JP3032338B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3032338B2 JP3032338B2 JP3234377A JP23437791A JP3032338B2 JP 3032338 B2 JP3032338 B2 JP 3032338B2 JP 3234377 A JP3234377 A JP 3234377A JP 23437791 A JP23437791 A JP 23437791A JP 3032338 B2 JP3032338 B2 JP 3032338B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- solvent
- battery
- aqueous electrolyte
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は非水電解液二次電池に関
し、さらに詳しくはこの電池のサイクル寿命および低温
における容量特性の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in cycle life and capacity characteristics at a low temperature of the battery.
【0002】[0002]
【従来の技術】近年、電子機器のポータブル化,コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水電解液系の二次電池、
特にリチウム二次電池はとりわけ高電圧・高エネルギー
密度を有する電池として期待が大きい。2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly advancing, and there is a high demand for a small and lightweight secondary battery having a high energy density as a driving power source for these devices. In this regard, non-aqueous electrolyte secondary batteries,
In particular, lithium secondary batteries are particularly expected as batteries having high voltage and high energy density.
【0003】非水電解液電池を二次電池化する場合、正
極活物質としては高容量かつ高電圧のものが望まれる。
この要望を満たすものとしてLiCoO2,LiNi
O2,LiFeO2,LiMn2O4系の4Vの高電圧を示
す材料が挙げられる。When a non-aqueous electrolyte battery is converted into a secondary battery, a high-capacity and high-voltage positive electrode active material is desired.
LiCoO 2 , LiNi
O 2 , LiFeO 2 , and LiMn 2 O 4 based materials exhibiting a high voltage of 4 V are exemplified.
【0004】一方、負極材料としては金属リチウムをは
じめ、リチウム合金やリチウムイオンを吸蔵・放出でき
る炭素材などが検討されている。しかし金属リチウムに
は充放電に伴う樹枝状生成物(デンドライト)による短
絡の問題があり、リチウム合金には充放電に伴う膨脹収
縮に起因した電極の崩れなどの問題がある。従って、最
近ではこれらの問題の生じない炭素材がリチウム二次電
池の負極材料として有望視されている。一般に、負極材
料に金属リチウムを用いた場合、充電時に負極表面に生
成される活性なデンドライトと非水溶媒とが反応して一
部溶媒の分解反応を引き起こし、それが充電効率を下げ
ることは良く知られている。これを解消するものとして
特開昭57−170463号公報では、エチレンカーボ
ネートが充電効率に優れていることに着目し、このエチ
レンカーボネートとプロピレンカーボネートとの混合溶
媒を用いることが提案されている。さらに特開平3−5
5770号公報では電池の低温特性を改良するためエチ
レンカーボネートとジエチルカーボネートとの混合溶媒
に2メチルテトラヒドロフラン、1,2−ジメトキシエ
タン、4メチル1,3−ジオキソランなどを混合し、非
水電解液の溶媒として用いることが提案されている。On the other hand, as a negative electrode material, a lithium alloy, a carbon material capable of occluding and releasing lithium ions, and the like, including metal lithium, are being studied. However, metallic lithium has a problem of short-circuit due to dendritic products (dendrites) during charging and discharging, and lithium alloy has problems such as collapse of electrodes due to expansion and contraction due to charging and discharging. Therefore, recently, a carbon material which does not cause these problems is regarded as promising as a negative electrode material of a lithium secondary battery. In general, when metal lithium is used as the negative electrode material, active dendrites generated on the negative electrode surface during charging react with the non-aqueous solvent to cause a partial solvent decomposition reaction, which often lowers the charging efficiency. Are known. To solve this problem, Japanese Patent Application Laid-Open No. 57-170463 focuses on the fact that ethylene carbonate is excellent in charging efficiency, and proposes to use a mixed solvent of ethylene carbonate and propylene carbonate. Further, Japanese Patent Laid-Open No. 3-5
In Japanese Patent No. 5770, in order to improve low-temperature characteristics of a battery, a mixed solvent of ethylene carbonate and diethyl carbonate is mixed with 2-methyltetrahydrofuran, 1,2-dimethoxyethane, 4-methyl-1,3-dioxolane, etc. It has been proposed to use as a solvent.
【0005】しかしながら、これらの系を用いても充電
効率は最大でも98〜99%程度にとどまり、依然とし
て充電効率を十分に高めるまでには至っていない。これ
は負極にリチウム合金を用いた場合も同様である。However, even when these systems are used, the charging efficiency is at most about 98 to 99%, and the charging efficiency has not yet been sufficiently improved. This is the same when a lithium alloy is used for the negative electrode.
【0006】[0006]
【発明が解決しようとする課題】負極材料に炭素材を用
いた場合、充電反応は電解液中のリチウムイオンが炭素
材の層間にインターカレートするという反応であるた
め、リチウムのデンドライトは生成されず、上記のよう
な負極表面での溶媒の分解反応は生じないはずである。
しかし、実際には充電効率は100%に満たず、負極に
リチウムもしくはリチウム合金を用いた場合と同様の課
題が残る。When a carbon material is used as the negative electrode material, the charging reaction is a reaction in which lithium ions in the electrolyte intercalate between layers of the carbon material, so that lithium dendrites are generated. Therefore, the decomposition reaction of the solvent on the negative electrode surface as described above should not occur.
However, the charging efficiency is actually less than 100%, and the same problem as when lithium or a lithium alloy is used for the negative electrode remains.
【0007】本発明者等は、この現象はリチウム金属を
負極に用いた場合のような負極表面における溶液の分解
反応によるものではなく、負極炭素材の層間にリチウム
がインターカレートするときに、リチウムのみならずリ
チウムを配位した溶媒と共に層間に引きこまれ、その
際、一部溶媒の分解反応を引き起こすことによると考え
た。つまり、分子半径が大きい溶媒は負極炭素材の層間
にスムーズにインターカレートされずに負極材料の層間
の入口で分解されるということである。The present inventors believe that this phenomenon is not due to the decomposition reaction of the solution on the negative electrode surface as in the case where lithium metal is used for the negative electrode, but rather when lithium intercalates between the layers of the negative electrode carbon material. It is thought that it is absorbed not only by lithium but also by a solvent in which lithium is coordinated between the layers, and at this time, a part of the solvent causes a decomposition reaction. That is, the solvent having a large molecular radius is not smoothly intercalated between the layers of the negative electrode carbon material, but is decomposed at the entrance between the layers of the negative electrode material.
【0008】一般的にリチウム電池の電解液の優れた溶
媒に求められる要件として、誘電率が大、すなわち溶質
である無機塩を多量に溶解できることが挙げられる。プ
ロピレンカーボネート,エチレンカーボネートなどはこ
の要件を満たす優れた溶媒であると言われているが、こ
れらはいずれもその環状構造ゆえ分子半径が大きいた
め、負極に炭素材を用いた場合、上述した如く充電時に
溶媒の分解反応を伴うという問題点を持つ。また、これ
らの溶媒は高粘性であるため、単独で用いると電解液の
粘度が高く高率充放電に難があると共に、低温時の容量
が小さいという欠点も持つ。特にエチレンカーボネート
は凝固点が36.4℃と高く、単独で用いることはでき
ない。In general, a requirement for an excellent solvent for an electrolyte solution of a lithium battery is that the electrolyte has a large dielectric constant, that is, a large amount of an inorganic salt as a solute can be dissolved. Propylene carbonate, ethylene carbonate, etc. are said to be excellent solvents satisfying this requirement, but all of them have a large molecular radius due to their cyclic structure. There is a problem that a decomposition reaction of the solvent sometimes occurs. In addition, since these solvents have a high viscosity, when used alone, the electrolyte has a high viscosity, which makes it difficult to perform high-rate charging and discharging, and has a disadvantage that the capacity at low temperatures is small. In particular, ethylene carbonate has a high freezing point of 36.4 ° C. and cannot be used alone.
【0009】一方、鎖状カーボネート類はその構造上、
炭素材の層間に入り易く、充電時の分解反応が起こりに
くいが、逆にこれらの溶媒は誘電率が比較的低く、溶質
である無機塩を溶解しにくいという欠点がある。On the other hand, chain carbonates are structurally
These solvents easily enter the layers of the carbon material and are unlikely to undergo a decomposition reaction during charging. However, on the contrary, these solvents have a disadvantage that the dielectric constant is relatively low and it is difficult to dissolve the solute inorganic salt.
【0010】また、これら環状および鎖状カーボネート
を混合して用いると それぞれ単独で用いた場合に生じ
ていた上記の問題は解消され、常温での電池の充放電特
性は改良できる。しかし低温における電池の充放電特性
の改良には不十分である。通常、リチウム電池では低温
特性を向上させるために電解液中の溶媒に低凝固点かつ
低粘度溶媒を付加させるという方法を取るが、この場合
に環状エーテルなどの環状構造を持つ溶媒を用いると電
池の充電時に上述したような溶媒の分解反応を伴うこと
となる。Further, when these cyclic and chain carbonates are used as a mixture, the above-mentioned problems caused when each is used alone can be solved, and the charge / discharge characteristics of the battery at normal temperature can be improved. However, it is insufficient to improve the charge / discharge characteristics of the battery at low temperatures. Usually, in lithium batteries, a method of adding a solvent having a low freezing point and a low viscosity to the solvent in the electrolytic solution is used to improve low-temperature characteristics. At the time of charging, the decomposition reaction of the solvent as described above is accompanied.
【0011】本発明は、このような課題を解決するもの
で、長寿命であって、しかも低温での容量保持性に優れ
た非水電解液二次電池を提供することを主たる目的とし
たものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its main object to provide a non-aqueous electrolyte secondary battery having a long life and excellent capacity retention at low temperatures. It is.
【0012】また、本発明は非水電解液二次電池にとっ
て好ましい非水電解液の溶媒組成を提供することも目的
としている。Further, the present invention also aims to provide a solvent composition of preferred non-aqueous electrolyte solution for nonaqueous electrolyte secondary batteries.
【0013】[0013]
【課題を解決するための手段】上記の課題を解決し、先
に述べた目的を達成するため、本発明は環状エステルで
あるエチレンカーボネートと鎖状エステルであるジエチ
ルカーボネートとプロピオン酸メチルの3成分系混合溶
媒を電解液の溶媒に用いるものである。特に全溶媒中に
占めるエチレンカーボネートの割合を体積比で20%以
上50%以下とし、溶媒成分の鎖状エステル中に占める
プロピオン酸メチルの割合を体積比で25%以上75%
以下とすることにより、優れた非水電解液二次電池用電
解液を提供するものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems and to achieve the above-mentioned object, the present invention provides a three-component system comprising ethylene carbonate as a cyclic ester, diethyl carbonate as a chain ester, and methyl propionate. A system mixed solvent is used as a solvent for the electrolytic solution. In particular, the proportion of ethylene carbonate in the total solvent is 20% to 50% by volume, and the proportion of methyl propionate in the chain ester of the solvent component is 25% to 75% by volume.
The following provides an excellent electrolyte solution for a non-aqueous electrolyte secondary battery.
【0014】[0014]
【作用】電解溶媒中のエチレンカーボネートは溶質であ
る無機塩を多量に溶かすことにより電解液の電導度を上
げることに効果があり、ジエチルカーボネートは電池の
充電時にリチウムを配位して容易に炭素材の層間に入り
得るため、溶媒の分解を抑えることができる。さらに低
凝固点かつ低粘度のプロピオン酸メチルをこれらに混合
することにより、電解液の凝固点および粘度を下げ、そ
の結果優れた低温特性を発揮するものである。[Effect] Ethylene carbonate in the electrolytic solvent is effective in increasing the conductivity of the electrolytic solution by dissolving a large amount of an inorganic salt as a solute, and diethyl carbonate coordinates lithium easily during charging of a battery to easily form a carbonate. Since it can enter between layers of the material, decomposition of the solvent can be suppressed. Further, by mixing methyl propionate having a low freezing point and low viscosity with these, the freezing point and viscosity of the electrolytic solution are reduced, and as a result, excellent low-temperature characteristics are exhibited.
【0015】[0015]
【実施例】以下、図面とともに本発明の実施例を説明す
る。実施例においては円筒形の電池を構成して評価を行
った。Embodiments of the present invention will be described below with reference to the drawings. In the examples, a cylindrical battery was constructed and evaluated.
【0016】(実施例1)図1に円筒形電池の縦断面図
を示す。図において1は正極を示し、活物質であるLi
CoO2の導電材としてカーボンブラックを、結着材と
してポリ四フッ化エチレンの水性ディスパージョンを重
量比で100:3:10の割合で混合したものをアルミ
ニウム箔の両面に塗着,乾燥し、圧延した後所定の大き
さに切断したものである。これには2のチタン製リード
板をスポット溶接している。なお結着剤のポリ四フッ化
エチレンの水性ディスパージョンの混合比率は、その固
形分で計算している。3は負極で、炭素質材料を主材料
とし、これとアクリル系結着剤とを重量比で100:5
の割合で混合したものをニッケル箔の両面に塗着,乾燥
し、圧延した後所定の大きさに切断したものである。こ
れにも4のニッケル製の負極リード板をスポット溶接し
ている。5はポリプロピレン製の微孔性フィルムからな
るセパレータで、正極1と負極3との間に介在し、全体
が渦巻状に捲回されて極板群を構成している。この極板
群の上下の端にはそれぞれポリプロピレン製の絶縁板
6,7を配して鉄にニッケルメッキしたケース8に挿入
する。そして正極リード2をチタン製の封口板10に、
負極リード4をケース8の底部にそれぞれスポット溶接
した後、所定量の電解液をケース内に注入し、ガスケッ
ト9を介して電池を封口板10で封口して完成電池とす
る。この電池の寸法は直径14mm,高さ50mmである。
なお、11は電池の正極端子であり、負極端子は電池ケ
ース8がこれを兼ねている。Embodiment 1 FIG. 1 is a longitudinal sectional view of a cylindrical battery. In the figure, reference numeral 1 denotes a positive electrode, and the active material is Li
A mixture of carbon black as a conductive material of CoO 2 and an aqueous dispersion of polytetrafluoroethylene in a weight ratio of 100: 3: 10 as a binder is applied to both sides of an aluminum foil and dried. After rolling, it is cut into a predetermined size. In this case, two titanium lead plates are spot-welded. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene as the binder is calculated by its solid content. Reference numeral 3 denotes a negative electrode, which is mainly composed of a carbonaceous material, and which has a weight ratio of 100: 5 with an acrylic binder.
Are coated on both sides of a nickel foil, dried, rolled, and then cut to a predetermined size. Also in this case, a negative electrode lead plate made of nickel 4 is spot-welded. Reference numeral 5 denotes a separator made of a polypropylene microporous film, which is interposed between the positive electrode 1 and the negative electrode 3, and is entirely spirally wound to form an electrode plate group. Insulating plates 6 and 7 made of polypropylene are arranged on the upper and lower ends of the electrode plate group, respectively, and inserted into a case 8 plated with nickel on iron. Then, the positive electrode lead 2 is attached to a sealing plate 10 made of titanium,
After spot welding the negative electrode lead 4 to the bottom of the case 8, a predetermined amount of electrolyte is injected into the case, and the battery is sealed with a sealing plate 10 via a gasket 9 to obtain a completed battery. The dimensions of this battery are 14 mm in diameter and 50 mm in height.
Reference numeral 11 denotes a positive electrode terminal of the battery, and the negative electrode terminal is also used by the battery case 8.
【0017】電解液の溶媒としてエチレンカーボネート
(以下ECという),ジエチルカーボネート(以下DE
Cという),プロピオン酸メチル(以下MPという)の
3成分を組合せて調整した以下に示す3種類の混合溶媒
系(いずれも体積比)について、上記に示した円筒形電
池A〜Cの試作を行った。なお電解液の溶質には六フッ
化リン酸リチウムを用い、それぞれ1モル/lの濃度に
なるように調整した。Ethylene carbonate (hereinafter referred to as EC) and diethyl carbonate (hereinafter referred to as DE)
C) and methyl propionate (hereinafter referred to as MP) were combined to prepare the following three types of mixed solvent systems (all by volume ). went. In addition, lithium hexafluorophosphate was used as a solute of the electrolytic solution, and each was adjusted to have a concentration of 1 mol / l.
【0018】 電池A……EC:DEC:MP=3:3:4 電池B……EC:DEC:MP=5:5:0 電池C……EC:DEC:MP=10:0:0 評価した電池特性はサイクル寿命特性と低温特性であ
る。Battery A ... EC: DEC: MP = 3: 3: 4 Battery B ... EC: DEC: MP = 5: 5: 0 Battery C ... EC: DEC: MP = 10: 0: 0 Battery characteristics are cycle life characteristics and low temperature characteristics.
【0019】電圧,電流条件は、充放電電流100m
A,充電終止電圧4.2V,放電終止電圧3.0Vとし
た。まず、初期10サイクルの充放電を20℃で行った
後、充電状態で試験を停止し、温度を−10℃に変えて
放電し、その放電量の大きさで低温特性を評価した。そ
の後、温度を20℃に戻して充放電を繰り返し、放電容
量が初期の50%に劣化した時点で試験を終了し、その
サイクル数をサイクル寿命とした。The voltage and current conditions are as follows: charge / discharge current 100 m
A, the charge end voltage was 4.2 V, and the discharge end voltage was 3.0 V. First, after the initial 10 cycles of charge / discharge were performed at 20 ° C., the test was stopped in the charged state, the temperature was changed to −10 ° C., and the low-temperature characteristics were evaluated based on the amount of discharge. Thereafter, the temperature was returned to 20 ° C., and charge / discharge was repeated. When the discharge capacity was reduced to 50% of the initial value, the test was terminated, and the number of cycles was defined as the cycle life.
【0020】但し、電池Cの電解液中の溶媒はEC単独
であり、ECの凝固点は36.4℃であるので、電池C
のみ40℃で充放電を行った。However, the solvent in the electrolytic solution of the battery C was EC alone, and the freezing point of the EC was 36.4 ° C.
Only at 40 ° C. was charged and discharged.
【0021】電池A〜Cのサイクル寿命特性を図2、低
温特性を図3にそれぞれ示す。図2よりサイクル寿命特
性のよい順にB−A−Cとなった。これは充電時に、負
極では炭素材の層間ヘリチウムイオンがインターカレー
トするが、その際にリチウムイオンに配位した溶媒分子
も共に層間に引きこまれるため、環状構造を持ち、分子
の大きい溶媒は一部分解すると考えられる。環状構造を
持つ溶媒の含有率が大きい電池C(EC100%)の特
性が悪いのはそのためであると考えられる。また、電池
Bに比べて電池Aが寿命が短いのは、DECのほうがM
Pよりも高電圧で安定であり、サイクルに伴う分解の度
合が小さいためであると考えられる。FIG. 2 shows the cycle life characteristics of the batteries A to C, and FIG. 3 shows the low temperature characteristics. According to FIG. 2, BAC was obtained in the order of the cycle life characteristics. This is because during charging, lithium ions intercalate into the interlayer of the carbon material at the negative electrode, but the solvent molecules coordinated to the lithium ions are also drawn between the layers at that time, so a solvent having a cyclic structure and a large molecule It is thought to be partially disassembled. It is considered that the battery C (EC 100%) having a large content of the solvent having a cyclic structure has poor characteristics. The reason that the life of battery A is shorter than that of battery B is that DEC
This is considered to be because the voltage is stable at a higher voltage than P and the degree of decomposition accompanying the cycle is small.
【0022】次に図3より低温特性のよい順にA−B−
Cとなった。電池Cは高凝固点のECを単独で用いたた
め、−10℃では全く放電できなかった。また、電池B
においてもECの混合比率が高いため、電解液がかなり
増粘し、そのため分極が大きくなって放電容量が小さい
と考えられる。Next, FIG. 3 shows that AB-
It became C. Since the battery C used EC having a high freezing point alone, no discharge was possible at -10 ° C. Battery B
It is also considered that the electrolyte mixture is considerably thickened due to the high mixing ratio of EC, so that the polarization becomes large and the discharge capacity is small.
【0023】これに対し、電池Aで低粘性のMPを加え
た場合、良好な低温特性を示したことから、低粘性の溶
媒を加えることが低温特性の改善に効果的であることが
わかった。On the other hand, when low-viscosity MP was added to the battery A, good low-temperature characteristics were exhibited. Therefore, it was found that adding a low-viscosity solvent was effective in improving low-temperature characteristics. .
【0024】以上の結果からEC,DECとMPの3成
分混合系を電解液の溶媒に用いることによりサイクル寿
命特性を損なう事なく低温特性を改良できることがわか
った。From the above results, it was found that low-temperature characteristics could be improved without impairing cycle life characteristics by using a three-component mixed system of EC, DEC and MP as a solvent for the electrolytic solution.
【0025】次に実施例2について述べる。 (実施例2)電解液の溶媒として実施例1で用いたEC
とDECとMPの3成分を組合せて調整した以下に示す
5種類の混合溶媒系について上記円筒形電池の試作を行
った。電解液の溶質も実施例1と同様六フッ化リン酸リ
チウムを用い、それぞれ1モル/lの濃度になるように
調整した。Next, a second embodiment will be described. (Example 2) EC used in Example 1 as a solvent for the electrolytic solution
A prototype of the above cylindrical battery was produced for the following five types of mixed solvent systems prepared by combining three components, DEC and MP. The solute of the electrolytic solution was also adjusted to 1 mol / l using lithium hexafluorophosphate as in Example 1.
【0026】 電池D……EC:DEC:MP=10:45:45 電池E……EC:DEC:MP=20:40:40 電池F……EC:DEC:MP=40:30:30 電池G……EC:DEC:MP=50:25:25 電池H……EC:DEC:MP=60:20:20 上記電解液以外の構成条件,試験条件は実施例1と同じ
にした。Battery D ... EC: DEC: MP = 10: 45: 45 Battery E ... EC: DEC: MP = 20: 40: 40 Battery F ... EC: DEC: MP = 40: 30: 30 Battery G ... EC: DEC: MP = 50: 25: 25 Battery H ... EC: DEC: MP = 60: 20: 20 Structural conditions and test conditions other than the electrolytic solution were the same as in Example 1.
【0027】電池D〜Hのサイクル寿命特性を図4、低
温特性を図5に示す。図4よりサイクル寿命特性のよい
順にD−E−F−G−Hとなり、環状エステルであるE
Cの混合比率が大になるほどサイクル特性は悪くなり、
特にHのECを溶媒全体の60%以上加えた場合に特に
特性が悪かった。次に図5により低温特性はE,F,G
がよく、D,Hが悪いという結果となった。HはECの
混合比率が高いために低温で電解液が凍結し、放電が全
くできなかった。一方、Dが悪い理由は誘電率の高いE
Cの混合比率が小さいために低温で所定量の溶質を溶か
す能力がなくなり、溶質の析出が起こり、液抵抗が大き
くなって分極の増加を引き起こしたためと考えられる。FIG. 4 shows the cycle life characteristics of the batteries D to H, and FIG. 5 shows the low-temperature characteristics. From FIG. 4, D-E-F-G-H is obtained in the order of good cycle life characteristics, and E is a cyclic ester.
As the mixing ratio of C increases, the cycle characteristics deteriorate,
In particular, when H EC was added in an amount of 60% or more of the whole solvent, the properties were particularly poor. Next, according to FIG. 5, the low temperature characteristics are E, F, and G.
Was good, and D and H were bad. In the case of H, since the mixture ratio of EC was high, the electrolyte solution was frozen at a low temperature, and no discharge was possible. On the other hand, D is bad because E has a high dielectric constant.
It is considered that, because the mixing ratio of C is small, the ability to dissolve a predetermined amount of solute at a low temperature is lost, solute is precipitated, the liquid resistance is increased, and the polarization is increased.
【0028】従ってECの混合比率は溶媒全体の20〜
50%程度が適当な範囲と考えられる。Therefore, the mixing ratio of EC is 20 to 20% of the whole solvent.
About 50% is considered to be an appropriate range.
【0029】次に実施例3について述べる。 (実施例3) 電解液の溶媒として実施例2と同様ECとDECとMP
の3成分を組合せて調整した以下に示す6種類の混合溶
媒系について上記円筒形電池の試作を行った。電解液の
溶質も実施例1,2と同様六フッ化リン酸リチウムを用
い、それぞれ1モル/lの濃度になるように調整した。Next, a third embodiment will be described. (Example 3) EC, DEC, and MP were used as the solvent for the electrolytic solution in the same manner as in Example 2.
The prototype of the above cylindrical battery was produced for the following six types of mixed solvent systems prepared by combining the three components described above. Solute of the electrolyte solution even using the same lithium hexafluorophosphate as in Examples 1 and 2 was adjusted to respectively a concentration of 1 mol / l.
【0030】 電池I……EC:DEC:MP=40:12:48 電池J……EC:DEC:MP=40:15:45 電池K……EC:DEC:MP=40:24:36 電池L……EC:DEC:MP=40:36:24 電池M……EC:DEC:MP=40:45:15 電池N……EC:DEC:MP=40:48:12 上記電解液以外の構成条件,試験条件は実施例1,2と
同じにした。Battery I ... EC: DEC: MP = 40: 12: 48 Battery J ... EC: DEC: MP = 40: 15: 45 Battery K ... EC: DEC: MP = 40: 24: 36 Battery L ... EC: DEC: MP = 40: 36: 24 Battery M ... EC: DEC: MP = 40: 45: 15 Battery N ... EC: DEC: MP = 40: 48: 12 Structural conditions other than the above electrolytic solution The test conditions were the same as in Examples 1 and 2.
【0031】電池I〜Nのサイクル寿命特性を図6、低
温特性を図7に示す。図6よりサイクル寿命特性のよい
順にN−M−L−K−J−Iとなり、MPの混合比率が
大きくなるほどサイクル寿命特性が悪くなった。これは
上述したような電池の充電時に負極で起こる溶媒分解反
応とは別に、正極に高い電位を示す化合物を用いるため
に、溶媒が酸化分解されることによるもので、一般に鎖
状エステル類の中ではカーボネート類が他の鎖状エステ
ル類に比べ高電位で安定であり、従って鎖状エステル類
中のDECの比率が小、すなわちMPの比率が大になる
ほどサイクル劣化は大となった。1が特に悪い特性を示
したことから上記MPの分解反応はMPが鎖状エステル
中の80%以上に含まれた場合に顕著に発生し、従って
鎖状エステル中のMPの混合比率は75%以下が適当で
あるという結果が得られた。次に図7により低温特性の
良い順にI−J−K−L−M−Nとなり、MPの混合比
率が大きいほど溶媒の粘度が下がり、低温時の放電容量
が大きくなるという結果であった。また、最適混合比率
は25%以上であって、それ以下では余り効果が得られ
なかった。以上サイクル寿命特性と低温特性の2点から
考えるとMPの最適混合比率は鎖状エステル中の25〜
75%であると言える。FIG. 6 shows the cycle life characteristics of the batteries I to N, and FIG. 7 shows the low temperature characteristics. FIG. 6 shows that the cycle life characteristics are NMLKJJI in descending order, and that the cycle life characteristics deteriorate as the mixing ratio of MP increases. This is because, apart from the solvent decomposition reaction that occurs at the negative electrode when the battery is charged as described above, the solvent is oxidatively decomposed because a compound having a high potential is used at the positive electrode. Thus, the carbonates were stable at a higher potential than the other chain esters, and thus the cycle deterioration was larger as the ratio of DEC in the chain esters was smaller, that is, the ratio of MP was larger. 1 showed particularly poor properties, the above MP decomposition reaction occurred remarkably when MP was contained in 80% or more of the chain ester. Therefore, the mixing ratio of MP in the chain ester was 75%. The following results were found to be appropriate. Next, FIG. 7 shows that IJKLMN is in descending order of the low-temperature characteristics. As the mixing ratio of MP increases, the viscosity of the solvent decreases and the discharge capacity at low temperatures increases. Further, the optimum mixing ratio was 25% or more, and below that, no significant effect was obtained. Considering the cycle life characteristics and the low temperature characteristics as described above, the optimum mixing ratio of MP is 25 to 25 in the chain ester.
It can be said that it is 75%.
【0032】以上の3つの実施例の結果を総合すると正
極に高電位を示すリチウム複合酸化物を、負極に炭素材
を用いたリチウム二次電池の電解液の溶媒にEC,DE
C,MPの3成分混合系を用いた場合、良好なサイクル
寿命特性および低温特性を示し、その最適な混合比率は
ECが溶媒全体の20〜50%、MPが鎖状エステル中
の25〜75%であることがわかった。When the results of the above three examples are combined, EC and DE are used as the solvent for the electrolyte of a lithium secondary battery using a lithium composite oxide having a high potential as the positive electrode and a carbon material as the negative electrode.
When a three-component mixed system of C and MP is used, good cycle life characteristics and low-temperature characteristics are exhibited. The optimum mixing ratio is such that EC is 20 to 50% of the whole solvent and MP is 25 to 75% in the chain ester. %.
【0033】なお、実施例では正極活物質にリチウムと
コバルトの複合酸化物を用いたが、他のたとえばリチウ
ムとニッケルの複合酸化物、リチウムとマンガンの複合
酸化物、リチウムと鉄の複合酸化物などのリチウム含有
酸化物、もしくは上記複合酸化物のそれぞれコバルト,
ニッケル,マンガン,鉄を他の遷移金属で一部置換した
ものでもほぼ同様の結果が得られた。Although a composite oxide of lithium and cobalt was used as the positive electrode active material in the examples, other composite oxides of lithium and nickel, a composite oxide of lithium and manganese, and a composite oxide of lithium and iron were used. Such as lithium-containing oxides, or cobalt of the above composite oxides,
Almost the same results were obtained when nickel, manganese, and iron were partially substituted with other transition metals.
【0034】また本実施例では電解液の溶質に六フッ化
リン酸リチウムを用いたが、他のリチウム含有塩、例え
ばホウフッ化リチウム,過塩素酸リチウム,トリフルオ
ロメタンスルホン酸リチウム,六フッカヒ酸リチウムな
どでもほぼ同様の結果が得られた。In the present embodiment, lithium hexafluorophosphate was used as a solute of the electrolytic solution. However, other lithium-containing salts, for example, lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, lithium hexafuccinate, etc. Almost the same result was obtained with the above.
【0035】[0035]
【発明の効果】以上の説明で明らかなように、本発明に
よれば電解液の溶媒にエチレンカーボネート,ジエチル
カーボネート,プロピオン酸メチルの3成分系混合溶媒
を用い、エチレンカーボネートの体積比率を溶媒全体の
20〜50%とし、プロピオン酸メチルの体積比率を鎖
状エステル中の25〜75%とすることにより、サイク
ル寿命特性,低温特性に優れた非水電解液二次電池を提
供することができる。As is apparent from the above description, according to the present invention, a ternary mixed solvent of ethylene carbonate, diethyl carbonate and methyl propionate is used as the solvent for the electrolytic solution, and the volume ratio of ethylene carbonate is adjusted to the whole solvent. By setting the volume ratio of methyl propionate to 25 to 75% of the chain ester, a non-aqueous electrolyte secondary battery having excellent cycle life characteristics and low-temperature characteristics can be provided. .
【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an embodiment of the present invention.
【図2】実施例1における電池の20℃でのサイクル寿
命を示す図FIG. 2 is a diagram showing a cycle life at 20 ° C. of the battery in Example 1.
【図3】実施例1における電池の−10℃での放電電圧
の推移を示す図FIG. 3 is a diagram showing transition of a discharge voltage at −10 ° C. of the battery in Example 1.
【図4】実施例2における電池の20℃でのサイクル寿
命を示す図FIG. 4 is a diagram showing a cycle life at 20 ° C. of a battery in Example 2.
【図5】実施例2における電池の−10℃での放電電圧
の推移を示す図FIG. 5 is a diagram showing a transition of a discharge voltage at −10 ° C. of the battery in Example 2.
【図6】実施例3における電池の20℃でのサイクル寿
命を示す図FIG. 6 is a diagram showing the cycle life at 20 ° C. of the battery in Example 3.
【図7】実施例3における電池の−10℃での放電電圧
の推移を示す図FIG. 7 is a diagram showing transition of a discharge voltage at −10 ° C. of the battery in Example 3.
1 正極 2 正極リード板 3 負極 4 負極リード板 5 セパレータ 6 上部絶縁板 7 下部絶縁板 8 ケース 9 ガスケット 10 封口板 11 正極端子 REFERENCE SIGNS LIST 1 positive electrode 2 positive electrode lead plate 3 negative electrode 4 negative electrode lead plate 5 separator 6 upper insulating plate 7 lower insulating plate 8 case 9 gasket 10 sealing plate 11 positive electrode terminal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川原 隆幸 三重県四日市市東邦町1番地 三菱油化 株式会社四日市総合研究所内 (72)発明者 長谷川 勝昭 三重県四日市市東邦町1番地 三菱油化 株式会社四日市総合研究所内 (56)参考文献 特開 平3−295178(JP,A) 特開 平3−55770(JP,A) 特開 平5−13105(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takayuki Kawahara 1, Tohocho, Yokkaichi-shi, Mie Mitsubishi Yuka Co., Ltd. (72) Inventor Katsuaki Hasegawa 1, Tohocho, Yokkaichi-shi, Mie Mitsubishi Yuka Stock (56) References JP-A-3-295178 (JP, A) JP-A-3-55770 (JP, A) JP-A-5-13105 (JP, A) (58) Fields surveyed ( Int.Cl. 7 , DB name) H01M 10/40
Claims (5)
からなる負極と、非水電解液と、リチウム含有酸化物か
らなる正極とを備え、上記非水電解液の溶媒はエチレン
カーボネートとジエチルカーボネートとプロピオン酸メ
チルからなる非水電解液二次電池。1. A negative electrode comprising a carbon material capable of inserting and extracting lithium ions, a non-aqueous electrolyte, and a positive electrode comprising a lithium-containing oxide, wherein the solvent of the non-aqueous electrolyte is ethylene carbonate, diethyl carbonate and Non-aqueous electrolyte secondary battery comprising methyl propionate.
トの体積比率を溶媒全体の20%以上50%以下とする
請求項1に記載の非水電解液二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the volume ratio of ethylene carbonate in the solvent component of the electrolyte is from 20% to 50% of the whole solvent.
めるプロピオン酸メチルの体積比率を25%以上75%
以下とする請求項1または2に記載の非水電解液二次電
池。3. The volume ratio of methyl propionate in the chain ester in the solvent component of the electrolytic solution is not less than 25% and not more than 75%.
The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein:
化物、リチウムとニッケルの複合酸化物、リチウムとマ
ンガンの複合酸化物、リチウムと鉄の複合酸化物、もし
くは上記複合酸化物のそれぞれコバルト,ニッケル,マ
ンガン,鉄を他の遷移金属で一部置換したものである請
求項1〜3のいずれかに記載の非水電解液二次電池。4. A composite oxide of lithium and cobalt; a composite oxide of lithium and nickel; a composite oxide of lithium and manganese; a composite oxide of lithium and iron; The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein nickel, manganese, and iron are partially substituted with another transition metal.
ン酸リチウム,ホウフッ化リチウム,過塩素酸リチウ
ム,トリフルオロメタンスルホン酸リチウム,六フッ化
ヒ酸リチウムのうち少なくとも一つを含む請求項1〜4
のいずれかに記載の非水電解液二次電池。5. The non-aqueous electrolyte contains at least one of lithium hexafluorophosphate, lithium borofluoride, lithium perchlorate, lithium trifluoromethanesulfonate, and lithium hexafluoroarsenate as a solute. Items 1-4
The non-aqueous electrolyte secondary battery according to any one of the above.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3234377A JP3032338B2 (en) | 1991-09-13 | 1991-09-13 | Non-aqueous electrolyte secondary battery |
US07/872,980 US5256504A (en) | 1991-09-13 | 1992-04-24 | Monaqueous electrolyte secondary batteries |
DE69211928T DE69211928T2 (en) | 1991-09-13 | 1992-04-29 | Secondary batteries with non-aqueous electrolytes |
EP92107340A EP0531617B1 (en) | 1991-09-13 | 1992-04-29 | Nonaqueous electrolyte secondary batteries |
US08/143,191 US5474862A (en) | 1991-09-13 | 1993-10-29 | Nonaqueous electrolyte secondary batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3234377A JP3032338B2 (en) | 1991-09-13 | 1991-09-13 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0574487A JPH0574487A (en) | 1993-03-26 |
JP3032338B2 true JP3032338B2 (en) | 2000-04-17 |
Family
ID=16970054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3234377A Expired - Fee Related JP3032338B2 (en) | 1991-09-13 | 1991-09-13 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3032338B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009022848A1 (en) | 2007-08-16 | 2009-02-19 | Lg Chem, Ltd. | Non-aqueous electrolyte lithium secondary battery |
WO2009038358A1 (en) | 2007-09-19 | 2009-03-26 | Lg Chem, Ltd. | Non-aqueous electrolyte lithium secondary battery |
US8546024B2 (en) | 2007-09-12 | 2013-10-01 | Lg Chem, Ltd. | Non-aqueous electrolyte lithium secondary battery |
WO2018135890A1 (en) * | 2017-01-20 | 2018-07-26 | 주식회사 엘지화학 | Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same |
US10950894B2 (en) | 2017-01-20 | 2021-03-16 | Lg Chem, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2197085A1 (en) | 1995-06-09 | 1996-12-27 | Mitsui Petrochemical Industries, Ltd. | Fluorine-substituted cyclic carbonate and electrolytic solution and battery containing the same |
US6045950A (en) * | 1998-06-26 | 2000-04-04 | Duracell Inc. | Solvent for electrolytic solutions |
JP4017504B2 (en) | 2002-11-19 | 2007-12-05 | シャープ株式会社 | Washing machine |
JP2004321320A (en) | 2003-04-22 | 2004-11-18 | Sharp Corp | Washing machine |
JP2005087712A (en) | 2003-08-08 | 2005-04-07 | Sharp Corp | Water supply device, water supply method, water spray device with water supply device, and washing machine with water supply device |
JP3862721B2 (en) | 2004-11-18 | 2006-12-27 | シャープ株式会社 | Dryer |
JP5219401B2 (en) * | 2006-06-14 | 2013-06-26 | 三洋電機株式会社 | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same |
JP4483857B2 (en) | 2006-11-20 | 2010-06-16 | パナソニック株式会社 | Electrolytic mist generator and washing machine using the same |
JP4483856B2 (en) | 2006-11-20 | 2010-06-16 | パナソニック株式会社 | Electrolytic mist generator and washing machine using the same |
CN101682084A (en) * | 2007-06-07 | 2010-03-24 | 株式会社Lg化学 | Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery having the same |
US12160000B2 (en) | 2019-12-25 | 2024-12-03 | Ningde Amperex Technology Limited | Electrochemical device and electronic device including same |
-
1991
- 1991-09-13 JP JP3234377A patent/JP3032338B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009022848A1 (en) | 2007-08-16 | 2009-02-19 | Lg Chem, Ltd. | Non-aqueous electrolyte lithium secondary battery |
US8546024B2 (en) | 2007-09-12 | 2013-10-01 | Lg Chem, Ltd. | Non-aqueous electrolyte lithium secondary battery |
US9105943B2 (en) | 2007-09-12 | 2015-08-11 | Lg Chem, Ltd. | Non-aqueous electrolyte lithium secondary battery |
US9246191B2 (en) | 2007-09-12 | 2016-01-26 | Lg Chem, Ltd. | Non-aqueous electrolyte lithium secondary battery |
WO2009038358A1 (en) | 2007-09-19 | 2009-03-26 | Lg Chem, Ltd. | Non-aqueous electrolyte lithium secondary battery |
WO2018135890A1 (en) * | 2017-01-20 | 2018-07-26 | 주식회사 엘지화학 | Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same |
US10950894B2 (en) | 2017-01-20 | 2021-03-16 | Lg Chem, Ltd. | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0574487A (en) | 1993-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5525443A (en) | Non-aqueous secondary electrochemical battery | |
EP0531617B1 (en) | Nonaqueous electrolyte secondary batteries | |
US5474862A (en) | Nonaqueous electrolyte secondary batteries | |
JP3032338B2 (en) | Non-aqueous electrolyte secondary battery | |
TW200301022A (en) | Lithium ion secondary battery | |
JP3199426B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH11339850A (en) | Lithium-ion secondary battery | |
US5484669A (en) | Nonaqueous electrolyte secondary batteries | |
JP2000011996A (en) | Non-aqueous electrolyte secondary battery | |
JP4328915B2 (en) | Non-aqueous electrolyte for secondary battery and secondary battery using the same | |
JP2002025611A (en) | Nonaqueous electrolyte secondary battery | |
JP2003331825A (en) | Nonaqueous secondary battery | |
JP3380501B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3564756B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3032339B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2924329B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0997626A (en) | Nonaqueous electrolytic battery | |
JP2003157896A (en) | Nonaqueous electrolyte secondary battery | |
JP3082116B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0574490A (en) | Nonaqueous electrolyte secondary battery | |
JPH0917446A (en) | Non-aqueous electrolyte secondary battery | |
JPH0574489A (en) | Nonaqueous electrolyte secondary battery | |
JPH1154122A (en) | Lithium ion secondary battery | |
JP3024287B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0935746A (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090210 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100210 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 11 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |