JP3066086B2 - Non-aqueous secondary battery - Google Patents
Non-aqueous secondary batteryInfo
- Publication number
- JP3066086B2 JP3066086B2 JP2407582A JP40758290A JP3066086B2 JP 3066086 B2 JP3066086 B2 JP 3066086B2 JP 2407582 A JP2407582 A JP 2407582A JP 40758290 A JP40758290 A JP 40758290A JP 3066086 B2 JP3066086 B2 JP 3066086B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- negative electrode
- battery
- electrode
- potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はリチウムを吸蔵,放出可
能な物質を活物質とする負極と、LiCoO 2 を活物質
とする正極とを備えた非水系二次電池に関し、特に過放
電特性を改良した非水系二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can absorb and release lithium.
Negative electrode using an active material as an active material, and LiCoO TwoThe active material
Non-aqueous secondary batteries with positive electrodes
The present invention relates to a non-aqueous secondary battery having improved electrical characteristics.
【0002】[0002]
【従来の技術】この種の二次電池は、高電圧,高エネル
ギー密度を有するので、近年、活発に研究されており、
その一貫として、正負極活物質としても種々の物質が提
案されている。具体的には、負極活物質としてリチウム
金属が提案されている。しかし、リチウム金属を用いた
場合には、充放電を繰り返すとデンドライトが発生した
り微粉化が生じ、この結果電池内部でショートを生じた
り、サイクル特性が劣化するという課題がある。このよ
うな課題を考慮して、負極活物質としてリチウム合金、
炭素材料、或いは金属酸化物等が提案されている。2. Description of the Related Art A secondary battery of this type has a high voltage and a high energy density, and has been actively studied in recent years.
As a whole, various materials have been proposed as positive and negative electrode active materials. Specifically, lithium metal has been proposed as a negative electrode active material. However, when lithium metal is used, repetition of charge / discharge generates dendrites and fines, resulting in short-circuiting inside the battery and deterioration of cycle characteristics. In consideration of such problems, a lithium alloy as a negative electrode active material,
Carbon materials and metal oxides have been proposed.
【0003】一方、正極活物質としては、Li含有二酸
化マンガン、三酸化モリブデン、五酸化バナジウム、L
iCoO2 、チタン或いはニオブの硫化物等が提案され
ており、一部実用化されている。これら正極活物質の中
でも、特にLiCoO2 は放電時の電位がLi/Li+
に対して4Vと極めて高電位を示し、且つ放電容量も大
きいので、極めて有望である。On the other hand, as positive electrode active materials, Li-containing manganese dioxide, molybdenum trioxide, vanadium pentoxide, L
iCoO 2 , sulfide of titanium or niobium and the like have been proposed, and some of them have been put to practical use. Among these positive electrode active materials, LiCoO 2 has a potential of Li / Li + during discharge.
Is very promising because it shows an extremely high potential of 4 V and a large discharge capacity.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記L
iCoO2 を正極活物質として用いた電池では、深い深
度の充放電を繰り返すと、充放電サイクル特性が劣化す
るという課題を有している。特に、LiCoO2 の電位
がLi/Li+ (リチウムの溶解析出反応の電極電位)
に対して2V以下になるまで放電すると充放電サイクル
特性が著しく劣化するという課題を有していた。However, the above L
A battery using iCoO 2 as a positive electrode active material has a problem that charge / discharge cycle characteristics deteriorate when charge / discharge at a deep depth is repeated. In particular, the potential of LiCoO 2 is Li / Li + (electrode potential of the dissolution and deposition reaction of lithium).
However, if the battery is discharged to 2 V or less, the charge-discharge cycle characteristics are significantly deteriorated.
【0005】本発明はかかる現状に鑑みてなされたもの
であり、過放電特性に優れた非水系二次電池を提供する
ことを目的とする。The present invention has been made in view of such circumstances, and has as its object to provide a non-aqueous secondary battery having excellent overdischarge characteristics.
【0006】[0006]
【課題を解決するための手段】本発明は上記目的を達成
するために、リチウムを吸蔵,放出可能な物質を活物質
とする負極と、LiCoO2 を活物質とする正極とを備
えた非水系二次電池において、前記正極の電極電位がL
i/Li+ に対して2V以下になる前に電池電圧が0V
となるよう、前記正極と負極との容量比を設定すること
を特徴とする。In order to achieve the above object, the present invention provides a nonaqueous system comprising a negative electrode using a material capable of absorbing and releasing lithium as an active material and a positive electrode using LiCoO 2 as an active material. In the secondary battery, the electrode potential of the positive electrode is L
Before the battery voltage becomes 2 V or less with respect to i / Li + , the battery voltage becomes 0 V
The capacitance ratio between the positive electrode and the negative electrode is set so that
【0007】[0007]
【作用】本願発明者は、種々の実験を繰り返したとこ
ろ、LiCoO2 の電極電位がLi/Li+ に対して2
V以下になるまで過放電すると、LiCoO2 の結晶構
造が変化し、この結果充放電の可逆性が損なわれること
を見出した。そこで、上記構成の如く正極の電極電位が
Li/Li+ に対して2V以下になる以前に電池電圧が
0Vとなるように、即ち、正極の電極電位がLi/Li
+ に対して2V以下になる前に負極の電極電位が正極の
電極電位と同一となるように、前記正極と負極との容量
比を設定すれば、正極の電極電位が2V以下になるまで
放電するのを防止できる。したがって、充放電を繰り返
した場合であっても、正極活物質として用いたLiCo
O2 の結晶構造が変化するのを防止することができるの
で、LiCoO2 の可逆性を維持することが可能とな
る。The inventor of the present invention repeated various experiments and found that the electrode potential of LiCoO 2 was 2 to Li / Li + .
It has been found that when overdischarge occurs to V or less, the crystal structure of LiCoO 2 changes, and as a result, the reversibility of charge and discharge is impaired. Therefore, the battery voltage becomes 0 V before the electrode potential of the positive electrode becomes 2 V or less with respect to Li / Li + as described above, that is, the electrode potential of the positive electrode becomes Li / Li + .
If the capacity ratio between the positive electrode and the negative electrode is set so that the electrode potential of the negative electrode becomes the same as the electrode potential of the positive electrode before the voltage becomes 2 V or less with respect to + , discharge occurs until the electrode potential of the positive electrode becomes 2 V or less. Can be prevented. Therefore, even when charging and discharging are repeated, LiCo used as the positive electrode active material is used.
Since the change in the crystal structure of O 2 can be prevented, the reversibility of LiCoO 2 can be maintained.
【0008】例えば、負極活物質として炭素材料を、正
極活物質としてLiCoO2 を用いた場合について、図
4及び図5に基づいて以下に説明する。図4は放電時
(リチウムを脱ドープするとき)における負極電位の変
化を示すグラフであり、図5は放電時における正極電位
の変化を示すグラフである。図4及び図5より、放電時
には、負極電位がLi/Li+ に対して0Vから3Vに
変化する一方、正極電位はLi/Li+ に対して4Vか
ら0Vに変化する。この場合において、正極の電極電位
がLi/Li+ に対して2V以下となる前に、負極の電
極電位が正極の電極電位と同一になるように正負極の容
量比を設定する。具体的には、正極電位が4Vから2V
になるまでの正極容量を、負極電位が0Vから2Vにな
るまでの負極容量よりも大きく設定する。このように設
定すれば、正極の電極電位が2Vとなる前に電池電圧が
0Vとなるので、正極活物質として用いたLiCoO2
が過放電されることがない。したがって、LiCoO2
の可逆性を維持することが可能となる。For example, a case where a carbon material is used as a negative electrode active material and LiCoO 2 is used as a positive electrode active material will be described below with reference to FIGS. 4 and 5. FIG. 4 is a graph showing a change in the negative electrode potential at the time of discharging (when undoping lithium), and FIG. 5 is a graph showing a change in the positive electrode potential at the time of discharging. 4 and 5, at the time of discharging, the negative electrode potential changes from 0 V to 3 V with respect to Li / Li + , while the positive electrode potential changes from 4 V to 0 V with respect to Li / Li + . In this case, the capacitance ratio between the positive electrode and the negative electrode is set so that the electrode potential of the negative electrode becomes equal to the electrode potential of the positive electrode before the electrode potential of the positive electrode becomes 2 V or less with respect to Li / Li + . Specifically, the positive electrode potential is 4V to 2V
Is set to be larger than the negative electrode capacity until the negative electrode potential changes from 0V to 2V. With such a setting, the battery voltage becomes 0 V before the electrode potential of the positive electrode becomes 2 V, so that LiCoO 2 used as the positive electrode active material was used.
Is not overdischarged. Therefore, LiCoO 2
Can be maintained reversibly.
【0009】[0009]
【実施例】本発明の実施例を、図1〜図3に基づいて、
以下に説明する。 〔実施例〕図1は本発明の一例に係る非水系二次電池の
断面図であり、LiCoO2 を主体とする正極1と、コ
ークスを主体とする負極2と、この負極2に接触された
リチウム箔11と、上記正極1と負極2又はリチウム箔
11との間に介挿されたポリプロピレン製のセパレータ
3とから成る電極群4は渦巻状に巻回されている。この
電極群4は負極缶6内に配置されており、この負極缶6
と上記負極2とは負極用リード5により接続されてい
る。上記負極缶6の上部開口にはパッキング7を介して
正極キャップ8が装着されており、この正極キャップ8
の内部にはコイルスプリング9が設けられている。この
コイルスプリング9は電池内部の内圧が異常上昇したと
きに矢印A方向に押圧されて内部のガスが大気中に放出
されるように構成されている。また、上記正極キャップ
8と前記正極1とは正極用リード10にて接続されてい
る。尚、上記リチウム箔11は、電解液を負極缶6内に
注液した際にコークス内に取り込まれるような構成であ
る。また、電池寸法は、直径14.2mm,高さ50.0
mmである。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.
This will be described below. FIG. 1 is a cross-sectional view of a non-aqueous secondary battery according to an example of the present invention, in which a positive electrode 1 mainly composed of LiCoO 2 , a negative electrode 2 mainly composed of coke, and this negative electrode 2 were brought into contact. An electrode group 4 composed of a lithium foil 11 and a polypropylene separator 3 interposed between the positive electrode 1 and the negative electrode 2 or the lithium foil 11 is spirally wound. The electrode group 4 is disposed in the negative electrode can 6.
The negative electrode 2 is connected to the negative electrode 2 by a negative electrode lead 5. A positive electrode cap 8 is attached to the upper opening of the negative electrode can 6 via a packing 7.
Is provided with a coil spring 9 therein. The coil spring 9 is configured such that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere. The positive electrode cap 8 and the positive electrode 1 are connected by a positive electrode lead 10. The lithium foil 11 is configured to be taken into coke when the electrolyte is injected into the negative electrode can 6. The battery dimensions were 14.2 mm in diameter and 50.0 in height.
mm.
【0010】ここで、上記構造の円筒型非水系二次電池
を、以下のようにして作製した。先ず、炭酸コバルトと
炭酸リチウムとを、CoとLiとのモル比が1:1とな
るような割合で混合した後、空気中において900℃で
20時間熱処理する。これにより、LiCoO2 粉末
(正極活物質粉末)が作製される。次に、このLiCo
O2 粉末と、導電剤としてのアセチレンブラックと、結
着剤としてのフッ素樹脂ディスパージョンとを重量比
で、90:6:4の比率で混合して、正極合剤を作製す
る。次いで、アルミニウム製のラス板から成る集電体
に、上記正極合剤を圧延し、250℃で2時間真空処理
を行うことにより正極1を作製した。尚、この正極1の
電極電位がLi/Li+ に対して2Vに低下するまでの
放電容量は400mAhであった。Here, the cylindrical non-aqueous secondary battery having the above structure was manufactured as follows. First, cobalt carbonate and lithium carbonate are mixed at a ratio such that the molar ratio of Co and Li becomes 1: 1 and then heat-treated in air at 900 ° C. for 20 hours. Thereby, LiCoO 2 powder (positive electrode active material powder) is produced. Next, this LiCo
O 2 powder, acetylene black as a conductive agent, and a fluororesin dispersion as a binder are mixed at a weight ratio of 90: 6: 4 to prepare a positive electrode mixture. Next, the positive electrode mixture was rolled on a current collector formed of a lath plate made of aluminum, and subjected to a vacuum treatment at 250 ° C. for 2 hours to produce a positive electrode 1. The discharge capacity until the electrode potential of the positive electrode 1 was reduced to 2 V with respect to Li / Li + was 400 mAh.
【0011】一方、これと並行して、400メッシュ以
下のコークスと結着剤としてのフッ素樹脂ディスパージ
ョンとを重量比で、95:5の割合で混合して負極合剤
を作製する。次に、ステンレス製のラス板から成る集電
体に、上記負極合剤を圧延し、250℃で2時間真空処
理を行うことにより負極2を作製した。尚、この負極2
の電極電位がLi/Li+ に対して0Vから2Vに上昇
するまでの放電容量は380mAhであり、また0Vか
ら3Vに上昇するまでの放電容量は450mAhであっ
た。On the other hand, in parallel with this, coke of 400 mesh or less and a fluororesin dispersion as a binder are mixed at a weight ratio of 95: 5 to prepare a negative electrode mixture. Next, the negative electrode mixture was rolled on a current collector made of a stainless steel lath plate, and subjected to a vacuum treatment at 250 ° C. for 2 hours to prepare a negative electrode 2. In addition, this negative electrode 2
The discharge capacity until the electrode potential of Li / Li + increased from 0 V to 2 V with respect to Li / Li + was 380 mAh, and the discharge capacity until the electrode potential increased from 0 V to 3 V was 450 mAh.
【0012】次いで、上記負極2に50mAh相当のリ
チウム箔11を接触させた後、セパレータ3を介して正
負極1・2とセパレータ3とリチウム箔11を渦巻き状
に巻回して電極群4を作製した後、この電極群4を負極
缶6内に挿入する。更に1モル/リットルの割合でLi
ClO4 を溶解させたPC(プロピレンカーボネート)
を上記負極缶6内に注液した後、負極缶6を正極キャッ
プ8で密閉することにより円筒型非水系二次電池を作製
した。Next, a lithium foil 11 equivalent to 50 mAh is brought into contact with the negative electrode 2, and then the positive and negative electrodes 1, 2, the separator 3 and the lithium foil 11 are spirally wound via a separator 3 to form an electrode group 4. After that, the electrode group 4 is inserted into the negative electrode can 6. Li at a rate of 1 mol / liter
PC (propylene carbonate) with ClO 4 dissolved
Was injected into the negative electrode can 6, and the negative electrode can 6 was sealed with the positive electrode cap 8 to produce a cylindrical non-aqueous secondary battery.
【0013】このようにして作製した電池を、以下
(A)電池と称する。 〔比較例〕 正極の電極電位がLi/Li+ に対して2Vに低下する
までの放電容量を350mAhに設定する一方、負極の
電極電位がLi/Li+ に対して0Vから2Vに上昇す
るまでの放電容量を430mAhに設定し、160mA
h相当のリチウム箔を接触させる他は、上記実施例と同
様にして電池を作製した。The battery fabricated in this manner is hereinafter referred to as (A) battery. [Comparative Example] The discharge capacity until the electrode potential of the positive electrode decreased to 2 V with respect to Li / Li + was set to 350 mAh, while the electrode potential of the negative electrode increased from 0 V to 2 V with respect to Li / Li + . Is set to 430 mAh, and the discharge capacity is set to 160 mA.
A battery was fabricated in the same manner as in the above example except that a lithium foil corresponding to h was contacted .
【0014】このようにして作製した電池を、以下
(X)電池と称する。 〔実験1〕上記本発明の(A)電池と比較例の(X)電
池との1サイクル目における放電特性を調べたので、そ
の結果を図2に示す。尚、充放電条件は、充電電流10
0mAで電池電圧4.3Vまで充電した後、放電電流1
00mAで電池電圧0Vまで放電するという条件であ
る。The battery fabricated in this manner is hereinafter referred to as (X) battery. [Experiment 1] Discharge characteristics in the first cycle of the battery (A) of the present invention and the battery (X) of the comparative example were examined. The results are shown in FIG. The charging and discharging conditions are as follows.
After charging to a battery voltage of 4.3 V at 0 mA, a discharge current of 1 mA
The condition is that the battery is discharged to 0 V at 00 mA.
【0015】図2から明らかなように、本発明の(A)
電池と比較例の(X)電池とは放電特性において略同等
であることが認められる。 〔実験2〕上記本発明の(A)電池と比較例の(X)電
池との充放電サイクル特性を調べたので、その結果を図
3に示す。尚、充放電条件は、上記実験1と同様の条件
である。As is apparent from FIG. 2, (A) of the present invention
It is recognized that the battery and the battery (X) of the comparative example have substantially the same discharge characteristics. [Experiment 2] The charge / discharge cycle characteristics of the battery (A) of the present invention and the battery (X) of the comparative example were examined. The results are shown in FIG. The charge and discharge conditions are the same as those in Experiment 1.
【0016】図3から明らかなように、本発明の(A)
電池は比較例の(X)電池に比べて、充放電サイクル特
性が飛躍的に向上していることが認められる。これは、
本発明の(A)電池では、正極電位が4Vから2Vにな
るまでの正極容量を、負極電位が0Vから2Vになるま
での負極容量よりも大きく設定しているので、正極電位
が2V以下に低下するのを防止でき、LiCoO2 の可
逆性を維持できる。これに対して、比較例の(X)電池
では、正極電位が4Vから2Vになるまでの正極容量
を、負極電位が0Vから2Vになるまでの負極容量より
も小さく設定しているので、過放電時に正極電位が2V
以下に低下し、LiCoO 2 の結晶構造が変化するとい
うことに起因するものと考えられる。As is apparent from FIG. 3, (A) of the present invention
The battery has more charge / discharge cycle characteristics than the battery (X) of the comparative example.
It is recognized that the properties have been dramatically improved. this is,
In the battery (A) of the present invention, the positive electrode potential is changed from 4V to 2V.
Until the negative electrode potential goes from 0V to 2V.
Is set larger than the negative electrode capacity at
Can be prevented from dropping to 2 V or less, and LiCoOTwoPossible
Can maintain inversion. On the other hand, the battery (X) of the comparative example
Then, the positive electrode capacity until the positive electrode potential changes from 4V to 2V
From the negative electrode capacity until the negative electrode potential changes from 0V to 2V.
Is also set small, so that the positive electrode potential is 2 V during overdischarge.
To LiCoO TwoChanges the crystal structure of
It is thought to be caused by
【0017】尚、上記実施例では、負極活物質としてコ
ークスを用いているが、これに限定するものではなく、
リチウムを吸蔵,放出可能な物質(例えば、リチウム合
金、金属酸化物)であっても上記と同様の効果を得るこ
とは勿論である。In the above embodiment, coke is used as the negative electrode active material. However, the present invention is not limited to this.
It is needless to say that the same effect as described above can be obtained even with a substance capable of occluding and releasing lithium (for example, lithium alloy and metal oxide).
【0018】[0018]
【発明の効果】以上説明したように本発明によれば、正
極の電極電位が2V以下になるまで放電するのを防止で
きる。したがって、充放電を繰り返した場合であって
も、正極活物質であるLiCoO2 の可逆性を維持する
ことが可能となり、深い深度での充放電特性が飛躍的に
向上するといった効果を奏する。As described above, according to the present invention, it is possible to prevent discharge until the electrode potential of the positive electrode becomes 2 V or less. Therefore, even when charge and discharge are repeated, the reversibility of LiCoO 2 as the positive electrode active material can be maintained, and the effect of dramatically improving charge and discharge characteristics at a deep depth can be obtained.
【図1】本発明の一例に係る非水系二次電池の断面図で
ある。FIG. 1 is a cross-sectional view of a non-aqueous secondary battery according to an example of the present invention.
【図2】本発明の(A)電池と比較例の(X)電池との
1サイクル目の放電特性を示すグラフである。FIG. 2 is a graph showing first cycle discharge characteristics of a battery (A) of the present invention and a battery (X) of a comparative example.
【図3】本発明の(A)電池と比較例の(X)電池との
充放電サイクル特性を示すグラフである。FIG. 3 is a graph showing charge / discharge cycle characteristics of a battery (A) of the present invention and a battery (X) of a comparative example.
【図4】放電時における負極電位の変化を示すグラフで
ある。FIG. 4 is a graph showing a change in negative electrode potential during discharging.
【図5】放電時における正極電位の変化を示すグラフで
ある。FIG. 5 is a graph showing a change in a positive electrode potential during discharging.
1 正極 2 負極 3 セパレータ 11 リチウム箔 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 11 Lithium foil
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40
Claims (1)
質とする負極と、LiCoO2 を活物質とする正極とを
備えた非水系二次電池において、前記正極の電極電位が
Li/Li+ に対して2V以下になる前に電池電圧が0
Vとなるよう、前記正極と負極との容量比を設定するこ
とを特徴とする非水系二次電池。1. A non-aqueous secondary battery comprising a negative electrode using a material capable of occluding and releasing lithium as an active material and a positive electrode using LiCoO 2 as an active material, wherein the electrode potential of the positive electrode is Li / Li + Before the battery voltage becomes 0 V or less,
A non-aqueous secondary battery, wherein the capacity ratio between the positive electrode and the negative electrode is set so as to be V.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2407582A JP3066086B2 (en) | 1990-12-27 | 1990-12-27 | Non-aqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2407582A JP3066086B2 (en) | 1990-12-27 | 1990-12-27 | Non-aqueous secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04229561A JPH04229561A (en) | 1992-08-19 |
JP3066086B2 true JP3066086B2 (en) | 2000-07-17 |
Family
ID=18517152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2407582A Expired - Lifetime JP3066086B2 (en) | 1990-12-27 | 1990-12-27 | Non-aqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3066086B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001176557A (en) * | 1999-12-20 | 2001-06-29 | Toyota Central Res & Dev Lab Inc | Non-aqueous electrolyte secondary battery |
-
1990
- 1990-12-27 JP JP2407582A patent/JP3066086B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04229561A (en) | 1992-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6274271B1 (en) | Non-aqueous electrolyte lithium secondary battery | |
US5591546A (en) | Secondary cell | |
JP3436600B2 (en) | Rechargeable battery | |
US4956247A (en) | Nonaqueous electrolyte secondary cell | |
JPH04147573A (en) | Nonaqueous electrolyte secondary battery | |
JPH1027626A (en) | Lithium secondary battery | |
EP0501187B1 (en) | Nonaqueous electrolyte secondary battery | |
JP3252414B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH07335261A (en) | Lithium secondary battery | |
JP3309719B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3197684B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH06275265A (en) | Nonaqueous electrolyte secondary battery | |
JP2003282147A (en) | Lithium ion secondary battery | |
JPH06275268A (en) | Nonaqueous electrolyte secondary battery | |
JP3066086B2 (en) | Non-aqueous secondary battery | |
US6451482B1 (en) | Non-aqueous electrolyte secondary batteries | |
JPH11273726A (en) | Non-aqueous electrolyte secondary battery | |
JPH11176421A (en) | Nonaqueous electrolyte secondary battery | |
JPH05258773A (en) | Non-aqueous electrolyte secondary battery | |
JP2730641B2 (en) | Lithium secondary battery | |
JP2951013B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3148905B2 (en) | Manufacturing method of thin non-aqueous electrolyte secondary battery | |
JP2001196073A (en) | Nonaqueous electrolyte battery | |
JPH04206276A (en) | Nonaqueous electrolyte secondary battery | |
JP3423168B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080512 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110512 Year of fee payment: 11 |