21 | ||
JP3-207791 | 1991-08-21 | ||
JP2124092A JP3130996B2 (en) | 1991-02-08 | 1992-02-06 | Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05103959A JPH05103959A (en) | 1993-04-27 |
JP3130996B2 true JP3130996B2 (en) | 2001-01-31 |
Family
ID=27457540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2124092A Expired - Fee Related JP3130996B2 (en) | 1991-02-08 | 1992-02-06 | Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3130996B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6287730B1 (en) * | 1998-08-14 | 2001-09-11 | Celgard Inc. | Hydrophilic polyolefin having a coating containing a surfactant and an EVOH copolymer |
WO2003008011A1 (en) * | 2001-04-27 | 2003-01-30 | Millipore Corporation | Crosslinked multipolymer coating |
JP4712285B2 (en) * | 2003-04-30 | 2011-06-29 | 川澄化学工業株式会社 | Blood filtration filter and method for producing the same |
US7553417B2 (en) * | 2005-12-30 | 2009-06-30 | 3M Innovative Properties Company | Functionalized substrates |
JP5062773B2 (en) * | 2009-03-31 | 2012-10-31 | 旭化成メディカル株式会社 | Blood purifier |
JP6183475B2 (en) | 2014-02-04 | 2017-08-23 | 新日鐵住金株式会社 | Automobile frame parts and front pillar lowers including the same |
-
1992
- 1992-02-06 JP JP2124092A patent/JP3130996B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05103959A (en) | 1993-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5547756A (en) | Porous polypropylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous hollow fiber membranes | |
US5294338A (en) | Porous polyethylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous polyethylene hollow fiber membranes | |
US4695592A (en) | Hydrophilized porous membrane and production process thereof | |
JPS6335726B2 (en) | ||
CN101678279A (en) | Modified porous membranes, methods of membrane pore modification, and methods of use thereof | |
JP3168036B2 (en) | Large-pore porous polyethylene hollow fiber membrane, method for producing the same, and hydrophilic porous polyethylene hollow fiber membrane | |
JP3130996B2 (en) | Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane | |
JPH05115760A (en) | Antibacterial hydrophilic porous membrane and production thereof | |
JPH0317531B2 (en) | ||
JPH0427891B2 (en) | ||
US5330830A (en) | Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof | |
JPH0768141A (en) | Hollow fiber membrane and humidifying method using the same membrane | |
JPH0259030A (en) | Heat-resistant hydrophilicity imparted porous membrane and preparation thereof | |
JPS62163703A (en) | Hydrophilic porous membrane and its production | |
US4961853A (en) | Porous membranes and production processes thereof | |
JPS63130103A (en) | Polyacrylonitrile-base semipermeable membrane and manufacturing thereof | |
JPS63260938A (en) | Porous membrane having heat resistance imparted thereto and its production | |
JPH119977A (en) | Polyethylene composite microporous hollow fiber membrane | |
JPH03193125A (en) | Heat-resistant porous membrane and manufacture thereof | |
JPH04358529A (en) | Heat-resistant hydrophilic porous membrane and preparation thereof | |
JPH0365225A (en) | Hydrophilic, porous membrane and its manufacturing method | |
JPS63331A (en) | Preparation of porous fluororesin membrane | |
GB1558856A (en) | Microporus polyethylene hollow fibres and process for preparing them | |
JPH0312225A (en) | Hydrophilic porous film and its manufacture | |
JPH04293532A (en) | Hydrophilization of polyolefin porous membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |