JP2985916B2 - 電気音響変換素子 - Google Patents
電気音響変換素子Info
- Publication number
- JP2985916B2 JP2985916B2 JP4171216A JP17121692A JP2985916B2 JP 2985916 B2 JP2985916 B2 JP 2985916B2 JP 4171216 A JP4171216 A JP 4171216A JP 17121692 A JP17121692 A JP 17121692A JP 2985916 B2 JP2985916 B2 JP 2985916B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric ceramic
- electroacoustic transducer
- porous
- piezoelectric
- disc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Piezo-Electric Transducers For Audible Bands (AREA)
- Transducers For Ultrasonic Waves (AREA)
Description
【0001】
【産業上の利用分野】本発明は、海洋の音響計測機器等
の水中受波器に用いられるもので、音圧を電気信号に変
換するための多孔質の圧電磁器を用いた電気音響変換素
子に関するものである。
の水中受波器に用いられるもので、音圧を電気信号に変
換するための多孔質の圧電磁器を用いた電気音響変換素
子に関するものである。
【0002】
【従来の技術】従来、音波を電気信号に変換する水中受
波器の電気音響変換素子の材料としては、チタン酸バリ
ウム、ジルコン酸・チタン酸鉛(PZT)等の圧電磁器
が用いられている。現在、圧電磁器の圧電g定数を増大
させた多孔質の圧電磁器の研究が行われており、例えば
次のような文献に記載されるものがある。 文献;Ferroelectrice、49(1983)Gordon and B
reach,Science Publishers(米)P.265−272 以下、図2〜図4を参照しつつ、従来の電気音響変換素
子の構成を説明する。図2は、圧電磁器を用いた従来の
円形形電気音響変換素子の斜視図である。この円筒形電
気音響変換素子では、円筒形の圧電磁器11の内周と外
周にそれぞれ電極12,13が形成され、その電極1
2,13が端子14,15にそれぞれ接続されている。
この電気音響変換素子は、音圧に対して、主に呼吸振動
の周囲長の変化による感度を利用したものである。受波
感度Mは、電気音響変換素子の内径をa、外径をbと
し、a/b≒1のとき、周囲方向の圧電g定数をg31と
すると、 M=20×log(|g31|・b) (dB re.
V/Pa) で表される。ここでg31は、周囲方向の圧電d定数をd
31、誘電率をεとすると、 g31=d31/ε (Vm/N) である。bが15(mm)、d31が−198×10-12
(C/N)、εが1.59×10-8(F/m)の円筒形
変換素子の場合、受波感度Mは M=−75 (dB re.V/Pa) となる。
波器の電気音響変換素子の材料としては、チタン酸バリ
ウム、ジルコン酸・チタン酸鉛(PZT)等の圧電磁器
が用いられている。現在、圧電磁器の圧電g定数を増大
させた多孔質の圧電磁器の研究が行われており、例えば
次のような文献に記載されるものがある。 文献;Ferroelectrice、49(1983)Gordon and B
reach,Science Publishers(米)P.265−272 以下、図2〜図4を参照しつつ、従来の電気音響変換素
子の構成を説明する。図2は、圧電磁器を用いた従来の
円形形電気音響変換素子の斜視図である。この円筒形電
気音響変換素子では、円筒形の圧電磁器11の内周と外
周にそれぞれ電極12,13が形成され、その電極1
2,13が端子14,15にそれぞれ接続されている。
この電気音響変換素子は、音圧に対して、主に呼吸振動
の周囲長の変化による感度を利用したものである。受波
感度Mは、電気音響変換素子の内径をa、外径をbと
し、a/b≒1のとき、周囲方向の圧電g定数をg31と
すると、 M=20×log(|g31|・b) (dB re.
V/Pa) で表される。ここでg31は、周囲方向の圧電d定数をd
31、誘電率をεとすると、 g31=d31/ε (Vm/N) である。bが15(mm)、d31が−198×10-12
(C/N)、εが1.59×10-8(F/m)の円筒形
変換素子の場合、受波感度Mは M=−75 (dB re.V/Pa) となる。
【0003】図3は、従来の厚み共振を利用した円板形
の電気音響変換素子を示す断面図である。この円板形の
電気音響変換素子では、円板形の圧電磁器21の両面に
電極22,23がそれぞれ形成され、その電極22,2
3に端子24,25が接続されている。圧電磁器21と
しては、PZTが用いられている。
の電気音響変換素子を示す断面図である。この円板形の
電気音響変換素子では、円板形の圧電磁器21の両面に
電極22,23がそれぞれ形成され、その電極22,2
3に端子24,25が接続されている。圧電磁器21と
しては、PZTが用いられている。
【0004】この電気音響変換素子を共振周波数以下の
低周波で使用した場合、該電気音響変換素子は静水圧的
な音圧を受けるため、受波感度Mは静水圧モードの圧電
g定数をgh 、厚さをtとすると、 M=20×log(|gh |・t) (dB r
e.V/Pa) で表される。ここで、分極方向の圧電g定数をg33、分
極と直角方向の圧電g定数をg31、g32とし、そのそれ
ぞれに対応する圧電d定数をd33、d31、d32とする
と、 gh =g33+g32+g31=d33/ε+d32/ε+d31/ε=dh /ε (Vm/N) である。圧電磁器21にはPZTが用いられている。t
が6(mm)、d33が417×10-12 (C/N)、d
31、d32が−198×10-12 (C/N)、誘電率εが
1.59×10-8(F/m)とすると、圧電g定数
gh 、受波感度Mは、 gh =1.32×10-3 (Vm/N) M=−102 (dB re.V/Pa) となる。
低周波で使用した場合、該電気音響変換素子は静水圧的
な音圧を受けるため、受波感度Mは静水圧モードの圧電
g定数をgh 、厚さをtとすると、 M=20×log(|gh |・t) (dB r
e.V/Pa) で表される。ここで、分極方向の圧電g定数をg33、分
極と直角方向の圧電g定数をg31、g32とし、そのそれ
ぞれに対応する圧電d定数をd33、d31、d32とする
と、 gh =g33+g32+g31=d33/ε+d32/ε+d31/ε=dh /ε (Vm/N) である。圧電磁器21にはPZTが用いられている。t
が6(mm)、d33が417×10-12 (C/N)、d
31、d32が−198×10-12 (C/N)、誘電率εが
1.59×10-8(F/m)とすると、圧電g定数
gh 、受波感度Mは、 gh =1.32×10-3 (Vm/N) M=−102 (dB re.V/Pa) となる。
【0005】図4は、従来の厚み共振を利用した円板形
の電気音響変換素子を示す断面図である。この円板形電
気音響変換素子は、図3と同様な変換素子構造であり、
円板形の多孔質圧電磁器31の両面には電極32,33
が形成され、その電極32,33に端子34,35が接
続されている。多孔質圧電磁器31は、例えば前記文献
に記載された多孔質PZTで構成されている。多孔質P
ZTの圧電d定数は、電極32,33の面と平行な断面
を考えた場合、PZTの占める面積は図3の電気音響変
換素子に比べ減少するが、その分PZTに応力の集中が
起こり、電極32,33に発生する電荷の量が図3の電
気音響変換素子と同等であるため、PZTと同等な値を
採用する。誘電率εは空隙のため、PZTに比べ減少す
る。
の電気音響変換素子を示す断面図である。この円板形電
気音響変換素子は、図3と同様な変換素子構造であり、
円板形の多孔質圧電磁器31の両面には電極32,33
が形成され、その電極32,33に端子34,35が接
続されている。多孔質圧電磁器31は、例えば前記文献
に記載された多孔質PZTで構成されている。多孔質P
ZTの圧電d定数は、電極32,33の面と平行な断面
を考えた場合、PZTの占める面積は図3の電気音響変
換素子に比べ減少するが、その分PZTに応力の集中が
起こり、電極32,33に発生する電荷の量が図3の電
気音響変換素子と同等であるため、PZTと同等な値を
採用する。誘電率εは空隙のため、PZTに比べ減少す
る。
【0006】tが6(mm)、d33が417×10-12
(C/N)、d31、d32が−198×10-12 (C/
N)、誘電率εが4.43×10-9(F/m)とする
と、圧電g定数gh 、受波感度Mは、 gh =4.74×10-3 (Vm/N) M=−91 (dB re.V/P
a) となる。
(C/N)、d31、d32が−198×10-12 (C/
N)、誘電率εが4.43×10-9(F/m)とする
と、圧電g定数gh 、受波感度Mは、 gh =4.74×10-3 (Vm/N) M=−91 (dB re.V/P
a) となる。
【0007】
【発明が解決しようとする課題】しかしながら、上記構
成の電気音響変換素子では、次のような問題があった。 (a) 図2の円筒形電気音響変換素子では、受波感度
が高い反面、内部に空気層を持つことから、耐水圧が低
く、深深度では使用できないという問題がある。また、
耐水圧を持たせるために内部に油等を入れるバランス方
式もあるが、感度が低下したり、構造が複雑になる等の
問題がある。
成の電気音響変換素子では、次のような問題があった。 (a) 図2の円筒形電気音響変換素子では、受波感度
が高い反面、内部に空気層を持つことから、耐水圧が低
く、深深度では使用できないという問題がある。また、
耐水圧を持たせるために内部に油等を入れるバランス方
式もあるが、感度が低下したり、構造が複雑になる等の
問題がある。
【0008】(b) 図3の円板形電気音響変換素子で
は、ブロック状の圧電磁器21を用いているため、高耐
水圧であるが、共振周波数以下の低周波で感度が低い。
即ち、圧電磁器21の圧電g定数gh (=g33+g32+
g31)は、g33に対してg31、g32が異符号で、かつ絶
対値が約1/2(1/2g33≒|g31|≒|g32|)で
あることから、感度が非常に小さな値になるという問題
がある。
は、ブロック状の圧電磁器21を用いているため、高耐
水圧であるが、共振周波数以下の低周波で感度が低い。
即ち、圧電磁器21の圧電g定数gh (=g33+g32+
g31)は、g33に対してg31、g32が異符号で、かつ絶
対値が約1/2(1/2g33≒|g31|≒|g32|)で
あることから、感度が非常に小さな値になるという問題
がある。
【0009】(c) 図4の円板形電気音響変換素子で
は、ブロック状の多孔質圧電磁器31を用いているた
め、高耐水圧で、図3の電気音響変換素子よりも感度が
よい。しかし、圧電g定数を増大させるために誘電率を
低下させているので、静電容量が低下し、ケーブル容量
による受波感度の低下や、電気インピーダンスの増大に
よる電気回路での不都合等が生じる問題がある。 そこで、この様な問題を解決するため、本願発明者は図
5及び図6のような電気音響変換素子を提案した。
は、ブロック状の多孔質圧電磁器31を用いているた
め、高耐水圧で、図3の電気音響変換素子よりも感度が
よい。しかし、圧電g定数を増大させるために誘電率を
低下させているので、静電容量が低下し、ケーブル容量
による受波感度の低下や、電気インピーダンスの増大に
よる電気回路での不都合等が生じる問題がある。 そこで、この様な問題を解決するため、本願発明者は図
5及び図6のような電気音響変換素子を提案した。
【0010】図5及び図6は、本願発明者が提案した円
板形電気音響変換素子を示す断面図である。図5の円板
形電気音響変換素子は、厚み方向に分極された円板形の
圧電磁器41を有し、その圧電磁器41の両面には正電
極43及び負電極44が形成され、さらに該正電極43
及び負電極44に端子45,46が接続されている。圧
電磁器41の周囲には、金属の円筒殻42が設けられて
いる。
板形電気音響変換素子を示す断面図である。図5の円板
形電気音響変換素子は、厚み方向に分極された円板形の
圧電磁器41を有し、その圧電磁器41の両面には正電
極43及び負電極44が形成され、さらに該正電極43
及び負電極44に端子45,46が接続されている。圧
電磁器41の周囲には、金属の円筒殻42が設けられて
いる。
【0011】次に、動作を説明する。図5の円板形電気
音響変換素子は、該変換素子の寸法より十分長い波長で
ある低周波に対しては静水圧的な音圧を受ける。この音
圧(静水圧)をPa とすると、電気音響変換素子の全表
面に音圧Pa が加わる。圧電磁器41の厚み方向には音
圧Pa によって応力Pa が加わるが、該圧電磁器41の
電極面方向には、円周に設けた金属の円筒殻42によっ
て音圧Pa が制動を受け、応力Pb (Pb <Pa )が加
わることとなる。圧電磁器41のヤング率、ポアソン比
をEa 、νa 、金属のヤング率、ポアソン比をEb 、ν
b とすると、Pb は
音響変換素子は、該変換素子の寸法より十分長い波長で
ある低周波に対しては静水圧的な音圧を受ける。この音
圧(静水圧)をPa とすると、電気音響変換素子の全表
面に音圧Pa が加わる。圧電磁器41の厚み方向には音
圧Pa によって応力Pa が加わるが、該圧電磁器41の
電極面方向には、円周に設けた金属の円筒殻42によっ
て音圧Pa が制動を受け、応力Pb (Pb <Pa )が加
わることとなる。圧電磁器41のヤング率、ポアソン比
をEa 、νa 、金属のヤング率、ポアソン比をEb 、ν
b とすると、Pb は
【数1】 となる。よって電気音響変換素子の圧電d定数dh 、圧
電g定数gh 、受波感度Mは、圧電磁器41の分極方向
の圧電d定数をd33、分極と直角方向の圧電d定数をd
31、d32、誘電率をεとすると、 dh =(Pa ・d33+Pb ・d32+Pb ・d31)/|Pa | (C/N) gh =dh /ε (Vm/N) M=20×log(|gh |・t) (dB re.V/Pa) となる。
電g定数gh 、受波感度Mは、圧電磁器41の分極方向
の圧電d定数をd33、分極と直角方向の圧電d定数をd
31、d32、誘電率をεとすると、 dh =(Pa ・d33+Pb ・d32+Pb ・d31)/|Pa | (C/N) gh =dh /ε (Vm/N) M=20×log(|gh |・t) (dB re.V/Pa) となる。
【0012】ここで、電圧磁器41にPZT、金属の円
筒殻42に軟鉄を用いたとし、Ea =6.10×1010
(N/m2 )、Eb =21.14×1010(N/
m2 )、νa =νb =0.3、ra =12(mm)、r
b =15(mm)、Pa =1.0(N/m2 )、ε=
1.59×10-8(F/m)、d33=417×10-12
(C/N)、d31=d32=−198×10-12 (C/
N)、t=6(mm)とすると、 Pb =8.64×10-1 (N/m2 ) dh =7.46×10-11 (C/N) gh =4.68×10-3 (Vm/N) M=−91 (dB re.V/P
a) となる。
筒殻42に軟鉄を用いたとし、Ea =6.10×1010
(N/m2 )、Eb =21.14×1010(N/
m2 )、νa =νb =0.3、ra =12(mm)、r
b =15(mm)、Pa =1.0(N/m2 )、ε=
1.59×10-8(F/m)、d33=417×10-12
(C/N)、d31=d32=−198×10-12 (C/
N)、t=6(mm)とすると、 Pb =8.64×10-1 (N/m2 ) dh =7.46×10-11 (C/N) gh =4.68×10-3 (Vm/N) M=−91 (dB re.V/P
a) となる。
【0013】また、図6の円板形電気音響変換素子は、
厚み方向に分極された円板形の多孔質圧電磁器51を有
し、その両面には正電極53及び負電極54が形成さ
れ、さらに該正電極53及び負電極54に端子55,5
6が接続されている。多孔質圧電磁器51の周囲には、
金属の円筒殻52が設けられている。この円板形電気音
響変換素子の動作は、図5の円板形電気音響変換素子と
同様である。即ち、多孔質圧電磁器51に多孔質PZ
T、金属の円筒殻52に軟鉄を用いたとし、多孔質PZ
Tの分極方向の圧電d定数をd33、分極と直角方向の圧
電d定数をd31、d32、誘電率をεとすると、電気音響
変換素子の多孔質PZT一金属間の応力Pb 、圧電d定
数dh 、圧電g定数gh 、受波感度Mは、Ea =1.7
5×1010(N/m2 )、Eb =21.14×10
10(N/m2 )、νa =νb =0.3、ra =13(m
m)、rb =15(mm)、Pa =1.0(N/
m2 )、ε=4.43×10-9(F/m)、d33=41
7×10-12 (C/N)、d31=d32=−198×10
-12 (C/N)、t=6(mm)であるから、 Pb =7.20×10-1 (N/m2 ) dh =1.32×10-10 (C/N) gh =2.98×10-2 (Vm/N) M=−75 (dB re.V/P
a) となる。
厚み方向に分極された円板形の多孔質圧電磁器51を有
し、その両面には正電極53及び負電極54が形成さ
れ、さらに該正電極53及び負電極54に端子55,5
6が接続されている。多孔質圧電磁器51の周囲には、
金属の円筒殻52が設けられている。この円板形電気音
響変換素子の動作は、図5の円板形電気音響変換素子と
同様である。即ち、多孔質圧電磁器51に多孔質PZ
T、金属の円筒殻52に軟鉄を用いたとし、多孔質PZ
Tの分極方向の圧電d定数をd33、分極と直角方向の圧
電d定数をd31、d32、誘電率をεとすると、電気音響
変換素子の多孔質PZT一金属間の応力Pb 、圧電d定
数dh 、圧電g定数gh 、受波感度Mは、Ea =1.7
5×1010(N/m2 )、Eb =21.14×10
10(N/m2 )、νa =νb =0.3、ra =13(m
m)、rb =15(mm)、Pa =1.0(N/
m2 )、ε=4.43×10-9(F/m)、d33=41
7×10-12 (C/N)、d31=d32=−198×10
-12 (C/N)、t=6(mm)であるから、 Pb =7.20×10-1 (N/m2 ) dh =1.32×10-10 (C/N) gh =2.98×10-2 (Vm/N) M=−75 (dB re.V/P
a) となる。
【0014】このように、図5及び図6の円板形電気音
響変換素子では、圧電磁器41または多孔質圧電磁器5
1の周囲に金属の円筒殻42,52を設けているので、
高耐水圧で、感度がよく、さらに圧電g定数gh が大幅
に増大することから、厚さを薄くすることが可能とな
り、誘電率も確保することができる。しかし、圧電磁器
41,51と金属の円筒殻42,52との間の接着層に
耐水性のよい接着剤がないため、該接着層が軟化して剥
離したり、あるいは該接着層が軟らかいため音圧が漏れ
込み圧電g定数gh が低下する等の問題がある。本発明
は、前記従来技術等が持っていた課題として、高耐水圧
で、かつ低周波で高感度、さらに静電容量の大きな変換
素子を提供することが困難な点について解決した水中受
波器の電気音響変換素子を提供するものである。
響変換素子では、圧電磁器41または多孔質圧電磁器5
1の周囲に金属の円筒殻42,52を設けているので、
高耐水圧で、感度がよく、さらに圧電g定数gh が大幅
に増大することから、厚さを薄くすることが可能とな
り、誘電率も確保することができる。しかし、圧電磁器
41,51と金属の円筒殻42,52との間の接着層に
耐水性のよい接着剤がないため、該接着層が軟化して剥
離したり、あるいは該接着層が軟らかいため音圧が漏れ
込み圧電g定数gh が低下する等の問題がある。本発明
は、前記従来技術等が持っていた課題として、高耐水圧
で、かつ低周波で高感度、さらに静電容量の大きな変換
素子を提供することが困難な点について解決した水中受
波器の電気音響変換素子を提供するものである。
【0015】
【課題を解決するための手段】本発明は、前記課題を解
決するために、音圧を電気信号に変換する水中受波器の
電気音響変換素子において、円板形の多孔質圧電磁器
と、前記多孔質圧電磁器の周囲に一体成型された円筒形
の圧電磁器と、前記多孔質圧電磁器及び圧電磁器の両面
に形成された正電極及び負電極とを備えている。そし
て、前記多孔質圧電磁器と圧電磁器は全体で円板形を成
し、その多孔質圧電磁器と圧電磁器が厚み方向に対して
それぞれ逆方向に分極されている。
決するために、音圧を電気信号に変換する水中受波器の
電気音響変換素子において、円板形の多孔質圧電磁器
と、前記多孔質圧電磁器の周囲に一体成型された円筒形
の圧電磁器と、前記多孔質圧電磁器及び圧電磁器の両面
に形成された正電極及び負電極とを備えている。そし
て、前記多孔質圧電磁器と圧電磁器は全体で円板形を成
し、その多孔質圧電磁器と圧電磁器が厚み方向に対して
それぞれ逆方向に分極されている。
【0016】
【作用】本発明によれば、以上のように電気音響変換素
子を構成したので、円板形の多孔質圧電磁器とその周囲
に設けられた円筒形の圧電磁器とは、全体として円板形
となるので、高耐水圧の向上が図れる。厚み方向に対し
て逆方向に分極された多孔質圧電磁器と圧電磁器は、低
周波で感度の向上を図ると共に、静電容量の増大を図
る。従って、前記課題を解決できるのである。
子を構成したので、円板形の多孔質圧電磁器とその周囲
に設けられた円筒形の圧電磁器とは、全体として円板形
となるので、高耐水圧の向上が図れる。厚み方向に対し
て逆方向に分極された多孔質圧電磁器と圧電磁器は、低
周波で感度の向上を図ると共に、静電容量の増大を図
る。従って、前記課題を解決できるのである。
【0017】
【実施例】図1は、本発明の実施例を示す円板形電気音
響変換素子の断面図である。この円板形電気音響変換素
子は、厚さt、及び半径ra の円板形の多孔質圧電磁器
61を有し、その周囲に円筒形の圧電磁器62が一体成
型されている。この圧電磁器62は、内半径ra 、外半
径rb 、及び厚さtで、多孔質圧電磁器61と共に全体
で円板形を成している。例えば、多孔質圧電磁器61は
多孔質PZTで、圧電磁器62はPZTで、それぞれ形
成され、それらが厚み方向に対してそれぞれ逆方向に分
極されている。多孔質圧電磁器61及び圧電磁器62の
両面には正電極63及び負電極64が形成され、それら
の正電極63及び負電極64が端子65,66にそれぞ
れ接続されている。
響変換素子の断面図である。この円板形電気音響変換素
子は、厚さt、及び半径ra の円板形の多孔質圧電磁器
61を有し、その周囲に円筒形の圧電磁器62が一体成
型されている。この圧電磁器62は、内半径ra 、外半
径rb 、及び厚さtで、多孔質圧電磁器61と共に全体
で円板形を成している。例えば、多孔質圧電磁器61は
多孔質PZTで、圧電磁器62はPZTで、それぞれ形
成され、それらが厚み方向に対してそれぞれ逆方向に分
極されている。多孔質圧電磁器61及び圧電磁器62の
両面には正電極63及び負電極64が形成され、それら
の正電極63及び負電極64が端子65,66にそれぞ
れ接続されている。
【0018】次に、動作を説明する。この円板形電気音
響変換素子では、該変換素子の寸法より十分長い波長で
ある低周波に対しては静水圧的な音圧を受ける。この音
圧(静水圧)をPa とすると、電気音響変換素子の全表
面に音圧Pa が加わる。多孔質PZT(61)の厚み方
向には、音圧Pa により応力Pa が加わるが、該多孔質
PZT(61)の電極面方向には、周縁に一体成型され
た円筒形PZT(62)によって音圧Pa が制動を受
け、応力Pb が加わることとなる。多孔質PZT(6
1)のヤング率、ポアソン比をEa 、νa 、PZT(6
2)のヤング率、ポアソン比をEb 、νb とすると、P
b は
響変換素子では、該変換素子の寸法より十分長い波長で
ある低周波に対しては静水圧的な音圧を受ける。この音
圧(静水圧)をPa とすると、電気音響変換素子の全表
面に音圧Pa が加わる。多孔質PZT(61)の厚み方
向には、音圧Pa により応力Pa が加わるが、該多孔質
PZT(61)の電極面方向には、周縁に一体成型され
た円筒形PZT(62)によって音圧Pa が制動を受
け、応力Pb が加わることとなる。多孔質PZT(6
1)のヤング率、ポアソン比をEa 、νa 、PZT(6
2)のヤング率、ポアソン比をEb 、νb とすると、P
b は
【数2】 となる。よって、円板形の多孔質PZT(61)によっ
て正電極63に発生する電荷Qa は、該多孔質PZT
(61)上の電極面積をSa 、該多孔質PZT(61)
の分極方向の圧電d定数をd33、分極方向と直角方向の
圧電d定数をd31、d32とすると、 Qa =(Pa ・d33+Pb ・d32+Pb ・d31)×Sa (C) となる。
て正電極63に発生する電荷Qa は、該多孔質PZT
(61)上の電極面積をSa 、該多孔質PZT(61)
の分極方向の圧電d定数をd33、分極方向と直角方向の
圧電d定数をd31、d32とすると、 Qa =(Pa ・d33+Pb ・d32+Pb ・d31)×Sa (C) となる。
【0019】一方、円筒形のPZT(62)上の正電極
63に発生する電荷は、肉厚(rb−ra )が薄くなる
と電極面と垂直な方向の応力よりも周囲方向の応力の影
響を受けるようになり、分極方向が多孔質PZT(6
1)と逆であるため、正電荷が発生することになる。円
筒形のPZT(62)上の正電極63に発生する電荷Q
b は、該円筒形PZT(62)上の電極面積をSb 、分
極方向の圧電d定数をd33、分極方向と直角方向の圧電
d定数をd31、d32とすると(なお、多孔質PZT(6
1)とPZT(62)の圧電d定数は、従来の図4で説
明した理由により同一)、
63に発生する電荷は、肉厚(rb−ra )が薄くなる
と電極面と垂直な方向の応力よりも周囲方向の応力の影
響を受けるようになり、分極方向が多孔質PZT(6
1)と逆であるため、正電荷が発生することになる。円
筒形のPZT(62)上の正電極63に発生する電荷Q
b は、該円筒形PZT(62)上の電極面積をSb 、分
極方向の圧電d定数をd33、分極方向と直角方向の圧電
d定数をd31、d32とすると(なお、多孔質PZT(6
1)とPZT(62)の圧電d定数は、従来の図4で説
明した理由により同一)、
【数3】 となる。よって、電気音響変換素子の正電極63に発生
する全電荷量Qt は、 Qt =Qa +Qb (C) となる。また、電気音響変換素子の誘電率εt 、静電容
量Ct は、多孔質PZT(61)の誘電率をεa 、PZ
T(62)の誘電率をεb とすると、 εt =(εa ・Sa +εb ・Sb )/(Sa +Sb ) (F/m) Ct =εt ・(Sa +Sb )/t (F) となる。以上のことから、電気音響変換素子の圧電d定
数dh 、圧電g定数gh、受波感度Mは、 dh =Qt /{|Pa |・(Sa +Sb )} (C/N) gh =dh /εt M=20×log(|gh |・t) (dB re.V/Pa) となる。ここで、Ea =1.75×1010(N/
m2 )、Eb =6.10×1010(N/m2 )、νa =
νb =0.3、ra =12(mm)、rb =15(m
m)、Pa =1.0(N/m2 )、εa =4.43×1
0-9(F/m)、εb =1.59×10-8(F/m)、
d33=417×10-12 (C/N)、d31=d32=−1
98×10-12 (C/N)、t=6(mm)であるか
ら、 Pb =8.64×10-1 (N/m2 ) Qa =3.39×10-14 (C) Qb =1.91×10-14 (C) Qt =5.30×10-14 (C) εt =8.85×10-9 (F/m) Ct =1010 (pF) dh =7.50×10-11 (C/N) gh =8.75×10-3 (Vm/N) M=−86 (dB re.V/Pa) となる。
する全電荷量Qt は、 Qt =Qa +Qb (C) となる。また、電気音響変換素子の誘電率εt 、静電容
量Ct は、多孔質PZT(61)の誘電率をεa 、PZ
T(62)の誘電率をεb とすると、 εt =(εa ・Sa +εb ・Sb )/(Sa +Sb ) (F/m) Ct =εt ・(Sa +Sb )/t (F) となる。以上のことから、電気音響変換素子の圧電d定
数dh 、圧電g定数gh、受波感度Mは、 dh =Qt /{|Pa |・(Sa +Sb )} (C/N) gh =dh /εt M=20×log(|gh |・t) (dB re.V/Pa) となる。ここで、Ea =1.75×1010(N/
m2 )、Eb =6.10×1010(N/m2 )、νa =
νb =0.3、ra =12(mm)、rb =15(m
m)、Pa =1.0(N/m2 )、εa =4.43×1
0-9(F/m)、εb =1.59×10-8(F/m)、
d33=417×10-12 (C/N)、d31=d32=−1
98×10-12 (C/N)、t=6(mm)であるか
ら、 Pb =8.64×10-1 (N/m2 ) Qa =3.39×10-14 (C) Qb =1.91×10-14 (C) Qt =5.30×10-14 (C) εt =8.85×10-9 (F/m) Ct =1010 (pF) dh =7.50×10-11 (C/N) gh =8.75×10-3 (Vm/N) M=−86 (dB re.V/Pa) となる。
【0020】本実施例では、次のような利点(i)〜
(v)を有している。 (i) 従来の図2の円筒形電気音響変換素子と比較し
て、内部に空気層やバランス構造を必要としないことか
ら、本実施例の電気音響変換素子では単純な構造で、高
耐水圧が実現できる。 (ii) 従来の図3と同一外径・同一厚さの本実施例に
よる電気音響変換素子と、従来の図3の円筒形電気音響
変換素子とを比較すると、圧電g定数gh で、本実施例
による電気音響変換素子が6.6倍優れたものとなる。
しかし、多孔質PZT(61)の誘電率がPZT(6
2)に比べ小さいため、本実施例による静電容量は低下
するが、本実施例の電気音響変換素子の厚さtを、従来
の図3の電気音響変換素子と同一外径で同一静電容量と
なるよう薄くした場合、厚さtは3.2(mm)とな
り、この場合の受波感度が−91(dB re.V/P
a)となる。よって、同一外径・同一静電容量として
も、従来の図3の電気音響変換素子に比べ、受波感度が
3.5倍優れたものとなる。
(v)を有している。 (i) 従来の図2の円筒形電気音響変換素子と比較し
て、内部に空気層やバランス構造を必要としないことか
ら、本実施例の電気音響変換素子では単純な構造で、高
耐水圧が実現できる。 (ii) 従来の図3と同一外径・同一厚さの本実施例に
よる電気音響変換素子と、従来の図3の円筒形電気音響
変換素子とを比較すると、圧電g定数gh で、本実施例
による電気音響変換素子が6.6倍優れたものとなる。
しかし、多孔質PZT(61)の誘電率がPZT(6
2)に比べ小さいため、本実施例による静電容量は低下
するが、本実施例の電気音響変換素子の厚さtを、従来
の図3の電気音響変換素子と同一外径で同一静電容量と
なるよう薄くした場合、厚さtは3.2(mm)とな
り、この場合の受波感度が−91(dB re.V/P
a)となる。よって、同一外径・同一静電容量として
も、従来の図3の電気音響変換素子に比べ、受波感度が
3.5倍優れたものとなる。
【0021】(iii) 従来の図4と同一外径・同一厚さ
の本実施例による電気音響変換素子と、従来の図4の円
板形電気音響変換素子とを比較すると、圧電g定数gh
で本実施例による電気音響変換素子が1.8倍優れたも
のとなる。また、静電容量で比較しても、従来の図4の
静電容量は、t=6(mm)、半径15(mm)、誘電
率ε=4.43×10-9(F/m)だから、522(p
F)となり、静電容量でも1.9倍優れたものとなる。
の本実施例による電気音響変換素子と、従来の図4の円
板形電気音響変換素子とを比較すると、圧電g定数gh
で本実施例による電気音響変換素子が1.8倍優れたも
のとなる。また、静電容量で比較しても、従来の図4の
静電容量は、t=6(mm)、半径15(mm)、誘電
率ε=4.43×10-9(F/m)だから、522(p
F)となり、静電容量でも1.9倍優れたものとなる。
【0022】(iv) 関連提案の図5と同一外径・同一
厚さの本実施例による電気音響変換素子と、図5の円板
形電気音響変換素子とを比較すると、圧電g定数g
h で、本実施例による電気音響変換素子が1.9倍優れ
たものとなる。また、本実施例の静電容量は、図5のも
のと比較して小さな値となるため、同一外径・同一静電
容量となるよう本実施例の電気音響変換素子の厚さtを
薄くして感度の比較を行うと、本実施例による電気音響
変換素子の厚さt=5(mm)となり、この場合の感度
は−87(dB re.V/Pa)となる。よって、同
一外径・同一静電容量としても、図5の電気音響変換素
子に比べ受波感度は1.6倍優れたものとなる。さら
に、本実施例の電気音響変換素子では、多孔質PZT
(61)とPZT(62)とを一体成型していることか
ら、図5のような圧電磁器41と金属の円筒殻42との
間の接着剤の剥離や、該接着剤への音波の漏れ込みによ
る圧電g定数gh の低下を防止できる。
厚さの本実施例による電気音響変換素子と、図5の円板
形電気音響変換素子とを比較すると、圧電g定数g
h で、本実施例による電気音響変換素子が1.9倍優れ
たものとなる。また、本実施例の静電容量は、図5のも
のと比較して小さな値となるため、同一外径・同一静電
容量となるよう本実施例の電気音響変換素子の厚さtを
薄くして感度の比較を行うと、本実施例による電気音響
変換素子の厚さt=5(mm)となり、この場合の感度
は−87(dB re.V/Pa)となる。よって、同
一外径・同一静電容量としても、図5の電気音響変換素
子に比べ受波感度は1.6倍優れたものとなる。さら
に、本実施例の電気音響変換素子では、多孔質PZT
(61)とPZT(62)とを一体成型していることか
ら、図5のような圧電磁器41と金属の円筒殻42との
間の接着剤の剥離や、該接着剤への音波の漏れ込みによ
る圧電g定数gh の低下を防止できる。
【0023】(v) 関連提案の図6と同一外径・同一
厚さの本実施例による電気音響変換素子と、図6の電気
音響変換素子とを比較すると、本実施例による電気音響
変換素子の圧電g定数gh は図6の圧電g定数gh の3
/10程度のものとなるが、本実施例の静電容量は図6
のものと比較して大きな値となるため、同一外径・同一
静電容量となるよう本実施例の電気音響変換素子の厚さ
tを薄くして感度の比較を行うと、t=15(mm)と
なり、この場合の感度が−78(dB re.V/P
a)となる。よって、同一外径・同一静電容量とした場
合、図6の電気音響変換素子に比べ、受波感度は3(d
B re.V/Pa)劣ったものとなる。しかし、本実
施例の電気音響変換素子は、多孔質PZT(61)とP
ZT(62)とを一体成型していることから、図6のよ
うな多孔質圧電磁器51と金属の円筒殻52との間の接
着剤の剥離や、その接着剤への音波の漏れ込みによる圧
電g定数gh の低下を防止できる。 なお、本発明は上記実施例に限定されず、例えば、多孔
質圧電磁器61を多孔質PZT以外の材料で構成した
り、あるいは圧電磁器62をPZT以外の材料で構成し
ても、従来と比べて性能のよい電気音響変換素子を提供
できる。また、図1の円板形電気音響変換素子は、その
全体構造を図1以外の形状や構造に変更してもよい。
厚さの本実施例による電気音響変換素子と、図6の電気
音響変換素子とを比較すると、本実施例による電気音響
変換素子の圧電g定数gh は図6の圧電g定数gh の3
/10程度のものとなるが、本実施例の静電容量は図6
のものと比較して大きな値となるため、同一外径・同一
静電容量となるよう本実施例の電気音響変換素子の厚さ
tを薄くして感度の比較を行うと、t=15(mm)と
なり、この場合の感度が−78(dB re.V/P
a)となる。よって、同一外径・同一静電容量とした場
合、図6の電気音響変換素子に比べ、受波感度は3(d
B re.V/Pa)劣ったものとなる。しかし、本実
施例の電気音響変換素子は、多孔質PZT(61)とP
ZT(62)とを一体成型していることから、図6のよ
うな多孔質圧電磁器51と金属の円筒殻52との間の接
着剤の剥離や、その接着剤への音波の漏れ込みによる圧
電g定数gh の低下を防止できる。 なお、本発明は上記実施例に限定されず、例えば、多孔
質圧電磁器61を多孔質PZT以外の材料で構成した
り、あるいは圧電磁器62をPZT以外の材料で構成し
ても、従来と比べて性能のよい電気音響変換素子を提供
できる。また、図1の円板形電気音響変換素子は、その
全体構造を図1以外の形状や構造に変更してもよい。
【0024】
【発明の効果】以上詳細に説明したように、本発明によ
れば、全体が円板形をしているので、単純な構造で高耐
水圧が実現できるばかりか、低周波で高感度、さらに静
電容量の大きな変換素子を実現できる。その上、円板形
の多孔質圧電磁器と円筒形の圧電磁器とが一体成型され
ているため、その両者間の剥離や、その箇所への音波の
漏れ込みによる圧電g定数の低下を防止できる。
れば、全体が円板形をしているので、単純な構造で高耐
水圧が実現できるばかりか、低周波で高感度、さらに静
電容量の大きな変換素子を実現できる。その上、円板形
の多孔質圧電磁器と円筒形の圧電磁器とが一体成型され
ているため、その両者間の剥離や、その箇所への音波の
漏れ込みによる圧電g定数の低下を防止できる。
【図1】本発明の実施例を示す円板形電気音響変換素子
の断面図である。
の断面図である。
【図2】従来の円板形電気音響変換素子の斜視図であ
る。
る。
【図3】従来の円板形電気音響変換素子の断面図であ
る。
る。
【図4】従来の円板形電気音響変換素子の断面図であ
る。
る。
【図5】関連提案の円板形電気音響変換素子の断面図で
ある。
ある。
【図6】関連提案の円板形電気音響変換素子の断面図で
ある。
ある。
61 多孔質圧電磁器 62 圧電磁器 63 正電極 64 負電極
Claims (1)
- 【請求項1】 音圧を電気信号に変換する水中受波器の
電気音響変換素子において、 円板形の多孔質圧電磁器と、前記多孔質圧電磁器の周囲
に一体成型された円筒形の圧電磁器と、前記多孔質圧電
磁器及び圧電磁器の両面に形成された正電極及び負電極
とを備え、 前記多孔質圧電磁器と圧電磁器は全体で円板形を成し、
その多孔質圧電磁器と圧電磁器が厚み方向に対してそれ
ぞれ逆方向に分極された電気音響変換素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4171216A JP2985916B2 (ja) | 1992-06-29 | 1992-06-29 | 電気音響変換素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4171216A JP2985916B2 (ja) | 1992-06-29 | 1992-06-29 | 電気音響変換素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0614387A JPH0614387A (ja) | 1994-01-21 |
JP2985916B2 true JP2985916B2 (ja) | 1999-12-06 |
Family
ID=15919195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4171216A Expired - Fee Related JP2985916B2 (ja) | 1992-06-29 | 1992-06-29 | 電気音響変換素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2985916B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009073087A (ja) * | 2007-09-21 | 2009-04-09 | Seiko Epson Corp | アクチュエータ装置及び液体噴射ヘッド |
-
1992
- 1992-06-29 JP JP4171216A patent/JP2985916B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0614387A (ja) | 1994-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4805157A (en) | Multi-layered polymer hydrophone array | |
EP0174897B1 (en) | Underwater piezoelectric arrangement | |
US4789971A (en) | Broadband, acoustically transparent, nonresonant PVDF hydrophone | |
US4928264A (en) | Noise-suppressing hydrophones | |
US4184093A (en) | Piezoelectric polymer rectangular flexural plate hydrophone | |
GB2151434A (en) | Multi-layered polymer transducer | |
JPS62154900A (ja) | 超音波センサ | |
US4482834A (en) | Acoustic imaging transducer | |
US5161200A (en) | Microphone | |
JP2019535164A (ja) | ハイドロフォンとエネルギー変換方法及び複合ハイドロフォン | |
US4755708A (en) | Hydrophone | |
US4737939A (en) | Composite transducer | |
JP2985916B2 (ja) | 電気音響変換素子 | |
US4081786A (en) | Hydrophone having a directive lobe in the form of a cardioid | |
Tressler et al. | Capped ceramic hydrophones | |
JP2985915B2 (ja) | 電気音響変換素子 | |
CN213397350U (zh) | 一种矢量水听器及矢量水听器单元 | |
JPH0614385A (ja) | 電気音響変換素子 | |
US6678213B1 (en) | Slotted cylinder transducer with trapezoidal cross-sectional electrodes | |
JPS5841000A (ja) | 分極された固体誘電体を含むコンデンサ形電気音響変換器 | |
Moffett et al. | Ultrasonic microprobe hydrophones | |
JPS6018096A (ja) | 複合トランスデユ−サ | |
US5808970A (en) | Multi-layer acoustically transparent sonar array | |
JP2526066B2 (ja) | 水中用圧電ケ−ブル | |
JP3275154B2 (ja) | 電気音響変換器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990914 |
|
LAPS | Cancellation because of no payment of annual fees |