JP2973643B2 - Quantitative measurement of substances - Google Patents
Quantitative measurement of substancesInfo
- Publication number
- JP2973643B2 JP2973643B2 JP3257396A JP25739691A JP2973643B2 JP 2973643 B2 JP2973643 B2 JP 2973643B2 JP 3257396 A JP3257396 A JP 3257396A JP 25739691 A JP25739691 A JP 25739691A JP 2973643 B2 JP2973643 B2 JP 2973643B2
- Authority
- JP
- Japan
- Prior art keywords
- substance
- substances
- equation
- atomic number
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000126 substance Substances 0.000 title claims description 50
- 238000005259 measurement Methods 0.000 title claims description 14
- 210000000988 bone and bone Anatomy 0.000 claims description 12
- 210000003205 muscle Anatomy 0.000 claims description 11
- 230000005855 radiation Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 210000004872 soft tissue Anatomy 0.000 claims 1
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/482—Diagnostic techniques involving multiple energy imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4241—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、放射線を用いた物質の
定量測定装置に関し、特に骨密度定量装置に関するもの
である。The present invention relates to relates to a quantitative measuring device materials using radiation, in particular those concerning the bone density quantitative equipment.
【0002】[0002]
【従来の技術】物体を透過する放射線の強度から、物体
に含まれる特定の物質を定量する方法としては、従来、
2つのエネルギー帯からなる放射線を利用したエネルギ
ー差分法が用いられている。2. Description of the Related Art As a method of quantifying a specific substance contained in an object from the intensity of radiation passing through the object, conventionally,
An energy difference method using radiation composed of two energy bands is used.
【0003】物体が3つの物質により構成されている場
合、次のようにして、ある特定の物質を定量する。ここ
では、図3に示す3つの物質A、物質B、物質Cからな
る物体を測定する場合について述べる。When an object is composed of three substances, a specific substance is quantified as follows. Here, a case of measuring an object including three substances A, B, and C shown in FIG. 3 will be described.
【0004】エネルギー差分法を用いるため、2種類の
エネルギーE1、E2をもつ放射線4を照射する。In order to use the energy difference method, radiation 4 having two kinds of energies E1 and E2 is irradiated.
【0005】エネルギーE1、E2の2種類を持つ放射
線4の、図3中に示すxにおける物体透過後の強度
IX1、IX2は(数1)、(数2)で表される。The intensities I X1 and I X2 of the radiation 4 having two energies E1 and E2 after passing through the object at x shown in FIG. 3 are expressed by (Equation 1) and (Equation 2).
【0006】[0006]
【数1】 (Equation 1)
【0007】[0007]
【数2】 (Equation 2)
【0008】図3のYにおける透過後の強度IY1、IY2
は、(数3)、(数4)で表される。Intensities I Y1 and I Y2 after transmission at Y in FIG.
Is represented by (Equation 3) and (Equation 4).
【0009】[0009]
【数3】 (Equation 3)
【0010】[0010]
【数4】 (Equation 4)
【0011】同様に、図3中に示すZにおける透過後の
強度IZ1、IZ2は、(数5)、(数6)で表される。Similarly, the transmitted intensities I Z1 and I Z2 at Z shown in FIG. 3 are expressed by ( Equation 5) and (Equation 6).
【0012】[0012]
【数5】 (Equation 5)
【0013】[0013]
【数6】 (Equation 6)
【0014】ただし、μA1、μA2、μB1、μB2、μC1、
μC2は物質A、B、CのエネルギーE1、E2における
質量減弱係数、I01、I02を物質に照射されるエネルギ
ーE1、E2の放射線強度、ρA、ρB、ρCは物質A、
物質B、物質Cの密度、TA、TB、TC、は物質A、
B、Cの厚さを表す。また、TC’、TC”はそれぞれ次
式で示されるものである。However, μ A1 , μ A2 , μ B1 , μ B2 , μ C1 ,
μ C2 is the mass attenuation coefficient at the energies E 1 and E 2 of the substances A, B and C, and I 01 and I 02 are the radiation intensities of the energies E 1 and E 2 irradiating the substance, ρ A , ρ B and ρ C are the substances A,
The density of substances B and C, T A , T B , T C , is the substance A,
It represents the thickness of B and C. T C ′ and T C ″ are represented by the following equations, respectively.
【0015】TC’=TC−TA TC”=TC−TB エネルギー差分計算により、物質Cの計算結果が0とな
るように消去し、物質A1の密度を求める。(数1)、
(数2)の2つの式から、エネルギー差分法により物質
A1の単位面積当りの密度mAは、(数7)として得ら
れる。T C ′ = T C −T A T C ″ = T C −T B The energy difference calculation is performed so that the calculation result of the substance C becomes zero, and the density of the substance A 1 is obtained (Equation 1). ),
From the two equations (Equation 2), the density m A per unit area of the material A1 by the energy difference method is obtained as (7).
【0016】[0016]
【数7】 (Equation 7)
【0017】(数7)に(数3)、(数4)を適用する
と、mAは0となり、物質Aのみの密度が得られている
ことがわかる。[0017] (7) (Equation 3), applying equation (4), m A is 0, it can be seen that the density of only material A is obtained.
【0018】同様に、物質B2の単位面積当りの密度m
Bは(数8)で求められる。Similarly, the density m per unit area of the substance B2
B is obtained by (Equation 8).
【0019】[0019]
【数8】 (Equation 8)
【0020】従来は、以上の方法により、物体中の物質
の定量測定を行っていた。Conventionally, a quantitative measurement of a substance in an object has been performed by the above method.
【0021】[0021]
【発明が解決しようとする課題】しかしながら上記従来
の方法では、物質それぞれについて計算式を変えなけれ
ばならない。このため、複数の物質を含む場合において
は一度の計算により、それぞれの定量することができな
いという問題点を有していた。However, in the above-mentioned conventional method, the calculation formula has to be changed for each substance. For this reason, when a plurality of substances are contained, there is a problem in that each calculation cannot be performed by a single calculation.
【0022】本発明は上記の欠点を解決するもので、1
つの計算式で複数の物質を定量し得る定量測定装置を提
供することを目的とする。The present invention solves the above drawbacks.
An object of the present invention is to provide a quantitative measurement device capable of quantifying a plurality of substances by one calculation formula.
【0023】[0023]
【課題を解決するための手段】この目的を達成するため
に本発明では、エネルギー差分法により計算した結果の
負の値をも利用し、物質の定量を行う。In order to achieve this object, in the present invention, a substance is quantified by using a negative value calculated by the energy difference method.
【0024】[0024]
【作用】エネルギー差分した後の正の値、負の値の両方
を利用することにより、1つの計算式で複数の物質を定
量することができる。By using both the positive value and the negative value after the energy difference, a plurality of substances can be quantified by one calculation formula.
【0025】詳細は後述するが、例えば、(数7)によ
るエネルギー差分計算結果は物質Bを含む部分は負の
値、物質Aを含む部分は正の値となるため、計算結果の
正負の判定を行えば、そこに含まれる物質の判定を容易
に行うことができるのである。Although the details will be described later, for example, the result of the energy difference calculation according to (Equation 7) has a negative value for the portion including the substance B and a positive value for the portion including the substance A. Is carried out, the substance contained therein can be easily determined.
【0026】[0026]
【実施例】図3に示すような3種類の物質からなる物体
の場合、次のようにして行うことができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the case of an object composed of three kinds of substances as shown in FIG. 3, the operation can be performed as follows.
【0027】物体の各部を透過したエネルギーE1、E
2の放射線の強度I1、I2について(数7)の差分計算
を行う。すなわち、物質Bを含むと思われる部分の透過
強度もすべて(数7)の式で差分計算を行う。Energy E1, E transmitted through each part of the object
The difference calculation of (Equation 7) is performed for the two radiation intensities I 1 and I 2 . That is, the difference calculation is also performed on the transmission intensity of the portion that is supposed to contain the substance B by the equation (Equation 7).
【0028】物質Bを含む部分については、(数7)の
ln(IX1/I01)、ln(IX2/I02)の代わりに、
(数5)、(数6)から得られるln(IZ1/I01)、
ln(IZ2/I02)を代入すると、(数9)となる。For the portion containing the substance B, instead of ln (I X1 / I 01 ) and ln (I X2 / I 02 ) in (Equation 7),
Ln (I Z1 / I 01 ) obtained from (Equation 5) and (Equation 6),
Substituting ln (I Z2 / I 02 ) results in (Equation 9).
【0029】[0029]
【数9】 (Equation 9)
【0030】上式において、μB1/μB2がRcより小さ
い値の場合、差分した結果のmA’は負の値を示す。物
質Aの部分は、(数7)が物質Aを定量するためのエネ
ルギー差分計算式であるため、差分計算後の値が正にな
る。In the above equation, when μ B1 / μ B2 is smaller than Rc, m A ′ as a result of the difference indicates a negative value. In the part of the substance A, since (Equation 7) is an energy difference calculation formula for quantifying the substance A, the value after the difference calculation is positive.
【0031】したがって、(数7)によるエネルギー差
分計算結果は物質Bを含む部分は負の値、物質Aを含む
部分は正の値となるため、計算結果の正負の判定を行え
ば、そこに含まれる物質の判定を容易に行うことができ
る。Therefore, the result of the energy difference calculation according to (Equation 7) is a negative value for the portion including the substance B and a positive value for the portion including the substance A. Determination of contained substances can be easily performed.
【0032】一般に、k吸収端を含まないエネルギー範
囲では、低エネルギーの減弱係数と高エネルギーの減弱
係数の比は実効原子番号が大きいほど大きくなる。よっ
て、エネルギー差分結果が正の値を示す場合、その部分
には、消去した物質(ここでは物質C)より、原子番号
または実効原子番号の大きい物質が含まれ、負の値を示
す部分には原子番号または実効原子番号の小さい物質が
含まれると同定できる。Generally, in the energy range not including the k-absorption edge, the ratio of the low-energy attenuation coefficient to the high-energy attenuation coefficient increases as the effective atomic number increases. Therefore, when the energy difference result indicates a positive value, the part includes a substance having an atomic number or an effective atomic number higher than that of the erased substance (here, the substance C), and the part indicating a negative value includes It can be identified that a substance having a small atomic number or effective atomic number is included.
【0033】また、物質Bの単位面積当りの密度m
Bは、(数10)により得られる。The density m of the substance B per unit area
B is obtained by (Equation 10).
【0034】[0034]
【数10】 (Equation 10)
【0035】以上により、同一の式(数7)により、複
数の物質の密度を得ることができる。以下、本発明を実
施例に基づき詳細に説明する。As described above, the densities of a plurality of substances can be obtained by the same equation (Equation 7). Hereinafter, the present invention will be described in detail based on examples.
【0036】本実施例では、人体の骨、脂肪の量を定量
する場合について述べる。図1は人体腰部の断面図であ
る。図1に示すように、人体の腰部は骨11、筋肉1
2、脂肪13の3つの物質から構成されているとする。In this embodiment, a case where the amounts of human bone and fat are determined will be described. FIG. 1 is a sectional view of a human waist. As shown in FIG. 1, the waist of the human body has bones 11 and muscles 1.
2. It is assumed that it is composed of three substances, fat 13 and fat 13.
【0037】これを、図2に示す測定系でX線の透過情
報を計測する。この測定系はX線源21、X線ラインセ
ンサ22および演算装置23により構成され、X線源2
1と同期してX線ラインセンサ22を走査することによ
り、2次元の測定を行うことができる。Then, transmission information of X-rays is measured by the measurement system shown in FIG. This measurement system includes an X-ray source 21, an X-ray line sensor 22, and an arithmetic unit 23,
By scanning the X-ray line sensor 22 in synchronism with 1, two-dimensional measurement can be performed.
【0038】X線源21の直下には、kエッジフィルタ
24が設けられている。kエッジフィルタ24は、Gd
により作製されており、これによりX線源21から放射
されるファンビームX線26は2つのエネルギーに分離
され、測定対象25に照射される。X線管の管電圧が1
00kVの場合、実効エネルギーが45keVと75k
eVに分離される。それぞれのエネルギーのX線強度
を、光子計数法を用いてX線ラインセンサ22を走査し
て測定した。A k-edge filter 24 is provided immediately below the X-ray source 21. The k-edge filter 24 is Gd
The fan beam X-ray 26 emitted from the X-ray source 21 is separated into two energies, and is irradiated on the measurement target 25. X-ray tube voltage is 1
In the case of 00 kV, the effective energy is 45 keV and 75 kV.
eV. The X-ray intensity of each energy was measured by scanning the X-ray line sensor 22 using the photon counting method.
【0039】各々のエネルギーにおける各部のカウント
数の測定結果を(表1)に示す。簡単ために、図1に示
す3点についてのみ(表1)に示した。点Xは筋肉と骨
を、点Yは筋肉のみ、点Zは筋肉と脂肪を透過したX線
強度が測定される。Table 1 shows the measurement results of the count number of each part at each energy. For simplicity, only three points shown in FIG. 1 are shown in (Table 1). Point X measures the muscle and bone, point Y measures the muscle only, and point Z measures the X-ray intensity transmitted through the muscle and fat.
【0040】[0040]
【表1】 [Table 1]
【0041】この測定結果から、筋肉を基準として消去
し骨の単位面積当りの密度mboneを算出するエネルギー
差分計算をすべての領域について行った。すなわち、
(数7)における物質Cを筋肉とし、物質Aを骨とし、
(表2)に示す減弱係数を用いてmA(mbone)を計算
した。(表2)には、計算に用いる物体を透過する前の
X線強度I0やRcをあわせて示す。From this measurement result, the energy difference calculation for eliminating the muscles as a reference and calculating the density m bone per unit area of the bone was performed for all the regions. That is,
The substance C in (Equation 7) is a muscle, the substance A is a bone,
It was calculated m A (m bone) using the attenuation coefficients shown in (Table 2). Table 2 also shows the X-ray intensities I 0 and Rc before transmission through the object used for the calculation.
【0042】[0042]
【表2】 [Table 2]
【0043】(数7)により求めた各部のmAを(表
3)に示す。骨の単位面積当りの密度は、1.143 g/cm2
と正の値を示し、筋肉部は差分計算処理により、ほぼ0
となっている。また、点Zでは負の値を示した。この点
には筋肉より減弱係数比の小さい、すなわち実効原子番
号の小さい物質が含まれることがわかる。(表4)に脂
肪の減弱係数、減弱係数比Rを、(表5)に筋肉、骨、
脂肪の実効原子番号を示す。[0043] indicates the units of m A obtained by (Equation 7) in (Table 3). The density of bone per unit area is 1.143 g / cm 2
And a positive value.
It has become. At the point Z, a negative value was shown. It can be seen that this point includes a substance having a smaller attenuation coefficient ratio than muscle, that is, a substance having a smaller effective atomic number. (Table 4) shows the attenuation coefficient of fat and the attenuation coefficient ratio R, and (Table 5) shows the muscle, bone,
Indicates the effective atomic number of fat.
【0044】[0044]
【表3】 [Table 3]
【0045】[0045]
【表4】 [Table 4]
【0046】[0046]
【表5】 [Table 5]
【0047】脂肪の減弱係数比、実効原子番号とも基準
物質の筋肉より小さい。これにより、差分計算処理後の
負の値の領域には脂肪が存在すると同定できる。差分計
算処理後、負の値を示し、脂肪が存在する部分につい
て、(数10)により、その部分における単位面積当り
の脂肪密度を算出した。この結果、Z部の密度は、4.55
29 g/cm2 となり、脂肪の定量を行うことができた。Both the fat attenuation coefficient ratio and the effective atomic number are smaller than the muscle of the reference substance. Thereby, it can be identified that fat exists in the negative value area after the difference calculation processing. After the difference calculation processing, a negative value was shown, and the fat density per unit area in the portion where the fat was present was calculated by (Equation 10) for the portion where the fat exists. As a result, the density of the Z portion was 4.55
It was 29 g / cm 2 , and the fat could be quantified.
【0048】以上のように本実施例によれば、差分計算
処理後の負の値を利用することによって、人体に含まれ
る骨だけでなく、脂肪をも同時に検出し、かつ定量をお
こなうことができた。As described above, according to the present embodiment, not only the bones contained in the human body but also fat can be simultaneously detected and quantified by using the negative value after the difference calculation processing. did it.
【0049】以上のように本発明は、差分処理計算処理
結果の負の部分を利用することにより、1つの計算式で
物体中の複数の物質を同時に識別でき、かつ定量するこ
とが可能な物質の定量測定装置を実現するものである。As described above, according to the present invention, by using the negative part of the difference processing calculation processing result, one calculation formula can be obtained.
An object of the present invention is to realize a substance quantitative measurement device capable of simultaneously identifying and quantifying a plurality of substances in an object .
【図1】本発明の測定法の一実施例における測定対象の
断面図FIG. 1 is a sectional view of an object to be measured in one embodiment of a measuring method of the present invention.
【図2】本発明を具現化した測定装置の構成図FIG. 2 is a configuration diagram of a measurement device embodying the present invention.
【図3】本発明の原理の説明図FIG. 3 is an explanatory view of the principle of the present invention.
1 物質A 2 物質B 3 物質C 4 放射線 11 骨 12 筋肉 13 脂肪 21 X線源 22 X線ラインセンサ 23 演算装置 24 kエッジフィルタ 25 測定対象 26 ファンビームX線 Reference Signs List 1 substance A 2 substance B 3 substance C 4 radiation 11 bone 12 muscle 13 fat 21 X-ray source 22 X-ray line sensor 23 arithmetic unit 24 k-edge filter 25 measurement object 26 fan beam X-ray
Claims (2)
具備し、2種類以上のエネルギーもしくはエネルギー範
囲の放射線を用いて測定対象の物体の透過情報を前記X
線センサで測定し、前記放射線の透過情報を用いて前記
演算装置で前記物体を構成する物質の同定、定量を行う
物質の定量測定装置において、前記物体が原子番号もし
くは実効原子番号が3種類以上の物質で構成される場
合、前記物質のうちの特定物質を基準として前記特定物
質を消去するための差分計算処理後の符号の正負を用い
て前記物質に対する原子番号もしくは実効原子番号の判
定による少なくとも2つの物質の同定、定量を同時に前
記演算装置で行うことを特徴とする物質の定量測定装
置。1. An X-ray source, an X-ray sensor, and an arithmetic unit
Comprising the X transparency information of an object to be measured with radiation of two or more energy or energy range
Measured by the line sensor, using said transmission information of the radiation
Identify and quantify the substances that make up the object with a computing device
In the substance quantitative measurement device, when the object is composed of three or more types of substances whose atomic number or effective atomic number is three or more, after a difference calculation process for eliminating the specific substance based on the specific substance among the substances, identification of at least two substances by the determination of the positive and negative atomic numbers or effective atomic number for the material using the code, at the same time before the quantitative
Quantitative measurement device for substances characterized by being operated by a computer
Place .
織である筋肉、骨、脂肪であることを特徴とする請求項
1記載の物質の定量測定装置。2. The apparatus for quantitatively measuring a substance according to claim 1, wherein the substance constituting the object to be measured is muscle, bone, or fat, which is a soft tissue.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3257396A JP2973643B2 (en) | 1991-10-04 | 1991-10-04 | Quantitative measurement of substances |
US07/956,257 US5247559A (en) | 1991-10-04 | 1992-10-05 | Substance quantitative analysis method |
DE69224890T DE69224890T2 (en) | 1991-10-04 | 1992-10-06 | Method for quantitative substance analysis |
EP92117069A EP0549858B1 (en) | 1991-10-04 | 1992-10-06 | Substance quantitative analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3257396A JP2973643B2 (en) | 1991-10-04 | 1991-10-04 | Quantitative measurement of substances |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0599829A JPH0599829A (en) | 1993-04-23 |
JP2973643B2 true JP2973643B2 (en) | 1999-11-08 |
Family
ID=17305809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3257396A Expired - Fee Related JP2973643B2 (en) | 1991-10-04 | 1991-10-04 | Quantitative measurement of substances |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2973643B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8639009B2 (en) | 2000-10-11 | 2014-01-28 | Imatx, Inc. | Methods and devices for evaluating and treating a bone condition based on x-ray image analysis |
US7660453B2 (en) | 2000-10-11 | 2010-02-09 | Imaging Therapeutics, Inc. | Methods and devices for analysis of x-ray images |
CA2446296A1 (en) | 2001-05-25 | 2002-12-05 | Imaging Therapeutics, Inc. | Methods to diagnose treat and prevent bone loss |
US8965075B2 (en) | 2002-09-16 | 2015-02-24 | Imatx, Inc. | System and method for predicting future fractures |
US8600124B2 (en) | 2004-09-16 | 2013-12-03 | Imatx, Inc. | System and method of predicting future fractures |
CA2519187A1 (en) | 2003-03-25 | 2004-10-14 | Imaging Therapeutics, Inc. | Methods for the compensation of imaging technique in the processing of radiographic images |
KR100686659B1 (en) * | 2004-02-19 | 2007-02-27 | 너스킨 인터어내셔날 인코포레이팃드 | Bio-photonic feedback controlling device and method |
JP5680718B2 (en) * | 2007-08-15 | 2015-03-04 | 富士フイルム株式会社 | Image component separation apparatus, method, and program |
US8939917B2 (en) | 2009-02-13 | 2015-01-27 | Imatx, Inc. | Methods and devices for quantitative analysis of bone and cartilage |
KR101689866B1 (en) * | 2010-07-29 | 2016-12-27 | 삼성전자주식회사 | Method and apparatus of processing image and medical image system employing the same |
CN110840473B (en) * | 2019-11-22 | 2023-05-26 | 江研伟 | Bone mineral density measuring system based on CT thin-layer scanning Hu value |
-
1991
- 1991-10-04 JP JP3257396A patent/JP2973643B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0599829A (en) | 1993-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Colbert et al. | Radiographic absorptiometry (photodensitometry) | |
US5247559A (en) | Substance quantitative analysis method | |
JP2973643B2 (en) | Quantitative measurement of substances | |
Christman | Foot and ankle radiology | |
JPH04300525A (en) | Quantitative analysis of osteosalt | |
Brennan et al. | Increasing FFD: an effective dose-reducing tool for lateral lumbar spine investigations | |
Izumi | The accuracy of Risser staging | |
WO2019235087A1 (en) | Radiography device, radiography method, and program | |
JPH06121791A (en) | X-ray determination device and x-ray determination method | |
JPH05237081A (en) | Quantitatively measuring apparatus for material | |
Genant et al. | Skeletal demineralization in primary hyperparathyroidism | |
Dendere et al. | Dual-energy X-ray absorptiometry for measurement of phalangeal bone mineral density on a slot-scanning digital radiography system | |
Zankl | Methods for assessing organ doses using computational models | |
Bonnick et al. | Densitometry techniques | |
Do Nascimento et al. | An automatic correction method for the heel effect in digitized mammography images | |
WO2021153592A1 (en) | Image processing device, radiography device, image processing method, and program | |
Kottamasu et al. | Pediatric musculoskeletal computed radiography | |
Njeh et al. | Absorptiometric measurement | |
Zankl | Computational models employed for dose assessment in diagnostic radiology | |
Weir et al. | Evaluation of CDRAD and TO20 test objects and associated software in digital radiography | |
Widmer et al. | Radiation protection and physics of diagnostic radiology | |
Aghaz et al. | Patient-specific dose assessment using CBCT images and Monte Carlo calculations | |
Haus et al. | Film techniques in radiotherapy for treatment verification, determination of patient exit dose, and detection of localization error | |
Kimoto et al. | Quantitative analysis methodology of X-ray attenuation for medical diagnostic imaging: algorithm to derive effective atomic number, soft tissue and bone images | |
Rothenberg | AAPM tutorial. Patient dose in mammography. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |