JP3106552B2 - Water treatment system for fuel cell power plant - Google Patents
Water treatment system for fuel cell power plantInfo
- Publication number
- JP3106552B2 JP3106552B2 JP03146356A JP14635691A JP3106552B2 JP 3106552 B2 JP3106552 B2 JP 3106552B2 JP 03146356 A JP03146356 A JP 03146356A JP 14635691 A JP14635691 A JP 14635691A JP 3106552 B2 JP3106552 B2 JP 3106552B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- gas
- air
- fuel cell
- water treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、不純物を含む復水お
よび水道水を浄化して、燃料電池の冷却水または原燃料
の改質反応水として補給する燃料電池発電装置の水処理
システム、ことに混合水中の溶解ガスを脱気する装置を
備えた水処理システムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment system for a fuel cell power generator, which purifies condensate and tap water containing impurities and supplies the purified water as fuel cell cooling water or raw fuel reforming reaction water. And a water treatment system provided with a device for degassing dissolved gas in mixed water.
【0002】[0002]
【従来の技術】燃料電池を高効率で長時間運転するため
には、電池反応に伴う発熱を除熱して単位セルの積層体
(スタックと呼ぶ)内の温度分布を所定の運転温度(り
ん酸形燃料電池では190°C 前後)にできるだけ均一
に保持することが求められる。そこで、スタックは複数
の単位セルを1ブロックとしてブロック間に冷却板を積
層し、この冷却板に埋設された冷却パイプに冷却媒体と
しての冷却水を通流して冷却する水冷式の燃料電池が知
られている。また、水冷式燃料電池では異なる電位にあ
る冷却板間で冷却水による液絡が生ずることを防ぐた
め、冷却水はその電気電導度が極力低い(電気抵抗が高
い)ことが求められるので、冷却水の循環系にイオン交
換水を補給する水処理システムを設けたものが知られて
いる。2. Description of the Related Art In order to operate a fuel cell with high efficiency for a long period of time, heat generated by a cell reaction is removed and the temperature distribution in a unit cell stack (called a stack) is changed to a predetermined operating temperature (phosphoric acid). It is required to keep the temperature of the fuel cell as uniform as possible at around 190 ° C. Therefore, a water-cooled fuel cell is known in which a stack is formed by stacking cooling plates between blocks with a plurality of unit cells as one block, and cooling water flowing as cooling medium flows through cooling pipes embedded in the cooling plates. Have been. Further, in a water-cooled fuel cell, the cooling water is required to have as low an electric conductivity as possible (high electric resistance) in order to prevent a liquid junction from being generated between the cooling plates at different potentials. There is known a water circulation system provided with a water treatment system for replenishing ion-exchanged water.
【0003】図3は水冷式燃料電池の従来の水処理シス
テムを示す構成図である。図において、単位セルの積層
体からなる燃料電池(スタック)1の燃料電極には燃料
改質器2から燃料ガスが供給され、空気電極にはブロワ
1Bから反応空気が供給されることにより、一対の電極
間で水素と酸素が直接反応する電気化学反応に基づいて
発電が行われる。また、燃料電池には複数単位セル毎に
冷却板3が積層されており、冷却板3に埋設された複数
の冷却パイプが絶縁継手を介して外部に配された循環ポ
ンプ4Pおよび水蒸気分離器4を含む冷却水6の循環系
に連結される。水蒸気分離器4は燃料電池の運転温度に
対して所定温度低い冷却水6を包蔵しており、循環ポン
プ4Pにより冷却水6を冷却板3に循環することによ
り、発電生成熱の排熱が行われ、燃料電池スタック1の
温度がその運転温度に保持される。また、空気電極から
排出される空気オフガス1G,および燃料改質器2のバ
−ナで燃料オフガス1F中の残存水素を燃焼させること
により生じた燃焼排ガス2Gには多量の発電生成水また
は燃焼生成水が含まれているので、空気オフガスおよび
燃焼排ガスに水蒸気として含まれる水分を復水凝縮器5
で冷却して復水7として回収し、水処理システムに供給
するよう構成される。FIG. 3 is a configuration diagram showing a conventional water treatment system for a water-cooled fuel cell. In the figure, a fuel gas is supplied from a fuel reformer 2 to a fuel electrode of a fuel cell (stack) 1 composed of a stack of unit cells, and reaction air is supplied to a pneumatic electrode from a blower 1B. Power is generated based on an electrochemical reaction in which hydrogen and oxygen directly react between the electrodes. In the fuel cell, a cooling plate 3 is stacked for each of a plurality of unit cells, and a plurality of cooling pipes embedded in the cooling plate 3 are provided with a circulating pump 4P and a steam separator 4P arranged outside via an insulating joint. Is connected to the circulation system of the cooling water 6 containing The steam separator 4 contains cooling water 6 that is lower than the operating temperature of the fuel cell by a predetermined temperature. By circulating the cooling water 6 to the cooling plate 3 by a circulation pump 4P, the heat generated by the power generation is exhausted. Thus, the temperature of the fuel cell stack 1 is maintained at the operating temperature. Further, a large amount of water generated by power generation or combustion generated by combustion of the air off-gas 1G discharged from the air electrode and the combustion exhaust gas 2G generated by burning the residual hydrogen in the fuel off-gas 1F by the burner of the fuel reformer 2 Since water is contained, the water contained in the air off-gas and the combustion exhaust gas as water vapor is condensed into the condensate condenser 5.
To recover the condensate 7 and supply it to the water treatment system.
【0004】ところで、冷却水6の電気伝導度が高い
と、前記冷却パイプを相互に連結する絶縁継手内の冷却
水を通して冷却板間に短絡電流が流れる液絡現象が発生
し、発電電力の一部が無駄に消費されることになる。そ
こで、冷却水6の電気電導度を1μS/cm以下に保持
するために冷却水の循環系に水処理システム11が連結
される。すなわち、水処理システム11は復水凝縮器5
で回収した復水7を補助水タンク12に導いて水道水を
適度に加えた混合水8とし、混合水8をポンプ13およ
び冷却器14を介してイオン交換式水処理装置15に送
り、得られた低電気電導度のイオン交換水9を補給水と
して冷却水6に加え、冷却水6の電気伝導度を1μS/
cm以下に保持するよう構成される。なお、補給水9の
供給量は、水蒸気分離器4内のスチ−ムを例えば改質反
応水として原燃料に添加する際生ずる不足分,または冷
却水をブロ−水として外部に放出することにより生ずる
不足分を補給する量に対応して制御される。If the electric conductivity of the cooling water 6 is high, a short-circuit current flows between the cooling plates through the cooling water in the insulating joint connecting the cooling pipes to each other. Parts are wasted. Therefore, the water treatment system 11 is connected to the cooling water circulation system in order to maintain the electric conductivity of the cooling water 6 at 1 μS / cm or less. That is, the water treatment system 11 includes the condensing condenser 5
The condensed water 7 collected in step 2 is guided to an auxiliary water tank 12 to form a mixed water 8 to which tap water is appropriately added, and the mixed water 8 is sent to an ion-exchange type water treatment device 15 via a pump 13 and a cooler 14, thereby obtaining The low-conductivity ion-exchanged water 9 was added to the cooling water 6 as makeup water, and the electric conductivity of the cooling water 6 was 1 μS /
cm or less. The supply amount of the make-up water 9 is determined by the shortage generated when the steam in the steam separator 4 is added to the raw fuel as, for example, reforming reaction water, or by discharging the cooling water to the outside as blow water. Control is performed in accordance with the amount of replenishment of the resulting shortage.
【0005】[0005]
【発明が解決しようとする課題】図3に示す従来の水処
理システムでは、二酸化炭素成分を多く含む燃焼排ガス
2Gから回収した復水が多量の炭酸水素イオンおよびこ
れと平衡状態にある遊離炭酸ガス含んでおり、空気オフ
ガスからの復水を混合した後も約5%もの二酸化炭素濃
度となる。また、水道水は多くの塩素イオン等を含んで
いる。したがって、このように溶解イオンおよび溶解ガ
ス量の多い混合水をイオン交換式水処理装置15で浄化
しようとすると、イオン交換樹脂の陰イオン交換負荷が
著しく大きくなり、その可使用寿命が短くなるととも
に、その再生処理に要する経費が増大して燃料電池発電
装置のランニングコストの高騰を招くという不都合が発
生する。そこで、燃焼排ガス2G中の水蒸気を回収しな
い方法も知られているが、発電装置の水バランスが崩
れ、その補償に混入イオンを多量に含む水道水を補給し
なければならないために、イオン交換樹脂の陰イオン負
荷を低減できないという矛盾が発生する。In the conventional water treatment system shown in FIG. 3, the condensate recovered from the flue gas 2G containing a large amount of carbon dioxide contains a large amount of bicarbonate ions and free carbon dioxide gas in equilibrium with the bicarbonate ions. And a carbon dioxide concentration of about 5% even after condensing the condensate from the air off-gas. In addition, tap water contains many chlorine ions and the like. Therefore, when the mixed water having a large amount of dissolved ions and dissolved gas is to be purified by the ion-exchange type water treatment apparatus 15, the anion-exchange load of the ion-exchange resin is significantly increased, and its usable life is shortened. In addition, there arises a problem that the cost required for the regeneration process increases and the running cost of the fuel cell power generator increases. Therefore, a method of not recovering the water vapor in the combustion exhaust gas 2G is also known. However, the water balance of the power generation device is lost, and tap water containing a large amount of mixed ions must be replenished for compensation. Contradiction that the anion load cannot be reduced.
【0006】図4は改良された従来の水処理システムを
示す構成図であり、復水凝縮器5と補助水タンク12と
の間に瀑気式の脱気塔16を設け、ポンプ5Pにより復
水凝縮器7から送られる混合水7および水道水をブロワ
17から送られる新鮮な空気と直接向流接触させ、瀑気
効果を利用して混合水中の溶解ガス量を新鮮な空気中の
ガス濃度に平衡した低い飽和溶解度の混合水18とし、
補助水タンク12に貯留するよう構成されている。しか
しながら、この方式で充分な瀑気効果を得るためには、
脱気塔の高さを2M以上に高くする必要があり、装置の
大型化を招くばかりか、圧力損失が増加してブロワ17
の大型化や消費電力の増大を招く欠点がある。また、ブ
ロワ17の出口側に図示しない加熱器を設け、混合水8
を高温の空気と向流接触させることにより、溶解ガス量
が温度の上昇に逆比例して少なくなる空気の性質(加熱
脱気効果)を利用して脱気効果を高めるよう構成したも
のも知られている。しかしながら、加熱された混合水が
蒸発して排気中に放出されてしまうために、混合水の蒸
発損失が大きくなり、これが原因で混合水の加熱温度も
80°C程度に止まり、温度に逆比例して炭酸ガスおよ
び塩化水素の飽和溶解度を低くできる水の性質を充分に
は活用できないために、イオン交換樹脂の可使用寿命を
充分には延ばせないという欠点がある。FIG. 4 is a block diagram showing an improved conventional water treatment system. A waterfall type deaeration tower 16 is provided between a condensate condenser 5 and an auxiliary water tank 12, and a condensate is recovered by a pump 5P. The mixed water 7 and the tap water sent from the water condenser 7 are brought into direct countercurrent contact with fresh air sent from the blower 17, and the amount of dissolved gas in the mixed water is reduced using the waterfall effect to determine the gas concentration in the fresh air. A mixed water 18 of low saturation solubility equilibrated with
It is configured to be stored in the auxiliary water tank 12. However, in order to obtain a sufficient waterfall effect with this method,
It is necessary to increase the height of the degassing tower to 2M or more, which not only increases the size of the apparatus, but also increases the pressure loss and increases
There is a drawback that causes an increase in size and power consumption. A heater (not shown) is provided on the outlet side of the blower 17 so that the mixed water 8
There is also known a configuration in which the degassing effect is enhanced by utilizing the property of air (heating degassing effect), in which the amount of dissolved gas decreases in inverse proportion to the temperature rise by bringing the gas into countercurrent contact with high-temperature air. Have been. However, since the heated mixed water evaporates and is discharged into the exhaust gas, the evaporation loss of the mixed water increases, and as a result, the heating temperature of the mixed water stops at about 80 ° C. and is inversely proportional to the temperature. However, since the properties of water that can lower the saturation solubility of carbon dioxide and hydrogen chloride cannot be fully utilized, there is a disadvantage that the usable life of the ion exchange resin cannot be sufficiently extended.
【0007】この発明の目的は、復水と水道水の混合水
を浄化して補給水とする水処理システムにおいて、イオ
ン交換樹脂の陰イオン負荷となる混合水中の混入イオン
を高度に排除することにより、イオン交換樹脂の寿命を
長期化し、保守管理費を低減することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a water treatment system for purifying mixed water of condensed water and tap water to make up makeup water, and to highly remove ions mixed in the mixed water which becomes an anion load on the ion exchange resin. Accordingly, the life of the ion exchange resin is prolonged, and the maintenance management cost is reduced.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、少なくとも燃料改質器の燃焼排
ガス中の水蒸気を復水凝縮器により凝縮して得られる復
水をイオン交換式水処理装置を通して低電気電導度の補
給水とし、燃料電池または燃料改質器に供給するものに
おいて、前記復水凝縮器とイオン交換式水処理装置との
間に、前記復水と燃料電池の空気オフガスとを直接向流
接触させる直接接触式脱気装置を備えてなるものとす
る。According to the present invention, a condensate obtained by condensing at least water vapor in a combustion exhaust gas of a fuel reformer with a condensate condenser is ion-exchanged. A low-conductivity make-up water through a water treatment system, which is supplied to a fuel cell or a fuel reformer, wherein the condensate and the fuel cell are disposed between the condensing condenser and the ion-exchange type water treatment device. And a direct contact type deaerator for directly countercurrently contacting the air off-gas.
