[go: up one dir, main page]

JP4453211B2 - Waste heat treatment method and apparatus for fuel cell power generator - Google Patents

Waste heat treatment method and apparatus for fuel cell power generator Download PDF

Info

Publication number
JP4453211B2
JP4453211B2 JP2001082827A JP2001082827A JP4453211B2 JP 4453211 B2 JP4453211 B2 JP 4453211B2 JP 2001082827 A JP2001082827 A JP 2001082827A JP 2001082827 A JP2001082827 A JP 2001082827A JP 4453211 B2 JP4453211 B2 JP 4453211B2
Authority
JP
Japan
Prior art keywords
temperature
water
air
cooler
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001082827A
Other languages
Japanese (ja)
Other versions
JP2002280033A (en
Inventor
茂政 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2001082827A priority Critical patent/JP4453211B2/en
Publication of JP2002280033A publication Critical patent/JP2002280033A/en
Application granted granted Critical
Publication of JP4453211B2 publication Critical patent/JP4453211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、燃料電池発電装置の排熱処理方法および排熱処理装置、特に空冷式冷却器を用いた方法および装置に関する。
【0002】
【従来の技術】
周知のとおり、リン酸型燃料電池,固体高分子電解質型燃料電池,溶融炭酸塩型燃料電池などは、反応ガスとしての燃料ガスおよび酸化剤ガスを電極触媒層を備えた燃料電極および酸化剤電極に連続的に供給して、燃料のもつエネルギーを電気化学的に電気エネルギーに変換するものである。
【0003】
これらの燃料電池においては、その電解質の性質から、二酸化炭素を含んだ燃料ガスや酸化剤ガスを使用することが可能である。そこで通常、これらの燃料電池においては、空気を酸化剤ガスとし、メタノールや天然ガス等の炭化水素系原燃料を燃料改質器により水蒸気改質して得られる水素リッチな改質ガスを燃料ガスとして用いている。
【0004】
図4は、従来のリン酸型燃料電池発電装置の概略システム構成の一例を示す。
【0005】
図4において、燃料電池1は、模式的に示され、図示しないリン酸電解質層を挟持する燃料極2と空気極3と、これらからなる単位セルの複数個を重ねる毎に配設される冷却管を有する冷却板4とから構成される。
【0006】
一方、燃料改質器7は、原燃料供給系9を経て供給される天然ガス等の原燃料を、水蒸気分離器21で分離されて水蒸気供給系22を経て供給される水蒸気とともに、改質触媒下にて、バーナでの後述するオフガスの燃焼による燃焼熱により加熱して、水素に富むガスに改質して改質ガスを生成する。
【0007】
燃料改質器7で生成された上記改質ガスは、CO変成器8を有する改質ガス供給系11を経由して燃料電池1の燃料極2に供給され、一方、燃料極2から電池反応に寄与しない水素を含むオフガスが、オフガス供給系12を経て燃料改質器7のバーナに燃料として供給される。
【0008】
また、燃料改質器7のバーナへは、燃焼空気供給用のブロア13が接続されており、燃料改質器7から出た燃焼排ガスは、燃焼排ガス系15により水回収用凝縮器41へと送られ、水回収後、排出される。
【0009】
また、燃料電池1には、空気極3に空気を供給する反応空気ブロア16を備えた空気供給系17と、電池反応後の空気を前記水回収用凝縮器41へ供給する空気排出系18とが接続されている。
【0010】
燃料電池1の冷却板4の冷却管には、燃料電池1の発電時に冷却水を循環するため、水蒸気分離器21、冷却水循環ポンプ24および燃料電池冷却水廃熱回収用熱交換器23を備えた冷却水循環系20が、接続されている。冷却水循環系20は、冷却水調節弁25を備え、必要に応じて廃熱回収用熱交換器23への冷却水の流通を調節できるようにしている。
【0011】
前記水蒸気分離器21では、燃料電池1の冷却管から排出された水と蒸気との二相流となった冷却水を、水蒸気と冷却水とに分離する。ここで分離された水蒸気は、前記燃料改質器7に向かう原燃料と混入するように、前記水蒸気供給系22を経て、送出される。その際、元圧の低い原燃料との混合を行うために、エジェクタ6を使用している。このエジェクタ6は、蒸気を駆動流体とするとともに、原燃料を被駆動流体とする。原燃料供給系9は、一般に、脱硫器5を備える。
【0012】
前記水回収用凝縮器41には、前述のように、燃焼排ガス系15,空気排出系18が接続され、この水回収用凝縮器41には、生成水等回収タンク44を有する凝集水回収系42が接続されている。
【0013】
前記回収水は、脱炭酸塔43で空気接触させて脱炭酸処理をした後に、補給水ポンプ46によって、イオン交換式水処理装置47に導入して、純水化した後に、給水ポンプ49により水蒸気分離器21へ還流供給され、原燃料の水蒸気改質に必要な水として利用される。
【0014】
水処理装置47は吸着速度の関係から、通水速度は一定量が必要であり、そのため、水処理装置に水が循環して流れる閉回路を設けて、常時一定流量を水処理装置に通水可能として、所定のSV値(空間速度1/h)を維持するのが一般的である。この場合、図4に示すように、水処理装置47は処理水の再循環用配管48を備え、水処理された水の内、一部は給水ポンプ49によって水蒸気分離器21に供給され、残りの純水は、再循環用配管48を経由して再び水処理装置47に戻される。
【0015】
なお、固体高分子電解質型燃料電池発電装置の場合には、通常、前記CO変成器から導出した改質ガスを、CO変成器の後段に設けたCO除去器に導入し、COを酸化して、改質ガス中のCO濃度を10ppm程度まで低減する。
【0016】
図4は、標準的なシステム構成例を示したが、システム構成はニーズに応じて種々の形態があり、燃料電池発電装置の排熱処理方法に限定した場合においても、種々の形態が存在する。例えば、図5は、燃料電池の排熱を有効に利用し、かつ水回収装置から排出される排ガスの白煙化の防止を図るために、同一出願人によって提案され、特願2000−285796号に記載された構成例を示す。
【0017】
図5においては、図4における水処理装置等の一部の構成部材は省略して示し、また、図4と同一構成部材には同一番号を付して説明を省略する。
【0018】
図5において、水回収装置52は、水回収用の排ガス冷却器53の上方に、水回収された排空気および燃焼排ガスを加熱するための排気ガス加熱用熱交換器52を備える。また、水蒸気分離器21から導出した冷却水を、排熱利用熱交換装置54に通流して冷却した後、排気ガス加熱用熱交換器52に通流してさらに冷却し、この冷却された水を、水蒸気分離器21から導出した水と合流する冷却水循環回路55を備える。
【0019】
水蒸気分離器21は圧力計32を備え、また、冷却水循環回路55は、前記圧力計32の計測値に基づいて水蒸気分離器21内の圧力を一定に制御する流量調節弁33を備える。30は電池冷却水循環用ポンプ、31は補給水ポンプを示す。
【0020】
上記構成において、電池冷却水の一部が分岐され、排熱利用熱交換装置54に通流して冷却した後、前記排気ガス加熱用熱交換器52に通流してさらに冷却することにより、燃料電池における発熱量と熱除去量のバランスをとることができる。ちなみに、図5にT1〜T10で示す各部の温度を例示すると、下記のとおりである。下記温度において、括弧内に示す数値は、代表温度である。
【0021】
T1:160〜170℃(160℃),T2:140〜170℃(145℃)
T3: 85〜 95℃( 95℃),T4: 50〜 90℃( 60℃)
T5: 70〜 85℃( 85℃),T6: 80〜 95℃( 90℃)
T7: 30〜 40℃( 40℃),T8: 40〜 60℃( 50℃)
T9: 40〜 45℃( 45℃),T10: 45〜 55℃( 50℃)
上記のように、水回収装置51において冷却され、水回収された排ガスの温度T9は40〜45℃であるが、この排ガスを、排気ガス加熱用熱交換器52により冷却水の余剰熱によって加熱し、その温度T10を、45〜55℃とすることにより、排ガス中の水蒸気が外気にさらされても直ちに、水蒸気の白煙が生成することがなくなり、排ガスの白煙化が防止できる。
【0022】
ところで、上記図4および図5に示すように、一般に、燃料電池発電装置においては、燃料電池と、炭化水素と水蒸気との改質反応により水素リッチな改質ガスを生成する燃料改質器と、前記燃料電池および燃料改質器から排出される熱を、温度レベルの異なる冷却水により熱交換して排出する低温水用熱交換器と高温水用熱交換器とを備え、空冷式冷却器により最終的な排熱処理が行なわれる。
【0023】
前記図5に示すシステムにおいて、排ガス冷却器53が低温水用熱交換器に該当し、排熱利用熱交換装置54が高温水用熱交換器に該当する。図4に示すシステムにおいては、水回収用凝縮器41および燃料電池冷却水廃熱回収用熱交換器23が、それぞれ低温水用熱交換器および高温水用熱交換器に該当する。図4においても、代表温度は、図5における低温水用熱交換器および高温水用熱交換器と同等レベルの温度である。
【0024】
本発明の説明の便宜上、前記従来の排熱処理システムの構成に関わる簡略化したシステム系統図を図3に示す。
【0025】
図3において、61は、燃料電池発電装置内で発生した熱を、低温水として外部に取り出すための低温水用熱交換器で、62は、燃料電池発電装置内で発生した熱を、高温水として外部に取り出すための高温水用熱交換器である。63は、低温水を循環させるための低温水ポンプで、64は、高温水を循環させるための高温水ポンプである。65は、67の空冷ファンで低温水を冷却するための冷却器で、66も、67の空冷ファンで高温水を冷却するための冷却器である。69は、低温水を制御するための温度センサーで、70も高温水を制御するための温度センサーである。なお、図3において、81,82は、それぞれ、低温冷却水循環路および高温冷却水循環路を示し、101,102は、それぞれ、低温水用および高温水用の空冷式冷却器を示す。
【0026】
低温用熱交換器61における低温水は、循環ポンプ63で冷却器5に送られ、温度センサー69と図示しない制御装置とにより、空冷ファン67の風量制御を行って設定温度となるように制御される。同様に、高温用熱交換器62における高温水は、循環ポンプ64で冷却器66に送られ、温度センサー70と図示しない制御装置とにより、空冷ファン67の風量制御を行って設定温度となるように制御される。
【0027】
【発明が解決しようとする課題】
ところで、前述のような従来の燃料電池発電装置の排熱処理方法および装置においては、下記のような問題があった。
【0028】
燃料電池発電装置の排熱の冷却に空冷式冷却器を用いた場合、図3に示すように、低温水と高温水の冷却を、それぞれ別々の空冷ファンと冷却器とを用いて冷却水の温度制御を行っていた。そのため、空冷式冷却器の部品数,寸法,重量等が増大し、また電力消費量も増大して、設備コストおよび運転コストの増大を招いていた。
【0029】
この発明は、上記問題点を解消するためになされたもので、この発明の課題は、空冷式冷却器のコンパクト化,省電力化及びコストの低減を図った燃料電池発電装置の排熱処理方法および装置を提供することにある。
【0030】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、燃料電池と、炭化水素と水蒸気との改質反応により水素リッチな改質ガスを生成する燃料改質器と、前記燃料電池および燃料改質器から排出される熱を、温度レベルの異なる冷却水により熱交換して排出する低温水用熱交換器と高温水用熱交換器とを備えた燃料電池発電装置の排熱処理方法において、
前記低温水用熱交換器および高温水用熱交換器における温度レベルの異なる冷却水を、空冷ファンにより一括冷却する空冷式冷却器における低温水用冷却器および高温水用冷却器にそれぞれ循環して冷却し、
前記空冷式冷却器における冷却空気を、前記低温水用冷却器側から高温水用冷却器側に通流して冷却し、
前記低温水用熱交換器および高温水用熱交換器の入口冷却水温度をそれぞれ計測し、所定の各設定温度と比較して空冷の増強の要否を判定し、少なくとも一方が空冷の増強要と判定された際に、前記空冷ファンの風量を増大し、
前記空冷の増強要と判定された以外の熱交換器(他の熱交換器)における冷却水の過冷却を防止するために、前記他の熱交換器における冷却水の少なくとも一部を、前記他の熱交換器に対応する低温水用冷却器または高温水用冷却器をバイパスさせて循環冷却することとする(請求項1の発明)。
【0031】
前記請求項1の発明によれば、従来に比較して空冷ファンの台数が減少し、空冷式冷却器が全体としてコンパクト化できる。これにより、省電力化及びコストの低減が可能となる。また、前記のバイパスさせて循環冷却することにより、冷却水の過冷却を防止し、合理的な冷却水の温度制御が実現できる。
【0032】
また、前記請求項記載の排熱処理方法を実施するための好ましい燃料電池発電装置の排熱処理装置としては、燃料電池と、燃料改質器と、低温水用熱交換器および高温水用熱交換器と、低温水用冷却器および高温水用冷却器を有し空冷ファンにより一括冷却する空冷式冷却器と、前記低温水用熱交換器と低温水用冷却器との間に設けた低温冷却水循環路と、前記高温水用熱交換器と高温水用冷却器との間に設けた高温冷却水循環路とを備え、さらに、前記低温冷却水循環路および高温冷却水循環路は、それぞれ前記バイパスさせて循環冷却するためのバイパス管路および三方弁と、各熱交換器入口冷却水の温度測定用の温度センサーと、前記冷却水の過冷却を防止するための制御装置とを備えるものとする(請求項の発明)。
【0033】
さらに省電力化を図るために、請求項4記載の排熱処理装置において、前記空冷ファンは、風量を調節するためのVVVFインバータを備えるものとする(請求項の発明)。
【0034】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下にのべる。
【0035】
2は、この発明の実施例を示す図であり、図1は、図2において過冷却防止用のバイパス系を有しないシステム構成を示す図である。図1および2において、図3と同じ機能部材には同一の番号を付して説明を省略する。
【0036】
図1と図3とのシステム構成上の基本的な相違は、図1においては、低温水用熱交換器61および高温水用熱交換器62における温度レベルの異なる冷却水を、空冷式冷却器100における低温水用冷却器65および高温水用冷却器66にそれぞれ循環して冷却し、1台の空冷ファン67により一括冷却する構成とし、かつ前記空冷式冷却器100における冷却空気を、前記低温水用冷却器65側から高温水用冷却器66側に通流して冷却する構成とした点である。
【0037】
上記構成において、前記低温水用熱交換器65および高温水用熱交換器66の入口冷却水温度69,70をそれぞれ計測し、所定の各設定温度と比較して空冷の増強の要否を、図示しない制御装置により判定し、少なくとも一方が空冷の増強要と判定された際に、前記空冷ファン67の風量を増大する制御を行う。空冷ファン67は、ON/OFF運転もしくは、VVVFインバータ68を用いて回転数制御を行なうことにより、風量調節を行って冷却水の温度制御を行なう。
【0038】
次に、図2の実施例について説明する。図1と図2の実施例の相違は、図2においては、前記低温冷却水循環路81および高温冷却水循環路82は、それぞれバイパスさせて循環冷却するためのバイパス管路83,84および三方弁91,92と、各熱交換器入口冷却水の温度測定用の温度センサー69,70の計測値を入力し、冷却水の過冷却を防止するために前記三方弁を制御する図示しない制御装置とを備える点である。
【0039】
上記実施例により、前述のように、冷却水の過冷却を防止して、リーズナブルな冷却水の温度制御を行なうことができる。
【0040】
【発明の効果】
上記のとおり、この発明によれば、燃料電池と、炭化水素と水蒸気との改質反応により水素リッチな改質ガスを生成する燃料改質器と、前記燃料電池および燃料改質器から排出される熱を、温度レベルの異なる冷却水により熱交換して排出する低温水用熱交換器と高温水用熱交換器とを備えた燃料電池発電装置の排熱処理をするに当り、前記低温水用熱交換器および高温水用熱交換器における温度レベルの異なる冷却水を、空冷ファンにより一括冷却する空冷式冷却器における低温水用冷却器および高温水用冷却器にそれぞれ循環して冷却し、前記空冷式冷却器における冷却空気を、前記低温水用冷却器側から高温水用冷却器側に通流して冷却し、前記低温水用熱交換器および高温水用熱交換器の入口冷却水温度をそれぞれ計測し、所定の各設定温度と比較して空冷の増強の要否を判定し、少なくとも一方が空冷の増強要と判定された際に、前記空冷ファンの風量を増大し、前記空冷の増強要と判定された以外の熱交換器(他の熱交換器)における冷却水の過冷却を防止するために、前記他の熱交換器における冷却水の少なくとも一部を、前記他の熱交換器に対応する低温水用冷却器または高温水用冷却器をバイパスさせて循環冷却する構成としたので、
空冷式冷却器のコンパクト化,省電力化及びコストの低減を図ることができる。
【図面の簡単な説明】
【図1】 この発明の燃料電池発電装置の排熱処理装置に関わり、過冷却防止用のバイパス系を有しないシステム構成を示す図
【図2】 この発明の燃料電池発電装置の排熱処理装置の実施例を示す図
【図3】 従来の燃料電池発電装置の排熱処理装置の概略構成の一例を示す図
【図4】 従来のリン酸型燃料電池発電装置の概略システム構成の一例を示す図
【図5】 図4とは異なる従来の燃料電池発電装置の概略システム構成を示す図
【符号の説明】
61:低温水用熱交換器、62:高温水用熱交換器、65:低温水用冷却器、66:高温水用冷却器、67:空冷ファン、68:VVVFインバータ、69,70:温度センサー、81:低温冷却水循環路、82:高温冷却水循環路、83,84:バイパス管路、91,92:三方弁、100:空冷式冷却器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust heat treatment method and an exhaust heat treatment apparatus for a fuel cell power generator, and more particularly to a method and an apparatus using an air-cooled cooler.
[0002]
[Prior art]
As is well known, a phosphoric acid fuel cell, a solid polymer electrolyte fuel cell, a molten carbonate fuel cell, and the like are provided with a fuel electrode and an oxidant electrode having an electrode catalyst layer for a fuel gas and an oxidant gas as reaction gases. The energy of the fuel is electrochemically converted into electrical energy.
[0003]
In these fuel cells, it is possible to use a fuel gas or oxidant gas containing carbon dioxide due to the nature of the electrolyte. Therefore, in these fuel cells, hydrogen-rich reformed gas obtained by steam reforming a hydrocarbon-based raw fuel such as methanol or natural gas with a fuel reformer is usually used as fuel gas. It is used as.
[0004]
FIG. 4 shows an example of a schematic system configuration of a conventional phosphoric acid fuel cell power generator.
[0005]
In FIG. 4, a fuel cell 1 is schematically shown, and is provided with a fuel electrode 2 and an air electrode 3 that sandwich a phosphoric acid electrolyte layer (not shown) and a cooling unit that is disposed each time a plurality of unit cells composed of these are stacked. And a cooling plate 4 having a tube.
[0006]
On the other hand, the fuel reformer 7 separates the raw fuel such as natural gas supplied through the raw fuel supply system 9 together with the steam separated by the steam separator 21 and supplied through the steam supply system 22 together with the reforming catalyst. Below, it heats by the combustion heat by the combustion of the off gas mentioned later in a burner, and reforms to gas rich in hydrogen, and produces | generates reformed gas.
[0007]
The reformed gas generated in the fuel reformer 7 is supplied to the fuel electrode 2 of the fuel cell 1 via the reformed gas supply system 11 having the CO converter 8, while the cell reaction is performed from the fuel electrode 2. Off-gas containing hydrogen that does not contribute to the fuel is supplied as fuel to the burner of the fuel reformer 7 via the off-gas supply system 12.
[0008]
Further, a blower 13 for supplying combustion air is connected to the burner of the fuel reformer 7, and the combustion exhaust gas emitted from the fuel reformer 7 is sent to the water recovery condenser 41 by the combustion exhaust gas system 15. It is sent and discharged after water recovery.
[0009]
The fuel cell 1 includes an air supply system 17 including a reaction air blower 16 that supplies air to the air electrode 3, and an air discharge system 18 that supplies the air after the battery reaction to the water recovery condenser 41. Is connected.
[0010]
The cooling pipe of the cooling plate 4 of the fuel cell 1 includes a water vapor separator 21, a cooling water circulation pump 24, and a heat exchanger 23 for recovering waste heat from the fuel cell cooling water in order to circulate cooling water when the fuel cell 1 generates power. A cooling water circulation system 20 is connected. The cooling water circulation system 20 includes a cooling water adjustment valve 25 so that the circulation of the cooling water to the waste heat recovery heat exchanger 23 can be adjusted as necessary.
[0011]
In the water vapor separator 21, the cooling water that is a two-phase flow of water and steam discharged from the cooling pipe of the fuel cell 1 is separated into water vapor and cooling water. The separated water vapor is sent out through the water vapor supply system 22 so as to be mixed with the raw fuel going to the fuel reformer 7. At that time, the ejector 6 is used for mixing with the raw fuel having a low original pressure. The ejector 6 uses steam as a driving fluid and raw fuel as a driven fluid. The raw fuel supply system 9 generally includes a desulfurizer 5.
[0012]
As described above, the flue gas exhaust system 15 and the air exhaust system 18 are connected to the water recovery condenser 41, and the water recovery condenser 41 has a condensed water recovery system having a recovery tank 44 for product water and the like. 42 is connected.
[0013]
The recovered water is brought into contact with air in the decarbonation tower 43 and decarboxylated, and then introduced into the ion-exchange water treatment device 47 by the make-up water pump 46 to be purified, and then the water is pumped by the feed water pump 49. Reflux is supplied to the separator 21 and used as water necessary for steam reforming of the raw fuel.
[0014]
The water treatment device 47 requires a certain amount of water flow rate due to the adsorption rate. For this reason, a closed circuit in which water circulates is provided in the water treatment device, and a constant flow rate is always passed through the water treatment device. It is common to maintain a predetermined SV value (space velocity 1 / h) as possible. In this case, as shown in FIG. 4, the water treatment apparatus 47 includes a pipe for recirculation of treated water, and a part of the water treated water is supplied to the water vapor separator 21 by the feed water pump 49 and the rest The pure water is returned to the water treatment device 47 again via the recirculation pipe 48.
[0015]
In the case of a solid polymer electrolyte fuel cell power generator, the reformed gas derived from the CO converter is usually introduced into a CO remover provided at the subsequent stage of the CO converter, and the CO is oxidized. The CO concentration in the reformed gas is reduced to about 10 ppm.
[0016]
FIG. 4 shows an example of a standard system configuration, but the system configuration has various forms according to needs, and various forms exist even when the exhaust heat treatment method of the fuel cell power generation apparatus is limited. For example, Figure 5, by effectively utilizing the exhaust heat of the fuel cell, and in order to prevent white smoke of exhaust gas discharged from the water recovery device, proposed by the same applicant, Japanese Patent Application No. 2000-285796 An example of the configuration described in is shown.
[0017]
In FIG. 5, some components such as the water treatment apparatus in FIG. 4 are omitted, and the same components as those in FIG.
[0018]
In FIG. 5, the water recovery device 52 includes an exhaust gas heating heat exchanger 52 for heating the exhaust air and combustion exhaust gas recovered from the water above the exhaust gas cooler 53 for water recovery. Further, the cooling water led out from the water vapor separator 21 is passed through the exhaust heat utilization heat exchanger 54 to be cooled, and then passed through the exhaust gas heating heat exchanger 52 to be further cooled. A cooling water circulation circuit 55 that joins the water derived from the water vapor separator 21 is provided.
[0019]
The water vapor separator 21 includes a pressure gauge 32, and the cooling water circulation circuit 55 includes a flow rate adjustment valve 33 that controls the pressure in the water vapor separator 21 to be constant based on the measurement value of the pressure gauge 32. Reference numeral 30 denotes a battery cooling water circulation pump, and 31 denotes a makeup water pump.
[0020]
In the above configuration, a part of the battery cooling water is branched, passed through the exhaust heat utilization heat exchange device 54 and cooled, and then passed through the exhaust gas heating heat exchanger 52 for further cooling, whereby the fuel cell The amount of heat generated and the amount of heat removed can be balanced. Incidentally, the temperature of each part shown by T1-T10 in FIG. 5 is as follows. At the following temperatures, the numerical values shown in parentheses are representative temperatures.
[0021]
T1: 160-170 ° C (160 ° C), T2: 140-170 ° C (145 ° C)
T3: 85-95 ° C. (95 ° C.), T4: 50-90 ° C. (60 ° C.)
T5: 70 to 85 ° C. (85 ° C.), T6: 80 to 95 ° C. (90 ° C.)
T7: 30 to 40 ° C. (40 ° C.), T8: 40 to 60 ° C. (50 ° C.)
T9: 40-45 ° C (45 ° C), T10: 45-55 ° C (50 ° C)
As described above, the temperature T9 of the exhaust gas cooled and recovered in the water recovery device 51 is 40 to 45 ° C., and this exhaust gas is heated by the excess heat of the cooling water by the exhaust gas heating heat exchanger 52. However, by setting the temperature T10 to 45 to 55 ° C., even if the water vapor in the exhaust gas is exposed to the outside air, the white smoke of the water vapor is not generated immediately, and the white smoke of the exhaust gas can be prevented.
[0022]
Incidentally, as shown in FIGS. 4 and 5, in general, in a fuel cell power generator, a fuel cell and a fuel reformer that generates a hydrogen-rich reformed gas by a reforming reaction of hydrocarbon and steam A low-temperature water heat exchanger and a high-temperature water heat exchanger for exchanging heat discharged from the fuel cell and the fuel reformer by cooling water having different temperature levels, and an air-cooled cooler Thus, the final exhaust heat treatment is performed.
[0023]
In the system shown in FIG. 5, the exhaust gas cooler 53 corresponds to a heat exchanger for low-temperature water, and the exhaust heat utilization heat exchanger 54 corresponds to a heat exchanger for high-temperature water. In the system shown in FIG. 4, the water recovery condenser 41 and the fuel cell cooling water waste heat recovery heat exchanger 23 correspond to a low temperature water heat exchanger and a high temperature water heat exchanger, respectively. Also in FIG. 4, the representative temperature is the same level as the low temperature water heat exchanger and the high temperature water heat exchanger in FIG. 5.
[0024]
For convenience of explanation of the present invention, a simplified system diagram relating to the configuration of the conventional waste heat treatment system is shown in FIG.
[0025]
In FIG. 3, 61 is a heat exchanger for low temperature water for taking out the heat generated in the fuel cell power generator as low temperature water, and 62 is the heat generated in the fuel cell power generator. It is a heat exchanger for high-temperature water for taking out as outside. 63 is a low temperature water pump for circulating low temperature water, and 64 is a high temperature water pump for circulating high temperature water. Reference numeral 65 denotes a cooler for cooling the low-temperature water by the 67 air cooling fan, and reference numeral 66 is a cooler for cooling the high-temperature water by the 67 air cooling fan. Reference numeral 69 denotes a temperature sensor for controlling low-temperature water, and reference numeral 70 denotes a temperature sensor for controlling high-temperature water. In FIG. 3, reference numerals 81 and 82 denote a low-temperature cooling water circulation path and a high-temperature cooling water circulation path, respectively. 101 and 102 denote air-cooled coolers for low-temperature water and high-temperature water, respectively.
[0026]
The low-temperature water in the low-temperature heat exchanger 61 is sent to the cooler 5 by the circulation pump 63, and is controlled by the temperature sensor 69 and a control device (not shown) to control the air volume of the air-cooling fan 67 to reach the set temperature. The Similarly, the high-temperature water in the high-temperature heat exchanger 62 is sent to the cooler 66 by the circulation pump 64, and the air volume of the air-cooling fan 67 is controlled by the temperature sensor 70 and a control device (not shown) so as to reach the set temperature. Controlled.
[0027]
[Problems to be solved by the invention]
By the way, the above-described conventional heat treatment method and apparatus for a fuel cell power generator have the following problems.
[0028]
When an air-cooled cooler is used to cool the exhaust heat of the fuel cell power generation device, as shown in FIG. 3, cooling of the low-temperature water and high-temperature water is performed using separate air-cooling fans and coolers, respectively. The temperature was controlled. Therefore, the number of parts, dimensions, weight, and the like of the air-cooled cooler are increased, and the power consumption is also increased, resulting in an increase in equipment cost and operation cost.
[0029]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for exhaust heat treatment of a fuel cell power generation device, which can achieve compactness, power saving, and cost reduction of an air-cooled cooler, and To provide an apparatus.
[0030]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a fuel cell, a fuel reformer that generates a hydrogen-rich reformed gas by a reforming reaction between a hydrocarbon and steam, and the fuel cell and the fuel reformer. In the exhaust heat treatment method for a fuel cell power generation apparatus comprising a low-temperature water heat exchanger and a high-temperature water heat exchanger for exchanging heat discharged from cooling water having different temperature levels and discharging it,
Cooling water having different temperature levels in the heat exchanger for low-temperature water and the heat exchanger for high-temperature water is circulated to a cooler for low-temperature water and a cooler for high-temperature water respectively in an air-cooled cooler that collectively cools with an air-cooling fan. Cool,
The cooling air in the air-cooled cooler is cooled by flowing from the low-temperature water cooler side to the high-temperature water cooler side ,
Measure the cooling water temperature at the inlet of the heat exchanger for low-temperature water and the heat exchanger for high-temperature water, respectively, determine whether or not the air cooling needs to be increased compared to each predetermined set temperature, and at least one of them needs the air cooling enhancement When it is determined that the air volume of the air cooling fan is increased,
In order to prevent overcooling of cooling water in heat exchangers (other heat exchangers) other than those determined to require enhancement of air cooling, at least part of the cooling water in the other heat exchangers The low-temperature water cooler or the high-temperature water cooler corresponding to this heat exchanger is bypassed and circulated and cooled (invention of claim 1).
[0031]
According to the first aspect of the present invention, the number of air-cooling fans is reduced as compared with the prior art, and the air-cooled cooler can be made compact as a whole. Thereby, power saving and cost reduction are possible. Moreover, by bypassing and circulatingly cooling, the cooling water can be prevented from being overcooled and rational cooling water temperature control can be realized.
[0032]
In addition, as a preferred exhaust heat treatment apparatus for a fuel cell power generator for carrying out the exhaust heat treatment method according to claim 1 , a fuel cell, a fuel reformer, a heat exchanger for low temperature water, and a heat exchange for high temperature water A low-temperature cooling system provided between the low-temperature water heat exchanger and the low-temperature water cooler, an air-cooled cooler having a cooler for low-temperature water and a cooler for high-temperature water collectively cooled by an air-cooling fan A water circulation path, and a high-temperature cooling water circulation path provided between the high-temperature water heat exchanger and the high-temperature water cooler, and the low-temperature cooling water circulation path and the high-temperature cooling water circulation path are respectively bypassed. A bypass pipe and a three-way valve for circulating cooling, a temperature sensor for measuring the temperature of each heat exchanger inlet cooling water, and a control device for preventing the cooling water from being overcooled (invoice) Item 2 ).
[0033]
In order to further save power, in the exhaust heat treatment apparatus according to claim 4, the air cooling fan includes a VVVF inverter for adjusting the air volume (invention of claim 3 ).
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the drawings.
[0035]
FIG. 2 is a diagram showing an embodiment of the present invention, and FIG. 1 is a diagram showing a system configuration having no bypass system for preventing overcooling in FIG. 1 and 2, the same functional members as those in FIG.
[0036]
The basic difference in system configuration between FIG. 1 and FIG. 3 is that in FIG. 1, the cooling water having different temperature levels in the low-temperature water heat exchanger 61 and the high-temperature water heat exchanger 62 is replaced with an air-cooled cooler. 100 is configured to be circulated and cooled to the low-temperature water cooler 65 and the high-temperature water cooler 66 in FIG. 100 and collectively cooled by a single air-cooling fan 67, and the cooling air in the air-cooled cooler 100 is This is a configuration in which cooling is performed by flowing from the water cooler 65 side to the high temperature water cooler 66 side.
[0037]
In the above configuration, the inlet cooling water temperatures 69 and 70 of the low-temperature water heat exchanger 65 and the high-temperature water heat exchanger 66 are respectively measured, and whether or not it is necessary to enhance air cooling compared to each predetermined set temperature, When it is determined by a control device (not shown) and it is determined that at least one of the air cooling needs to be increased, control for increasing the air volume of the air cooling fan 67 is performed. The air cooling fan 67 adjusts the air volume by performing ON / OFF operation or performing rotation speed control using the VVVF inverter 68 to control the temperature of the cooling water.
[0038]
Next, the embodiment of FIG. 2 will be described. The difference between the embodiment of FIG. 1 and FIG. 2 is that, in FIG. 2, the low-temperature cooling water circulation path 81 and the high-temperature cooling water circulation path 82 are bypass bypass lines 83 and 84 and a three-way valve 91 for circulating cooling. , 92 and a control device (not shown) that inputs the measured values of the temperature sensors 69 and 70 for measuring the temperature of the cooling water at the inlet of each heat exchanger and controls the three-way valve in order to prevent the cooling water from being overcooled. It is a point to prepare.
[0039]
According to the above-described embodiment, as described above, it is possible to prevent the cooling water from being overcooled and to perform reasonable cooling water temperature control.
[0040]
【The invention's effect】
As described above, according to the present invention, the fuel cell, the fuel reformer that generates the hydrogen-rich reformed gas by the reforming reaction of hydrocarbon and steam, and the fuel cell and the fuel reformer are discharged. When performing heat treatment of a fuel cell power generator equipped with a heat exchanger for low-temperature water and a heat exchanger for high-temperature water that exchanges heat with cooling water having different temperature levels and discharges the heat, Cooling water having different temperature levels in the heat exchanger and the high-temperature water heat exchanger is circulated and cooled to the low-temperature water cooler and the high-temperature water cooler in the air-cooled cooler that collectively cools with an air-cooling fan, The cooling air in the air-cooled cooler is cooled by flowing from the low-temperature water cooler side to the high-temperature water cooler side , and the inlet cooling water temperature of the low-temperature water heat exchanger and the high-temperature water heat exchanger is set. Measure each one When it is determined whether or not the air cooling needs to be increased compared to the constant temperature, and when at least one of the air cooling is determined to be required, the air volume of the air cooling fan is increased, In order to prevent overcooling of the cooling water in the heat exchanger (other heat exchanger), at least a part of the cooling water in the other heat exchanger is cooled for low-temperature water corresponding to the other heat exchanger. Since it is configured to circulate and cool by bypassing the cooler or high-temperature water cooler ,
The air-cooled cooler can be made compact, save power and reduce costs.
[Brief description of the drawings]
[1] relates to exhaust the heat treatment device of a fuel cell power generator of the present invention, FIG. [2] showing the no system configuration bypass system for preventing supercooling embodiment of the exhaust treatment apparatus of a fuel cell power generator of the present invention FIG. 3 is a diagram showing an example of a schematic configuration of a conventional exhaust heat treatment apparatus for a fuel cell power generator. FIG. 4 is a diagram showing an example of a schematic system configuration of a conventional phosphoric acid fuel cell power generator. FIG. 5 is a diagram showing a schematic system configuration of a conventional fuel cell power generator different from FIG.
61: Heat exchanger for low-temperature water, 62: Heat exchanger for high-temperature water, 65: Cooler for low-temperature water, 66: Cooler for high-temperature water, 67: Air cooling fan, 68: VVVF inverter, 69, 70: Temperature sensor 81: Low-temperature cooling water circuit, 82: High-temperature cooling water circuit, 83, 84: Bypass pipe, 91, 92: Three-way valve, 100: Air-cooled cooler.

Claims (3)

燃料電池と、炭化水素と水蒸気との改質反応により水素リッチな改質ガスを生成する燃料改質器と、前記燃料電池および燃料改質器から排出される熱を、温度レベルの異なる冷却水により熱交換して排出する低温水用熱交換器と高温水用熱交換器とを備えた燃料電池発電装置の排熱処理方法において、
前記低温水用熱交換器および高温水用熱交換器における温度レベルの異なる冷却水を、空冷ファンにより一括冷却する空冷式冷却器における低温水用冷却器および高温水用冷却器にそれぞれ循環して冷却し、
前記空冷式冷却器における冷却空気を、前記低温水用冷却器側から高温水用冷却器側に通流して冷却し、
前記低温水用熱交換器および高温水用熱交換器の入口冷却水温度をそれぞれ計測し、所定の各設定温度と比較して空冷の増強の要否を判定し、少なくとも一方が空冷の増強要と判定された際に、前記空冷ファンの風量を増大し、
前記空冷の増強要と判定された以外の熱交換器(他の熱交換器)における冷却水の過冷却を防止するために、前記他の熱交換器における冷却水の少なくとも一部を、前記他の熱交換器に対応する低温水用冷却器または高温水用冷却器をバイパスさせて循環冷却することを特徴とする燃料電池発電装置の排熱処理方法。
A fuel cell, a fuel reformer that generates a hydrogen-rich reformed gas by a reforming reaction between hydrocarbons and steam, and heat discharged from the fuel cell and the fuel reformer are cooled at different temperature levels. In the exhaust heat treatment method for a fuel cell power generation apparatus comprising a low-temperature water heat exchanger and a high-temperature water heat exchanger that exchange heat with
Cooling water having different temperature levels in the heat exchanger for low-temperature water and the heat exchanger for high-temperature water is circulated to a cooler for low-temperature water and a cooler for high-temperature water respectively in an air-cooled cooler that collectively cools with an air-cooling fan Cool down
The cooling air in the air-cooled cooler is cooled by flowing from the low-temperature water cooler side to the high-temperature water cooler side ,
Measure the cooling water temperature at the inlet of the heat exchanger for low-temperature water and the heat exchanger for high-temperature water, respectively, determine whether or not the air cooling needs to be increased compared to each predetermined set temperature, and at least one of them needs the air cooling enhancement When it is determined that the air volume of the air cooling fan is increased,
In order to prevent overcooling of cooling water in heat exchangers (other heat exchangers) other than those determined to require enhancement of air cooling, at least part of the cooling water in the other heat exchangers A waste heat treatment method for a fuel cell power generation apparatus, characterized in that the low temperature water cooler or the high temperature water cooler corresponding to the heat exchanger is bypassed and circulated and cooled .
請求項記載の排熱処理方法を実施するための燃料電池発電装置の排熱処理装置において、前記燃料電池と、燃料改質器と、低温水用熱交換器および高温水用熱交換器と、低温水用冷却器および高温水用冷却器を有し空冷ファンにより一括冷却する空冷式冷却器と、前記低温水用熱交換器と低温水用冷却器との間に設けた低温冷却水循環路と、前記高温水用熱交換器と高温水用冷却器との間に設けた高温冷却水循環路とを備え、さらに、前記低温冷却水循環路および高温冷却水循環路は、それぞれ前記バイパスさせて循環冷却するためのバイパス管路および三方弁と、各熱交換器入口冷却水の温度測定用の温度センサーと、前記冷却水の過冷却を防止するための制御装置とを備えることを特徴とする燃料電池発電装置の排熱処理装置。The exhaust heat treatment apparatus for a fuel cell power generator for carrying out the exhaust heat treatment method according to claim 1 , wherein the fuel cell, a fuel reformer, a low temperature water heat exchanger and a high temperature water heat exchanger, and a low temperature An air-cooled cooler having a cooler for water and a cooler for high-temperature water that is collectively cooled by an air-cooling fan; a low-temperature cooling water circulation path provided between the heat exchanger for low-temperature water and the cooler for low-temperature water; A high-temperature cooling water circuit provided between the high-temperature water heat exchanger and the high-temperature water cooler, and the low-temperature cooling water circuit and the high-temperature cooling water circuit are circulated and cooled by the bypass respectively. And a three-way valve, a temperature sensor for measuring the temperature of each heat exchanger inlet cooling water, and a control device for preventing overcooling of the cooling water. Waste heat treatment equipment. 請求項記載の排熱処理装置において、前記空冷ファンは、風量を調節するためのVVVFインバータを備えることを特徴とする燃料電池発電装置の排熱処理装置。 3. The exhaust heat treatment apparatus according to claim 2 , wherein the air cooling fan includes a VVVF inverter for adjusting the air volume.
JP2001082827A 2001-03-22 2001-03-22 Waste heat treatment method and apparatus for fuel cell power generator Expired - Lifetime JP4453211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001082827A JP4453211B2 (en) 2001-03-22 2001-03-22 Waste heat treatment method and apparatus for fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001082827A JP4453211B2 (en) 2001-03-22 2001-03-22 Waste heat treatment method and apparatus for fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2002280033A JP2002280033A (en) 2002-09-27
JP4453211B2 true JP4453211B2 (en) 2010-04-21

Family

ID=18938722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001082827A Expired - Lifetime JP4453211B2 (en) 2001-03-22 2001-03-22 Waste heat treatment method and apparatus for fuel cell power generator

Country Status (1)

Country Link
JP (1) JP4453211B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228481A (en) * 2005-02-15 2006-08-31 Fuji Electric Holdings Co Ltd Exhaust heat processing system for fuel cell
KR100776726B1 (en) 2006-11-16 2007-11-28 한국과학기술연구원 Cooling device for fuel cell
JP5362311B2 (en) * 2008-10-03 2013-12-11 三建設備工業株式会社 Heat source system
RU2652060C2 (en) 2012-12-10 2018-04-24 Конинклейке Филипс Н.В. Medical device or system for measuring hemoglobin levels during accidents using camera-projector system
JP6706160B2 (en) * 2016-06-24 2020-06-03 株式会社フジクラ Fuel cell system
CN108461777B (en) * 2018-03-16 2024-03-22 北京亿华通科技股份有限公司 Heat treatment system for fuel cell stack
CN110739470B (en) * 2018-07-18 2024-02-27 宇通客车股份有限公司 Fuel cell auxiliary system

Also Published As

Publication number Publication date
JP2002280033A (en) 2002-09-27

Similar Documents

Publication Publication Date Title
US20050214609A1 (en) Solid oxide fuel cell with selective anode tail gas circulation
JP2002525805A (en) Fuel cell power supply with exhaust recovery for improved water management
JPS61168876A (en) Operation system of fuel cell
JP4453211B2 (en) Waste heat treatment method and apparatus for fuel cell power generator
JP2854171B2 (en) Makeup water recovery equipment for fuel cell power generators
US20080160355A1 (en) Fuel cell system and method of operating the same
RU2443040C2 (en) Fuel elements system
JP3943405B2 (en) Fuel cell power generation system
JPS5828176A (en) Fuel-cell generation system
JP3575932B2 (en) Cooling system for fuel cell stack
JP4154680B2 (en) Fuel cell power generator that injects steam into the anode exhaust gas line
JP2002100382A (en) Fuel cell generator
JP2006127861A (en) Fuel cell system
JP2000030726A (en) Solid polymer fuel cell system
JP4176130B2 (en) Fuel cell power generation system
JP3743254B2 (en) Fuel cell power generator
JP3960001B2 (en) Carbon monoxide remover and fuel cell system
JP4453226B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JP5083195B2 (en) Waste heat utilization method and apparatus for fuel cell power generator
JP3557104B2 (en) Phosphoric acid fuel cell power plant
JP2009016077A (en) Fuel cell power generation device
JP2004296265A (en) Fuel cell system
JPH1064566A (en) Fuel cell power generator and waste heat recovery method for the same
JP2004296266A (en) Fuel cell system
JPH09213355A (en) Fuel cell generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term