[go: up one dir, main page]

JP3083587B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP3083587B2
JP3083587B2 JP03128574A JP12857491A JP3083587B2 JP 3083587 B2 JP3083587 B2 JP 3083587B2 JP 03128574 A JP03128574 A JP 03128574A JP 12857491 A JP12857491 A JP 12857491A JP 3083587 B2 JP3083587 B2 JP 3083587B2
Authority
JP
Japan
Prior art keywords
film
solid electrolytic
electrolytic capacitor
heteropentacyclic
anode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03128574A
Other languages
Japanese (ja)
Other versions
JPH04329619A (en
Inventor
豊 原島
聡 湯澤
Original Assignee
マルコン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルコン電子株式会社 filed Critical マルコン電子株式会社
Priority to JP03128574A priority Critical patent/JP3083587B2/en
Publication of JPH04329619A publication Critical patent/JPH04329619A/en
Application granted granted Critical
Publication of JP3083587B2 publication Critical patent/JP3083587B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は導電性高分子膜を固体電
解質として用いた固体電解コンデンサの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer film as a solid electrolyte.

【0002】[0002]

【従来の技術】表面に誘電体酸化皮膜を生成したアルミ
ニウム、タンタル等の皮膜生成性金属からなる陽極体に
固体電解質として例えばポリピロ−ル、ポリチオフェ
ン、ポリアニリン、ポリフラン等の導電性高分子膜を用
いた固体電解コンデンサが知られている。
2. Description of the Related Art A conductive polymer film such as polypyrrol, polythiophene, polyaniline or polyfuran is used as a solid electrolyte for an anode body made of a film-forming metal such as aluminum or tantalum having a dielectric oxide film formed on the surface. Known solid electrolytic capacitors are known.

【0003】これら導電性高分子膜を固体電解質として
用いた固体電解コンデンサは、従来一般化している駆動
用電解液を使用したもの、又は近年注目を集めている有
機半導体を固体電解質として用いた固体電解コンデンサ
に比べ、温度特性や周波数及び高温負荷特性(寿命)な
どは優れているが、化学酸化重合反応により導電性高分
子膜を形成させる際、化学酸化重合液の複素五員環化合
物が単量体のみからなり反応核がないため、陽極体の微
細孔や空隙内部表面への固体電解質としての導電性高分
子膜の形成効率が悪く、静電容量の減少、耐電圧低下、
tanδ大などが起り易い問題を抱える結果となってい
た。
A solid electrolytic capacitor using such a conductive polymer film as a solid electrolyte is one using a generally used driving electrolyte, or one using an organic semiconductor, which has recently attracted attention, as a solid electrolyte. It has better temperature characteristics, frequency and high-temperature load characteristics (lifetime) than electrolytic capacitors, but when forming a conductive polymer film by chemical oxidation polymerization reaction, the complex five-membered ring compound of the chemical oxidation polymerization solution is simply Since it consists only of a monomer and has no reaction nuclei, the efficiency of forming a conductive polymer film as a solid electrolyte on the fine pores and the inner surface of the voids in the anode body is poor, and the capacitance decreases, the withstand voltage decreases,
As a result, there is a problem that tan δ is likely to occur.

【0004】[0004]

【発明が解決しようとする課題】以上のように従来開示
されている固体電解質としての導電性高分子膜形成技術
では、陽極体の微細孔や空隙内部表面への固体電解質と
しての導電性高分子膜の形成効率が悪く諸特性低下の要
因となっていた。
As described above, in the conductive polymer film forming technology as a solid electrolyte disclosed in the prior art, the conductive polymer as a solid electrolyte is applied to the fine pores and the inner surfaces of the voids in the anode body. The formation efficiency of the film was poor, causing a decrease in various characteristics.

【0005】本発明は、上記の欠点を解決するためにな
されたもので、誘電体酸化皮膜を生成した陽極体の微細
孔や空隙内部表面に固体電解質として導電性高分子膜を
効率良く形成することによって、陽極体に生成した誘電
体酸化皮膜表面に形成される固体電解質不足によって起
こる静電容量減少、耐電圧低下、tanδ大などを改善
することのできる固体電解コンデンサの製造方法を提供
することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and efficiently forms a conductive polymer film as a solid electrolyte on the inner surfaces of micropores and voids of an anode body having a dielectric oxide film formed thereon. The present invention provides a method for manufacturing a solid electrolytic capacitor capable of improving a decrease in capacitance, a decrease in withstand voltage, a large tan δ, and the like caused by a shortage of a solid electrolyte formed on a surface of a dielectric oxide film formed on an anode body. It is intended for.

【0006】[0006]

【課題を解決するための手段】本発明による固体電解コ
ンデンサの製造方法は、誘電体酸化皮膜を生成した陽極
体への化学重合膜形成手段として、誘電体酸化皮膜を生
成した陽極体を重合度が3〜10の複素五員環化合物ポ
リマーを含有する複素五員環化合物溶液に浸漬した後、
直ちに酸化剤溶液中で化学酸化重合を行うことを特徴と
するものである。
According to a method of manufacturing a solid electrolytic capacitor according to the present invention, as a means for forming a chemically polymerized film on an anode body on which a dielectric oxide film has been formed, an anode body on which a dielectric oxide film has been formed is polymerized. Is immersed in a heteropentacyclic compound solution containing 3 to 10 heteropentacyclic polymer,
It is characterized in that chemical oxidative polymerization is immediately performed in an oxidizing agent solution.

【0007】[0007]

【作用】このように構成された固体電解コンデンサの製
造方法によれば、複素五員環化合物溶液に含有する重合
度が3〜10の複素五員環化合物ポリマーが反応核とし
て作用し導電性高分子膜の形成反応を著しく促進させる
ので、陽極体の微細孔や空隙内部表面まで導電性高分子
膜が効率良く形成され諸特性改善に大きく寄与する。
According to the method of manufacturing a solid electrolytic capacitor having the above-described structure, a heteropentacyclic compound compound having a degree of polymerization of 3 to 10 contained in a heteropentacyclic compound solution acts as a reaction nucleus and has a high conductivity. Since the formation reaction of the molecular film is remarkably promoted, the conductive polymer film is efficiently formed up to the fine pores and the inner surfaces of the voids of the anode body, which greatly contributes to the improvement of various characteristics.

【0008】[0008]

【実施例】以下、本発明の一実施例につき説明する。An embodiment of the present invention will be described below.

【0009】すなわち、粗面化後例えばアジピン酸アン
モニウム水溶液中で50Vを印加し誘電体酸化皮膜を生
成した高純度アルミニウム箔からなる陽極箔を再化成
後、この陽極箔をピロ−ル六量体を0.01mol/リ
ットル含有した2mol/リットル ピロ−ル/エタノ
−ル溶液に浸漬した後、直ちに5mol/リットル過硫
酸アンモニウム水溶液からなる酸化剤溶液に浸漬して化
学酸化重合を行ない、陽極体表面に生成した誘電体酸化
皮膜表面に化学重合ポリピロ−ル膜を形成する。
That is, after the surface is roughened, an anode foil made of a high-purity aluminum foil having a dielectric oxide film formed by applying a voltage of 50 V in an aqueous solution of ammonium adipate, for example, is reformed. Was immersed in a 2 mol / l pyrrol / ethanol solution containing 0.01 mol / l, and immediately immersed in an oxidizing agent solution composed of an aqueous solution of 5 mol / l ammonium persulfate to carry out chemical oxidative polymerization. A chemically polymerized polypyrrole film is formed on the surface of the formed dielectric oxide film.

【0010】つぎに、このように構成してなる陽極箔を
巻回してコンデンサ素子を製作し、しかる後再化成によ
り誘電体酸化皮膜の修復をおこない、この素子をピロ−
ルモノマ−1mol/リットル、支持電解質としてパラ
トルエンスルホン酸ナトリウム1mol/リットルを含
むアセトニトリル溶液中に浸漬して化学酸化重合により
形成した化学重合ポリピロ−ル膜を陽極とし、外部陰極
との間に直流定電流を通電し、陽極箔表面を含む素子内
外部に電解酸化重合により電解重合ポリピロ−ル膜を形
成する。
Next, a capacitor element is manufactured by winding the anode foil having the above-described structure, and then the dielectric oxide film is repaired by re-chemical formation.
A chemically polymerized polypyrrole film formed by chemical oxidative polymerization by immersion in an acetonitrile solution containing 1 mol / l of lumonomer and 1 mol / l of sodium paratoluenesulfonate as a supporting electrolyte is used as an anode, and a direct current is measured between the film and an external cathode. An electric current is applied, and an electrolytically polymerized polypyrrole film is formed inside and outside the element including the surface of the anode foil by electrolytic oxidation polymerization.

【0011】ついで、コンデンサ素子表面に形成した電
解重合ポリピロ−ル膜表面にコロイダルカ−ボンを塗布
−乾燥しコロイダルカ−ボン層を形成し、しかる後銀ペ
−ストを塗布して陰極層を形成し、最後に樹脂外装を施
して固体電解コンデンサを得るものである。
Next, a colloidal carbon is applied to the surface of the electrolytically polymerized polypyrrole film formed on the surface of the capacitor element and dried to form a colloidal carbon layer, and then a silver paste is applied to form a cathode layer. Finally, a resin sheath is applied to obtain a solid electrolytic capacitor.

【0012】図1は上記の構成によって得たコンデンサ
素子構造を説明するための断面図であり、1は陽極箔、
2は誘電体酸化皮膜、3は化学重合ポリピロ−ル膜、4
は電解重合ポリピロ−ル膜、5はコロイダルカ−ボン
層、6は陰極層である。
FIG. 1 is a cross-sectional view for explaining a capacitor element structure obtained by the above configuration, wherein 1 is an anode foil,
2 is a dielectric oxide film, 3 is a chemically polymerized polypyrrole film, 4
Denotes an electrolytic polymerized polypyrrole film, 5 denotes a colloidal carbon layer, and 6 denotes a cathode layer.

【0013】以上のように構成してなる固体電解コンデ
ンサの製造方法によれば、複素五員環化合物としてのピ
ロール/エタノール溶液に含有するピロール六量体が反
応核として作用し、導電性高分子膜としての化学重合ポ
リピロール膜の生成反応を著しく促進させるので、陽極
体の微細孔や空隙内部表面まで導電性高分子膜としての
化学重合ポリピロール膜が効率良く形成され静電容量出
現率の向上を始めtanδ及び漏れ電流の低下改善に大
きく寄与する。
According to the method of manufacturing a solid electrolytic capacitor having the above-described structure, the pyrrole hexamer contained in the pyrrole / ethanol solution as a heteropentacyclic compound acts as a reaction nucleus, and Since the formation reaction of the chemically polymerized polypyrrole film as the film is remarkably accelerated, the chemically polymerized polypyrrole film as the conductive polymer film is efficiently formed up to the fine pores and the inner surfaces of the voids of the anode body, thereby improving the capacitance appearance rate. At the beginning, it greatly contributes to the improvement of the reduction of tan δ and leakage current.

【0014】つぎに、実験結果に基づき本発明と従来例
の特性比較について述べる。すなわち、上記実施例によ
り製作した本発明(A)と化学酸化重合手段としてピロ
−ル六量体の含有をしない外は上記実施例と同一手段で
製作した従来例(B)との特性比較を行った結果、下表
の通りであった。
Next, comparison of characteristics between the present invention and the conventional example will be described based on experimental results. That is, the characteristics of the present invention (A) manufactured by the above embodiment and the conventional example (B) manufactured by the same means as the above embodiment except that the hexamer of pyrrole is not included as the chemical oxidation polymerization means are compared. The results were as shown in the table below.

【0015】なお、試料は(A)(B)とも定格16V
−10μFのもので、それぞれ50個とし表中の数値は
平均値である。
The samples were rated at 16 V for both (A) and (B).
The values are -10 μF, and each of them is 50, and the values in the table are average values.

【0016】[0016]

【表】【table】

【0017】上表から明らかなように、本発明によるも
のは静電容量、tanδ並びに漏れ電流特性において従
来例と比較し優れた効果を実証した。
As is clear from the above table, the device according to the present invention demonstrated superior effects in the capacitance, tan δ and leakage current characteristics as compared with the conventional example.

【0018】なお、上記実施例では複素五員環化合物溶
液に含有する複素五員環化合物ポリマーとして重合度6
のものを例示して説明したが、本発明者の実験結果よ
り、これら重合体の重合度は3〜10がよく、好ましく
は5〜7のものがより効果的であることが確認された。
In the above example, the degree of polymerization of the heteropentacyclic compound compound contained in the heteropentacyclic compound solution was 6
However, from the experimental results of the present inventors, it was confirmed that the degree of polymerization of these polymers is preferably 3 to 10, and preferably 5 to 7 is more effective.

【0019】その理由は、3未満の重合度のものでは反
応促進効果が得られず、また重合度が10を越えるもの
では形成される導電性高分子膜としての化学重合ポリピ
ロ−ル膜が疎な構造となり誘電体酸化皮膜上への被着率
が低下すると同時に化学重合ポリピロ−ル膜全体として
の抵抗値が増大してしまい、逆に静電容量の減少、耐電
圧低下、更にはtanδ大などをもたらすと言う本発明
者の実験結果に基づくものである。
The reason for this is that if the degree of polymerization is less than 3, no reaction accelerating effect can be obtained, and if the degree of polymerization exceeds 10, the chemically polymerized polypyrrole film as the conductive polymer film formed will be inferior. In addition, the deposition rate on the dielectric oxide film decreases, and at the same time, the resistance value of the chemically polymerized polypyrrole film as a whole increases, conversely, the capacitance decreases, the withstand voltage decreases, and the tan δ increases. This is based on the experimental results of the present inventor who bring about such effects.

【0020】また、上記実施例では固体電解質としての
導電性高分子膜形成手段として、化学重合ポリピロ−ル
膜上に電解酸化重合により電解重合ポリピロ−ル膜を形
成するものを例示して説明したが、上記実施例にて説明
した手段で一層目の化学重合ポリピロ−ル膜を形成した
陽極体を、複素五員環化合物と酸化剤の未反応混合溶液
中に浸漬し、この混合溶液を反応させ第二の化学酸化重
合を複数回行うことで二層目の化学重合ポリピロ−ル膜
を形成するようにしたり、或いは上記実施例にて説明し
た化学酸化重合手段を繰り返し行い、電解酸化重合を行
うことなく導電性高分子膜を形成するようにしても本発
明の目的達成上同効である。
In the above embodiment, the means for forming a conductive polymer film as a solid electrolyte has been described by exemplifying a means for forming an electrolytically polymerized polypyrrole film on a chemically polymerized polypyrrole film by electrolytic oxidation polymerization. However, the anode body on which the first chemically polymerized polypyrrole film is formed by the means described in the above embodiment is immersed in an unreacted mixed solution of a heteropentacyclic compound and an oxidizing agent, and the mixed solution is reacted. The second chemical oxidation polymerization is performed a plurality of times to form a second-layer chemically polymerized polypyrrole film, or the chemical oxidation polymerization means described in the above embodiment is repeated to perform electrolytic oxidation polymerization. Even if a conductive polymer film is formed without performing this, the same effect can be achieved in achieving the object of the present invention.

【0021】更に、上記実施例ではコンデンサ素子構成
として、箔巻回形のものを例示して説明したが、弁作用
金属粉末を成形焼結したもの、或いは箔単板形を始め箔
積層形素子構成からなるものに適用できることは勿論で
ある。
Further, in the above-described embodiment, a foil wound type is described as an example of a capacitor element configuration, but a capacitor element formed by molding and sintering a valve action metal powder or a foil laminated type element including a single foil type It is needless to say that the present invention can be applied to those having a configuration.

【0022】[0022]

【発明の効果】本発明によれば、誘電体酸化皮膜を生成
した陽極箔表面は元より陽極箔の微細孔及び空隙内部表
面まで満遍なく固体電解質としての導電性高分子膜を効
率良く形成することが可能となり、よって静電容量、t
anδ、漏れ電流特性を著しく改善することができる実
用的価値の高い固体電解コンデンサの製造方法を得るこ
とができる。
According to the present invention, it is possible to efficiently form a conductive polymer film as a solid electrolyte evenly from the surface of the anode foil on which the dielectric oxide film has been formed to the inner surface of the fine pores and voids of the anode foil. And thus the capacitance, t
An δ and a method of manufacturing a solid electrolytic capacitor having a high practical value and capable of significantly improving the leakage current characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によって得られた固体電解コン
デンサの素子構造を説明するための断面図である。
FIG. 1 is a cross-sectional view illustrating an element structure of a solid electrolytic capacitor obtained according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 陽極箔 2 誘電体酸化皮膜 3 化学重合ポリピロ−ル膜 4 電解重合ポリピロ−ル膜 Reference Signs List 1 anode foil 2 dielectric oxide film 3 chemically polymerized polypyrrole film 4 electrolytically polymerized polypyrrole film

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体酸化皮膜を生成した皮膜生成性金
属からなる陽極体に少なくとも化学重合膜、カーボン層
並びに導電性塗膜を順次形成する固体電解コンデンサの
製造方法において、前記化学重合膜形成手段として、前
記陽極体を重合度が3〜10の複素五員環化合物ポリマ
ーを含有する複素五員環化合物溶液に浸漬し、しかる後
直ちに酸化剤溶液中で化学酸化重合を行うことを特徴と
する固体電解コンデンサの製造方法。
1. A method for manufacturing a solid electrolytic capacitor, comprising sequentially forming at least a chemically polymerized film, a carbon layer and a conductive coating film on an anode body made of a film-forming metal having a dielectric oxide film formed thereon. As means, the anode body is immersed in a heteropentacyclic compound solution containing a heteropentacyclic polymer having a degree of polymerization of 3 to 10, and then chemically oxidized and polymerized immediately in an oxidizing agent solution. To manufacture solid electrolytic capacitors.
JP03128574A 1991-04-30 1991-04-30 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JP3083587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03128574A JP3083587B2 (en) 1991-04-30 1991-04-30 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03128574A JP3083587B2 (en) 1991-04-30 1991-04-30 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH04329619A JPH04329619A (en) 1992-11-18
JP3083587B2 true JP3083587B2 (en) 2000-09-04

Family

ID=14988123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03128574A Expired - Lifetime JP3083587B2 (en) 1991-04-30 1991-04-30 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3083587B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135126A (en) * 1993-11-10 1995-05-23 Nec Corp Solid electrolytic capacitor and its manufacture

Also Published As

Publication number Publication date
JPH04329619A (en) 1992-11-18

Similar Documents

Publication Publication Date Title
JP5884068B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
JPWO2018020985A1 (en) Electrolytic capacitor and method of manufacturing the same
US6086642A (en) Fabrication method of solid electrolytic capacitor
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001102255A (en) Tantalum solid electrolytic capacitor and manufacturing method therefor
KR100365370B1 (en) Method for producing a solid electrolytic capacitor
JP5623214B2 (en) Solid electrolytic capacitor
JP3307224B2 (en) Manufacturing method of capacitor
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP3083587B2 (en) Method for manufacturing solid electrolytic capacitor
JP7108811B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2657932B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0669082A (en) Manufacture of solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JP2696982B2 (en) Solid electrolytic capacitors
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH11121279A (en) Organic solid electrolytic capacitor and manufacturing method therefor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
KR20060020148A (en) Manufacturing method of small tantalum electrolytic capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

EXPY Cancellation because of completion of term