【0009】また、前記空気オフガスのうち任意の所定
量を直接接触式脱気装置へ、残余の空気オフガスは前記
復水凝縮器へ供給可能な手段を備えてなることとする。[0009] Further, it is provided with means capable of supplying an arbitrary predetermined amount of the air off-gas to the direct contact deaerator and supplying the remaining air off-gas to the condensing condenser.
【0010】さらに、前記直接接触式脱気装置内で前記
復水と向流接触した空気オフガスを前記復水凝縮器に戻
すこととする。またさらに、前記復水凝縮器に水道水を
補給することとする。[0010] Further, the air off-gas which has been brought into countercurrent contact with the condensate in the direct contact deaerator is returned to the condensate condenser. Further, tap water is supplied to the condensing condenser.
【0011】[0011]
【作用】上記のような構成とすることにより、150℃
ないし200℃と高温で、かつ炭酸ガス濃度の低い空気
オフガスと、燃料改質器の燃焼排ガス中の水蒸気を凝縮
して得た復水又は前記復水を少なくとも含む混合水と
が、直接向流接触することにより、瀑気方式および加熱
方式の脱気効果を同時に得られるので、前記復水又は前
記混合水中の混入イオンを空気オフガス中に効率よく放
出して低い飽和ガス濃度の混合水を得ることができる。
また、りん酸型燃料電池の場合、空気オフガスは燃料電
池の空気電極から飛散したりん酸を含んでおり、このり
ん酸が前記復水又は混合水中の炭酸水素イオンを炭酸ガ
スに変えるよう作用するので、混入イオン濃度を大幅に
低下させることができる。さらに、空気オフガスが大気
圧に対して持つ差圧を利用して脱気処理を行えるので、
直接接触式脱気装置に空気を供給するためのブロアが不
要になり、水処理システムの構成の簡素化および省電力
化が可能になる。With the above construction, 150 ° C.
And an air off-gas having a high temperature of as low as 200 ° C. and a low carbon dioxide concentration, and condensed water obtained by condensing water vapor in the combustion exhaust gas of the fuel reformer or a mixed water containing at least the condensed water. By contact, the deaeration effect of the waterfall method and the heating method can be obtained at the same time, so that the mixed ions of the condensate or the mixed water are efficiently released into the air off-gas to obtain a mixed water having a low saturated gas concentration. be able to.
In the case of a phosphoric acid fuel cell, the air off-gas contains phosphoric acid scattered from the air electrode of the fuel cell, and the phosphoric acid acts to convert hydrogen carbonate ions in the condensed or mixed water into carbon dioxide. Therefore, the concentration of mixed ions can be significantly reduced. Furthermore, since degassing can be performed using the differential pressure of the air off-gas with respect to atmospheric pressure,
A blower for supplying air to the direct contact deaerator becomes unnecessary, and the configuration of the water treatment system can be simplified and power consumption can be reduced.
【0012】また、前記空気オフガスのうち任意の所定
量を直接接触式脱気装置へ、残余の空気オフガスは前記
復水凝縮器へ供給可能な手段、例えば可変ダンパー等を
備えることとすれば、直接接触式脱気装置へ導入する空
気オフガスの流量を容易に調節できる。[0012] Further, if a predetermined amount of the air off-gas is supplied to the direct contact deaerator and the remaining air off-gas is supplied to the condensate condenser, for example, a variable damper may be provided. The flow rate of the air off-gas introduced into the direct contact deaerator can be easily adjusted.
【0013】さらに、前記直接接触式脱気装置内で前記
復水と向流接触した空気オフガスを前記復水凝縮器に戻
すこととすれば、直接接触式脱気装置内で含有水分量が
増加した空気オフガスを復水凝縮器で冷却し、含有水分
を復水として回収できるので、復水の蒸発損失の低減が
可能となり、発電装置の水バランスを保持して水道水の
補給量を低減が可能となる。Further, if the air off-gas which has been brought into countercurrent contact with the condensate in the direct contact deaerator is returned to the condensate condenser, the water content in the direct contact deaerator increases. The condensate condenser cools the condensed air off-gas and recovers the water content as condensate.This makes it possible to reduce the evaporation loss of condensate and reduce the amount of tap water to be supplied while maintaining the water balance of the power generator. It becomes possible.
【0014】[0014]
【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる燃料電池発電装置の
水処理システムを示す構成図であり、従来技術と同じ構
成部分には同一参照符号を付すことにより、重複した説
明を省略する。図において、水処理システム21は、補
助水タンク12,ポンプ13,冷却器14,およびイオ
ン交換式水処理装置15からなる従来の水処理システム
の前段に直接接触式脱気装置22を付加した構成となっ
ており、直接接触式脱気装置22内のラシヒリングの充
填層22Aの上方からは、復水凝縮器5で復水に水道水
を混合した混合水8がポンプ5Pを介して散布される。
また分岐通路26は空気オフガス1Gを復水凝縮器5に
供給する配管上に設けた可変ダンパ−23と、その上流
側から分岐して充填層22Aの下方から分岐された空気
オフガス1gを供給する往路配管24と、充填層22A
内で混合水8と直接向流接触した空気オフガス1gを可
変ダンパ−23の出口側(復水凝縮器の入口側)に戻す
配管25とで構成され、分岐通路26により直接接触式
脱気装置22に供給される空気オフガスの量は可変ダン
パ−23の開度を調整することにより所望の値に制御さ
れる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a configuration diagram showing a water treatment system of a fuel cell power generation device according to an embodiment of the present invention. The same components as those of the prior art are denoted by the same reference numerals, and redundant description will be omitted. In the figure, a water treatment system 21 has a configuration in which a direct contact deaerator 22 is added to the previous stage of a conventional water treatment system including an auxiliary water tank 12, a pump 13, a cooler 14, and an ion exchange type water treatment device 15. The mixed water 8 obtained by mixing condensed water with tap water in the condensate condenser 5 is sprayed from above the packed layer 22A of the Raschig ring in the direct contact deaerator 22 via the pump 5P. .
The branch passage 26 supplies a variable damper 23 provided on a pipe for supplying the air off-gas 1G to the condensate condenser 5 and an air off-gas 1g branched from the upstream side and branched from below the packed bed 22A. Outgoing pipe 24 and packed layer 22A
And a pipe 25 for returning 1 g of air off-gas directly in contact with the mixed water 8 to the outlet side of the variable damper 23 (the inlet side of the condenser). The amount of air off-gas supplied to 22 is controlled to a desired value by adjusting the opening of variable damper 23.
【0015】このように構成された水処理システムにお
いて、直接接触式脱気装置22の充填層22Aにその上
部から散布された混合水8は、可変ダンパ−23により
分岐通路26側に分流され,配管24を介して充填層2
2Aの下方から供給される空気オフガス1gと直接向流
接触する。このとき、混合水は空気オフガス中のりん酸
と接触して炭化水素イオンが炭酸ガスに変わり、かつ高
温の空気オフガスとの熱交換で温度が上がって塩素イオ
ンが塩化水素ガスに変わるとともに、温度の上昇が混合
水中の炭酸ガス分圧および塩化水素ガス分圧を高めるよ
う機能するので、ガス分圧の低い空気オフガス側への炭
酸ガスおよび塩化水素ガスの放出を促進する瀑気作用の
向上効果が得られ、混合水中の炭酸ガスおよび塩化水素
の飽和溶解濃度が大幅に低下した混合水28として補助
水タンク12に貯留される。In the water treatment system configured as described above, the mixed water 8 sprayed from above on the packed bed 22A of the direct contact deaerator 22 is diverted to the branch passage 26 by the variable damper 23. Packed bed 2 via pipe 24
Direct countercurrent contact with 1 g of air off-gas supplied from below 2A. At this time, the mixed water comes into contact with the phosphoric acid in the air off-gas to convert hydrocarbon ions into carbon dioxide gas, and heat exchange with high-temperature air off-gas raises the temperature to change chlorine ions into hydrogen chloride gas, and the temperature increases. The effect of the rise of water is to increase the partial pressure of carbon dioxide and hydrogen chloride in the mixed water, thereby enhancing the effect of the waterfall that promotes the release of carbon dioxide and hydrogen chloride to the off-gas side where the gas partial pressure is low. Is stored in the auxiliary water tank 12 as the mixed water 28 in which the saturated dissolution concentrations of carbon dioxide and hydrogen chloride in the mixed water are significantly reduced.
【0016】また、脱気性能が向上することにより、直
接接触式脱気装置の高さの縮小が可能となり、これに伴
ってその圧力損失を低減することができるので、空気オ
フガスが大気圧に対して持つ圧力差を利用して空気オフ
ガスを直接接触式脱気装置に供給することが可能とな
り、直接接触式脱気装置に空気を供給するために従来必
要としたブロワが不要になり、水処理システムの構成の
簡素化および省電力化が可能になる。In addition, the improvement of the degassing performance makes it possible to reduce the height of the direct contact type degassing device, which can reduce the pressure loss. It is possible to supply air off-gas to the direct contact deaerator by utilizing the pressure difference that it has, and the blower that was conventionally required to supply air to the direct contact deaerator becomes unnecessary. It is possible to simplify the configuration of the processing system and save power.
【0017】さらに、空気オフガスの供給系に可変ダン
パ−を設け、直接接触式脱気装置で混合水と向流接触し
た空気オフガスを復水凝縮器に戻すよう分岐通路を構成
すれば、分岐通路への空気オフガスの分流量を容易に調
整できるとともに、直接接触式脱気装置で蒸発した水分
を含む空気オフガスを復水凝縮器で冷却し、復水として
回収できるため、瀑気および加熱による脱気性能の向上
に加えて、復水の蒸発損失の低減が可能になり、発電装
置の水バランスを保持して水道水の使用量を低減できる
ので、イオン交換樹脂の陰イオン負荷が一層低減され、
したがってイオン交換樹脂の寿命を延長でき、かつこれ
に伴って再生処理費用および保守作業工数を低減するこ
とができる。Further, if a variable damper is provided in the supply system of the air off-gas, and the branch passage is configured to return the air off-gas, which has been brought into countercurrent contact with the mixed water by the direct contact type deaerator, to the condensing condenser, the branch passage can be formed. The flow rate of air off-gas to the air can be easily adjusted, and the air-off gas containing moisture evaporated by the direct contact deaerator can be cooled by the condensing condenser and recovered as condensate. In addition to the improvement of gas performance, the evaporation loss of condensate water can be reduced, and the amount of tap water used can be reduced while maintaining the water balance of the power generator, thus further reducing the anion load of the ion exchange resin. ,
Therefore, the life of the ion exchange resin can be extended, and the cost of the regeneration treatment and the number of maintenance work can be reduced accordingly.
【0018】図2はこの発明の実施例の変形例を示すシ
ステム構成図であり、復水凝縮器5と直接接触式脱気装
置22の上部とを配管31で直結し、混合水8をヘッド
差を利用して直接接触式脱気装置に供給するよう構成し
た点が前述の実施例と異なっており、このように構成す
ることにより、前述の実施例におけるポンプ5Pが排除
されるので、装置を簡素化できるとともに、ポンプの駆
動電力が不要になるため空気供給用のブロワ17(図4
参照)の排除と併せて発電装置のプラント効率の向上効
果が得られる。FIG. 2 is a system configuration diagram showing a modification of the embodiment of the present invention, in which the condensate condenser 5 and the upper part of the direct contact type deaerator 22 are directly connected by a pipe 31 and the mixed water 8 is headed. The difference from the above-described embodiment is that the pump is supplied to the direct contact deaerator using the difference, and the pump 5P in the above-described embodiment is eliminated by such a configuration. And the blower 17 for supplying air (FIG. 4)
In addition, the effect of improving the plant efficiency of the power generator can be obtained.
【0019】[0019]
【発明の効果】この発明は前述のように、混合水と空気
オフガスとを直接向流接触させて混合水中の溶解ガスを
脱気する直接接触式脱気装置を、復水凝縮器とイオン交
換式水処理装置との間に設けたことにより、150°C
ないし200°Cと高温で,かつ炭酸ガス濃度の低い空
気オフガスと混合水とが直接向流接触することにより、
瀑気方式および加熱方式の脱気効果が同時に得られ、か
つ、空気オフガスがりん酸を含む場合には、このりん酸
が混合水中の炭酸水素イオンを炭酸ガスに変えて脱気を
容易化するよう作用するので、混入イオンおよび混入ガ
スの飽和溶解度が従来装置でのそれに比べて大幅に低い
混合水が容易に得られ、したがってイオン交換樹脂の陰
イオン負荷の大幅な低減によるイオン交換樹脂の寿命の
延長効果と、これに伴うイオン交換樹脂の再生処理費用
および保守作業工数の低減効果とが顕著な水処理システ
ムを備えた燃料電池発電装置を提供することができる。
また、脱気性能が向上することにより、直接接触式脱気
装置の高さの縮小が可能となるので、脱気塔を用いた従
来の水処理システムに比べて直接接触式脱気装置を小型
化できるとともに、その圧力損失を低減できる利点が得
られる。According to the present invention, as described above, a direct contact type deaerator for degassing dissolved gas in mixed water by bringing the mixed water and air off-gas into direct countercurrent contact with each other by ion exchange with a condensing condenser 150 ° C
The temperature is as high as 200 ° C. and the air-off gas with low carbon dioxide concentration is in direct countercurrent contact with the mixed water.
When the degassing effect of the waterfall method and the heating method is obtained at the same time, and the air off-gas contains phosphoric acid, this phosphoric acid converts hydrogen carbonate ions in the mixed water to carbon dioxide gas to facilitate degassing. As a result, mixed water in which the saturation solubility of mixed ions and mixed gas is significantly lower than that of the conventional apparatus can be easily obtained, and therefore, the life of the ion exchange resin is greatly reduced due to a significant reduction in the anion load of the ion exchange resin. And a fuel cell power generation device provided with a water treatment system that has a remarkable effect of reducing the cost of regenerating the ion exchange resin and reducing the number of man-hours for maintenance work.
In addition, since the height of the direct contact deaerator can be reduced by improving the deaeration performance, the size of the direct contact deaerator can be reduced compared to a conventional water treatment system using a deaeration tower. And the advantage that the pressure loss can be reduced.
【0020】このように、直接接触式脱気装置の圧力損
失が低下するので、所定量の空気オフガスを直接接触式
脱気装置に分流する分岐通路を復水凝縮器への空気オフ
ガスの供給系に連結して設けるよう構成すれば、空気オ
フガスが大気圧に対して持つ圧力差を利用して脱気処理
を行えるので、従来の瀑気式脱気塔で必要としたブロワ
が不要になり、水処理システムの構成を簡素化し、省電
力化できる利点が得られる。As described above, since the pressure loss of the direct contact type deaerator is reduced, the branch passage for diverting a predetermined amount of the air off gas to the direct contact type deaerator is connected to the air off gas supply system to the condensing condenser. If it is configured to be connected to the air, the degassing process can be performed using the pressure difference that the air off gas has with respect to the atmospheric pressure, so the blower required in the conventional waterfall type degassing tower becomes unnecessary, Advantages are obtained in that the configuration of the water treatment system can be simplified and power can be saved.
【0021】さらに、分岐通路に分流する空気オフガス
を制御する可変ダンパ−を設け、直接接触式脱気装置で
混合水と向流接触した空気オフガスを復水凝縮器に戻す
よう構成すれば、分岐通路への空気オフガスの分流量を
容易に調整できるとともに、直接接触式脱気装置で水分
量が増加した空気オフガスを復水凝縮器で冷却し、復水
として回収できるので、従来の加熱脱気を併用した脱気
塔で問題となった、復水の蒸発損失の低減が可能にな
り、発電装置の水バランスを自己保持でき、したがって
混入イオン量の多い水道水の使用量を低減してイオン交
換樹脂の陰イオン負荷を一層低減できる利点が得られ
る。Further, if a variable damper for controlling the air off-gas diverted to the branch passage is provided, and the air off-gas which has been brought into countercurrent contact with the mixed water by the direct contact type deaerator is returned to the condensing condenser, In addition to being able to easily adjust the flow rate of the air off-gas to the passage, the air-off gas whose moisture content has increased with the direct contact deaerator can be cooled by the condensate condenser and recovered as condensate. Can reduce the evaporation loss of condensate water, which is a problem with degassing towers, and can maintain the water balance of the power generator by itself. The advantage that the anion load of the exchange resin can be further reduced is obtained.
【図1】この発明の実施例になる燃料電池発電装置の水
処理システムを示す構成図FIG. 1 is a configuration diagram showing a water treatment system of a fuel cell power generator according to an embodiment of the present invention.
【図2】この発明の実施例の変形例を示すシステム構成
図FIG. 2 is a system configuration diagram showing a modification of the embodiment of the present invention.
【図3】水冷式燃料電池の従来の水処理システムを示す
構成図FIG. 3 is a configuration diagram showing a conventional water treatment system for a water-cooled fuel cell.
【図4】改良された従来の水処理システムを示す構成図FIG. 4 is a block diagram showing an improved conventional water treatment system.
1 燃料電池(スタック) 2 燃料改質器 3 冷却板 4 水蒸気分離器 5 復水凝縮器 6 冷却水 7 復水 8 混合水 9 補給水 11 水処理システム 12 補助水タンク 15 イオン交換式水処理装置 16 脱気塔 17 ブロワ 18 混合水(脱気済) 21 水処理システム 22 直接接触式脱気装置 22A 充填層 26 分岐通路 23 可変ダンパ− 1G 空気オフガス 2G 燃焼排ガス DESCRIPTION OF SYMBOLS 1 Fuel cell (stack) 2 Fuel reformer 3 Cooling plate 4 Steam separator 5 Condenser condenser 6 Cooling water 7 Condensed water 8 Mixed water 9 Makeup water 11 Water treatment system 12 Auxiliary water tank 15 Ion exchange type water treatment device Reference Signs List 16 deaeration tower 17 blower 18 mixed water (degassed) 21 water treatment system 22 direct contact deaerator 22A packed bed 26 branch passage 23 variable damper 1G air off gas 2G combustion exhaust gas
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8/00-8/24
Claims (4)
蒸気を復水凝縮器により凝縮して得られる復水をイオン
交換式水処理装置を通して低電気電導度の補給水とし、
燃料電池または燃料改質器に供給するものにおいて、 前記復水凝縮器とイオン交換式水処理装置との間に、前
記復水と燃料電池の空気オフガスとを直接向流接触させ
る直接接触式脱気装置を備えてなることを特徴とする燃
料電池発電装置の水処理システム。1. A condensate obtained by condensing at least steam in a combustion exhaust gas of a fuel reformer with a condensate condenser to make-up water of low electric conductivity through an ion-exchange type water treatment apparatus.
In a fuel cell or a fuel reformer, a direct contact type degasser is provided between the condensate condenser and the ion-exchange type water treatment apparatus, in which the condensate and the air off-gas of the fuel cell are brought into direct countercurrent contact. A water treatment system for a fuel cell power generator, comprising a gas device.
接接触式脱気装置へ、残余の空気オフガスは前記復水凝
縮器へ供給可能な手段を備えてなる請求項1に記載の燃
料電池発電装置の水処理システム。2. The fuel cell according to claim 1, further comprising means capable of supplying an arbitrary predetermined amount of the air off-gas to the direct contact deaerator and supplying the remaining air off-gas to the condensing condenser. Water treatment system for power generator.
流接触した空気オフガスを前記復水凝縮器に導入するこ
とを特徴とする請求項1または2に記載の燃料電池発電
装置の水処理システム。3. The fuel cell power generator according to claim 1, wherein an air off-gas in countercurrent contact with the condensate in the direct contact deaerator is introduced into the condensate condenser. Water treatment system.
特徴とする請求項1乃至3記載の燃料電池発電装置の水
処理システム。4. The water treatment system for a fuel cell power generator according to claim 1, wherein tap water is supplied to said condensing condenser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03146356A JP3106552B2 (en) | 1991-06-19 | 1991-06-19 | Water treatment system for fuel cell power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03146356A JP3106552B2 (en) | 1991-06-19 | 1991-06-19 | Water treatment system for fuel cell power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04370665A JPH04370665A (en) | 1992-12-24 |
JP3106552B2 true JP3106552B2 (en) | 2000-11-06 |
Family
ID=15405865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03146356A Expired - Fee Related JP3106552B2 (en) | 1991-06-19 | 1991-06-19 | Water treatment system for fuel cell power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3106552B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1217439C (en) | 2000-10-20 | 2005-08-31 | 松下电器产业株式会社 | Fuel cell system and method of operating the system |
KR100494944B1 (en) * | 2003-07-28 | 2005-06-13 | 현대자동차주식회사 | Cooling water system for fuel cell electric vehicle |
JP5364450B2 (en) * | 2009-06-01 | 2013-12-11 | オルガノ株式会社 | Water treatment device for fuel cell |
-
1991
- 1991-06-19 JP JP03146356A patent/JP3106552B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04370665A (en) | 1992-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1333518B1 (en) | Fuel cell system and method of operating the system | |
CA1214512A (en) | Fuel cell power supply with oxidant and fuel gas switching | |
JPH0821403B2 (en) | How to operate a fuel cell power plant | |
JP2002525805A (en) | Fuel cell power supply with exhaust recovery for improved water management | |
JP2854171B2 (en) | Makeup water recovery equipment for fuel cell power generators | |
JPH06325780A (en) | Fuel cell system | |
JP2004505431A (en) | Method and apparatus for controlling humidity and temperature of incoming fuel cell process gas | |
US6787255B2 (en) | Fuel cell power generating system and operation method | |
JP3106552B2 (en) | Water treatment system for fuel cell power plant | |
JP3077832B2 (en) | Makeup water recovery equipment for fuel cell power generators | |
JP4453211B2 (en) | Waste heat treatment method and apparatus for fuel cell power generator | |
JP3132627B2 (en) | Water recovery system for fuel cell power plant | |
JP2002100382A (en) | Fuel cell generator | |
JP3099407B2 (en) | Water treatment system for phosphoric acid fuel cells | |
JPH1064566A (en) | Fuel cell power generator and waste heat recovery method for the same | |
JP5292865B2 (en) | Water recovery method for fuel cell power generator and fuel cell power generator | |
JPH05129027A (en) | Water treatment system for fuel cell power generation device | |
JPH04370666A (en) | Water processing system of fuel cell power generating device | |
JP4440676B2 (en) | Fuel cell power generation hot water supply system | |
JP4076476B2 (en) | Fuel cell power generation system and operation method thereof | |
JP2005011563A (en) | Fuel cell cogeneration system | |
JP2000012055A (en) | Fuel cell power generating facility | |
JP2002008690A (en) | Fuel cell power generation system and operation method thereof | |
JP2009140726A (en) | Fuel cell power generation device | |
JPS63141268A (en) | Generating unit for natural-gas reformed molten carbonate type fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070908 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080908 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080908 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090908 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090908 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100908 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |