JP2996858B2 - Heat resistant resin composition with excellent low temperature processability - Google Patents
Heat resistant resin composition with excellent low temperature processabilityInfo
- Publication number
- JP2996858B2 JP2996858B2 JP6038456A JP3845694A JP2996858B2 JP 2996858 B2 JP2996858 B2 JP 2996858B2 JP 6038456 A JP6038456 A JP 6038456A JP 3845694 A JP3845694 A JP 3845694A JP 2996858 B2 JP2996858 B2 JP 2996858B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- weight
- resin composition
- bis
- aminophenoxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐熱性に優れ、かつ有
機溶剤に可溶で成形加工性に優れた耐熱性樹脂組成物に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant resin composition having excellent heat resistance, being soluble in an organic solvent, and having excellent moldability.
【0002】[0002]
【従来の技術】ポリイミド樹脂は、耐熱性が高く難燃性
で電気絶縁性に優れていることからフィルムとしてフレ
キシブル印刷配線板や耐熱性接着テープの基材に、樹脂
ワニスとして半導体の層間絶縁膜、表面保護膜に広く使
用されている。しかし、従来のポリイミド樹脂は吸湿性
が高く、耐熱性に優れている反面不溶不融であったり融
点が極めて高く、加工性の点で決して使いやすい材料と
はいえなかった。また半導体の実装材料として層間絶縁
膜、表面保護膜などに使用されているが、これらは有機
溶剤に可溶なポリイミド樹脂の前駆体ポリアミック酸を
半導体表面に塗布し、加熱処理によって溶剤を除去する
と共にイミド化して用いている。この時、イミド化を完
全に進めるために、また高沸点のアミド系溶剤を揮散さ
せるために300℃以上の高温乾燥工程を必要とする。
このため高温にさらされ、他に使用する部材の熱損傷や
素子の劣化を招きアセンブリ工程の収率を劣化させる。
また、皮膜の吸湿性が高いため、高温時に吸収した水分
が一気に蒸発して膨れやクラックの原因となるなどの問
題があった。2. Description of the Related Art Polyimide resin has high heat resistance, flame retardancy and excellent electrical insulation, so it is used as a film for a substrate of a flexible printed wiring board or a heat-resistant adhesive tape, and as a resin varnish, an interlayer insulating film of a semiconductor. Widely used for surface protection film. However, conventional polyimide resins have high hygroscopicity and excellent heat resistance, but are insoluble or infusible or have an extremely high melting point, and thus cannot be said to be materials which are easy to use in terms of workability. In addition, as a semiconductor mounting material, it is used for an interlayer insulating film, a surface protective film, and the like. For these, a polyimide resin precursor polyamic acid soluble in an organic solvent is applied to the semiconductor surface, and the solvent is removed by heat treatment. And is used after imidization. At this time, a high-temperature drying step of 300 ° C. or more is required to completely advance the imidization and to volatilize the amide-based solvent having a high boiling point.
For this reason, it is exposed to a high temperature, which causes thermal damage to other members to be used and deterioration of the element, thereby deteriorating the yield of the assembly process.
In addition, since the film has high hygroscopicity, there has been a problem that moisture absorbed at a high temperature evaporates at a stretch and causes swelling and cracks.
【0003】前記の欠点を改良する方法として、有機溶
剤に可溶で既にイミド化されたポリイミド樹脂組成物か
らフィルム状接着剤を形成し、これを被着体に熱圧着す
る方法等が提案されている。(特開平5−10585
0、112760、112761号公報を参照)。しか
しながら、ポリイミド樹脂をホットメルト型の接着剤と
して使用するこの様な場合、ポリイミド樹脂のガラス転
移温度が高いと加工に非常な高温を要し被着材に熱損傷
を与える恐れが大きい。一方、低温加工性を付与するた
めポリイミド樹脂のガラス転移温度を下げるとポリイミ
ド樹脂の耐熱性という特徴を十分に生かすことができな
いという問題点があった。As a method for improving the above-mentioned drawbacks, there has been proposed a method of forming a film-like adhesive from a polyimide resin composition which is soluble in an organic solvent and has already been imidized, and thermocompression-bonds this to an adherend. ing. (JP-A-5-10585
0, 112760, 112761). However, in such a case where the polyimide resin is used as a hot-melt type adhesive, if the glass transition temperature of the polyimide resin is high, a very high temperature is required for processing, and there is a great possibility that the adherend is thermally damaged. On the other hand, if the glass transition temperature of the polyimide resin is lowered to impart low temperature processability, there is a problem that the heat resistance characteristic of the polyimide resin cannot be fully utilized.
【0004】[0004]
【発明が解決しようとする課題】本発明は、耐熱性に優
れ、かつ低温での成形加工性の優れた耐熱性樹脂を得る
べく鋭意研究を重ねた結果、特定構造のポリイミド樹脂
にエポキシ化合物、該エポキシ化合物と反応可能な活性
水素基を有する化合物、およびカップリング剤を添加す
ると、上記課題が解決できることを見出し、本発明に到
達したものである。The present invention has been made as a result of intensive studies to obtain a heat-resistant resin having excellent heat resistance and excellent moldability at low temperatures. The inventors have found that the above problem can be solved by adding a compound having an active hydrogen group capable of reacting with the epoxy compound and a coupling agent, and have reached the present invention.
【0005】[0005]
【課題を解決するための手段】本発明の耐熱性樹脂組成
物は、ガラス転移温度が350℃以下の有機溶剤に可溶
なポリイミド樹脂100重量部に対して、1分子中に少
なくとも2個以上のエポキシ基を有するエポキシ化合物
5〜100重量部、該エポキシ化合物と反応可能な活性
水素基を有する化合物0.1〜20重量部及びカップリ
ング剤0.1〜50重量部を主たる成分として含有して
いることを特徴とする耐熱性樹脂組成物である。The heat-resistant resin composition of the present invention comprises at least two or more resins per molecule per 100 parts by weight of a polyimide resin soluble in an organic solvent having a glass transition temperature of 350 ° C. or lower. 5 to 100 parts by weight of an epoxy compound having an epoxy group, 0.1 to 20 parts by weight of a compound having an active hydrogen group capable of reacting with the epoxy compound, and 0.1 to 50 parts by weight of a coupling agent as main components. It is a heat-resistant resin composition characterized by having.
【0006】本発明のポリイミド樹脂は、主たる酸成分
が3,3’,4,4’−ビフェニルテトラカルボン酸二
無水物、3,3’,4,4’−ベンゾフェノンテトラカ
ルボン酸二無水物である。主たるアミン成分は、2,2
−ビス(4−(4−アミノフェノキシ)フェニル)プロ
パン、1,3−ビス(3−アミノフェノキシ)ベンゼン
とジメチルフェニレンジアミンの群から選ばれた1種類
または2種類以上のジアミンと一般式(1)で表される
ジアミノシロキサン化合物である。In the polyimide resin of the present invention, the main acid component is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride or 3,3', 4,4'-benzophenonetetracarboxylic dianhydride. is there. The main amine component is 2,2
One or two or more diamines selected from the group consisting of -bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (3-aminophenoxy) benzene, and dimethylphenylenediamine; ).
【0007】[0007]
【化1】 (式中、R1,R2:二価の、炭素数1〜4の脂肪族基ま
たは芳香族基 R3,R4,R5,R6:一価の脂肪族基または芳香族基 k:1〜20の整数)Embedded image (Wherein, R 1 and R 2 are divalent aliphatic or aromatic groups having 1 to 4 carbon atoms R 3 , R 4 , R 5 and R 6 are monovalent aliphatic or aromatic groups k : Integer of 1 to 20)
【0008】その量比については、3,3’,4,4’
−ビフェニルテトラカルボン酸二無水物aモルと3,
3’,4,4’−ベンゾフェノンテトラカルボン酸二無
水物bモルとを酸成分とし、2,2−ビス(4−(4−
アミノフェノキシ)フェニル)プロパンcモルと、1,
3−ビス(3−アミノフェノキシ)ベンゼンとジメチル
フェニレンジアミンの群から選ばれた1種類または2種
類のジアミンdモルと、一般式(1)で表されるシロキ
サン化合物eモルとをアミン成分とし、a、b、c、
d、eのモル比が 0.5 ≦ a/(a+b)≦ 0.8、0.2
≦ b/(a+b)≦ 0.5、かつ 0.05 ≦ e/(c+d
+e)≦ 0.5 の割合であることが好ましい。他の酸成
分として4,4’−オキシジフタル酸二無水物、エチレ
ングリコールビストリメリット酸二無水物からなる群よ
り選ばれた1種または2種のテトラカルボン酸二無水物
を特性を損なわない範囲で併用することもできる。他の
アミン成分として、2,2−ビス(4−(4−アミノフ
ェノキシ)フェニル)ヘキサフルオロプロパン、2,2
−ビス(4−アミノフェノキシ)ヘキサフルオロプロパ
ン、ビス−4−(4−アミノフェノキシ)フェニルスル
フォン、ビス−4−(3−アミノフェノキシ)フェニル
スルフォンなどを特性を損なわない範囲で、それらを単
独、あるいは併用して使用することができる。Regarding the quantitative ratio, 3,3 ′, 4,4 ′
Amol of biphenyltetracarboxylic dianhydride and 3,
3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (bmol) is used as an acid component and 2,2-bis (4- (4-
C-aminophenoxy) phenyl) propane and 1,
One or two kinds of diamines selected from the group consisting of 3-bis (3-aminophenoxy) benzene and dimethylphenylenediamine and d moles of a siloxane compound represented by the general formula (1) as an amine component; a, b, c,
When the molar ratio of d and e is 0.5 ≦ a / (a + b) ≦ 0.8, 0.2
≦ b / (a + b) ≦ 0.5 and 0.05 ≦ e / (c + d
+ E) ≦ 0.5. One or two tetracarboxylic dianhydrides selected from the group consisting of 4,4'-oxydiphthalic dianhydride and ethylene glycol bistrimellitic dianhydride as other acid components within a range that does not impair the properties. They can be used together. As other amine components, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2
-Bis (4-aminophenoxy) hexafluoropropane, bis-4- (4-aminophenoxy) phenylsulfone, bis-4- (3-aminophenoxy) phenylsulfone and the like within a range that does not impair the properties thereof, Alternatively, they can be used in combination.
【0009】さらに該ジアミノシロキサン化合物はジア
ミン成分総量の5〜50モル%用いることがより好まし
い。ジアミン成分の総量の5モル%より少ないと有機溶
剤への溶解性が低下し、50モル%を越えるとガラス転
移温度が著しく低下し耐熱性に問題が生じる。一般式
(1)で表されるシロキサン化合物として具体的には、
下記一般式(2)で表されるα,ω−ビス(3−アミノ
プロピル)ポリジメチルシロキサン(APPS)が好ま
しく、特にkの値が4〜10の範囲が、ガラス転移温
度、接着性、耐熱性の点から好ましい。これらのシロキ
サン化合物は単独で用いることは勿論、2種類以上を併
用することもできる。特にk=1と上記k=4〜10の
ものをブレンドして用いることは接着性を重視する用途
では好ましい。Further, it is more preferable that the diaminosiloxane compound is used in an amount of 5 to 50 mol% of the total amount of the diamine component. If the total amount of the diamine components is less than 5 mol%, the solubility in an organic solvent is reduced, and if it exceeds 50 mol%, the glass transition temperature is remarkably lowered, and there is a problem in heat resistance. Specific examples of the siloxane compound represented by the general formula (1) include:
Α, ω-Bis (3-aminopropyl) polydimethylsiloxane (APPS) represented by the following general formula (2) is preferable. Particularly, when the value of k is in the range of 4 to 10, the glass transition temperature, adhesiveness, and heat resistance It is preferable from the viewpoint of properties. These siloxane compounds can be used alone or in combination of two or more. In particular, it is preferable to use a mixture of k = 1 and the above-mentioned k = 4 to 10 in applications where importance is attached to adhesiveness.
【0010】[0010]
【化2】 (式中、k:1〜20の整数)Embedded image (Where k is an integer of 1 to 20)
【0011】重縮合反応における酸成分とアミン成分の
当量比は、得られるポリアミック酸の分子量を決定する
重要な因子である。ポリマの分子量と物性、特に数平均
分子量と機械的性質の間に相関があることは良く知られ
ている。数平均分子量が大きいほど機械的性質が優れて
いる。従って、実用的に優れた強度を得るためには、あ
る程度高分子量であることが必要である。本発明では、
酸成分とアミン成分の当量比rが 0.900 ≦ r ≦ 1.06 より好ましくは、 0.975 ≦ r ≦ 1.025 の範囲にあることが好ましい。ただし、r=[全酸成分
の当量数]/[全アミン成分の当量数]である。rが
0.900未満では、分子量が低くて脆くなるため接着
力が弱くなる。また1.06を越えると、未反応のカル
ボン酸が加熱時に脱炭酸してガス発生、発泡の原因とな
り好ましくないことがある。The equivalent ratio between the acid component and the amine component in the polycondensation reaction is an important factor that determines the molecular weight of the resulting polyamic acid. It is well known that there is a correlation between the molecular weight and physical properties of a polymer, especially the number average molecular weight and mechanical properties. The higher the number average molecular weight, the better the mechanical properties. Therefore, in order to obtain practically excellent strength, it is necessary to have a high molecular weight to some extent. In the present invention,
The equivalent ratio r between the acid component and the amine component is more preferably 0.900 ≦ r ≦ 1.06, and more preferably 0.975 ≦ r ≦ 1.025. Here, r = [equivalent number of all acid components] / [equivalent number of all amine components]. When r is less than 0.900, the molecular weight is low and the polymer becomes brittle, so that the adhesive strength is weak. If it exceeds 1.06, unreacted carboxylic acid may be decarbonated during heating to cause gas generation and foaming, which may be undesirable.
【0012】本発明においてポリイミド樹脂の分子量制
御のためジカルボン酸無水物あるいはモノアミンを添加
することは、上述の酸/アミンモル比の範囲であれば特
にこれを妨げない。In the present invention, the addition of a dicarboxylic anhydride or a monoamine for controlling the molecular weight of the polyimide resin does not particularly hinder the addition of the dicarboxylic acid anhydride or monoamine as long as it is within the above-mentioned acid / amine molar ratio.
【0013】テトラカルボン酸二無水物とジアミンとの
反応は、非プロトン性極性溶媒中で公知の方法で行われ
る。非プロトン性極性溶媒は、N,N−ジメチルホルム
アミド(DMF)、N,N−ジメチルアセトアミド(D
MAC)、N−メチル−2−ピロリドン(NMP)、テ
トラヒドロフラン(THF)、ジグライム、シクロヘキ
サノン、1,4−ジオキサン(1,4−DO)などであ
る。非プロトン性極性溶媒は、一種類のみ用いてもよい
し、二種類以上を混合して用いてもよい。この時、上記
非プロトン性極性溶媒と相溶性がある非極性溶媒を混合
して使用しても良い。トルエン、キシレン、ソルベント
ナフサなどの芳香族炭化水素が良く使用される。混合溶
媒における非極性溶媒の割合は、30重量%以下である
ことが好ましい。これは非極性溶媒が30重量%以上で
は溶媒の溶解力が低下しポリアミック酸が析出する恐れ
があるためである。テトラカルボン酸二無水物とジアミ
ンとの反応は、良く乾燥したジアミン成分を脱水精製し
た前述反応溶媒に溶解し、これに閉環率98%、より好
ましくは99%以上の良く乾燥したテトラカルボン酸二
無水物を添加して反応を進める。The reaction between the tetracarboxylic dianhydride and the diamine is carried out in a polar aprotic solvent by a known method. Aprotic polar solvents include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (D
MAC), N-methyl-2-pyrrolidone (NMP), tetrahydrofuran (THF), diglyme, cyclohexanone, 1,4-dioxane (1,4-DO) and the like. As the aprotic polar solvent, only one kind may be used, or two or more kinds may be used as a mixture. At this time, a non-polar solvent compatible with the aprotic polar solvent may be mixed and used. Aromatic hydrocarbons such as toluene, xylene, and solvent naphtha are often used. The proportion of the non-polar solvent in the mixed solvent is preferably 30% by weight or less. This is because if the nonpolar solvent is 30% by weight or more, the solvent power of the solvent may be reduced and polyamic acid may be precipitated. The reaction between the tetracarboxylic dianhydride and the diamine is carried out by dissolving the well-dried diamine component in the above-mentioned reaction solvent that has been dehydrated and purified, and adding thereto the ring-closing rate of 98%, more preferably 99% or more. The reaction is allowed to proceed by adding the anhydride.
【0014】このようにして得たポリアミック酸溶液を
続いて有機溶剤中で加熱脱水環化してイミド化しポリイ
ミドにする。イミド化反応によって生じた水は閉環反応
を妨害するため、水と相溶しない有機溶剤を系中に加え
て共沸させてディーン・スターク(Dean−Star
k)管などの装置を使用して系外に排出する。水と相溶
しない有機溶剤としてはジクロルベンゼンが知られてい
るが、エレクトロニクス用としては塩素成分が混入する
恐れがあるので、好ましくは前記芳香族炭化水素を使用
する。また、イミド化反応の触媒として無水酢酸、β-
ピコリン、ピリジンなどの化合物を使用することは妨げ
ない。The polyamic acid solution thus obtained is subsequently heated and dehydrated and cyclized in an organic solvent to give an imidized polyimide. Since the water generated by the imidization reaction interferes with the ring closure reaction, an organic solvent incompatible with water is added to the system and azeotroped to form Dean-Stark (Dean-Stark).
k) Discharge out of the system using a device such as a pipe. Dichlorobenzene is known as an organic solvent that is not compatible with water, but the above-mentioned aromatic hydrocarbon is preferably used for electronics because a chlorine component may be mixed therein. Acetic anhydride, β-
It does not prevent the use of compounds such as picoline and pyridine.
【0015】本発明において、イミド閉環は程度が高い
ほど良く、イミド化率が低いと使用時の熱でイミド化が
起こり水が発生して好ましくないため、95%以上、よ
り好ましくは98%以上のイミド化率が達成されている
ことが望ましい。In the present invention, the higher the degree of imide ring closure, the better the degree of imidization. If the rate of imidization is low, imidization occurs due to heat during use to generate water, which is not preferable. Therefore, 95% or more, more preferably 98% or more. Is preferably achieved.
【0016】本発明の耐熱性樹脂組成物において使用す
る成分(B)エポキシ化合物は、少なくとも1分子中に
2個のエポキシ基を有し、成分(A)のポリイミド樹脂
との相溶性を有するものであれば特に限定されるもので
はないが、ポリイミド樹脂の溶媒への溶解性が良好なも
のが好ましい。例えば、ビスフェノールA型のジグリシ
ジルエーテル、ビスフェノールF型のジグリシジルエー
テル、フェノールノボラック型エポキシ樹脂、ビフェニ
ル型エポキシ化合物等が挙げられる。The component (B) epoxy compound used in the heat-resistant resin composition of the present invention has at least two epoxy groups in one molecule and has compatibility with the component (A) polyimide resin. There is no particular limitation as long as the polyimide resin has good solubility in the solvent of the polyimide resin. For example, bisphenol A type diglycidyl ether, bisphenol F type diglycidyl ether, phenol novolak type epoxy resin, biphenyl type epoxy compound and the like can be mentioned.
【0017】前記エポキシ化合物の量比は成分(A)ポ
リイミド樹脂100重量部に対して5〜100重量部、
特に10〜70重量部の範囲にあることが好ましい。5
重量部未満では、未硬化のエポキシ化合物を添加し樹脂
組成物の軟化温度を下げ低温加工性をあげるという効果
があらわれにくく、100重量部をこえるとポリイミド
樹脂の耐熱性を損なうこととなり好ましくない。The amount ratio of the epoxy compound is 5 to 100 parts by weight with respect to 100 parts by weight of the component (A) polyimide resin.
In particular, it is preferably in the range of 10 to 70 parts by weight. 5
If the amount is less than 10 parts by weight, the effect of adding an uncured epoxy compound to lower the softening temperature of the resin composition and increase the low-temperature processability is unlikely to be exerted.
【0018】また本発明の耐熱性樹脂組成物において使
用する成分(C)エポキシ化合物と反応可能な活性水素
基を有する化合物は、成分(A)のポリイミド樹脂や成
分(B)のエポキシ化合物との相溶性、ポリイミド樹脂
の溶媒への溶解性が良好なものが好ましい。例えばレゾ
ール、ノボラック、アミノ化合物等が挙げられる。成分
(C)の配合割合は成分(A)のポリイミド樹脂100
重量部に対して0.1〜20重量部、より好ましくは
0.5〜10重量部である。0.1重量部未満では、未
硬化のエポキシ化合物の反応率が極端に低くなり、本発
明にて望まれる効果があらわれない。また高温時の樹脂
の弾性率が低下している時の樹脂のフローの制御が困難
である。20重量部をこえると樹脂溶液状態でゲルが生
じやすくなり、加工性が損なわれ、また樹脂組成物の耐
熱性を損ない、好ましくない。Further, the compound having an active hydrogen group capable of reacting with the component (C) epoxy compound used in the heat-resistant resin composition of the present invention is used in combination with the component (A) polyimide resin and the component (B) epoxy compound. Those having good compatibility and solubility of the polyimide resin in the solvent are preferred. For example, resol, novolak, amino compound and the like can be mentioned. The mixing ratio of the component (C) is 100% of the polyimide resin of the component (A).
The amount is 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight based on parts by weight. If the amount is less than 0.1 part by weight, the reaction rate of the uncured epoxy compound becomes extremely low, and the effect desired in the present invention does not appear. Further, it is difficult to control the flow of the resin when the elastic modulus of the resin at a high temperature is low. If the amount is more than 20 parts by weight, a gel is likely to be formed in a resin solution state, whereby processability is impaired, and heat resistance of the resin composition is impaired, which is not preferable.
【0019】また本発明の耐熱性樹脂組成物において使
用する成分(D)カップリング剤は、成分(A)のポリ
イミド樹脂や成分(B)のエポキシ化合物との相溶性、
ポリイミド樹脂の溶媒への溶解性が良好なものが好まし
い。例えばシラン系のカップリング剤やチタン系、ジル
コン系のカップリング剤等が挙げられる。特にシラン系
カップリング剤が相溶性や溶解性の点で好ましい。カッ
プリング剤の配合割合は成分(A)のポリイミド樹脂1
00重量部に対して0.1〜50重量部、より好ましく
は0.5〜30重量部である。0.1重量部未満では、
当該樹脂組成物を接着用途に用いる場合、被着材との密
着性を向上させる効果が現れない。50重量部をこえる
と樹脂組成物の耐熱性を損ない、好ましくない。The component (D) coupling agent used in the heat-resistant resin composition of the present invention is compatible with the polyimide resin of the component (A) and the epoxy compound of the component (B).
It is preferable that the polyimide resin has good solubility in a solvent. For example, a silane-based coupling agent, a titanium-based or zircon-based coupling agent, and the like can be given. In particular, a silane coupling agent is preferable in terms of compatibility and solubility. The mixing ratio of the coupling agent is polyimide resin 1 of component (A).
The amount is 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight based on 00 parts by weight. If less than 0.1 parts by weight,
When the resin composition is used for bonding, the effect of improving the adhesion to the adherend is not exhibited. If the amount exceeds 50 parts by weight, the heat resistance of the resin composition is impaired, which is not preferable.
【0020】本発明の耐熱性樹脂組成物にはその加工
性、耐熱性を損なわない範囲で微細な無機充填材が配合
されていても良い。The heat-resistant resin composition of the present invention may contain a fine inorganic filler as long as its workability and heat resistance are not impaired.
【0021】本発明では得られたポリイミド溶液にその
まま成分(B)エポキシ化合物やその他の成分(C)、
(D)を添加し耐熱性樹脂組成物溶液とすることができ
る。また該ポリイミド溶液を貧溶媒中に投入してポリイ
ミド樹脂を再沈析出させて未反応モノマを取り除いて精
製し、乾燥して固形のポリイミド樹脂として使用するこ
ともできる。高温工程を嫌う用途や特に不純物や異物が
問題になる用途では、再び有機溶剤に溶解して濾過精製
ワニスとすることが好ましい。この時使用する溶剤は加
工作業性を考え、沸点の低い溶剤を選択することが可能
である。In the present invention, the obtained polyimide solution is directly added to component (B) epoxy compound or other component (C),
By adding (D), a heat-resistant resin composition solution can be obtained. Alternatively, the polyimide solution may be poured into a poor solvent to reprecipitate and precipitate the polyimide resin, to remove unreacted monomers, to purify, and then to dry and use as a solid polyimide resin. In applications that dislike the high-temperature process, or particularly in applications where impurities or foreign matter becomes a problem, it is preferable to dissolve again in an organic solvent to obtain a filtration and purification varnish. The solvent used at this time can be selected from solvents having a low boiling point in consideration of workability.
【0022】本発明のポリイミド樹脂では、ケトン系溶
剤として、アセトン、メチルエチルケトン、メチルイソ
ブチルケトン、シクロペンタノン、シクロヘキサノン
を、エーテル系溶剤として、1,4−ジオキサン、テト
ラヒドロフラン、ジグライムを沸点200℃以下の低沸
点溶剤として使用することができる。これらの溶剤は単
独で使用しても良いし、2種以上を混合して用いること
もできる。In the polyimide resin of the present invention, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone are used as ketone solvents, and 1,4-dioxane, tetrahydrofuran, and diglyme are used as ether solvents. It can be used as a low boiling point solvent. These solvents may be used alone or in combination of two or more.
【0023】[0023]
【作用】本発明のポリイミド樹脂に、エポキシ化合物、
該エポキシ化合物と反応可能な活性水素基を有する化合
物およびカップリング剤を添加した耐熱性樹脂組成物
は、見かけ上のガラス転移温度が該ポリイミド樹脂のガ
ラス転移温度より低下し低温加工性が向上する。一方、
ガラス転移温度より高温域での接着力は該ポリイミド樹
脂より向上し、IRリフローなどの熱衝撃を与えても剥
離が認められないなどの高温域での物性が向上する。こ
の特異な現象に対する詳細な機構は未だ明らかではない
部分もあるが、エポキシ化合物と活性水素基を有する化
合物あるいはカップリング剤が反応した低分子量の生成
物は、特定構造のポリイミド樹脂に対して可塑剤として
作用し該ポリイミド樹脂のガラス転移温度より低温域で
の弾性率を低下せしめ、よって接着性、加工性など低温
での作業性の向上をもたらす。一方、ガラス転移温度よ
り高温域ではその与えられた熱によって三次元網目構造
が形成され、ポリイミド樹脂の流動性を低下せしめ、よ
って該ポリイミド樹脂の耐熱性を維持、あるいは向上せ
しめるものと考えられる。以上の機構によって低温加工
性と高温時の耐熱信頼性の両立がはかられる。以下実施
例により本発明を詳細に説明するが、これらの実施例に
限定されるものではない。The polyimide resin of the present invention has an epoxy compound,
The heat-resistant resin composition to which a compound having an active hydrogen group capable of reacting with the epoxy compound and a coupling agent are added has an apparent glass transition temperature lower than the glass transition temperature of the polyimide resin, and low-temperature processability is improved. . on the other hand,
The adhesive strength at a temperature higher than the glass transition temperature is higher than that of the polyimide resin, and the physical properties at a high temperature such as no peeling even when subjected to a thermal shock such as IR reflow are improved. Although the detailed mechanism for this peculiar phenomenon is not yet clear, low-molecular-weight products obtained by the reaction of an epoxy compound with a compound having an active hydrogen group or a coupling agent are not suitable for polyimide resins having a specific structure. It acts as an agent and lowers the modulus of elasticity at a temperature lower than the glass transition temperature of the polyimide resin, thereby improving workability at low temperatures such as adhesiveness and workability. On the other hand, in the region higher than the glass transition temperature, it is considered that a three-dimensional network structure is formed by the applied heat, and the fluidity of the polyimide resin is reduced, and thus the heat resistance of the polyimide resin is maintained or improved. With the above mechanism, both low-temperature workability and high-temperature heat-reliability can be achieved. Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
【0024】[0024]
(ポリイミド樹脂PI−1の合成)乾燥窒素ガス導入
管、冷却器、温度計、撹拌機を備えた四口フラスコに、
脱水精製したNMP716gを入れ、窒素ガスを流しな
がら10分間激しくかき混ぜる。次に2,2−ビス(4
−(4−アミノフェノキシ)フェニル)プロパン(BA
PP)24.631g(0.060モル)、1,3−ビ
ス(3−アミノフェノキシ)ベンゼン(APB)48.
236g(0.165モル)、α,ω−ビス(3−アミ
ノプロピル)ポリジメチルシロキサン(APPS、式
(2))57.753g(平均分子量837、0.06
9モル)、1,3−ビス(3−アミノプロピル)テトラ
メチルジメチルシロキサン(APDS,式(2)におい
てk=1)1.491g(0.006モル)を投入し、
系を60℃に加熱し、均一になるまでかき混ぜる。均一
に溶解後、系を氷水浴で5℃に冷却し、3,3’,4,
4’−ビフェニルテトラカルボン酸二無水物(BPD
A)52.960g(0.180モル)、3,3’,
4,4’−ベンゾフェノンテトラカルボン酸二無水物
(BTDA)38.668g(0.120モル)を粉末
状のまま15分間かけて添加し、その後3時間撹拌を続
けた。この間フラスコは5℃に保った。(Synthesis of polyimide resin PI-1) In a four-necked flask equipped with a dry nitrogen gas inlet tube, a cooler, a thermometer, and a stirrer,
Add 716 g of dehydrated and purified NMP, and stir vigorously for 10 minutes while flowing nitrogen gas. Next, 2,2-bis (4
-(4-aminophenoxy) phenyl) propane (BA
PP) 24.631 g (0.060 mol), 1,3-bis (3-aminophenoxy) benzene (APB)
236 g (0.165 mol), 57.753 g of α, ω-bis (3-aminopropyl) polydimethylsiloxane (APPS, formula (2)) (average molecular weight 837, 0.06
9 mol), 1.491 g (0.006 mol) of 1,3-bis (3-aminopropyl) tetramethyldimethylsiloxane (APDS, k = 1 in the formula (2)) were added,
Heat the system to 60 ° C. and stir until uniform. After dissolving uniformly, the system was cooled to 5 ° C in an ice water bath,
4'-biphenyltetracarboxylic dianhydride (BPD
A) 52.960 g (0.180 mol), 3,3 ′,
38.668 g (0.120 mol) of 4,4'-benzophenonetetracarboxylic dianhydride (BTDA) was added over 15 minutes while keeping the powdery state, and then stirring was continued for 3 hours. During this time, the flask was kept at 5 ° C.
【0025】その後、窒素ガス導入管と冷却器を外し、
キシレンを満たしたディーン・スターク管をフラスコに
装着し、系にキシレン179gを添加した。油浴に代え
て系を175℃に加熱し発生する水を系外に除いた。4
時間加熱したところ、系からの水の発生は認められなく
なった。冷却後この反応溶液を大量のメタノール中に投
入し、ポリイミド樹脂を析出させた。固形分を濾過後、
80℃で12時間減圧乾燥し溶剤を除き、204.72
g(収率91.5%)の固形樹脂を得た。KBr錠剤法
で赤外吸収スペクトルを測定したところ、環状イミド結
合に由来する5.6μmの吸収を認めたが、アミド結合
に由来する6.06μmの吸収を認めることはできず、
この樹脂はほぼ100%イミド化していることが確かめ
られた。After that, remove the nitrogen gas inlet pipe and the cooler,
A Dean-Stark tube filled with xylene was attached to the flask, and 179 g of xylene was added to the system. The system was heated to 175 ° C. instead of the oil bath, and the generated water was removed from the system. 4
After heating for an hour, no water was generated from the system. After cooling, the reaction solution was poured into a large amount of methanol to precipitate a polyimide resin. After filtering the solids,
The solvent was removed by drying under reduced pressure at 80 ° C. for 12 hours to remove the solvent.
g (yield 91.5%) of a solid resin was obtained. When an infrared absorption spectrum was measured by a KBr tablet method, an absorption of 5.6 μm derived from the cyclic imide bond was recognized, but an absorption of 6.06 μm derived from the amide bond could not be recognized.
It was confirmed that this resin was almost 100% imidized.
【0026】このようにして得たポリイミド樹脂は、ガ
ラス転移温度が133℃、引張り弾性率が170kgf/m
m2、ジメチルホルムアミド(DMF)、1,4−ジオキ
サン(1,4−DO)に良く溶解することが確かめられ
た。The polyimide resin thus obtained has a glass transition temperature of 133 ° C. and a tensile modulus of 170 kgf / m 2.
m 2 , dimethylformamide (DMF), and 1,4-dioxane (1,4-DO) were confirmed to be well dissolved.
【0027】(ポリイミド樹脂PI−2の合成)前記の
ポリイミド樹脂PI−1の合成と同様にして、PI−2
を得た。エンドキャップ剤としてp−フェノキシアニリ
ン(PPA)を用いた。得られたポリイミド樹脂は、ガ
ラス転移温度が158℃、引張り弾性率が229kgf/m
m2、ジメチルホルムアミド、1,4−ジオキサンに良く
溶解することが確かめられた。第1表にポリイミド樹脂
PI−1、およびPI−2の物性を示した。(Synthesis of polyimide resin PI-2) PI-2 was synthesized in the same manner as in the synthesis of polyimide resin PI-1.
I got P-Phenoxyaniline (PPA) was used as an end cap agent. The obtained polyimide resin has a glass transition temperature of 158 ° C. and a tensile modulus of 229 kgf / m.
It was confirmed that the compound dissolved well in m 2 , dimethylformamide, and 1,4-dioxane. Table 1 shows the physical properties of the polyimide resins PI-1 and PI-2.
【0028】[0028]
【表1】 [Table 1]
【0029】モノマの欄のDPXは、2,5−ジメチル
−p−フェニレンジアミンを表す。溶解性の欄のSは該
当する溶媒に溶解することを示す。ガラス転移温度はD
SC測定により求めた。引張り試験は室温、引張り速度
5mm/minにて測定した。ヤング率は粘弾性スペクトロ
メーターにより求めた。DPX in the monomer column represents 2,5-dimethyl-p-phenylenediamine. S in the column of solubility indicates that the compound is dissolved in the corresponding solvent. Glass transition temperature is D
It was determined by SC measurement. The tensile test was performed at room temperature at a tensile speed of 5 mm / min. Young's modulus was determined using a viscoelastic spectrometer.
【0030】(実施例1)ガラス製フラスコにポリイミ
ド樹脂PI−1、100gとDMF330gを入れ、室
温で充分に撹拌しポリイミドを完全に溶解させる。均一
に溶解した後、フェノールノボラック型エポキシ化合物
(EOCN−1020、日本化薬(株)製)50gを加え
室温にて2時間撹拌した。その後均一に溶解しているこ
とを確認して、シランカップリング剤(トリスメトキシ
エトキシビニルシラン、KBC1003、信越化学(株)
製)10gを加え室温にて1時間撹拌した。均一に溶解
していることを確認してノボラック樹脂(PR−536
47、住友デュレズ(株)製)10gを系を撹拌しながら
徐々に加えた。引き続き2時間撹拌し耐熱性樹脂溶液を
調製した。この溶液組成物は、室温にて5日間放置して
もゲル化せず均一な溶液の状態のままであった。Example 1 A glass flask was charged with 100 g of polyimide resin PI-1 and 330 g of DMF, and thoroughly stirred at room temperature to completely dissolve the polyimide. After uniformly dissolving, 50 g of a phenol novolak type epoxy compound (EOCN-1020, manufactured by Nippon Kayaku Co., Ltd.) was added, and the mixture was stirred at room temperature for 2 hours. After confirming that the silane coupling agent is uniformly dissolved, a silane coupling agent (trismethoxyethoxyvinylsilane, KBC1003, Shin-Etsu Chemical Co., Ltd.)
Was added and the mixture was stirred at room temperature for 1 hour. After confirming that it is dissolved uniformly, novolak resin (PR-536)
47, manufactured by Sumitomo Durez Co., Ltd.) was gradually added thereto while stirring the system. Subsequently, the mixture was stirred for 2 hours to prepare a heat-resistant resin solution. This solution composition did not gel even when left at room temperature for 5 days, and remained in a uniform solution state.
【0031】このようにして得た樹脂溶液をドクターブ
レードで鏡面研磨ステンレス鋼板に塗布し、厚み50μ
mのフィルムを得た。乾燥温度は最高195℃で乾燥時
間20分であった。溶解性、ガラス転移温度、引張り特
性、ヤング率を表2に示す。The resin solution thus obtained is applied to a mirror-polished stainless steel plate with a doctor blade, and the thickness is 50 μm.
m was obtained. The drying temperature was a maximum of 195 ° C. and the drying time was 20 minutes. Table 2 shows the solubility, glass transition temperature, tensile properties, and Young's modulus.
【0032】このワニスをリバースロールコーターでポ
リイミドフィルム(商品名ユーピレックスSGA、厚み
50μm、宇部興産(株)製)の片面に塗布し、接着剤層
の厚みが30μmの接着テープを得た。乾燥温度は最高
200℃で乾燥時間15分であった。この接着テープを
42アロイのプレートに熱圧着して試験片を作製し(2
50℃2秒間熱圧着し、圧を開放後250℃で30秒間
アニールした。接着面にかかる圧力はゲージ圧力と接着
面積から計算の結果4kgf/cm2であった。)、引張り試
験機にて180度ピール強度を測定した結果を表2に示
す。接着強度は常態およびプレッシャークッカー(12
5℃、48時間、飽和100%)で処理した後の室温、
および240℃での180度ピール強度を測定したもの
である(引張り速度50mm/min)。試験片の破断面は
接着樹脂層が凝集破壊し、発泡は全く認められなかっ
た。This varnish was applied to one surface of a polyimide film (trade name: Upilex SGA, thickness: 50 μm, manufactured by Ube Industries, Ltd.) using a reverse roll coater to obtain an adhesive tape having an adhesive layer thickness of 30 μm. The drying temperature was a maximum of 200 ° C. and the drying time was 15 minutes. This adhesive tape was thermocompression bonded to a 42 alloy plate to prepare a test piece (2
After thermocompression bonding at 50 ° C. for 2 seconds, the pressure was released, and annealing was performed at 250 ° C. for 30 seconds. The pressure applied to the bonded surface was 4 kgf / cm 2 calculated from the gauge pressure and the bonded area. ), And the results of measuring the 180 degree peel strength with a tensile tester are shown in Table 2. The adhesive strength was normal and pressure cooker (12
Room temperature after treatment at 5 ° C., 48 hours, 100% saturation)
And 180 ° peel strength at 240 ° C. (tensile speed: 50 mm / min). In the fracture surface of the test piece, the adhesive resin layer was cohesively broken, and no foaming was observed.
【0033】(実施例2〜4)実施例1と同様にして表
2に示す配合にて樹脂溶液を調製し、フィルム、接着テ
ープを得た。得られた評価結果を表2に示す。(Examples 2 to 4) Resin solutions were prepared in the same manner as in Example 1 with the formulations shown in Table 2, to obtain films and adhesive tapes. Table 2 shows the obtained evaluation results.
【0034】[0034]
【表2】 [Table 2]
【0035】溶解性の欄のSは該当する溶媒に溶解する
ことを示す。ガラス転移温度はDSC測定により求め
た。引張り試験は室温、引張り速度5mm/minにて測
定した。使用する成分(B)エポキシ化合物について、
YX−4000Hはビフェニル型エポキシ化合物エピコ
ートYX−4000H、油化シェルエポキシ(株)製、E
OCN−1020はフェノールノボラック型エポキシ化
合物EOCN−1020、日本化薬(株)製、エピコート
828はビスフェノールA型エポキシ化合物、油化シェ
ルエポキシ(株)製をそれぞれ示している。使用する成分
(C)について、PR−175、22193、5364
7は住友デュレズ(株)製。使用する成分(D)はKBC
1003(トリスメトキシエトキシビニルシラン)、K
BE1003(トリエトキシビニルシラン)、KBM5
73(N−フェニル−γ−アミノプロピルトリメトキシ
シラン)信越化学(株)製を使用した。S in the column of solubility indicates that the compound is soluble in the corresponding solvent. The glass transition temperature was determined by DSC measurement. The tensile test was performed at room temperature at a tensile speed of 5 mm / min. About the component (B) epoxy compound used,
YX-4000H is a biphenyl type epoxy compound epicoat YX-4000H, manufactured by Yuka Shell Epoxy Co., Ltd.
OCN-1020 indicates a phenol novolak type epoxy compound EOCN-1020, manufactured by Nippon Kayaku Co., Ltd., and Epicoat 828 indicates a bisphenol A type epoxy compound, manufactured by Yuka Shell Epoxy Co., Ltd., respectively. About the component (C) to be used, PR-175, 22193, 5364
7 is manufactured by Sumitomo Durez Corporation. The component (D) used is KBC
1003 (trismethoxyethoxyvinylsilane), K
BE1003 (triethoxyvinylsilane), KBM5
73 (N-phenyl-γ-aminopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
【0036】(比較例1〜4)ポリイミド樹脂のみの樹
脂組成物あるいは成分(B)〜(D)のうちで1種また
は2種加えた樹脂組成物を調整した。次に実施例と同様
にして、接着テープを作製し、42アロイプレートとの
接着強度を測定した。その結果を表3に示した。(Comparative Examples 1 to 4) A resin composition containing only a polyimide resin or a resin composition obtained by adding one or two of components (B) to (D) was prepared. Next, an adhesive tape was produced in the same manner as in the example, and the adhesive strength with a 42 alloy plate was measured. Table 3 shows the results.
【0037】[0037]
【表3】 [Table 3]
【0038】表2、3の結果から、実施例の樹脂フィル
ムの接着強度は吸湿後でもその強度はわずかしか低下し
ていない。また吸湿後熱時の接着強度は、常態と比べて
低下するものの、比較例のそれと比べて強度が大きく低
下することを防ぐことが可能である。From the results shown in Tables 2 and 3, the adhesive strength of the resin films of Examples was slightly reduced even after moisture absorption. Further, although the adhesive strength at the time of heat after moisture absorption is reduced as compared with the normal state, it is possible to prevent the strength from being greatly reduced as compared with that of the comparative example.
【0039】以上の実施例から本発明により、吸湿熱時
の接着強度が大きく低下することを防ぐことができ、耐
熱性と成形加工性に優れたフィルム接着剤を得られるこ
とが示される。The above examples show that the present invention can prevent the adhesive strength at the time of heat of moisture absorption from being greatly reduced, and can obtain a film adhesive excellent in heat resistance and moldability.
【0040】[0040]
【発明の効果】本発明によれば、耐熱性と成形加工性を
両立させた信頼性の高いフィルム接着剤を提供すること
が可能である。低沸点溶媒に可溶であるため残留溶媒を
ほぼ完璧になくすことが可能で、また既にイミド化され
ているため、加工時にイミド化のための高温過程が不要
で水分の発生も無い。またタックのないフィルムとして
使用することができるので連続作業性やクリーンな環境
を必要とする場合に非常に有効である。このため高信頼
性と耐熱性を要求するエレクトロニクス用材料として工
業的に極めて利用価値が高い。According to the present invention, it is possible to provide a highly reliable film adhesive having both heat resistance and moldability. Since it is soluble in a low boiling point solvent, the residual solvent can be almost completely eliminated, and since it has already been imidized, a high temperature process for imidization is not required during processing, and no water is generated. Also, since it can be used as a tack-free film, it is very effective when continuous workability and a clean environment are required. For this reason, it is extremely useful industrially as a material for electronics requiring high reliability and heat resistance.
【0041】本発明の樹脂組成物の使用方法は特に限定
されるものではないが、樹脂構成成分の全てが有機溶剤
に均一に溶解されている樹脂ワニスとして、コーティン
グやディッピングに、流延成形によってフィルムに、耐
熱性と加工性の両立した絶縁材料、接着フィルム等とし
て使用することができる。The method of using the resin composition of the present invention is not particularly limited. However, as a resin varnish in which all of the resin components are uniformly dissolved in an organic solvent, coating and dipping are performed by casting. The film can be used as an insulating material, an adhesive film, or the like that has both heat resistance and processability.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−247408(JP,A) 特開 平6−308502(JP,A) 特開 平6−256472(JP,A) 特開 平7−278412(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08L 79/00 - 79/08 C08G 73/00 - 73/26 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-7-247408 (JP, A) JP-A-6-308502 (JP, A) JP-A-6-256472 (JP, A) JP-A-7-247 278412 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08L 79/00-79/08 C08G 73/00-73/26
Claims (3)
4’−ビフェニルテトラカルボン酸二無水物と3,
3’,4,4’−ベンゾフェノンテトラカルボン酸二無
水物であり、主たるアミン成分が、2,2−ビス(4−
(4−アミノフェノキシ)フェニル)プロパン、1,3
−ビス(3−アミノフェノキシ)ベンゼン及びジメチル
フェニレンジアミンの群から選ばれた1種類または2種
類以上のジアミンと一般式(1)で表されるジアミノシ
ロキサン化合物とからなる、有機溶剤に可溶なガラス転
移温度が350℃以下のポリイミド樹脂100重量部
と、(B)1分子中に少なくとも2個以上のエポキシ基
を有するエポキシ化合物5〜100重量部と、(C)該
エポキシ化合物と反応可能な活性水素基を有する化合物
0.1〜20重量部と、(D)カップリング剤0.1〜
50重量部とを主たる成分として含有していることを特
徴とする低温加工性の優れた耐熱性樹脂組成物。 【化1】 (式中、R1,R2:二価の、炭素数1〜4の脂肪族基ま
たは芳香族基 R3,R4,R5,R6:一価の脂肪族基または芳香族基 k:1〜20の整数)(1) The main acid component is 3,3 ′, 4,
4'-biphenyltetracarboxylic dianhydride and 3,
3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, wherein the main amine component is 2,2-bis (4-
(4-aminophenoxy) phenyl) propane, 1,3
-Bis (3-aminophenoxy) benzene and one or more diamines selected from the group of dimethylphenylenediamine and a diaminosiloxane compound represented by the general formula (1), which are soluble in an organic solvent. 100 parts by weight of a polyimide resin having a glass transition temperature of 350 ° C. or lower, (B) 5 to 100 parts by weight of an epoxy compound having at least two epoxy groups in one molecule, and (C) a reaction with the epoxy compound. 0.1 to 20 parts by weight of a compound having an active hydrogen group and (D) coupling agent 0.1 to
A heat-resistant resin composition having excellent low-temperature processability, comprising 50 parts by weight as a main component. Embedded image (Wherein, R 1 and R 2 are divalent aliphatic or aromatic groups having 1 to 4 carbon atoms R 3 , R 4 , R 5 and R 6 are monovalent aliphatic or aromatic groups k : Integer of 1 to 20)
ェニルテトラカルボン酸二無水物aモルと3,3’,
4,4’−ベンゾフェノンテトラカルボン酸二無水物b
モルとを酸成分とし、2,2−ビス(4−(4−アミノ
フェノキシ)フェニル)プロパンcモル、1,3−ビス
(3−アミノフェノキシ)ベンゼン及びジメチルフェニ
レンジアミンの群から選ばれた1種類または2種類のジ
アミンdモルと、一般式(1)で表されるジアミノシロ
キサン化合物eモルとをアミン成分とし、a、b、c、
d、eのモル比が 0.5 ≦ a/(a+b)≦ 0.8、0.2
≦b/(a+b)≦ 0.5、かつ 0.05 ≦ e/(c+d
+e)≦ 0.5 の割合で両成分を反応させてイミド閉環
せしめたポリイミド樹脂である請求項1記載の低温加工
性の優れた耐熱性樹脂組成物。2. Component (A) comprising a mole of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 3,3 ′,
4,4'-benzophenonetetracarboxylic dianhydride b
And an acid component, and is selected from c mol of 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (3-aminophenoxy) benzene and dimethylphenylenediamine. D or two kinds of diamines and e mole of a diaminosiloxane compound represented by the general formula (1) as an amine component;
When the molar ratio of d and e is 0.5 ≦ a / (a + b) ≦ 0.8, 0.2
≦ b / (a + b) ≦ 0.5 and 0.05 ≦ e / (c + d
2. The heat-resistant resin composition having excellent low-temperature processability according to claim 1, which is a polyimide resin obtained by reacting both components at a ratio of + e) .ltoreq.0.5 and imide ring-closing.
る請求項1および請求項2記載の低温加工性の優れた耐
熱性樹脂組成物。3. The heat-resistant resin composition according to claim 1, wherein the component (D) is a silane coupling agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6038456A JP2996858B2 (en) | 1994-03-09 | 1994-03-09 | Heat resistant resin composition with excellent low temperature processability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6038456A JP2996858B2 (en) | 1994-03-09 | 1994-03-09 | Heat resistant resin composition with excellent low temperature processability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07247427A JPH07247427A (en) | 1995-09-26 |
JP2996858B2 true JP2996858B2 (en) | 2000-01-11 |
Family
ID=12525771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6038456A Expired - Fee Related JP2996858B2 (en) | 1994-03-09 | 1994-03-09 | Heat resistant resin composition with excellent low temperature processability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2996858B2 (en) |
-
1994
- 1994-03-09 JP JP6038456A patent/JP2996858B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07247427A (en) | 1995-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5773509A (en) | Heat resistant resin composition, heat resistant film adhesive and process for producing the same | |
JP3014578B2 (en) | Resin composition with improved properties at high temperatures | |
JP3695848B2 (en) | Heat resistant film adhesive and method for producing the same | |
JP2983827B2 (en) | Resin composition with improved properties at high temperatures | |
JPH09272739A (en) | Polyimide resin | |
JP3233892B2 (en) | Resin composition | |
JP2983828B2 (en) | Resin composition with improved properties at high temperatures | |
JP3137309B2 (en) | Heat resistant resin composition | |
JP2996857B2 (en) | Heat resistant resin composition with excellent low temperature processability | |
JP3578545B2 (en) | Soluble polyimide resin | |
JP2996858B2 (en) | Heat resistant resin composition with excellent low temperature processability | |
JP2996859B2 (en) | Heat resistant resin composition | |
JPH10231426A (en) | Polyimide resin composition | |
JP3137308B2 (en) | Heat resistant resin composition | |
JP2996872B2 (en) | Heat resistant resin composition with excellent low temperature processability | |
JP2951206B2 (en) | Resin composition with improved properties at high temperatures | |
JP3666988B2 (en) | Heat resistant resin composition | |
JP3093061B2 (en) | Soluble polyimide resin | |
JP3439262B2 (en) | Film adhesive having improved properties at high temperature and method for producing the same | |
JP3646947B2 (en) | Polyimide resin | |
JPH101534A (en) | Heat-resistant resin composition | |
JPH0834969A (en) | Heat-resistant film adhesive having excellent low-temperature processability and method for producing the same | |
JPH07224150A (en) | Heat-resistant resin composition | |
JP2719271B2 (en) | Soluble polyimide resin | |
JPH09263697A (en) | Heat-resistant resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |