JP3037474B2 - Faraday rotator - Google Patents
Faraday rotatorInfo
- Publication number
- JP3037474B2 JP3037474B2 JP3205678A JP20567891A JP3037474B2 JP 3037474 B2 JP3037474 B2 JP 3037474B2 JP 3205678 A JP3205678 A JP 3205678A JP 20567891 A JP20567891 A JP 20567891A JP 3037474 B2 JP3037474 B2 JP 3037474B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- magnet
- rotation angle
- faraday
- saturation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明はファラデー回転角の温度
変化が小さく、光アイソレータ、光サーキュレータ、光
スイッチ等に使用するのに適したファラデー回転子に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Faraday rotator having a small change in Faraday rotation angle with temperature and suitable for use in optical isolators, optical circulators, optical switches and the like.
【0002】[0002]
【従来技術の説明】光通信の波長である1.3μm帯、
1.55μm帯用の光アイソレータに使用されるファラ
デー回転子材料として、磁性ガーネット材料が知られて
いる。特に、Biを置換した希土類鉄ガーネット材料は
ファラデー回転能が大きく有望視されているが、ファラ
デー回転角の温度変化が大きいことが欠点である。最近
ガーネットの組成を調整して、この温度特性を改善する
ことが提案されている。一例として、特開昭62−10
5931号がある。この発明の中でTb2.6 Bi0. 4 Fe5 O
12 が、回転角の温度変化率をほぼ0にする優秀な組成
であることが示されているが、逆に欠点としては温度特
性を改善する目的でBi置換量を少なくしているためフ
ァラデー回転係数(回転能)が小さいことがあげられ
る。現在までにBi置換量が充分大きくかつ温度変化を
ほぼ0にする材料組成は知られていない。2. Description of the Prior Art 1.3 μm band, which is the wavelength of optical communication,
As a Faraday rotator material used for an optical isolator for the 1.55 μm band, a magnetic garnet material is known. In particular, Bi-substituted rare-earth iron garnet materials have great potential for Faraday rotation and are considered promising, but have the disadvantage that the temperature change of the Faraday rotation angle is large. It has recently been proposed to adjust the composition of garnet to improve this temperature characteristic. For example, Japanese Patent Application Laid-Open No. Sho 62-10
No. 5931. Tb 2.6 Bi 0. 4 Fe 5 O in the present invention
It is shown that No. 12 has an excellent composition that makes the temperature change rate of the rotation angle almost zero. The coefficient (rotational power) is small. To date, there is no known material composition in which the Bi substitution amount is sufficiently large and the temperature change is almost zero.
【0003】また、組成調整以外の改善方法として実公
昭61−9376号では温度補償型光アイソレータが示
されている。ファラデー回転子の飽和磁界の温度変化に
よるファラデー回転角の温度変化分を印加磁界を変化さ
せることにより補償する方法であり温度特性を改善する
有効な方法であり本発明もこの原理を利用する。しか
し、この実公昭61−9376号の欠点は永久磁石以外
に整磁鋼が配置された複雑な構成となっていることであ
り、また0.8μm帯用を対象としている。As an improvement method other than composition adjustment, Japanese Utility Model Publication No. Sho 61-9376 discloses a temperature compensated optical isolator. This is a method of compensating for the temperature change of the Faraday rotation angle due to the temperature change of the saturation magnetic field of the Faraday rotator by changing the applied magnetic field, is an effective method for improving the temperature characteristics, and the present invention also utilizes this principle. However, the disadvantage of Japanese Utility Model Publication No. 61-9376 is that it has a complicated structure in which a magnetic shunt steel is arranged in addition to the permanent magnet, and is intended for the 0.8 μm band.
【0004】なお、近赤外の波長(1.3μm、1.5
5μm)のファラデー回転子として実用化されている磁
性ガーネット材料は通常飽和磁界中で使用されており、
多少外部磁場が変化してもファラデー回転角は変化しな
い点で優れているが、前述のようにBiが多ければ温度
特性が悪くなり、少なければ回転能が低く厚い膜を必要
とする。The near-infrared wavelength (1.3 μm, 1.5
Magnetic garnet materials practically used as Faraday rotators of 5 μm) are usually used in a saturated magnetic field,
The Faraday rotation angle is excellent in that the Faraday rotation angle does not change even if the external magnetic field changes to some extent. However, as described above, if Bi is large, the temperature characteristic is deteriorated.
【0005】一般に希土類鉄ガーネットに磁界Hを印加
すると模式的には図1のようにファラデー回転角が変化
する。飽和磁界HS 以上ではファラデー回転角は飽和値
θfsとなり変化しない。光アイソレータ用ファラデー回
転子としてこのガーネットを用いる場合は通常飽和磁界
(H>HS )中で使用するのでθfsを単にファラデー回
転角と呼ぶ場合が多い。In general, when a magnetic field H is applied to a rare earth iron garnet, the Faraday rotation angle typically changes as shown in FIG. Above the saturation magnetic field H S , the Faraday rotation angle becomes the saturation value θ fs and does not change. When this garnet is used as a Faraday rotator for an optical isolator, θ fs is often simply referred to as a Faraday rotation angle because it is usually used in a saturation magnetic field (H> H S ).
【0006】さて、Biを多量置換した希土類鉄ガーネ
ットはファラデー回転能(θfs/厚さ)が大きいという
特徴があるが反面θfsの温度変化が大きいという欠点が
ある。例えば、BixR3-xFe5O12 (R:希土類)において
x>0.5では通常θfsの温度係数は−0.15%/℃
程度である。Rare earth iron garnets with a large amount of Bi substitution have a large Faraday rotation capability (θ fs / thickness), but have the disadvantage of a large temperature change of θ fs . For example, in Bi x R 3-x Fe 5 O 12 (R: rare earth), when x> 0.5, the temperature coefficient of θ fs is usually −0.15% / ° C.
It is about.
【0007】[0007]
【発明が解決すべき課題】特開昭62−105931号
のような回転角の温度変化率の少ない組成のファラデー
回転子はBi置換量が少ないためにファラデー回転係数
(回転能)が小さい。一方、実公昭61−9376号の
ような温度補償装置を有するものは複雑な構造と面倒な
調整が必要である。従って、本発明は温度依存性の少な
く且つファラデー回転角の大きいファラデー回転子を提
供することを目的とする。A Faraday rotator having a composition with a small rotation angle temperature change rate as disclosed in Japanese Patent Application Laid-Open No. Sho 62-105931 has a small Faraday rotation coefficient (rotation ability) due to a small amount of Bi substitution. On the other hand, a device having a temperature compensating device as disclosed in Japanese Utility Model Publication No. 61-9376 requires a complicated structure and complicated adjustment. Accordingly, an object of the present invention is to provide a Faraday rotator having a small temperature dependency and a large Faraday rotation angle.
【0008】[0008]
本発明は、組成 Bix Py Q3-X-y Fe5-w Mw O12 (ここでP:Y、La、Sm、Eu、Tm、Yb、Lu
の中の1種以上、 Q:Gd、Tb、Dy、Ho、Erの中の1種以上、 M:Feと置換しうる元素の1種以上、であり、又x、
y、wは 0.7≦x≦2.0、0.5≦y≦2.3、0≦3−x
−y≦1、0.5≦w≦1.0を満足する)で表わされ
るガーネット材料に、この材料の飽和磁界よりも小さい
磁界を印加するための磁石を組合せて構成し、前記ファ
ラデー回転子の飽和磁界よりも小さい磁界での回転角度
は正の温度係数を有し、前記磁石は前記温度係数の変化
を相殺する負の温度係数を有するように設定したファラ
デー回転子を提供する。The present invention, the composition Bi x P y Q 3-Xy Fe 5-w M w O 12 ( where P: Y, La, Sm, Eu, Tm, Yb, Lu
At least one of the following: Q: at least one of Gd, Tb, Dy, Ho, and Er; M: at least one of elements that can be substituted for Fe ;
y and w are 0.7 ≦ x ≦ 2.0, 0.5 ≦ y ≦ 2.3, and 0 ≦ 3-x
The garnet material expressed by satisfying -y ≦ 1,0.5 ≦ w ≦ 1.0) , formed by combining a magnet for applying a smaller magnetic field than the saturation field of the material, the file
Rotation angle at a magnetic field smaller than the saturation magnetic field of the Raday rotator
Has a positive temperature coefficient, and the magnet changes the temperature coefficient
A Faraday rotator set to have a negative temperature coefficient to cancel out .
【0009】本発明者らは、先に特願平2−13698
8号、及び特願平3−94851号において組成Bix
Py Q3-x-y Fe5-w Mw O12 (ただしP:Y、La、Sm、Eu、Tm、Yb、Lu
の1種以上、 Q:Gd、Tb、Dy、Ho、Erの少なくとも1種以
上、 M:Feと置換できる元素の1種以上、 0.7≦x≦2.0、0.5≦y≦2.3、0≦3−x
−y≦1、w<0.5)で表わされるガーネット材料と
この材料にファラデー回転角が飽和する磁界(飽和磁
界)よりも小さい磁界を印加するための磁石より構成さ
れるファラデー回転子を提案した。The present inventors have previously disclosed in Japanese Patent Application No. 2-13698.
No. 8 and Japanese Patent Application No. Hei 3-94851, the composition Bi x
Py Q 3-xy Fe 5-w M w O 12 (where P: Y, La, Sm, Eu, Tm, Yb, Lu
Q: at least one or more of Gd, Tb, Dy, Ho, and Er; M: at least one of elements that can be substituted for Fe; 0.7 ≦ x ≦ 2.0, 0.5 ≦ y ≦ 2.3, 0 ≦ 3-x
-Y ≦ 1, w <0.5) and a Faraday rotator composed of a magnet for applying a magnetic field smaller than a magnetic field at which the Faraday rotation angle is saturated (saturation magnetic field) to the material. did.
【0010】これらの先願発明と本発明の違いは、Fe
に置換する元素Mのみである。wが0.5未満のもので
あった。このものは、ガーネット材料を飽和磁化直下の
状態で使用され自動的な温度補償機能を有し、又Biが
多いことからファラデー回転能も大きいという特徴を有
するが、飽和磁化が約1.6kGと大きいためそれより
やや低い磁化約1.5kG程度に磁化させるための磁石
が大型化し、ファラデー回転子の全体的な寸法を大型に
する欠点があった。本発明は元素Mの量を先願のものよ
りも多くすることによりガーネット材料の飽和磁化を低
下させ、以てファラデー回転子の寸法を小さくする。磁
石が大型化するのはガーネット材料を飽和させないで使
用するため、磁界を均一にする目的で磁石を長さを充分
長くして磁石の形状の影響を出来るだけ回避する必要が
あるからである。The difference between the prior invention and the present invention is that
Is only the element M to be substituted. w was less than 0.5. This has a feature that the garnet material is used immediately below the saturation magnetization and has an automatic temperature compensation function, and has a large Faraday rotation ability due to a large amount of Bi, but has a saturation magnetization of about 1.6 kG. Since it is large, the magnet for magnetizing the magnetization slightly lower than that of about 1.5 kG becomes large, and there is a disadvantage that the overall size of the Faraday rotator becomes large. The present invention reduces the saturation magnetization of the garnet material by making the amount of the element M greater than that of the prior application, thereby reducing the size of the Faraday rotator. The size of the magnet is increased because the magnet is used without saturating the garnet material, so that it is necessary to increase the length of the magnet sufficiently in order to make the magnetic field uniform and to avoid the influence of the shape of the magnet as much as possible.
【0011】本発明で使用するガーネット材料は、上記
先願と同様に大ファラデー回転角及び温度特性の自己調
節機能を有する他、更に低飽和磁化を有するので、先願
よりも小型のファラデー回転子を構成することが出来
る。The garnet material used in the present invention has a function of self-adjustment of a large Faraday rotation angle and temperature characteristics similarly to the above-mentioned prior application, and further has a low saturation magnetization. Can be configured.
【0012】本発明の温度補償の原理を図2を用いて説
明する。図には2つの温度T1 <T2 におけるファラデ
ー回転角θf と磁界Hの関係を示す。本発明では印加磁
界HM は飽和磁界HSより小さく設定してあるので飽和
時のファラデー回転角θfsではなく、飽和磁界以下の磁
界HM が印加されたときのファラデー回転角θfMが問題
となる。磁石は温度が上がると磁界の強さが小さくなり
(HM1>HM2、添字1、2はそれぞれ温度T1 、T2 に
対応)、一方本発明の組成の材料では温度が上昇すると
不飽和部分の傾きが大きくなるためθfs1 /HS1<θ
fs2 /HS2であるので、温度が上って磁界が減っても図
に示すようにファラデー回転角が大きくなるので温度変
化がほとんど無いファラデー回転子が得られる。なお、
本発明の組成のガーネット素子の不飽和部の温度係数は
飽和部の温度係数よりはるかに小さいので、磁石の磁束
の温度による減少率に拘らず、従来よりもはるかに安定
な回転角が得られる。すなわち温度係数が零の磁石を使
用しても従来よりは良好な結果が得られるが、一般には
磁石の温度係数は負であるので、例えば稀土類コバルト
系の磁石のように温度係数が小さいものを使用すると更
に改善された効果がえられる。例えば光アイソレータ用
に通常使用される希土類コバルト磁石では、HM の温度
係数は−0.03〜−0.045%/℃であり、また一
般に他の磁石でも温度係数は負である。結局、HM の温
度変化と V=θfs/Hs の温度変化が打ち消し合う場
合に、回転角の温度変化が最も小さくなる。The principle of the temperature compensation according to the present invention will be described with reference to FIG. Figure shows the relationship between the Faraday rotation angle theta f and the magnetic field H at two temperatures T 1 <T 2. In the present invention, the applied magnetic field H M is set smaller than the saturation magnetic field H S , so the Faraday rotation angle θ fM when a magnetic field H M equal to or less than the saturation magnetic field is applied is a problem, not the Faraday rotation angle θ fs at the time of saturation. Becomes Magnets decrease in magnetic field strength with increasing temperature (H M1 > H M2 , subscripts 1 and 2 correspond to temperatures T 1 and T 2 , respectively), whereas materials of the composition of the present invention become unsaturated with increasing temperature. Θ fs1 / H S1 <θ
Since at fs2 / H S2, little Faraday rotator temperature changes is obtained since the Faraday rotation angle as shown in FIG even decreases the magnetic field up temperature increases. In addition,
Since the temperature coefficient of the unsaturated part of the garnet element of the composition of the present invention is much smaller than the temperature coefficient of the saturated part, a much more stable rotation angle can be obtained than before, regardless of the rate of decrease of the magnetic flux of the magnet due to the temperature. . In other words, better results can be obtained than with conventional magnets even when a magnet with a zero temperature coefficient is used.However, since the temperature coefficient of a magnet is generally negative, for example, a magnet having a small temperature coefficient such as a rare-earth cobalt-based magnet is used. The use of the compound gives a further improved effect. For example in a conventional rare earth cobalt magnet is used for the optical isolator, the temperature coefficient of the H M is -0.03~-0.045% / ℃, also the temperature coefficient in general to other magnet negative. After all, when the temperature change of H M and the temperature change of V = θ fs / H s cancel each other, the temperature change of the rotation angle becomes the smallest.
【0013】本発明ではMの量が0.5≦w≦1を満足
するので、前述の先願のガーネット材料(ファラデー回
転素子)よりも飽和磁化が約1.5kGから例えば約
1.1G程度に減少し(対応して図2のHs1 、Hs2
も小さくなる)、そのためファラデー回転子を構成する
磁石を小型化することが可能になる。In the present invention, since the amount of M satisfies 0.5 ≦ w ≦ 1, the saturation magnetization of the garnet material (Faraday rotator) of the prior application is about 1.5 kG to about 1.1 G, for example. (Corresponding to Hs 1 and Hs 2 in FIG. 2).
Therefore, the size of the magnet constituting the Faraday rotator can be reduced.
【0014】次ぎに本発明で使用するガーネット材料を
説明する。V=θfs/Hs の温度係数は希土類鉄ガーネ
ットの組成によって変わる。Bix Py Q3-x-y Fe
5-w Mw O12においてP(Y、La、Sm、Eu、T
m、Yb、Lu)はVの温度変化を正にすることが知ら
れており、磁石の温度変化と打ち消し合う。一方Q(G
d、Tb、Dy、Ho、Er)はVの温度変化を負にす
ることが知られており、これを調整すると、磁石の磁界
の温度変化を相殺する様にガーネット材料の温度係数を
調整できる。0.7≦xはBi置換量が少ないとファラ
デー回転能が小さくなるため、x≦2はBi置換量が多
すぎるとLPE成長が困難になるため、またPの0.5
≦y≦2.3はVの温度変化を正にする効果があるが、
それをQの0≦3−x−y≦1によりVの温度変化を負
にする効果と相殺させるのであり、またMの量が0.5
≦w≦1で飽和磁化が減少する。Next, the garnet material used in the present invention will be described. The temperature coefficient of V = θ fs / H s depends on the composition of the rare earth iron garnet. Bi x P y Q 3-xy Fe
In 5-w M w O 12 , P (Y, La, Sm, Eu, T
m, Yb, Lu) are known to make the temperature change of V positive, and cancel out the temperature change of the magnet. On the other hand, Q (G
d, Tb, Dy, Ho, Er) are known to make the temperature change of V negative, and by adjusting this, the temperature coefficient of the garnet material can be adjusted so as to offset the temperature change of the magnetic field of the magnet. . When 0.7 ≦ x, the Faraday rotation ability decreases when the Bi substitution amount is small, and when x ≦ 2, the LPE growth becomes difficult when the Bi substitution amount is too large.
≤y≤2.3 has the effect of making the temperature change of V positive,
This is offset by the effect of making the temperature change of V negative by 0 ≦ 3-xy ≦ 1 of Q, and the amount of M is 0.5
When ≦ w ≦ 1, the saturation magnetization decreases.
【0015】飽和磁化の減少はFeに非磁性元素Mを置
換することにより行なうことが出来る。すなわち、Fe
のdサイトに置換し得る元素Mすなわち元素Dは飽和磁
化を下げることが出来ることが分かった。一方Feのa
サイトに置換し得る元素Mすなわち元素Aは逆効果であ
るが、dサイトの元素との関係で少量存在するのは構わ
ない。従って、特に本発明のガーネット材料の組成中M
w がAa Dd (w=a+d)において、0≦a<0.
3、0.5≦d≦1.0が満足されると良い。ガーネッ
トのaサイトに置換し得る非磁性イオンを構成する元素
AはSc、Inが挙げられ、又ガーネットのdサイトに
置換し得る元素DはGa、Alが挙げられる。The saturation magnetization can be reduced by substituting Fe with a nonmagnetic element M. That is, Fe
It has been found that the element M which can be substituted for the d site, that is, the element D can lower the saturation magnetization. On the other hand, a
The element M which can be substituted at the site, that is, the element A has an adverse effect, but it may be present in a small amount in relation to the element at the d site. Therefore, particularly in the composition of the garnet material of the present invention, M
When w is A a D d (w = a + d), 0 ≦ a <0.
3. It is preferable that 0.5 ≦ d ≦ 1.0 is satisfied. The element A constituting the nonmagnetic ion which can be substituted for the a-site of garnet includes Sc and In, and the element D which can be substituted for the d-site of garnet includes Ga and Al.
【0016】具体的な組成の例は(YLaHo)1.6 B
i1.4 Fe4.5 (Ga,Al)0.5O12(ただしHo/
Y=0.25、La/(Y+La)=0.1)が好適で
ある。例えばこの組成中Alを含まないものは次ぎの特
性を有する。 飽和磁化=0.9kG ファラデー回転角θf =1900deg/cm(130
0nmで) ベルデ定数の温度特性〜+0.03%/℃ 格子定数=12.496Å これに対してdサイトに非磁性置換イオンを持たないも
のは飽和磁化が約1700Gであった。A specific example of the composition is (YLaHo) 1.6 B
i 1.4 Fe 4.5 (Ga, Al) 0.5 O 12 (however, Ho /
It is preferable that Y = 0.25 and La / (Y + La) = 0.1). For example, those containing no Al in this composition have the following characteristics. Saturation magnetization = 0.9 kG Faraday rotation angle θ f = 1900 deg / cm (130
(0 nm) Temperature characteristic of Verdet constant ~ + 0.03% / ° C Lattice constant = 12.496 In contrast, the one without a nonmagnetic substitution ion at the d site had a saturation magnetization of about 1700G.
【0017】なお光軸方向に磁界を加えて飽和磁化以下
の磁化で使用すると、磁界方向とは逆の磁化を有する小
さい磁区が残る。光ビームの材料に入射される位置によ
って、ファラデー回転角が変化しないためには、ビーム
径の中にいつもほぼ同じ数のこの小さい磁区が含まれて
いなければいけない。すなわち光ビーム径は磁区の大き
さより、充分大きくする必要がある。なお磁化の方向が
磁界と平行な方向に均一ならば磁界と直角な方向に磁化
が反転する磁区を有するのはかまわない。If a magnetic field is applied in the direction of the optical axis and the magnetization is less than the saturation magnetization, small magnetic domains having a magnetization opposite to the direction of the magnetic field remain. In order that the Faraday rotation angle does not change depending on the position where the light beam enters the material, the beam diameter must always include approximately the same number of these small magnetic domains. That is, the light beam diameter needs to be sufficiently larger than the size of the magnetic domain. If the direction of magnetization is uniform in a direction parallel to the magnetic field, it is acceptable to have a magnetic domain in which the magnetization is reversed in a direction perpendicular to the magnetic field.
【0018】次に飽和磁界以下の磁界を印加した磁性ガ
ーネット材料に光を入射させるときに生ずる回折損失に
ついて説明する。磁化方向と平行な直線偏光の光が入射
すると、ファラデー効果により偏波面が回転し、磁化が
光の進行方向と同じ向きである磁区では光の偏波面は+
回転し、一方、逆向きの磁化である−回転する。このよ
うに磁区の場所により偏波面の回転角が異なってくるた
め、回折が生じることになる。このような多磁区構造は
飽和磁化より少し小さい磁場が印加されている場合にも
残存しており、ここに光が入射すると、多磁区構造は回
折格子として作用して入射光の一部を回折する。その結
果、検出光は回折損失を生じることになる。この問題は
光軸方向に垂直に磁化したガーネット板を互いに隔離し
て複数枚用いるかあるいは磁化が面内成分を有している
材料を用いることによって、ファラデー回転角の温度変
化を解消し且つ回折による検出光の損失を低減しまたは
回折を生じなくすることが出来る。これらは前記特願平
3−94851号に記載されている。Next, a description will be given of the diffraction loss that occurs when light is incident on a magnetic garnet material to which a magnetic field less than the saturation magnetic field is applied. When linearly polarized light parallel to the magnetization direction is incident, the polarization plane rotates due to the Faraday effect, and the polarization plane of the light is + in a magnetic domain in which the magnetization is in the same direction as the light traveling direction.
Rotate, while the opposite direction of magnetization-rotate. As described above, since the rotation angle of the polarization plane differs depending on the location of the magnetic domain, diffraction occurs. Such a multi-domain structure remains even when a magnetic field slightly smaller than the saturation magnetization is applied, and when light enters the multi-domain structure, the multi-domain structure acts as a diffraction grating to diffract a part of the incident light. I do. As a result, the detection light causes diffraction loss. This problem can be solved by using a plurality of garnet plates magnetized perpendicular to the optical axis direction, separated from each other, or by using a material whose magnetization has an in-plane component, thereby eliminating the temperature change of the Faraday rotation angle and diffracting. Can reduce the loss of the detection light or prevent the diffraction from occurring. These are described in the aforementioned Japanese Patent Application No. 3-94851.
【0019】[0019]
【実施例の説明】本発明の問題としてファラデー回転角
の場所による不均一分布がある。従来は飽和させていた
ので飽和磁界以上の磁界があれば磁界分布が悪くてもフ
ァラデー回転角の分布は良好であった。しかし、本発明
では飽和させないので磁界分布がそのままファラデー回
転角の分布に反映する。上記の特願平2−136988
号にはこの点が検討されており、磁石を内径Di 、外径
Do 、長さLの円板状に構成し、円板状のガーネット材
料製のファラデー回転素子をその中心に配した時、磁界
の最も均一になる条件は、 L/Di =(0.4 〜1.0)+0.5 Do/Di で表わされる。なお、外径が内径の5倍を超えると小型
化が困難となるのでDoはDi の5倍以下とする。DESCRIPTION OF THE PREFERRED EMBODIMENTS The problem of the present invention is the non-uniform distribution of the Faraday rotation angle depending on the location. Conventionally, the Faraday rotation angle distribution is good even if the magnetic field distribution is bad if there is a magnetic field higher than the saturation magnetic field because the magnetic field is saturated. However, in the present invention, since the magnetic field distribution is not saturated, the magnetic field distribution directly reflects the Faraday rotation angle distribution. Japanese Patent Application No. Hei 2-136988
This point is considered in this issue, and when the magnet is formed in a disk shape having an inner diameter Di, an outer diameter Do, and a length L, and a disk-shaped Faraday rotating element made of garnet material is disposed at the center thereof, the most uniform condition: magnetic field is represented by L / D i = (0.4 ~1.0 ) +0.5 D o / D i. Incidentally, D o is not more than 5 times the D i so compact if the outer diameter exceeds 5 times the inner diameter becomes difficult.
【0020】好ましい具体的な寸法は次の通りである。
材料の厚さ:Bi置換量が多いため波長1.3μm又は
1.55μm用の45度回転子として厚さは0.5mm
以下である。 材料の寸法:通常1.5〜5mm。ただし使用する光ビ
ーム径が大きいほど大きくする必要がある。 磁石の内径:材料が配置できる大きさ。 磁石の長さと外径:上式により決める。 磁界の強さ:本発明の材料では飽和磁化は約900Gで
あり、これを飽和させるには約900Oeが必要であるの
で、これより小さくなる。Preferred specific dimensions are as follows.
Material thickness: 0.5 mm as 45 degree rotator for wavelength 1.3 μm or 1.55 μm due to large Bi substitution
It is as follows. Material dimensions: usually 1.5-5 mm. However, the larger the diameter of the light beam used, the larger it needs to be. Inner diameter of magnet: The size where the material can be placed. Magnet length and outer diameter: Determined by the above formula. Magnetic field strength: The material of the present invention has a saturation magnetization of about 900 G, which is smaller than about 900 Oe to saturate it.
【0021】図3は本発明によるファラデー回転子をア
イソレータに応用した例を示す。希土類鉄ガーネット結
晶素子1は永久磁石2による均一磁界中に配置される。
その磁界は素子1が飽和しない領域でしかもできるだけ
大きい回転角度で使用されるように調整された強度、形
状、寸法の磁石により発生される。本発明のファラデー
回転子とはこのガーネット素子1と磁石2の組合せを言
う。3は入射光用の偏光子であり、4は出射光側の偏光
子であり、これらの偏光子は入射光をファラデー回転子
に透過させ、光ファイバー等から反射されて来た光は完
全に遮断するように配置されている。FIG. 3 shows an example in which the Faraday rotator according to the present invention is applied to an isolator. The rare earth iron garnet crystal element 1 is arranged in a uniform magnetic field by the permanent magnet 2.
The magnetic field is generated by magnets of strength, shape and size adjusted to be used in a region where the element 1 does not saturate and at a rotation angle as large as possible. The Faraday rotator of the present invention refers to a combination of the garnet element 1 and the magnet 2. Reference numeral 3 denotes a polarizer for incident light, and 4 denotes a polarizer on the output light side. These polarizers transmit the incident light through a Faraday rotator and completely block light reflected from an optical fiber or the like. It is arranged to be.
【0022】実施例 LPE法により材料(YLaHo)1.6 Bi1.4 Fe
4.5 (Ga,Al)0.5O12(ただしHo/Y=0.2
5、La/(Y+La)=0.1)を作製した。飽和磁
界は約900Oe、波長1.3μmの回転能は1900de
g/cm、θFSの温度係数は−0.13%/℃、V=θfs/
HS の温度係数は+0.03%/℃。であった。内径3
mm、外径4.5mm、長さ4.2mmの中空円筒の希
土類コバルト磁石(温度係数−0.03%/℃、中心磁
界850Oe)の中心に2mm口×厚さ0.25mmの上
記材料を配置してファラデー回転子とした所ファラデー
回転角は45°であり回転角の温度係数はほぼ0であっ
た。 Example Material (YLaHo) 1.6 Bi 1.4 Fe by LPE method
4.5 (Ga, Al) 0.5 O 12 (Ho / Y = 0.2
5, La / (Y + La) = 0.1). The saturation magnetic field is about 900 Oe, and the rotating power of 1.3 μm wavelength is 1900 de.
g / cm, temperature coefficient of θ FS is −0.13% / ° C., V = θ fs /
The temperature coefficient of H S is + 0.03% / ° C. Met. Inner diameter 3
In the center of a rare-earth cobalt magnet (temperature coefficient -0.03% / ° C, central magnetic field 850 Oe) of a hollow cylinder having a diameter of 4.5 mm, an outer diameter of 4.5 mm and a length of 4.2 mm, When the Faraday rotator was arranged, the Faraday rotation angle was 45 ° and the temperature coefficient of the rotation angle was almost 0.
【0023】従来例 内径3mm、外径5.0mm、長さ3mmの希土類コバ
ルト磁石(中心磁界1400Oe)の中心に2mm口×厚
さ0.237mmの上記材料を配置した所ファラデー回
転角は室温で45°、温度係数は−0.13%/℃と悪
かった。 比較例 特願平2−136988号による(YLaHo)1.6 B
i1.4 Fe5 O12(ただしHo/Y=0.25、La/
(Y+La)=0.1)では、飽和磁化が約1700G
であり、本発明と同じ結果を得るためには稀土類コバル
ト磁石の寸法は内径3mm、外径6.0mm、長さ5.
7mmの中空円筒の希土類コバルト磁石(温度係数−
0.03%/℃、中心磁界1800Oe)であった。Conventional Example When the above-mentioned material having a size of 2 mm and a thickness of 0.237 mm was placed at the center of a rare earth cobalt magnet (central magnetic field of 1400 Oe) having an inner diameter of 3 mm, an outer diameter of 5.0 mm and a length of 3 mm, the Faraday rotation angle was at room temperature. 45 °, the temperature coefficient was as bad as -0.13% / ° C. Comparative Example According to Japanese Patent Application No. 2-136988 (YLaHo) 1.6 B
i 1.4 Fe 5 O 12 (however, Ho / Y = 0.25, La /
(Y + La) = 0.1, the saturation magnetization is about 1700 G
In order to obtain the same result as the present invention, the dimensions of the rare earth cobalt magnet are 3 mm in inner diameter, 6.0 mm in outer diameter, and 5.
7mm hollow cylinder rare earth cobalt magnet (temperature coefficient-
0.03% / ° C, and a central magnetic field of 1800 Oe).
【0024】[0024]
【発明の効果】以上をまとめると本発明の効果は次の通
りである。 (1)ファラデー回転角の温度変化が小さい。 (2)Biを多量置換した材料を用いているため、材料
のファラデー回転能が大きく、材料の厚さを薄くできる
のでLPE法により、容易に作製できる。 (3)飽和磁化が小さく、そのためガーネットを磁化さ
せるための磁界も小さくて済み、磁石の小型化が達成出
来る。The effects of the present invention are summarized as follows. (1) The temperature change of the Faraday rotation angle is small. (2) Since a material having a large amount of Bi substituted is used, the Faraday rotation ability of the material is large and the thickness of the material can be reduced, so that the material can be easily manufactured by the LPE method. (3) The saturation magnetization is small, and therefore the magnetic field for magnetizing the garnet may be small, and the size of the magnet can be reduced.
【図1】ファラデー回転子の特性を示す説明図である。FIG. 1 is an explanatory diagram showing characteristics of a Faraday rotator.
【図2】本発明の原理を示すグラフである。FIG. 2 is a graph showing the principle of the present invention.
【図3】本発明をアイソレータに応用した図を示す。FIG. 3 shows a diagram in which the present invention is applied to an isolator.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−297083(JP,A) 特開 平4−324817(JP,A) 特開 平4−31821(JP,A) 特開 平4−304418(JP,A) 実公 昭61−9376(JP,Y2) 米国特許4981341(US,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/09 - 1/095 G02F 1/29 - 1/313 G02B 27/28 CA(STN) REGISTRY(STN) WPI(DIALOG)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-297083 (JP, A) JP-A-4-324817 (JP, A) JP-A-4-31821 (JP, A) JP-A-4-324 304418 (JP, A) Jikku Sho 61-9376 (JP, Y2) US Patent 4,981,341 (US, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/09-1/095 G02F 1/29-1/313 G02B 27/28 CA (STN) REGISTRY (STN) WPI (DIALOG)
Claims (2)
O12 (ここでP:Y、La、Sm、Eu、Tm、Yb、Lu
の中の1種以上、 Q:Gd、Tb、Dy、Ho、Erの中の1種以上、 M:Feと置換しうる元素の1種以上、 であり、又x、y、wは 0.7≦x≦2.0、0.5≦y≦2.3、0≦3−x
−y≦1、0.5≦w≦1.0を満足する)で表わされ
るガーネット材料に、この材料の飽和磁界よりも小さい
磁界を印加するための磁石を組合せて構成し、前記ファ
ラデー回転子の飽和磁界よりも小さい磁界での回転角度
は正の温度係数を有し、前記磁石は前記温度係数の変化
を相殺する負の温度係数を有するように設定したファラ
デー回転子。1. A composition Bi x P y Q 3-Xy Fe 5-w M w
O 12 (where P: Y, La, Sm, Eu, Tm, Yb, Lu
At least one of the following: Q: at least one of Gd, Tb, Dy, Ho, and Er; M: at least one of the elements that can replace Fe, and x, y, and w are 0. 7 ≦ x ≦ 2.0, 0.5 ≦ y ≦ 2.3, 0 ≦ 3-x
The garnet material expressed by satisfying -y ≦ 1,0.5 ≦ w ≦ 1.0) , formed by combining a magnet for applying a smaller magnetic field than the saturation field of the material, the file
Rotation angle at a magnetic field smaller than the saturation magnetic field of the Raday rotator
Has a positive temperature coefficient, and the magnet changes the temperature coefficient
A Faraday rotator set to have a negative temperature coefficient to cancel out .
磁石が印加する磁界よりも飽和磁界が大きい強磁性体に
よるファラデー回転子材料を磁石の中空中心付近に配置
して構成した前記第1項記載のファラデー回転子。2. A profile D o, an inner diameter Di, the length L is satisfy the following relationship L / D i = (0.4~1.0) +0.5 D o / D i D o / D i <5 And a magnet whose magnetization direction is the length direction and a Faraday rotator material made of a ferromagnetic material having a saturation magnetic field larger than the magnetic field applied by the magnet are arranged near the hollow center of the magnet. Faraday rotator according to the item.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3205678A JP3037474B2 (en) | 1991-07-23 | 1991-07-23 | Faraday rotator |
US08/062,690 US5640516A (en) | 1991-04-02 | 1993-05-17 | Faraday rotator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3205678A JP3037474B2 (en) | 1991-07-23 | 1991-07-23 | Faraday rotator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0527207A JPH0527207A (en) | 1993-02-05 |
JP3037474B2 true JP3037474B2 (en) | 2000-04-24 |
Family
ID=16510883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3205678A Expired - Fee Related JP3037474B2 (en) | 1991-04-02 | 1991-07-23 | Faraday rotator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3037474B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7337557B2 (en) | 2005-05-20 | 2008-03-04 | Miyata Co., Ltd. | Air-permeable shoe |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6853473B2 (en) * | 2002-01-24 | 2005-02-08 | Tdk Corporation | Faraday rotator and optical device comprising the same, and antireflection film and optical device comprising the same |
CN100399111C (en) * | 2002-01-24 | 2008-07-02 | Tdk株式会社 | Farady rotator and optical device comprising same, and antireflection film and optical device comprising same |
-
1991
- 1991-07-23 JP JP3205678A patent/JP3037474B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7337557B2 (en) | 2005-05-20 | 2008-03-04 | Miyata Co., Ltd. | Air-permeable shoe |
Also Published As
Publication number | Publication date |
---|---|
JPH0527207A (en) | 1993-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hansen et al. | Magnetic and magneto‐optic properties of bismuth‐and aluminum‐substituted iron garnet films | |
EP0208476A2 (en) | Magnetic field sensor having magneto-optic element | |
US4263374A (en) | Temperature-stabilized low-loss ferrite films | |
US5640516A (en) | Faraday rotator | |
US6288827B1 (en) | Faraday rotator | |
EP0811851B1 (en) | Faraday rotator having a rectangular shaped hysteresis | |
JP3720616B2 (en) | Faraday rotation angle variable device | |
EP0752713A1 (en) | Article comprising a magneto-optic material having low magnetic moment | |
JP3037474B2 (en) | Faraday rotator | |
JP3237031B2 (en) | Bismuth-substituted rare earth iron garnet single crystal film, optical isolator and magneto-optical switch | |
US6108120A (en) | Faraday rotation angle varying apparatus | |
JP3458865B2 (en) | Low saturation magnetic field bismuth-substituted rare earth iron garnet single crystal and its use | |
US6143435A (en) | Magneto-optical thin-layer structure | |
JPS6129128B2 (en) | ||
JP2914456B2 (en) | Faraday rotator | |
JP3217721B2 (en) | Faraday element and method of manufacturing Faraday element | |
US6031654A (en) | Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film | |
JPH04304418A (en) | Faraday rotator | |
JP2874319B2 (en) | Magneto-optical material, method of manufacturing the same, and optical element using the same | |
JPH0766114B2 (en) | Magneto-optical element material | |
JPS59147320A (en) | Optical non-reciprocal element | |
JPS6126020A (en) | Facet-formed magnetooptic garnet layer | |
JPS6120926A (en) | Magnetooptic element material | |
JPH0727823B2 (en) | Magnetic material for magneto-optical element | |
JP2001142039A (en) | Hard magnetic garnet thick film material and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000208 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |