JP3098893B2 - refrigerator - Google Patents
refrigeratorInfo
- Publication number
- JP3098893B2 JP3098893B2 JP14461593A JP14461593A JP3098893B2 JP 3098893 B2 JP3098893 B2 JP 3098893B2 JP 14461593 A JP14461593 A JP 14461593A JP 14461593 A JP14461593 A JP 14461593A JP 3098893 B2 JP3098893 B2 JP 3098893B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- refrigerator
- regenerator
- heat storage
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/006—Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/02—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Control Of Temperature (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、蓄熱材を用いて庫内を
保冷する蓄熱式の冷蔵庫に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative refrigerator in which the interior of a refrigerator is kept cool by using a heat storage material.
【0002】[0002]
【従来の技術】近年、深夜電力の有効利用ないし電力需
要のピ−クカットによる平準化等の観点より蓄熱材を利
用して庫内の冷却を行う蓄熱式の冷蔵庫が特開昭63−
58068号公報に示されるごとく、考えられている。2. Description of the Related Art In recent years, a regenerative refrigerator that cools the inside of a refrigerator using a regenerative material has been proposed from the viewpoint of effective use of late-night power or leveling by peak-cutting power demand.
This is considered as disclosed in Japanese Patent No. 58068.
【0003】以下図面を参照しながら、上述した従来の
蓄熱式の冷蔵庫の一例について説明する。An example of the above-described conventional regenerative refrigerator will be described below with reference to the drawings.
【0004】図12は、従来の蓄熱式の冷蔵庫の構造を
示す縦断面図であり、図13は冷凍システム図である。
図12と図13において、1は保冷庫本体で断熱材を内
蔵したキャビネット2と、ドア3と、ドア3とキャビネ
ット2をシ−ルするガスケット14とで構成されてい
る。その内部は、水平に配された中間仕切壁16により
上部の冷凍室17と下部の冷蔵室18との2室に仕切ら
れている。FIG. 12 is a longitudinal sectional view showing the structure of a conventional regenerative refrigerator, and FIG. 13 is a refrigeration system diagram.
In FIGS. 12 and 13, reference numeral 1 denotes a cool box main body, which is composed of a cabinet 2 having a built-in heat insulating material, a door 3, and a gasket 14 for sealing the door 3 and the cabinet 2. The interior is partitioned into two compartments, an upper freezer compartment 17 and a lower refrigerating compartment 18 by an intermediate partition wall 16 arranged horizontally.
【0005】4はコンプレッサでありコンデンサ5を介
して3方電磁弁6に接続される。さらに、この3方電磁
弁6の第1の流出口6aはキャピラリ7、冷却器8及び
アキュムレ−タ13を順次介して前記コンプレッサ4に
接続される。また、3方電磁弁6の第2の流出口6b
は、蓄熱器用キャピラリ10及び内部に蓄熱材15が充
填された蓄熱器10を順次介して前記アキュムレ−タ1
3接続される。さらに、冷却器8と蓄熱器10との間に
は閉ル−プ形サ−モサイホン12が、伝熱経路として設
けられ、この閉ル−プ形サ−モサイホン12の途中に蓄
熱器用電磁弁11が配される。なお、閉ル−プ形サ−モ
サイホン12には、たとえば重力式のものが用いられ、
その閉ル−プ状のパイプの中には、冷媒が封入されてい
る。A compressor 4 is connected to a three-way solenoid valve 6 via a condenser 5. Further, a first outlet 6a of the three-way solenoid valve 6 is connected to the compressor 4 via a capillary 7, a cooler 8, and an accumulator 13 in this order. The second outlet 6b of the three-way solenoid valve 6
The accumulator 1 is sequentially passed through a heat storage capillary 10 and a heat storage 10 in which a heat storage material 15 is filled.
3 are connected. Further, a closed loop type thermosiphon 12 is provided between the cooler 8 and the regenerator 10 as a heat transfer path, and a solenoid valve 11 for the regenerator is provided in the middle of the closed loop type thermosiphon 12. Is arranged. The closed loop type thermosiphon 12 is, for example, a gravity type.
A refrigerant is sealed in the closed loop pipe.
【0006】19は庫内を冷却するための冷却ファンで
あり、冷却器8の前方に設けられた冷凍室上部吹出口2
0及び冷凍室下部吹出口21から冷気を送出することが
できるようにしている。前記中間仕切壁16の冷凍室側
前方には冷凍室吸込口22が設けられ、ここから冷却器
8至る冷凍室中間ダクト23が水平に形成されている。Reference numeral 19 denotes a cooling fan for cooling the inside of the refrigerator.
0 and the freezer compartment lower outlet 21 can send out cool air. A freezer compartment suction port 22 is provided in front of the intermediate partition wall 16 on the freezer compartment side, and a freezer intermediate duct 23 extending from the freezer inlet 22 to the cooler 8 is formed horizontally.
【0007】また、冷却器8の奥には、冷蔵庫背面部に
沿って冷却ファン19から冷蔵室吹出口24に至る冷蔵
室ダクト25が垂直に設けている。この冷蔵室吹出口2
4は、ダンパ−26により開閉可能としている。前記中
間仕切壁16の冷蔵室側前方には、冷蔵室吸込口27が
設けられ、ここから前記冷却器8に至る冷蔵室中間ダク
ト28が水平に形成されている。この冷蔵室中間ダクト
28の出口には、ガラス管ヒ−タ29が配され、その上
方に配されている冷却器8の除霜を可能としている。[0007] Further, a refrigerator duct 25 extending from the cooling fan 19 to the refrigerator outlet 24 is provided vertically along the back of the refrigerator 8 along the back of the refrigerator. This refrigerator compartment outlet 2
4 can be opened and closed by a damper 26. A refrigerator compartment suction port 27 is provided in front of the intermediate partition wall 16 on the refrigerator compartment side, and a refrigerator compartment intermediate duct 28 extending from the refrigerator compartment inlet 27 to the cooler 8 is formed horizontally. A glass tube heater 29 is arranged at the outlet of the refrigerator compartment intermediate duct 28, and enables the defroster 8 disposed above the glass tube heater 29 to be defrosted.
【0008】以上の様に構成された冷蔵庫について図1
2と図13を用いてその動作を説明する。FIG. 1 shows a refrigerator constructed as described above.
The operation will be described with reference to FIGS.
【0009】通常冷却運転は、3方電磁弁6のコイルに
通電せず、第1の流出口6aが連通させ、コンプレッサ
4からコンデンサ5、3方電磁弁6及びキャピラリ7を
順次介して冷却器8に至り、この冷却器8からアキュム
レ−タ13を介して前記コンプレッサ4に至る冷媒流路
が構成し、冷却器8により庫内を冷却する。In the normal cooling operation, the coil of the three-way solenoid valve 6 is not energized, the first outlet 6a is connected, and the compressor 4 is sequentially connected to the cooler through the condenser 5, the three-way solenoid valve 6 and the capillary 7. The refrigerant flow from the cooler 8 to the compressor 4 via the accumulator 13 is formed. The cooler 8 cools the inside of the refrigerator.
【0010】これに対して、蓄熱運転は、3方電磁弁6
のコイルに通電することで、第2の流出口6bが連通さ
せ、コンプレッサ4からコンデンサ5、3方電磁弁6及
びキャピラリ7を順次介して蓄熱器10に至り、この蓄
熱器10からアキュムレ−タ13を介して前記コンプレ
ッサ4に至る冷媒流路が構成し蓄熱器10内の蓄熱材1
5の冷却を行う。On the other hand, the heat storage operation is performed by the three-way solenoid valve 6.
When the coil is energized, the second outlet 6b communicates with the coil 4 to reach the regenerator 10 via the condenser 5, the three-way solenoid valve 6 and the capillary 7 in sequence, and the accumulator from the regenerator 10. A refrigerant flow path to the compressor 4 through the refrigerant storage 13 constitutes the heat storage material 1 in the heat storage 10.
5 is cooled.
【0011】また、蓄熱冷却運転は、蓄熱器用電磁弁1
1を開けることで閉ル−プ形サ−モサイホン12によ
り、蓄熱器10から冷却器8に放冷が行われ、この熱を
利用して庫内を冷却する。The heat storage and cooling operation is performed by the heat storage solenoid valve 1.
By opening 1, the closed loop type thermosiphon 12 cools the regenerator 10 to the cooler 8 and uses the heat to cool the inside of the refrigerator.
【0012】そして、各運転を図示していないタイマ作
用にて制御する。電力需要の少ない夜間(23時から翌
日の7時まで)にタイマ作用にて、蓄熱運転と通常冷却
運転を交互に行うことにより庫内温度は設定温度に保ち
ながら蓄熱材15を充分冷却しておき、昼間の電力需要
がピ−クの時間帯(13時から16時まで)の3時間に
おいては、大きな電力を必要とする通常冷却運転に代え
て定時間蓄熱冷却運転を行い庫内温度を保つ。Each operation is controlled by a timer function (not shown). During the night when power demand is low (from 23:00 to 7:00 of the next day), the heat storage operation and the normal cooling operation are alternately performed by the timer operation, so that the heat storage material 15 is sufficiently cooled while keeping the internal temperature at the set temperature. For three hours during peak hours (13:00 to 16:00) during the daytime power demand, constant-time regenerative cooling operation is performed instead of normal cooling operation requiring a large amount of electric power to reduce the temperature in the refrigerator. keep.
【0013】また冷却器8の除霜は、コンプレッサ4の
運転時間を積算し積算時間が任意時間になると、ガラス
管ヒ−タ29に通電し除霜を行う。除霜回数は、1日に
2回程度になるよう任意時間を設定している。The defrosting of the cooler 8 is performed by integrating the operation time of the compressor 4 and, when the accumulated time reaches an arbitrary time, energizes the glass tube heater 29 to perform defrosting. An arbitrary time is set so that the number of times of defrosting is about twice a day.
【0014】[0014]
【発明が解決しようとする課題】しかしながら上記の様
な構成では、蓄熱冷却運転の対象に冷凍室が含まれるの
で、融解潜熱量が小さい融解温度が−30℃近傍の蓄熱
材を使用する必要があり、冷蔵庫の有効内容積が大きく
減少してしまう。また、融解温度が−30℃近傍の蓄熱
材を凍結させるには蒸発温度が−40℃近傍となり、コ
ンプレッサの冷凍効率が通常冷却運転時より悪くなるこ
とで消費電力量が増大してしまう。However, in the above configuration, since the freezing compartment is included in the heat storage / cooling operation, it is necessary to use a heat storage material having a small latent heat of fusion and having a melting temperature of around -30 ° C. Yes, the effective internal volume of the refrigerator is greatly reduced. In addition, in order to freeze the heat storage material having a melting temperature of around -30 ° C, the evaporation temperature becomes around -40 ° C, and the refrigeration efficiency of the compressor becomes worse than in the normal cooling operation, so that the power consumption increases.
【0015】さらに、蓄熱器を冷凍室上部に配置してい
るため蓄熱した熱を冷蔵庫外に放熱してしまい、夜間電
力をムダにしてしまうという課題を有していた。Further, since the regenerator is disposed above the freezer compartment, the stored heat is radiated to the outside of the refrigerator, thereby causing a problem of wasting electric power at night.
【0016】本発明は上記課題を解決するもので、蓄熱
冷却運転の対象が冷蔵温度部分のみであるので融解潜熱
量が大きい蓄熱材が使用でき冷蔵庫の有効内容積の減少
が極力抑えられ、また蓄熱材を凍結させる時の蒸発温度
は通常運転時と同等以上にすることができ消費電力量の
増大がない。さらに蓄熱器を冷蔵室内に設置しているこ
とで蓄熱器からの放熱は冷蔵室の冷却に利用できるので
電力の有効利用ができる冷蔵庫を提供するものである。The present invention solves the above-mentioned problems. Since the object of the heat storage cooling operation is only the refrigeration temperature portion, a heat storage material having a large latent heat of fusion can be used, and the decrease in the effective internal volume of the refrigerator can be suppressed as much as possible. The evaporation temperature at the time of freezing the heat storage material can be equal to or higher than that during normal operation, and there is no increase in power consumption. Furthermore, since the heat storage device is installed in the refrigerator compartment, the heat radiation from the heat storage device can be used for cooling the refrigerator room, so that a refrigerator that can effectively use electric power is provided.
【0017】[0017]
【課題を解決するための手段】上記課題を解決するため
に本発明の冷蔵庫は冷却器と冷蔵室内に配置した内部に
蓄熱材を有する蓄熱器とを並列または直列に接続した冷
凍サイクルと、前記蓄熱器内の冷気を送出する蓄熱器フ
ァンと、前記冷却器と前記蓄熱器を連通する通風ダクト
と、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱運転
と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運転の
時間制御を行う時間制御手段とを備え、前記蓄熱材の融
解温度は、冷凍室温度よりも高い温度とし、前記蓄熱冷
却運転の対象負荷熱量は冷凍室以外の室全てとし、前記
蓄熱器ファンを冷凍室温度及び冷蔵室温度により制御し
前記蓄熱器を通過する戻り冷気の全てを前記冷却器に戻
す。In order to solve the above-mentioned problems, a refrigerator according to the present invention comprises a refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material disposed inside a refrigerator compartment are connected in parallel or in series. A regenerator fan that sends out cool air in the regenerator, a ventilation duct that communicates the cooler with the regenerator, and a heat storage operation that stores heat in the regenerator at any time and heat stored in the refrigerator. Time control means for performing time control of the heat storage cooling operation for cooling, the melting temperature of the heat storage material is set to a temperature higher than the freezing room temperature, and the target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room. The regenerator fan is controlled by the temperature of the freezer compartment and the temperature of the refrigerating compartment, and all of the returned cool air passing through the regenerator is returned to the cooler.
【0018】さらに、冷却器と冷蔵室内に配置した内部
に蓄熱材を有する蓄熱器とを並列または直列に接続した
冷凍サイクルと、前記蓄熱器内の冷気を送出する蓄熱器
ファンと、前記蓄熱器と冷蔵室を連通する通風ダクト
と、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱運転
と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運転の
時間制御を行う時間制御手段とを備え、前記蓄熱材の融
解温度は、冷凍室温度よりも高い温度とし、前記蓄熱冷
却運転の対象負荷熱量は冷凍室以外の室全てとし、前記
蓄熱器ファンを冷蔵室温度により制御し前記蓄熱器を通
過する戻り冷気の全てを前記冷蔵室に戻す。Further, a refrigerating cycle in which a cooler and a heat accumulator having a heat accumulating material disposed in a refrigerator compartment are connected in parallel or in series, a heat accumulator fan for sending cool air in the heat accumulator, and a heat accumulator fan. And a ventilation duct communicating the refrigerator compartment, and a time control means for performing time control of a heat storage operation for storing heat in the heat storage device and a heat storage cooling operation for cooling the refrigerator with the stored heat in an arbitrary time zone, The melting temperature of the heat storage material is set to a temperature higher than the freezing room temperature, the target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room, the regenerator fan is controlled by the refrigerating room temperature and passes through the regenerator. Return all of the returned cold air to the refrigerator compartment.
【0019】さらに、冷却器と冷蔵室内に配置した内部
に蓄熱材を有する蓄熱器とを並列または直列に接続した
冷凍サイクルと、前記蓄熱器内の冷気を送出する蓄熱器
ファンと、前記冷却器と前記蓄熱器と冷蔵室を連通する
通風ダクトと、任意の時間帯に前記蓄熱器に熱を蓄熱す
る蓄熱運転と蓄熱した熱により冷蔵庫内を冷却する蓄熱
冷却運転の時間制御を行う時間制御手段とを備え、前記
蓄熱材の融解温度は、冷凍室温度よりも高い温度とし、
前記蓄熱冷却運転の対象負荷熱量は冷凍室以外の室全て
とし、前記蓄熱器ファンを冷凍室温度及び冷蔵室温度に
より制御し前記蓄熱器を通過する戻り冷気を前記冷却器
と前記冷蔵室に任意の比率で戻す。Further, a refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material disposed in a refrigerator compartment are connected in parallel or in series, a heat accumulator fan for sending out cool air in the heat accumulator, And a ventilation duct communicating the regenerator with the refrigerating compartment; and a time control means for performing time control of a heat storage operation for storing heat in the regenerator and a heat storage cooling operation for cooling the refrigerator with the stored heat during an arbitrary time period. Wherein the melting temperature of the heat storage material is a temperature higher than the freezing room temperature,
The target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room, and the regenerator fan is controlled by the freezing room temperature and the refrigerating room temperature, and return cold air passing through the regenerator is freely supplied to the cooler and the refrigerating room. Return at the ratio of
【0020】さらに、冷却器と冷蔵室内に配置した内部
に蓄熱材を有する蓄熱器とを並列または直列に接続した
冷凍サイクルと、前記蓄熱器内の冷気を送出する蓄熱器
ファンと、前記冷却器と前記蓄熱器と冷蔵室を連通する
通風ダクトと、前記通風ダクト内に配置した風路切替ダ
ンパと、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱
運転と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運
転の時間制御を行う時間制御手段とを備え、前記蓄熱材
の融解温度は、冷凍室温度よりも高い温度とし、前記蓄
熱冷却運転の対象負荷熱量は冷凍室以外の室全てとし、
前記蓄熱器ファンを冷凍室温度及び冷蔵室温度により制
御し前記風路切替ダンパで前記蓄熱器を通過する戻り冷
気をコンプレッサ運転時は前記冷却器にコンプレッサ停
止時は前記冷蔵室に戻すべく切り替えるものである。Further, a refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material disposed in a refrigerator compartment are connected in parallel or in series, a heat accumulator fan for sending cool air in the heat accumulator, and the cooler And a ventilation duct communicating the regenerator with the refrigerator compartment, an air path switching damper disposed in the ventilation duct, and a heat storage operation for storing heat in the regenerator and heat stored in the refrigerator during an arbitrary time period. Time control means for performing time control of the heat storage cooling operation for cooling, the melting temperature of the heat storage material is set to a temperature higher than the freezing room temperature, and the target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room. ,
The regenerator fan is controlled by the freezing room temperature and the refrigerating room temperature, and the return air passing through the regenerator is switched by the air path switching damper to switch to the cooler when the compressor is operating and to return to the refrigerating room when the compressor is stopped. It is.
【0021】[0021]
【作用】本発明は上記した構成によって、融解潜熱量が
大きい蓄熱材が使用でき冷蔵庫の有効内容積の減少が極
力抑えられ、また消費電力量の増大がなく、蓄熱した熱
を有効に利用できる。According to the present invention, the heat storage material having a large amount of latent heat of fusion can be used, the decrease in the effective internal volume of the refrigerator can be suppressed as much as possible, and the stored heat can be used effectively without increasing the power consumption. .
【0022】さらに蓄熱器ファンを冷蔵室温度で制御し
蓄熱器を通過した冷気を冷蔵室のみに循環させるので冷
蔵室温度の均一化が図れる。Further, since the regenerator fan is controlled at the temperature of the refrigerating compartment and the cool air passing through the regenerator is circulated only to the refrigerating compartment, the temperature of the refrigerating compartment can be made uniform.
【0023】さらに蓄熱器を通過した冷気を冷却器と冷
蔵室に戻すことができるので、蓄熱器ファンの送風量が
増加し、蓄熱器の冷却能力が増大させることができる。Further, since the cool air that has passed through the heat accumulator can be returned to the cooler and the refrigerator compartment, the amount of air blown by the heat accumulator fan increases, and the cooling capacity of the heat accumulator can be increased.
【0024】さらに風路切替ダンパで蓄熱器を通過する
戻り冷気をコンプレッサ運転時は冷却器にコンプレッサ
停止時は冷蔵室に戻すべく切り替えるので、蓄熱器の冷
却能力に関係なく簡単な制御方法で冷蔵室温度の均一化
が図れる。Further, since the return air passing through the regenerator is switched by the air path switching damper so as to return to the cooler when the compressor is operating and to return to the refrigerating chamber when the compressor is stopped, refrigeration is performed by a simple control method regardless of the cooling capacity of the regenerator. Room temperature can be made uniform.
【0025】[0025]
【実施例】以下本発明の一実施例の冷蔵庫について図面
を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigerator according to one embodiment of the present invention will be described below with reference to the drawings.
【0026】図1は本発明の一実施例における冷蔵庫の
機能ブロック図、図2は本発明の一実施例における冷凍
システム図であり、図3は本発明の一実施例における要
部の電気回路図、図4は本発明の一実施例におけるフロ
−チャ−ト、図5は本発明の一実施例における室温に応
じた一日の運転状態図である。FIG. 1 is a functional block diagram of a refrigerator in one embodiment of the present invention, FIG. 2 is a diagram of a refrigeration system in one embodiment of the present invention, and FIG. 3 is an electric circuit of a main part in one embodiment of the present invention. FIG. 4 is a flowchart in one embodiment of the present invention, and FIG. 5 is a one-day operation state diagram according to room temperature in one embodiment of the present invention.
【0027】図1及び図3において、30は保冷庫本体
で断熱材を内蔵したキャビネット2と、ドア3と、ドア
3とキャビネット2をシ−ルするガスケット14とで構
成されている。その内部は、水平に配された断熱区画壁
33により上部の冷凍室17と下部の冷蔵室18との2
室に仕切られ、断熱区画壁33内には冷蔵室吸込口35
を形成している。In FIG. 1 and FIG. 3, reference numeral 30 denotes a cool box main body composed of a cabinet 2 having a built-in heat insulating material, a door 3, and a gasket 14 for sealing the door 3 and the cabinet 2. The interior thereof is divided into two sections by the horizontally arranged heat-insulating partition wall 33 and the upper freezer compartment 17 and the lower refrigerator compartment 18.
And a refrigerator compartment suction port 35 in the heat insulation partition wall 33.
Is formed.
【0028】62は冷凍室17内に設けた冷却室で、冷
却室62内には冷却器8と冷却ファン19と冷却器の除
霜を行うヒ−タ58を内装し、36は冷凍室吸込口であ
る。Numeral 62 denotes a cooling room provided in the freezing room 17, in which a cooler 8, a cooling fan 19 and a heater 58 for defrosting the cooler are provided. Mouth.
【0029】26はダンパ−で、冷却ファン19により
冷蔵室ダクト25に送風された冷気の冷蔵室18への吐
出送風量を調整し、冷蔵室18を設定温度に制御するも
のである。Numeral 26 denotes a damper for controlling the amount of cold air blown into the refrigerator compartment duct 25 by the cooling fan 19 to the refrigerator compartment 18 to control the refrigerator compartment 18 to a set temperature.
【0030】31は蓄熱器であり、内部に蓄熱材32を
充填している蓄熱容器34と蓄熱容器34内の蓄熱材3
2を冷却する蓄熱器冷却パイプ38と、蓄熱器31内の
冷気を送風する蓄熱ファン39と蓄熱材温度センサ57
を配置している。Reference numeral 31 denotes a heat storage unit, and a heat storage container 34 in which a heat storage material 32 is filled and a heat storage material 3 in the heat storage container 34.
2, a heat storage fan 39 for blowing cool air in the heat storage 31, and a heat storage material temperature sensor 57.
Has been arranged.
【0031】37は蓄熱器31に形成された蓄熱器吸込
口であり、56は蓄熱器31内に取付られた蓄熱材温度
センサ57により蓄熱材32温度を検知する蓄熱温度検
知手段であり、55は冷蔵室背面に設けた蓄熱器31と
冷却室62を連通した通風ダクトである。Reference numeral 37 denotes a heat storage unit suction port formed in the heat storage unit 31, reference numeral 56 denotes a heat storage temperature detecting means for detecting the temperature of the heat storage material 32 by a heat storage material temperature sensor 57 mounted in the heat storage unit 31, and 55. Is a ventilation duct which connects the heat storage unit 31 and the cooling chamber 62 provided on the back of the refrigerator compartment.
【0032】63は除霜開始判定手段であり、室温検知
手段40の信号に応じて冷却器8の除霜開始時間を判定
する。Numeral 63 denotes a defrosting start judging means for judging a defrosting start time of the cooler 8 in accordance with a signal from the room temperature detecting means 40.
【0033】電気回路図のうち本発明の要旨に関係した
部分のみ示されており、46は時間制御手段としてのC
PUで、周知の如く図示しない記憶回路に記憶されたプ
ログラムにより動作するもので、現在の時刻を出力する
時計回路45と室温検知手段40、冷凍庫内温度検知手
段44及び冷蔵庫内温度検知手段75からの出力信号に
よってリレ−47、49、51、53、59、66の通
電制御を行う。即ち、各リレ−47、49、51、5
3、59、66に接続された各トランジスタ48、5
0、52、54、60、67のベ−スにハイレベルの信
号を与えることにより各リレ−47、49、51、5
3、59、66に通電される。Only the parts of the electric circuit diagram relevant to the gist of the present invention are shown, and reference numeral 46 denotes C as time control means.
The PU operates according to a program stored in a storage circuit (not shown) as is well known, and includes a clock circuit 45 that outputs the current time, a room temperature detection unit 40, a freezer temperature detection unit 44, and a refrigerator temperature detection unit 75. Control of the relays 47, 49, 51, 53, 59 and 66 is performed by the output signal of. That is, each relay 47, 49, 51, 5
3, 59, 66 connected to each of the transistors 48, 5
By giving a high level signal to the bases 0, 52, 54, 60, 67, each relay 47, 49, 51, 5,
3, 59 and 66 are energized.
【0034】リレ−47が通電されるとコンプレッサ4
が運転する。リレ−49が通電されると電磁弁64が作
動してコンデンサ5と冷却器8が連通し、リレ−51が
通電されると電磁弁65が作動してコンデンサ5と蓄熱
器31が連通する。リレ−53が通電されると冷却ファ
ン19が運転する。リレ−59が通電されるとヒ−タ5
8により冷却器8を除霜し、リレ−66が通電されると
蓄熱器ファン39が運転する。When the relay 47 is energized, the compressor 4
Drives. When the relay 49 is energized, the solenoid valve 64 operates to communicate the condenser 5 with the cooler 8. When the relay 51 is energized, the solenoid valve 65 operates to communicate the capacitor 5 and the heat storage 31. When the relay 53 is energized, the cooling fan 19 operates. When the relay 59 is energized, the heater 5
8, the cooler 8 is defrosted, and when the relay 66 is energized, the regenerator fan 39 operates.
【0035】また、冷凍庫内温度検知手段44は冷凍室
温度センサ43により検出した値が設定温度以上の時に
時間制御手段46に信号を出力する。また、冷蔵庫内温
度検知手段75は冷蔵室温度センサ74により検出した
値が設定温度以上の時に時間制御手段46に信号を出力
する。また、室温検知手段40は、冷蔵庫の周囲室温を
室温度センサ41からの信号をA/D変換器42により
出力電圧をデジタル化して時間制御手段46に信号を出
力する。また、蓄熱温度検知手段56は蓄熱材温度セン
サ57により検出した値が設定温度以上の時に時間制御
手段46に信号を出力する。The freezer temperature detecting means 44 outputs a signal to the time control means 46 when the value detected by the freezer compartment temperature sensor 43 is equal to or higher than the set temperature. The refrigerator temperature detecting means 75 outputs a signal to the time control means 46 when the value detected by the refrigerator temperature sensor 74 is equal to or higher than the set temperature. Further, the room temperature detecting means 40 digitizes an output voltage of the signal from the room temperature sensor 41 by the A / D converter 42 and outputs a signal to the time control means 46 for the room temperature around the refrigerator. Further, the heat storage temperature detecting means 56 outputs a signal to the time control means 46 when the value detected by the heat storage material temperature sensor 57 is equal to or higher than the set temperature.
【0036】図2において、4はコンプレッサでありコ
ンデンサ5を介して電磁弁64と電磁弁65に接続され
る。さらに、電磁弁64はキャピラリ7、冷却器8及び
アキュムレ−タ13を順次介して前記コンプレッサ4に
接続される。また、電磁弁65は、蓄熱器用キャピラリ
9及び蓄熱器31内に配置した蓄熱器冷却パイプ38を
順次介して前記アキュムレ−タ13接続される。In FIG. 2, reference numeral 4 denotes a compressor, which is connected to the solenoid valve 64 and the solenoid valve 65 via the condenser 5. Further, the solenoid valve 64 is connected to the compressor 4 via the capillary 7, the cooler 8 and the accumulator 13 in this order. The solenoid valve 65 is connected to the accumulator 13 via a regenerator capillary 9 and a regenerator cooling pipe 38 arranged in the regenerator 31 in order.
【0037】以上の様に構成された冷蔵庫について図1
と図2と図3と図4及び図5を用いてその動作を説明す
る。FIG. 1 shows a refrigerator constructed as described above.
The operation will be described with reference to FIGS. 2, 3, 4, and 5.
【0038】通常冷却運転は、冷却器8を用いて庫内を
冷却し設定温度に保冷するものである。即ち、CPU4
6によりリレ−49をONしリレ−66をOFFとする
ことで冷媒流路は、冷却器8を連通する側(ステップS
1)、蓄熱器ファン39は停止(ステップS2)とな
り、庫内温度が設定値以上の時は冷凍庫内温度検知手段
44からの信号によりCPU46は、リレ−47及び5
3をONとしコンプレッサ4及び冷却ファン19を運転
する(ステップS3)ことで冷却器8からの冷気は冷凍
室17については冷凍室上部吹出口20から冷凍室17
内を経て冷凍室吸込口36を循環し、冷蔵室18につい
ては冷蔵室ダクト25、ダンパ26、冷蔵室18内を経
て冷蔵室吸込口35を循環することで各庫内を設定温度
以下に冷却する。In the normal cooling operation, the inside of the refrigerator is cooled by using the cooler 8 and kept at a set temperature. That is, CPU4
6, the relay 49 is turned on and the relay 66 is turned off, so that the refrigerant flow path is connected to the cooler 8 (step S5).
1), the regenerator fan 39 is stopped (step S2), and when the internal temperature is equal to or higher than the set value, the signal from the freezer internal temperature detecting means 44 causes the CPU 46 to operate the relays 47 and 5
By turning on the compressor 3 and operating the compressor 4 and the cooling fan 19 (step S3), the cool air from the cooler 8 is supplied to the freezer compartment 17 from the upper outlet 20 of the freezer compartment 17 for the freezer compartment 17.
The inside of the refrigerator is cooled below the set temperature by circulating through the inside of the refrigerator compartment suction port 36 and circulating through the refrigerator compartment duct 25, the damper 26, and the refrigerator compartment 18 through the refrigerator compartment suction port 35. I do.
【0039】そして、庫内温度が設定値以下になると冷
凍庫内温度検知手段44の信号がOFFとなりCPU4
6は、リレ−47及び53をOFFとし、冷媒と冷気の
循環を停止する(ステップS4)。以上の動作を繰り返
すことにより庫内を設定温度に保冷する。When the temperature in the refrigerator becomes equal to or lower than the set value, the signal of the temperature detector 44 in the refrigerator becomes OFF and the CPU 4
6 turns off the relays 47 and 53 and stops the circulation of the refrigerant and the cool air (step S4). By repeating the above operation, the inside of the refrigerator is kept cool to the set temperature.
【0040】蓄熱運転は、夜間の電力需要が低い所定の
時間帯(23時から翌日の7時まで)において(ステッ
プS5)、蓄熱器31内に充填されている蓄熱材32に
夜間の所定の時間帯の電力を熱に代えて蓄熱するもので
ある。即ち、庫内温度が設定値以上の時は冷凍庫内温度
検知手段44からの信号によりCPU46は、リレ−4
7及び53をONとしコンプレッサ4及び冷却ファン1
9を運転する通常運転を行い(ステップS6)、庫内温
度が設定値以下になると冷凍庫内温度検知手段44の信
号にからCPU46によりリレ−51及び47をONと
することで冷媒流路を、蓄熱器31が連通する側に保持
し、コンプレッサ4を運転することで冷媒を蓄熱器31
内の蓄熱器冷却パイプ38で蒸発させ、蓄熱材32を凍
結させる(ステップS7)。In the heat storage operation, during a predetermined time period during which nighttime power demand is low (from 23:00 to 7:00 of the next day) (step S5), the heat storage material 32 filled in the heat storage device 31 is stored at a predetermined time during the night. The electric power in the time zone is stored instead of heat. That is, when the temperature in the freezer is equal to or higher than the set value, the signal from the freezer temperature detecting means 44 causes the CPU 46 to execute the relay-4
7 and 53 are turned on, the compressor 4 and the cooling fan 1
9 (step S6), and when the temperature in the refrigerator becomes equal to or less than the set value, the CPU 46 turns on the relays 51 and 47 from the signal of the temperature detection means 44 in the freezer so that the refrigerant flow path is The refrigerant is held on the side where the regenerator 31 communicates, and the refrigerant is operated by operating the compressor 4.
The heat storage material 32 is evaporated by the heat storage device cooling pipe 38, and the heat storage material 32 is frozen (step S7).
【0041】また、蓄熱材32の重量としては、春季、
秋季等の低室温(15℃)時における冷蔵温度帯の室を
基準とした重量としておく。即ち、低室温時において昼
間の電力需要が多い所定の時間帯(7時から23時ま
で)の冷蔵室の合計した負荷熱量と同等の熱量を全て蓄
熱できる重量とすることである。The weight of the heat storage material 32 is as follows:
The weight is set based on the room in the refrigerated temperature zone at the time of low room temperature (15 ° C.) such as in autumn. That is, the weight is such that all the heat amount equivalent to the total load heat amount of the refrigerating compartment in a predetermined time zone (from 7:00 to 23:00) when the power demand in the daytime is high at the low room temperature can be stored.
【0042】蓄熱冷却運転は、昼間の電力需要がピ−ク
の時間帯に蓄熱器31が蓄熱した熱を利用して冷凍室以
外の室の戻り空気冷却するものである。即ち、冷凍室内
温度が設定値以上の時は冷凍庫内温度検知手段44から
の信号によりCPU46は、リレ−47、53をONと
しコンプレッサ4、冷却ファン19を運転することで冷
凍室を設定温度以下に冷却する。In the heat storage cooling operation, the heat stored in the heat storage unit 31 during the daytime power demand peak time is used to cool the return air in a room other than the freezing room. That is, when the freezing room temperature is equal to or higher than the set value, the CPU 46 turns on the relays 47 and 53 according to the signal from the freezer temperature detecting means 44 and operates the compressor 4 and the cooling fan 19 to lower the freezing room to the set temperature. Cool.
【0043】また、冷蔵室18の温度調節は蓄熱器ファ
ン39の運転を制御することにより設定温度に制御す
る。冷蔵室内温度が設定以上の時は冷蔵庫内温度検知手
段75からの信号によりCPU46は、リレ−66をO
Nとし(ステップS8)、蓄熱器ファン39を運転する
ことで冷蔵室ダクト25から冷蔵室18内に吐出された
冷気は蓄熱器吸込口37から蓄熱器31内に吸い込ま
れ、冷却されてから通風ダクト55を経て冷却器8に戻
る。これにより冷却器8で冷却する熱量は、冷凍室の負
荷熱量だけとなる。The temperature of the refrigerating compartment 18 is controlled to a set temperature by controlling the operation of the regenerator fan 39. When the temperature in the refrigerator compartment is equal to or higher than the set temperature, the CPU 46 sets the relay 66 to O by a signal from the refrigerator temperature detecting means 75.
N (step S8), and by operating the regenerator fan 39, the cool air discharged from the refrigerating room duct 25 into the refrigerating room 18 is sucked into the regenerator 31 from the regenerator suction port 37, and is cooled before being ventilated. It returns to the cooler 8 via the duct 55. Thus, the amount of heat to be cooled by the cooler 8 is only the amount of heat applied to the freezing compartment.
【0044】そして、庫内温度が設定値以下になると冷
凍庫内温度検知手段44の信号がOFFとなりCPU4
6は、リレ−47、53及び66をOFFとし、コンプ
レッサ及び冷気の循環を停止する。以上の動作を繰り返
すことにより各庫内を設定温度に保冷する。When the internal temperature of the refrigerator falls below the set value, the signal of the freezer internal temperature detecting means 44 is turned off and the CPU 4
6 turns off the relays 47, 53 and 66 and stops the circulation of the compressor and the cool air. By repeating the above operation, the inside of each refrigerator is kept at the set temperature.
【0045】次に、冷却器8の除霜開始時刻の制御方法
について図4及び図5を用いて説明する。Next, a method of controlling the defrosting start time of the cooler 8 will be described with reference to FIGS.
【0046】蓄熱運転の時間は室温により変化する。そ
れは、キャビネット2から侵入する熱量やシステムの冷
凍能力が室温によって変化するためであり蓄熱運転時間
が長い室温の高い夏季等は、任意に設定温度以上である
ことを室温検知手段40から信号を受けた除霜開始判定
手段63が蓄熱運転時間を充分確保するべく昼間におい
て電力需要がピ−クの時間帯を除く時間に冷却器8の除
霜を開始させる。The time of the heat storage operation varies depending on the room temperature. This is because the amount of heat entering from the cabinet 2 and the refrigeration capacity of the system change depending on the room temperature. In summer, when the heat storage operation time is long and the room temperature is high, a signal from the room temperature detecting means 40 that the temperature is arbitrarily set or higher is received. The defrosting start determining means 63 starts defrosting of the cooler 8 during the daytime except for the peak time period in order to secure sufficient heat storage operation time.
【0047】また、蓄熱運転時間が短い室温が低い季節
は、除霜開始判定手段63が電力需要の少ない夜間の所
定の時間帯に冷却器8の除霜を開始させる。In a season in which the heat storage operation time is short and the room temperature is low, the defrost start determination means 63 starts defrosting the cooler 8 in a predetermined time zone at night when power demand is low.
【0048】例えば図5に示す如く、室温が設定温度以
上の時は7時と21時に、室温が設定温度以下の時は2
3時に除霜を開始させる。For example, as shown in FIG. 5, when the room temperature is higher than the set temperature, 7:00 and 21:00, and when the room temperature is lower than the set temperature, 2 hours.
At 3 o'clock, start defrosting.
【0049】次に、各運転の制御方法を説明する。時間
制御手段46により夜間電力需要が低い所定の時間帯
(23時から翌日の7時まで)23時から通常冷却運転
と蓄熱運転の交互運転をする。即ち、庫内温度が設定値
以上の時は通常冷却運転で庫内を冷却し、庫内温度が設
定値以下の時は蓄熱運転により電力を熱に代えて蓄熱す
る(ステップS5)制御を行い、蓄熱温度検知手段56
により蓄熱材32の凍結終了を検知し蓄熱運転を終了す
る(ステップS10)。Next, a control method for each operation will be described. The time control means 46 performs the alternate operation of the normal cooling operation and the heat storage operation from 23:00 in a predetermined time period during which nighttime power demand is low (from 23:00 to 7:00 the next day). That is, when the inside temperature is equal to or higher than the set value, the inside is cooled by the normal cooling operation, and when the inside temperature is equal to or less than the set value, the heat is stored in the heat storage operation instead of heat (step S5). , Heat storage temperature detecting means 56
Detects the end of freezing of the heat storage material 32, and ends the heat storage operation (step S10).
【0050】また、昼間の負荷量に対しては、室温検知
手段40により検知した前日の昼間の平均室温より時間
制御手段46が推測する。The daytime load is estimated by the time control means 46 from the average daytime room temperature of the day before detected by the room temperature detection means 40.
【0051】この推測値より、時間制御手段46が少な
くとも昼間の電力需要がピ−クの時間帯(13時から1
6時)を含むように蓄熱冷却運転を開始する(ステップ
S11)。そして、蓄熱温度検知手段56が蓄熱材32
が設定温度以上になり蓄熱器31の冷却能力がなくなっ
たことの信号を時間制御手段46に送出することで蓄熱
冷却運転が終了する。From this estimated value, the time control means 46 determines that at least the daytime power demand is in the peak time zone (13:00 from 13:00).
6:00) is started (step S11). Then, the heat storage temperature detecting means 56
Is sent to the time control means 46, indicating that the cooling capacity of the heat accumulator 31 has been lost due to the temperature exceeding the set temperature.
【0052】例えば図5に示す如く、蓄熱冷却運転の時
間は室温30℃の場合は7時間であり、室温15℃の場
合は16時間となる。For example, as shown in FIG. 5, the time of the heat storage cooling operation is 7 hours when the room temperature is 30 ° C., and 16 hours when the room temperature is 15 ° C.
【0053】以上のように本実施例によれば、冷却器と
冷蔵室内に配置した内部に蓄熱材を有する蓄熱器とを並
列または直列に接続した冷凍サイクルと、前記蓄熱器内
の冷気を送出する蓄熱器ファンと、前記冷却器と前記蓄
熱器を連通する通風ダクトと、任意の時間帯に前記蓄熱
器に熱を蓄熱する蓄熱運転と蓄熱した熱により冷蔵庫内
を冷却する蓄熱冷却運転の時間制御を行う時間制御手段
とを備え、前記蓄熱材の融解温度は、冷凍室温度よりも
高い温度とし、前記蓄熱冷却運転の対象負荷熱量は冷凍
室以外の室全てとし、前記蓄熱器ファンを冷凍室温度及
び冷蔵室温度により制御し前記蓄熱器を通過する戻り冷
気の全てを前記冷却器に戻すので融解潜熱量が大きい蓄
熱材が使用でき冷蔵庫の有効内容積の減少が極力抑えら
れ、また消費電力量の増大がなく、蓄熱した熱を有効に
利用できる。As described above, according to the present embodiment, the refrigerating cycle in which the cooler and the heat accumulator having the heat accumulating material disposed inside the refrigerator compartment are connected in parallel or in series, and the cool air in the heat accumulator is sent out. A regenerator fan, a ventilation duct communicating the cooler with the regenerator, and a regenerative cooling operation for storing heat in the regenerator in an arbitrary time zone and a regenerative cooling operation for cooling the refrigerator with the stored heat. Time control means for performing control, the melting temperature of the heat storage material is set to a temperature higher than the freezing room temperature, the target heat load of the heat storage cooling operation is set to all the rooms other than the freezing room, and the regenerator fan is frozen. Since all of the return cold air passing through the heat accumulator is controlled by the room temperature and the refrigerator temperature and returned to the cooler, a heat storage material having a large latent heat of fusion can be used, and the decrease in the effective internal volume of the refrigerator is suppressed as much as possible, and the consumption is reduced. Electric power There is no increase, it is possible to effectively utilize the stored heat.
【0054】次に本発明の他の実施例の冷蔵庫について
図6及び図7を参照しながら説明する。なお従来及び上
述の実施例と同一の構成には同一符号を付して、詳細な
説明を省略する。Next, a refrigerator according to another embodiment of the present invention will be described with reference to FIGS. The same components as those in the conventional and the above-described embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0055】蓄熱冷却運転は、昼間の電力需要がピ−ク
の時間帯に蓄熱器31が蓄熱した熱を利用して冷蔵室1
8を冷却するものである。即ち、冷蔵室18の温度調節
は蓄熱器ファン39の運転を制御することにより設定温
度に制御する。冷凍室17の温度に関係なく冷蔵室内温
度が設定以上の時は冷蔵庫内温度検知手段75からの信
号によりCPU46は、リレ−66をONとし(ステッ
プS8)、蓄熱器ファン39を運転することで冷蔵室1
8内空気は蓄熱器吸込口37から蓄熱器31内に吸い込
まれ、冷却されてから冷蔵室背面に形成した蓄熱器31
と冷蔵室18を連通させた通風ダクト70を経て冷蔵室
18内を循環する。これにより冷蔵室18温度はコンプ
レッサ4が停止している時でも設定値より高い場合は蓄
熱器で冷却ができ温度の均一化が図れる。In the heat storage cooling operation, the heat stored in the heat storage unit 31 is used during the peak time of daytime power demand, and the refrigerator compartment 1 is used.
8 is to be cooled. That is, the temperature of the refrigerating compartment 18 is controlled to a set temperature by controlling the operation of the regenerator fan 39. When the temperature of the refrigerator compartment is equal to or higher than the set temperature regardless of the temperature of the freezer compartment 17, the CPU 46 turns on the relay 66 in response to a signal from the refrigerator temperature detecting means 75 (step S8), and operates the regenerator fan 39. Cold room 1
The air inside 8 is sucked into the heat accumulator 31 from the heat accumulator suction port 37 and cooled, and then the heat accumulator 31 formed on the back of the refrigerator compartment is cooled.
The air circulates in the refrigerator compartment 18 through a ventilation duct 70 communicating the refrigerator compartment 18 with the refrigerator compartment 18. Thereby, even if the temperature of the refrigerator compartment 18 is higher than the set value even when the compressor 4 is stopped, the regenerator can cool the refrigerator compartment 18 and make the temperature uniform.
【0056】以上のように本実施例によれば、冷却器と
冷蔵室内に配置した内部に蓄熱材を有する蓄熱器とを並
列または直列に接続した冷凍サイクルと、前記蓄熱器内
の冷気を送出する蓄熱器ファンと、前記蓄熱器と冷蔵室
を連通する通風ダクトと、任意の時間帯に前記蓄熱器に
熱を蓄熱する蓄熱運転と蓄熱した熱により冷蔵庫内を冷
却する蓄熱冷却運転の時間制御を行う時間制御手段とを
備え、前記蓄熱材の融解温度は、冷凍室温度よりも高い
温度とし、前記蓄熱冷却運転の対象負荷熱量は冷凍室以
外の室全てとし、前記蓄熱器ファンを冷蔵室温度により
制御し前記蓄熱器を通過する戻り冷気の全てを前記冷蔵
室に戻すので、蓄熱器ファンを冷蔵室温度で制御し蓄熱
器を通過した冷気を冷蔵室のみに循環させるので冷蔵室
温度の均一化が図れる。As described above, according to the present embodiment, a refrigerating cycle in which a cooler and a heat accumulator having a heat accumulating material disposed inside a refrigerator compartment are connected in parallel or in series, and cool air in the heat accumulator is sent out. Regenerator fan, a ventilation duct communicating the regenerator with the refrigerating compartment, and a heat storage operation for storing heat in the regenerator in an arbitrary time zone and a time control for a regenerative cooling operation for cooling the refrigerator with the stored heat. The temperature of the heat storage material is higher than the freezing room temperature, the target load heat amount of the heat storage cooling operation is all the rooms other than the freezing room, and the regenerator fan is a refrigerating room. Since all of the return cold air passing through the regenerator is controlled by the temperature and returned to the refrigerating compartment, the regenerator fan is controlled at the refrigerating compartment temperature, and the cool air passing through the regenerator is circulated only to the refrigerating compartment, so that the refrigerating compartment temperature is reduced. Diagram of uniformity That.
【0057】次に本発明の他の実施例の冷蔵庫について
図8を参照しながら説明する。なお従来及び上述の実施
例と同一の構成には同一符号を付して、詳細な説明を省
略する。Next, a refrigerator according to another embodiment of the present invention will be described with reference to FIG. The same components as those in the conventional and the above-described embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0058】蓄熱冷却運転は、昼間の電力需要がピ−ク
の時間帯に蓄熱器31が蓄熱した熱を利用して冷凍室以
外の室の戻り空気冷却するものである。即ち、冷凍室内
温度が設定値以上の時は冷凍庫内温度検知手段44から
の信号によりCPU46は、リレ−47、53をONと
しコンプレッサ4、冷却ファン19を運転することで冷
凍室を設定温度以下に冷却する。In the heat storage cooling operation, the heat stored in the heat storage unit 31 during the daytime power demand peaks is used to cool the return air in a room other than the freezing room. That is, when the freezing room temperature is equal to or higher than the set value, the CPU 46 turns on the relays 47 and 53 according to the signal from the freezer temperature detecting means 44 and operates the compressor 4 and the cooling fan 19 to lower the freezing room to the set temperature. Cool.
【0059】また、冷蔵室18の温度調節は蓄熱器ファ
ン39の運転を制御することにより設定温度に制御す
る。冷蔵室内温度が設定以上の時は冷蔵庫内温度検知手
段75からの信号によりCPU46は、リレ−66をO
Nとし(ステップS8)、蓄熱器ファン39を運転する
ことで冷蔵室ダクト25及び通風ダクト71から冷蔵室
18内に吐出された冷気は蓄熱器吸込口37から蓄熱器
31内に吸い込まれ、冷却されてから蓄熱器31と冷蔵
室18及び冷却器8を連通させた通風ダクト71を経て
通風ダクト71の冷却器8及び冷蔵室18への開口面積
の比率で冷却器8及び冷蔵室18に戻る。これにより蓄
熱器ファン39による冷気の送風量が増加でき、蓄熱器
における冷却能力が増大させることができる。The temperature of the refrigerating compartment 18 is controlled to a set temperature by controlling the operation of the regenerator fan 39. When the temperature in the refrigerator compartment is equal to or higher than the set temperature, the CPU 46 sets the relay 66 to O by a signal from the refrigerator temperature detecting means 75.
N (Step S8), and by operating the regenerator fan 39, the cool air discharged from the refrigerating room duct 25 and the ventilation duct 71 into the refrigerating room 18 is sucked into the regenerator 31 from the regenerator suction port 37 and cooled. After that, the air returns to the cooler 8 and the refrigerator compartment 18 at a ratio of the opening area of the ventilation duct 71 to the cooler 8 and the refrigerator compartment 18 through the ventilation duct 71 which connects the regenerator 31 to the refrigerator compartment 18 and the cooler 8. . As a result, the amount of cool air blown by the regenerator fan 39 can be increased, and the cooling capacity of the regenerator can be increased.
【0060】以上のように本実施例によれば、冷却器と
冷蔵室内に配置した内部に蓄熱材を有する蓄熱器とを並
列または直列に接続した冷凍サイクルと、前記蓄熱器内
の冷気を送出する蓄熱器ファンと、前記冷却器と前記蓄
熱器と冷蔵室を連通する通風ダクトと、任意の時間帯に
前記蓄熱器に熱を蓄熱する蓄熱運転と蓄熱した熱により
冷蔵庫内を冷却する蓄熱冷却運転の時間制御を行う時間
制御手段とを備え、前記蓄熱材の融解温度は、冷凍室温
度よりも高い温度とし、前記蓄熱冷却運転の対象負荷熱
量は冷凍室以外の室全てとし、前記蓄熱器ファンを冷凍
室温度及び冷蔵室温度により制御し前記蓄熱器を通過す
る戻り冷気を前記冷却器と前記冷蔵室に任意の比率で戻
すので、蓄熱器を通過した冷気を冷却器と冷蔵室に戻す
ことができるので、蓄熱器ファンの送風量が増加し、蓄
熱器の冷却能力が増大させることができる。As described above, according to the present embodiment, a refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material disposed inside a refrigerator compartment are connected in parallel or in series, and cool air in the heat accumulator is sent out. A regenerator fan, a ventilation duct communicating the regenerator with the regenerator and the refrigerating chamber, a regenerative operation for storing heat in the regenerator at any time, and a regenerative cooling for cooling the refrigerator by the stored heat. Time control means for controlling the operation time, wherein the melting temperature of the heat storage material is higher than the freezing room temperature, the target load heat amount of the heat storage cooling operation is all rooms other than the freezing room, The fan is controlled by the temperature of the freezer compartment and the temperature of the refrigerating compartment, and the returned cool air passing through the regenerator is returned to the cooler and the refrigerating compartment at an arbitrary ratio, so that the cool air that has passed the regenerator is returned to the cooler and the refrigerating compartment. Because you can Increasing the blowing rate of the heat accumulator fan, the cooling capacity of the heat accumulator can be increased.
【0061】次に本発明の他の実施例の冷蔵庫について
図9、図10及び図11を参照しながら説明する。なお
従来及び上述の実施例と同一の構成には同一符号を付し
て、詳細な説明を省略する。Next, a refrigerator according to another embodiment of the present invention will be described with reference to FIGS. 9, 10 and 11. The same components as those in the conventional and the above-described embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0062】73は風路切替ダンパであり蓄熱器31と
冷蔵室ダクト25及び冷却器8を連通する通風ダクト7
2内に設けられており、蓄熱器31からの戻り冷気風路
を冷却器8側か冷蔵室ダクト25側に切り替える。即
ち、冷凍室17温度が設定温度以上の時は冷凍庫内温度
検知手段44からの出力信号によってCPU46がトラ
ンジスタ69のベ−スにハイレベルの信号を与えること
によりリレ−68に通電し、風路切替手段76がONす
ることで風路切替ダンパ73を73aに切り替え通風ダ
クト72は冷蔵室ダクト25に連通する。Reference numeral 73 denotes an air passage switching damper, which is a ventilation duct 7 for communicating the regenerator 31 with the refrigerator compartment duct 25 and the cooler 8.
2 and switches the return air path from the regenerator 31 to the cooler 8 side or the refrigerator compartment duct 25 side. That is, when the temperature of the freezer compartment 17 is equal to or higher than the set temperature, the CPU 46 supplies a high-level signal to the base of the transistor 69 in response to an output signal from the freezer temperature detecting means 44, thereby energizing the relay 68, and the air path. When the switching means 76 is turned on, the air path switching damper 73 is switched to 73a, and the ventilation duct 72 communicates with the refrigerator compartment duct 25.
【0063】蓄熱冷却運転は、昼間の電力需要がピ−ク
の時間帯に蓄熱器31が蓄熱した熱を利用して冷凍室以
外の室の戻り空気冷却するものである。即ち、冷凍室内
温度が設定値以上の時は冷凍庫内温度検知手段44から
の信号によりCPU46は、リレ−47、53をONと
しコンプレッサ4、冷却ファン19を運転することで冷
凍室を設定温度以下に冷却し、庫内温度が設定値以下に
なると冷凍庫内温度検知手段44の信号がOFFとなり
CPU46は、リレ−47、53をOFFとし、コンプ
レッサ及び冷気の循環を停止する。以上の動作を繰り返
すことにより冷凍室17内を設定温度に保冷する。In the heat storage cooling operation, the heat stored in the heat storage unit 31 is used during the daytime when the power demand peaks, and the return air is cooled in a room other than the freezing room. That is, when the freezing room temperature is equal to or higher than the set value, the CPU 46 turns on the relays 47 and 53 according to the signal from the freezer temperature detecting means 44 and operates the compressor 4 and the cooling fan 19 to lower the freezing room to the set temperature or lower. When the internal temperature of the refrigerator becomes equal to or lower than the set value, the signal of the freezer internal temperature detecting means 44 is turned off, and the CPU 46 turns off the relays 47 and 53 to stop the circulation of the compressor and the cool air. By repeating the above operation, the inside of the freezer compartment 17 is kept cool to the set temperature.
【0064】また、冷蔵室18の温度調節は蓄熱器ファ
ン39の運転を制御することにより設定温度に制御す
る。冷蔵室内温度が設定以上の時は冷蔵庫内温度検知手
段75からの信号によりCPU46は、リレ−66をO
Nとし(ステップS8)、蓄熱器ファン39を運転す
る。蓄熱器吸込口37から蓄熱器31内に吸い込まれた
戻り空気は冷却されてから通風ダクト72を経て冷凍室
内温度が設定温度以上の時は、風路切替ダンパ73が7
3b側となり(ステップS12)冷却器8に戻り、冷凍
室内温度が設定温度以下の時は、風路切替ダンパ73が
73a側となり(ステップS13)冷蔵室ダクト25に
戻り冷蔵室のみを循環する。The temperature of the refrigerating compartment 18 is controlled to a set temperature by controlling the operation of the regenerator fan 39. When the temperature in the refrigerator compartment is equal to or higher than the set temperature, the CPU 46 sets the relay 66 to O by a signal from the refrigerator temperature detecting means 75.
N (step S8), and the regenerator fan 39 is operated. When the return air sucked into the heat accumulator 31 from the heat accumulator suction port 37 is cooled and then passed through the ventilation duct 72 and the freezing room temperature is equal to or higher than the set temperature, the air path switching damper 73 is set to 7
3b side (Step S12), returning to the cooler 8, and when the freezing room temperature is lower than the set temperature, the air path switching damper 73 becomes 73a side (Step S13), and returns to the refrigerator compartment duct 25 to circulate only the refrigerator compartment.
【0065】これにより蓄熱器31の冷却能力が不足し
た場合でもコンプレッサ4が運転時における冷蔵室戻り
空気の風路は従来と同様であり特別な制御を行う必要が
なく、冷蔵室の温度の均一化が図れる。As a result, even when the cooling capacity of the regenerator 31 is insufficient, the air passage of the return air to the refrigerator compartment when the compressor 4 is operating is the same as the conventional one, and no special control is required. Can be achieved.
【0066】以上のように本実施例によれば、冷却器と
冷蔵室内に配置した内部に蓄熱材を有する蓄熱器とを並
列または直列に接続した冷凍サイクルと、前記蓄熱器内
の冷気を送出する蓄熱器ファンと、前記冷却器と前記蓄
熱器と冷蔵室を連通する通風ダクトと、前記通風ダクト
内に配置した風路切替ダンパと、任意の時間帯に前記蓄
熱器に熱を蓄熱する蓄熱運転と蓄熱した熱により冷蔵庫
内を冷却する蓄熱冷却運転の時間制御を行う時間制御手
段とを備え、前記蓄熱材の融解温度は、冷凍室温度より
も高い温度とし、前記蓄熱冷却運転の対象負荷熱量は冷
凍室以外の室全てとし、前記蓄熱器ファンを冷凍室温度
及び冷蔵室温度により制御し前記風路切替ダンパで前記
蓄熱器を通過する戻り冷気をコンプレッサ運転時は前記
冷却器にコンプレッサ停止時は前記冷蔵室に戻すべく切
り替えるので、蓄熱器の冷却能力に関係なく簡単な制御
方法で冷蔵室温度の均一化が図れる。As described above, according to the present embodiment, a refrigerating cycle in which a cooler and a heat accumulator having a heat accumulating material disposed inside a refrigerator compartment are connected in parallel or in series, and the cool air in the heat accumulator is sent out. A regenerator fan, a ventilation duct that communicates the cooler, the regenerator and the refrigerating chamber, an air path switching damper disposed in the ventilation duct, and heat storage that stores heat in the regenerator at any time. And a time control means for performing time control of a heat storage cooling operation for cooling the inside of the refrigerator with the operation and the stored heat, wherein a melting temperature of the heat storage material is higher than a freezing room temperature, and a target load of the heat storage cooling operation. The amount of heat is set to all the rooms other than the freezing room, the regenerator fan is controlled by the freezing room temperature and the refrigerating room temperature, and the return air passing through the regenerator is compressed by the air path switching damper to the cooler during compressor operation. Since Sa stop switch to return to the refrigerating chamber, homogenization of the refrigerating compartment temperature by a simple control method regardless of the cooling capacity of the heat accumulator can be achieved.
【0067】[0067]
【発明の効果】以上のように本発明は、冷却器と冷蔵室
内に配置した内部に蓄熱材を有する蓄熱器とを並列また
は直列に接続した冷凍サイクルと、前記蓄熱器内の冷気
を送出する蓄熱器ファンと、前記冷却器と前記蓄熱器を
連通する通風ダクトと、任意の時間帯に前記蓄熱器に熱
を蓄熱する蓄熱運転と蓄熱した熱により冷蔵庫内を冷却
する蓄熱冷却運転の時間制御を行う時間制御手段とを備
え、前記蓄熱材の融解温度は、冷凍室温度よりも高い温
度とし、前記蓄熱冷却運転の対象負荷熱量は冷凍室以外
の室全てとし、前記蓄熱器ファンを冷凍室温度及び冷蔵
室温度により制御し前記蓄熱器を通過する戻り冷気の全
てを前記冷却器に戻すので融解潜熱量が大きい蓄熱材が
使用でき冷蔵庫の有効内容積の減少が極力抑えられ、ま
た消費電力量の増大がなく、蓄熱した熱を有効に利用で
きる。As described above, according to the present invention, a refrigerating cycle in which a cooler and a heat accumulator having a heat accumulating material disposed inside a refrigerator compartment are connected in parallel or in series, and cool air in the heat accumulator is sent out. A regenerator fan, a ventilation duct communicating the cooler with the regenerator, and a heat storage operation for storing heat in the regenerator in an arbitrary time zone and a time control for a regenerative cooling operation for cooling the refrigerator with the stored heat. The temperature of the heat storage material is higher than the temperature of the freezer compartment, the load heat quantity to be subjected to the heat storage / cooling operation is set to all the rooms other than the freezer compartment, and the regenerator fan is connected to the freezer compartment. The temperature and the temperature of the refrigerator compartment are controlled to return all of the returning cold air passing through the heat accumulator to the cooler.Therefore, a heat storage material having a large latent heat of fusion can be used, and the decrease in the effective internal volume of the refrigerator is suppressed as much as possible. Increase in volume No, it is possible to effectively utilize the stored heat.
【0068】さらに、冷却器と冷蔵室内に配置した内部
に蓄熱材を有する蓄熱器とを並列または直列に接続した
冷凍サイクルと、前記蓄熱器内の冷気を送出する蓄熱器
ファンと、前記蓄熱器と冷蔵室を連通する通風ダクト
と、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱運転
と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運転の
時間制御を行う時間制御手段とを備え、前記蓄熱材の融
解温度は、冷凍室温度よりも高い温度とし、前記蓄熱冷
却運転の対象負荷熱量は冷凍室以外の室全てとし、前記
蓄熱器ファンを冷蔵室温度により制御し前記蓄熱器を通
過する戻り冷気の全てを前記冷蔵室に戻すので、蓄熱器
ファンを冷蔵室温度で制御し蓄熱器を通過した冷気を冷
蔵室のみに循環させるので冷蔵室温度の均一化が図れ
る。Further, a refrigerating cycle in which a cooler and a heat accumulator having a heat accumulating material disposed in a refrigerator compartment are connected in parallel or in series, a heat accumulator fan for sending out cool air in the heat accumulator, and a heat accumulator fan. And a ventilation duct communicating the refrigerator compartment, and a time control means for performing time control of a heat storage operation for storing heat in the heat storage device and a heat storage cooling operation for cooling the refrigerator with the stored heat in an arbitrary time zone, The melting temperature of the heat storage material is set to a temperature higher than the freezing room temperature, the target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room, the regenerator fan is controlled by the refrigerating room temperature and passes through the regenerator. Since all of the returned cold air is returned to the refrigerator compartment, the regenerator fan is controlled at the refrigerator compartment temperature and the cool air passing through the regenerator is circulated only to the refrigerator compartment, so that the refrigerator compartment temperature can be made uniform.
【0069】さらに、冷却器と冷蔵室内に配置した内部
に蓄熱材を有する蓄熱器とを並列または直列に接続した
冷凍サイクルと、前記蓄熱器内の冷気を送出する蓄熱器
ファンと、前記冷却器と前記蓄熱器と冷蔵室を連通する
通風ダクトと、任意の時間帯に前記蓄熱器に熱を蓄熱す
る蓄熱運転と蓄熱した熱により冷蔵庫内を冷却する蓄熱
冷却運転の時間制御を行う時間制御手段とを備え、前記
蓄熱材の融解温度は、冷凍室温度よりも高い温度とし、
前記蓄熱冷却運転の対象負荷熱量は冷凍室以外の室全て
とし、前記蓄熱器ファンを冷凍室温度及び冷蔵室温度に
より制御し前記蓄熱器を通過する戻り冷気を前記冷却器
と前記冷蔵室に任意の比率で戻すので、蓄熱器を通過し
た冷気を冷却器と冷蔵室に戻すことができるので、蓄熱
器ファンの送風量が増加し、蓄熱器の冷却能力が増大さ
せることができる。Further, a refrigerating cycle in which a cooler and a heat accumulator having a heat accumulating material disposed in a refrigerator compartment are connected in parallel or in series, a heat accumulator fan for sending out cool air in the heat accumulator, And a ventilation duct communicating the regenerator with the refrigerating compartment; and a time control means for performing time control of a heat storage operation for storing heat in the regenerator and a heat storage cooling operation for cooling the refrigerator with the stored heat during an arbitrary time period. Wherein the melting temperature of the heat storage material is a temperature higher than the freezing room temperature,
The target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room, and the regenerator fan is controlled by the freezing room temperature and the refrigerating room temperature, and return cold air passing through the regenerator is freely supplied to the cooler and the refrigerating room. , The cool air that has passed through the regenerator can be returned to the cooler and the refrigerating compartment, so that the amount of air blown by the regenerator fan can be increased and the cooling capacity of the regenerator can be increased.
【0070】さらに、冷却器と冷蔵室内に配置した内部
に蓄熱材を有する蓄熱器とを並列または直列に接続した
冷凍サイクルと、前記蓄熱器内の冷気を送出する蓄熱器
ファンと、前記冷却器と前記蓄熱器と冷蔵室を連通する
通風ダクトと、前記通風ダクト内に配置した風路切替ダ
ンパと、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱
運転と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運
転の時間制御を行う時間制御手段とを備え、前記蓄熱材
の融解温度は、冷凍室温度よりも高い温度とし、前記蓄
熱冷却運転の対象負荷熱量は冷凍室以外の室全てとし、
前記蓄熱器ファンを冷凍室温度及び冷蔵室温度により制
御し前記風路切替ダンパで前記蓄熱器を通過する戻り冷
気をコンプレッサ運転時は前記冷却器にコンプレッサ停
止時は前記冷蔵室に戻すべく切り替えるので、蓄熱器の
冷却能力に関係なく簡単な制御方法で冷蔵室温度の均一
化が図ることができる冷蔵庫となる。Further, a refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material disposed in a refrigerator compartment are connected in parallel or in series, a heat accumulator fan for sending out cool air in the heat accumulator, And a ventilation duct communicating the regenerator with the refrigerator compartment, an air path switching damper disposed in the ventilation duct, and a heat storage operation for storing heat in the regenerator and heat stored in the refrigerator during an arbitrary time period. Time control means for performing time control of the heat storage cooling operation for cooling, the melting temperature of the heat storage material is set to a temperature higher than the freezing room temperature, and the target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room. ,
The regenerator fan is controlled by the freezing room temperature and the refrigerating room temperature, and the return air passing through the regenerator is switched by the air path switching damper to switch to the cooler when the compressor is operating and to return to the refrigerating room when the compressor is stopped. In addition, a refrigerator that can achieve uniform refrigerator temperature by a simple control method regardless of the cooling capacity of the heat storage device.
【図1】本発明の一実施例における冷蔵庫の機能ブロッ
ク図FIG. 1 is a functional block diagram of a refrigerator according to an embodiment of the present invention.
【図2】図1の冷蔵庫の冷凍システム図FIG. 2 is a refrigeration system diagram of the refrigerator of FIG. 1;
【図3】図1の冷蔵庫の要部の電気回路図FIG. 3 is an electric circuit diagram of a main part of the refrigerator of FIG. 1;
【図4】図1の冷蔵庫のフロ−チャ−ト図FIG. 4 is a flowchart of the refrigerator shown in FIG. 1;
【図5】図1の室温に応じた一日の運転状態図FIG. 5 is a diagram showing an operation state of the day according to the room temperature in FIG. 1;
【図6】本発明のその他の実施例における冷蔵庫の機能
ブロック図FIG. 6 is a functional block diagram of a refrigerator according to another embodiment of the present invention.
【図7】図6の冷蔵庫のフロ−チャ−ト図FIG. 7 is a flowchart of the refrigerator shown in FIG. 6;
【図8】本発明のその他の実施例における冷蔵庫の機能
ブロック図FIG. 8 is a functional block diagram of a refrigerator according to another embodiment of the present invention.
【図9】本発明のその他の実施例における冷蔵庫の機能
ブロック図FIG. 9 is a functional block diagram of a refrigerator according to another embodiment of the present invention.
【図10】図9の冷蔵庫の要部の電気回路図FIG. 10 is an electric circuit diagram of a main part of the refrigerator of FIG. 9;
【図11】図9の冷蔵庫のフロ−チャ−ト図FIG. 11 is a flowchart of the refrigerator shown in FIG. 9;
【図12】従来の冷蔵庫の構造を示す縦断面図FIG. 12 is a longitudinal sectional view showing the structure of a conventional refrigerator.
【図13】図12の冷蔵庫の冷凍システム図FIG. 13 is a refrigeration system diagram of the refrigerator of FIG.
8 冷却器 31 蓄熱器 32 蓄熱材 39 蓄熱器ファン 46 時間制御手段 55 通風ダクト 70 通風ダクト 71 通風ダクト 72 通風ダクト 73 風路切替ダンパ Reference Signs List 8 cooler 31 heat storage device 32 heat storage material 39 heat storage device fan 46 time control means 55 ventilation duct 70 ventilation duct 71 ventilation duct 72 ventilation duct 73 air path switching damper
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−71847(JP,A) 特開 平6−331259(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25D 16/00 F25B 5/00 F25D 17/08 303 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-71847 (JP, A) JP-A-6-331259 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25D 16/00 F25B 5/00 F25D 17/08 303
Claims (4)
材を有する蓄熱器とを並列または直列に接続した冷凍サ
イクルと、前記蓄熱器内の冷気を送出する蓄熱器ファン
と、前記冷却器と前記蓄熱器を連通する通風ダクトと、
任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱運転と蓄
熱した熱により冷蔵庫内を冷却する蓄熱冷却運転の時間
制御を行う時間制御手段とを備え、前記蓄熱材の融解温
度は、冷凍室温度よりも高い温度とし、前記蓄熱冷却運
転の対象負荷熱量は冷凍室以外の室全てとし、前記蓄熱
器ファンを冷凍室温度及び冷蔵室温度により制御し前記
蓄熱器を通過する戻り冷気の全てを前記冷却器に戻すこ
とを特徴とする冷蔵庫。1. A refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material disposed inside a refrigerator compartment are connected in parallel or in series, a regenerator fan for sending out cool air in the regenerator, and the cooler And a ventilation duct communicating the regenerator,
A heat storage operation for storing heat in the heat storage device in an arbitrary time zone; and time control means for performing time control of a heat storage cooling operation for cooling the refrigerator with the stored heat, wherein the melting temperature of the heat storage material is a freezer compartment. The temperature is higher than the temperature, the target load calorie of the heat storage cooling operation is all the rooms other than the freezing room, and the regenerator fan is controlled by the freezing room temperature and the refrigerating room temperature to control all the return cold air passing through the regenerator. A refrigerator, wherein the refrigerator is returned to the cooler.
材を有する蓄熱器とを並列または直列に接続した冷凍サ
イクルと、前記蓄熱器内の冷気を送出する蓄熱器ファン
と、前記蓄熱器と冷蔵室を連通する通風ダクトと、任意
の時間帯に前記蓄熱器に熱を蓄熱する蓄熱運転と蓄熱し
た熱により冷蔵庫内を冷却する蓄熱冷却運転の時間制御
を行う時間制御手段とを備え、前記蓄熱材の融解温度
は、冷凍室温度よりも高い温度とし、前記蓄熱冷却運転
の対象負荷熱量は冷凍室以外の室全てとし、前記蓄熱器
ファンを冷蔵室温度により制御し前記蓄熱器を通過する
戻り冷気の全てを前記冷蔵室に戻すことを特徴とする冷
蔵庫。2. A refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material disposed inside a refrigerator are connected in parallel or in series, a heat accumulator fan for sending out cool air in the heat accumulator, and the heat accumulator. And a ventilation duct communicating the refrigerator compartment, and a time control means for performing time control of a heat storage operation for storing heat in the heat storage device and a heat storage cooling operation for cooling the refrigerator with the stored heat in an arbitrary time zone, The melting temperature of the heat storage material is set to a temperature higher than the freezing room temperature, the target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room, the regenerator fan is controlled by the refrigerating room temperature and passes through the regenerator. A refrigerator that returns all of the returning cold air to the refrigerator compartment.
材を有する蓄熱器とを並列または直列に接続した冷凍サ
イクルと、前記蓄熱器内の冷気を送出する蓄熱器ファン
と、前記冷却器と前記蓄熱器と冷蔵室を連通する通風ダ
クトと、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱
運転と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運
転の時間制御を行う時間制御手段とを備え、前記蓄熱材
の融解温度は、冷凍室温度よりも高い温度とし、前記蓄
熱冷却運転の対象負荷熱量は冷凍室以外の室全てとし、
前記蓄熱器ファンを冷凍室温度及び冷蔵室温度により制
御し前記蓄熱器を通過する戻り冷気を前記冷却器と前記
冷蔵室に任意の比率で戻すことを特徴とする冷蔵庫。3. A refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material disposed inside a refrigerator compartment are connected in parallel or in series, a heat accumulator fan for sending out cool air in the heat accumulator, and the cooler. And a ventilation duct communicating the regenerator with the refrigerating compartment; and a time control means for performing time control of a heat storage operation for storing heat in the regenerator and a heat storage cooling operation for cooling the refrigerator with the stored heat during an arbitrary time period. Comprising, the melting temperature of the heat storage material is a temperature higher than the freezing room temperature, the target load heat amount of the heat storage cooling operation is all rooms other than the freezing room,
A refrigerator, wherein the regenerator fan is controlled by a freezing room temperature and a refrigerating room temperature, and return cold air passing through the regenerator is returned to the cooler and the refrigerating room at an arbitrary ratio.
材を有する蓄熱器とを並列または直列に接続した冷凍サ
イクルと、前記蓄熱器内の冷気を送出する蓄熱器ファン
と、前記冷却器と前記蓄熱器と冷蔵室を連通する通風ダ
クトと、前記通風ダクト内に配置した風路切替ダンパ
と、任意の時間帯に前記蓄熱器に熱を蓄熱する蓄熱運転
と蓄熱した熱により冷蔵庫内を冷却する蓄熱冷却運転の
時間制御を行う時間制御手段とを備え、前記蓄熱材の融
解温度は、冷凍室温度よりも高い温度とし、前記蓄熱冷
却運転の対象負荷熱量は冷凍室以外の室全てとし、前記
蓄熱器ファンを冷凍室温度及び冷蔵室温度により制御し
前記風路切替ダンパで前記蓄熱器を通過する戻り冷気を
コンプレッサ運転時は前記冷却器にコンプレッサ停止時
は前記冷蔵室に戻すべく切り替えることを特徴とする冷
蔵庫。4. A refrigeration cycle in which a cooler and a heat accumulator having a heat accumulating material disposed inside a refrigerator are connected in parallel or in series, a heat accumulator fan for sending cool air in the heat accumulator, and the cooler And a ventilation duct communicating the regenerator with the refrigerator compartment, an air path switching damper disposed in the ventilation duct, and a heat storage operation for storing heat in the regenerator and heat stored in the refrigerator during an arbitrary time period. Time control means for performing time control of the heat storage cooling operation for cooling, the melting temperature of the heat storage material is set to a temperature higher than the freezing room temperature, and the target load heat amount of the heat storage cooling operation is set to all the rooms other than the freezing room. The regenerator fan is controlled by the freezing room temperature and the refrigerating room temperature, and the return air passing through the regenerator by the air path switching damper should be returned to the cooler when the compressor is operating, and to the refrigerating room when the compressor is stopped. Refrigerator characterized by switching quickly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14461593A JP3098893B2 (en) | 1993-06-16 | 1993-06-16 | refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14461593A JP3098893B2 (en) | 1993-06-16 | 1993-06-16 | refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH074819A JPH074819A (en) | 1995-01-10 |
JP3098893B2 true JP3098893B2 (en) | 2000-10-16 |
Family
ID=15366156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14461593A Expired - Fee Related JP3098893B2 (en) | 1993-06-16 | 1993-06-16 | refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3098893B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602006006488D1 (en) | 2005-03-04 | 2009-06-10 | Calsonic Kansei Corp | Vehicle interior trim and method for its manufacture |
KR101402628B1 (en) * | 2007-06-11 | 2014-06-09 | 삼성전자 주식회사 | Refrigerator and how to operate it |
KR102336200B1 (en) * | 2014-12-24 | 2021-12-08 | 삼성전자주식회사 | Refrigerator |
DE102020110032A1 (en) * | 2019-10-24 | 2021-05-12 | Liebherr-Hausgeräte Lienz Gmbh | Fridge and / or freezer |
-
1993
- 1993-06-16 JP JP14461593A patent/JP3098893B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH074819A (en) | 1995-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4840037A (en) | Refrigerator with cold accumulation system | |
US20120023975A1 (en) | Refrigerator and control method thereof | |
JP2001082850A (en) | Refrigerator | |
JP3098893B2 (en) | refrigerator | |
JP3098909B2 (en) | refrigerator | |
JP3193924B2 (en) | refrigerator | |
JP3184334B2 (en) | refrigerator | |
JP3153649B2 (en) | refrigerator | |
JP3098889B2 (en) | refrigerator | |
JP2002071255A (en) | Refrigerator and its controlling method | |
JP3585564B2 (en) | refrigerator | |
JP3098892B2 (en) | refrigerator | |
JPH09236369A (en) | Refrigerator | |
JP3135428B2 (en) | refrigerator | |
JP3361109B2 (en) | Thermal storage refrigerator | |
JP3184335B2 (en) | refrigerator | |
JP3265004B2 (en) | refrigerator | |
JPH09287863A (en) | Refrigerator | |
JPH08240372A (en) | Refrigerator | |
JP2002195726A5 (en) | ||
JPS63197865A (en) | Cold accumulation type refrigerator | |
JP3519763B2 (en) | refrigerator | |
JPH08240371A (en) | Refrigerator | |
JP2002195726A (en) | Refrigerator | |
JPH06257926A (en) | Refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |