[go: up one dir, main page]

JP2961522B2 - Substrate for semiconductor electronic device and method of manufacturing the same - Google Patents

Substrate for semiconductor electronic device and method of manufacturing the same

Info

Publication number
JP2961522B2
JP2961522B2 JP9153420A JP15342097A JP2961522B2 JP 2961522 B2 JP2961522 B2 JP 2961522B2 JP 9153420 A JP9153420 A JP 9153420A JP 15342097 A JP15342097 A JP 15342097A JP 2961522 B2 JP2961522 B2 JP 2961522B2
Authority
JP
Japan
Prior art keywords
substrate
single crystal
sic single
crystal wafer
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9153420A
Other languages
Japanese (ja)
Other versions
JPH113842A (en
Inventor
益三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP9153420A priority Critical patent/JP2961522B2/en
Publication of JPH113842A publication Critical patent/JPH113842A/en
Application granted granted Critical
Publication of JP2961522B2 publication Critical patent/JP2961522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Element Separation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SiC単結晶を加
工して製作される半導体電子素子用基板およびその製造
方法に関するもので、詳しくは、ULSI(ウルトラ・
ラージスケール・インテグレッド・サーキット)、整流
素子、スイッチング素子、増幅素子、発光素子、光セン
サー等の半導体電子素子の製作に際して、単結晶SiC
からなるボンドウエハをSiなどのベース基板部に貼り
合わせ接合(ボンディング)してなるSCOI(SiC
−on−insulator)構造の半導体電子素子用
基板およびおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate for a semiconductor electronic device manufactured by processing a SiC single crystal and a method for manufacturing the same.
Single-crystal SiC for the production of semiconductor electronic devices such as large-scale integrated circuits, rectifiers, switching devices, amplifiers, light-emitting devices, optical sensors, etc.
SCOI (SiC) made by bonding and bonding a bond wafer made of
The present invention relates to a substrate for a semiconductor electronic device having an on-insulator structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】SiC(炭化珪素)単結晶は、Si(シ
リコン)などの既存の半導体材料に比べて、耐熱性およ
び機械的強度に優れているだけでなく、高温特性(因み
に、Siの動作温度が200℃以下であるのに対して4
00℃位まで使用可能)および高周波特性にも優れてお
り、さらに、放熱の限界を抑える高集積化が可能で、例
えば整流素子やスイッチング素子のように、大電力を消
費する半導体電子素子として有効に適用でき、次世代の
パワーデバイス用半導体材料として注目され、かつ期待
されている。
2. Description of the Related Art Compared with existing semiconductor materials such as Si (silicon), a SiC (silicon carbide) single crystal not only has excellent heat resistance and mechanical strength, but also has high-temperature characteristics (in view of the operation of Si). 4 for temperature below 200 ° C
It can be used up to about 00 ° C) and has excellent high-frequency characteristics, and can be highly integrated to suppress the limit of heat radiation, and is effective as a semiconductor electronic device that consumes large power, such as rectifiers and switching devices. And is attracting attention and expected as a next-generation semiconductor material for power devices.

【0003】ところで、ボンドウエハをベース基板部に
ボンディングして形成される半導体電子素子用基板とし
て、従来では、ボンドウエハにSiウエハを用いたSO
I(silicon−on−insulator)構造
のものが主流である。そして、このSiウエハボンディ
ングとエッチバックに基づいてSOI構造の半導体電子
素子用基板を製造するに当たっては、Siウェハの薄膜
化が必要であり、その薄膜化の手段としてダイヤモンド
カッターなどの機械的カッティング手段が採用されてい
た。
Conventionally, as a substrate for a semiconductor electronic element formed by bonding a bond wafer to a base substrate portion, a conventional SOA using a Si wafer as the bond wafer has been used.
What has an I (silicon-on-insulator) structure is the mainstream. In order to manufacture a semiconductor electronic device substrate having an SOI structure based on the Si wafer bonding and the etch back, it is necessary to reduce the thickness of the Si wafer, and as a means of reducing the thickness, a mechanical cutting means such as a diamond cutter is used. Was adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
たような従来のSOI構造の半導体電子素子用基板にお
いて、ダイヤモンドカッターなどの機械的カッティング
手段によるSiウエハの薄膜化はカッター自体の厚みの
関係から精々1mm位が限度で、カッティング後に例え
ば平面研削機などを用いて研削し、さらにミクロンない
しサブミクロンの所定膜厚になるように研磨することが
必要であり、そのために所定の半導体電子素子用基板の
製造工程が多大になるとともに、研削や研磨によるSi
ウエハの材料ロスもあって、コストが非常に高価になる
という問題がある。また、機械的カッティング手段およ
び研削、研磨による薄膜化の場合は、厚さにばらつきが
生じやすいのみならず、研削、研磨によって原子変位が
大きくなって結晶品質が悪化しやすく、半導体電子素子
としての電気的特性が損なわれるという問題があった。
However, in the conventional substrate for a semiconductor electronic device having the SOI structure as described above, the thinning of the Si wafer by a mechanical cutting means such as a diamond cutter or the like is at best due to the thickness of the cutter itself. After cutting, it is necessary to grind using, for example, a surface grinder, and further, to a predetermined thickness of micron or submicron after the cutting, so that a predetermined substrate for a semiconductor electronic element is required. The manufacturing process becomes large, and the Si
There is a problem that the cost is extremely high due to the material loss of the wafer. Further, in the case of thinning by mechanical cutting means and grinding and polishing, not only the thickness tends to vary easily, but also the crystal quality tends to deteriorate due to the increase in atomic displacement due to grinding and polishing, and as a semiconductor electronic element, There is a problem that electrical characteristics are impaired.

【0005】また、ボンドウエハとして、Si(シリコ
ン)などの既存の半導体材料に比べて既述のような多く
の優位性を有するSiC単結晶ウエハを用いる場合にお
いて、上述のSOI構造の半導体電子素子用基板の製造
と同様に、SiC単結晶ウエハをダイヤモンドカッター
などの機械的カッティング手段で薄膜化するとなると、
カッティング後に研削、研磨が必要であるのはもとよ
り、Siウエハよりも厚さのばらつきが大きく、そのば
らつきを少なくするために一層強く、かつ長時間に亘る
研磨を要し、それによって結晶品質の悪化が進み、半導
体電子素子としての電気的特性がより一層損なわれるこ
とは明らかであり、このことが既述のようにSiなどの
既存の半導体材料に比べて多くの優位性を有しながら
も、その実用化を阻止する要因になっていると言える。
In the case where a SiC single crystal wafer having many advantages as described above as compared with existing semiconductor materials such as Si (silicon) is used as a bond wafer, a semiconductor electronic device having the above-described SOI structure is used. Similar to the manufacture of a substrate, when a SiC single crystal wafer is thinned by mechanical cutting means such as a diamond cutter,
In addition to the need for grinding and polishing after cutting, the variation in thickness is larger than that of the Si wafer, and in order to reduce the variation, stronger and longer polishing is required, thereby deteriorating the crystal quality. It is clear that the electrical characteristics as a semiconductor electronic element are further impaired, and while this has many advantages over existing semiconductor materials such as Si as described above, It can be said that this is a factor that hinders its practical use.

【0006】本発明は上記実情に鑑みてなされたもの
で、SiC単結晶ウエハを用い、そのSiC単結晶ウエ
ハを結晶品質の悪化などのない状態で容易に、かつ均一
な厚みに超薄膜化することができ、低コストで、しかも
電気的特性に非常に優れた半導体電子素子用基板および
その製造方法を提供することを目的としている。
The present invention has been made in view of the above circumstances, and uses an SiC single crystal wafer to easily and ultra-thin the SiC single crystal wafer to a uniform thickness without deteriorating the crystal quality. It is an object of the present invention to provide a substrate for a semiconductor electronic device which can be manufactured at low cost and has excellent electrical characteristics and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明に係る半導体電子素子用基板
は、厚みの薄いSiC単結晶ウエハとベース基板部とが
酸化層により接合一体化されてなり、上記薄いSiC単
結晶ウエハは厚みの大きいSiC単結晶ウエハ中への水
素イオンの注入と加熱処理とにより平均水素イオン注入
深さで分割される2つの部分のうち上記ベース基板部側
に残存する部分から構成されていることを特徴とするも
のである。
According to a first aspect of the present invention, there is provided a substrate for a semiconductor electronic device, wherein a thin SiC single crystal wafer and a base substrate are joined by an oxide layer. Integrated, the thin SiC single crystal wafer is divided into two parts at an average hydrogen ion implantation depth by hydrogen ion implantation into a thick SiC single crystal wafer and heat treatment. Of these, it is characterized by being constituted by a portion remaining on the base substrate portion side.

【0008】また、請求項4に記載の発明に係る半導体
電子素子用基板の製造方法は、SiC単結晶ウエハとベ
ース基板部のうち少なくとも一方の表面に酸化層を形成
し、上記SiC単結晶ウエハ中に水素イオンを注入した
後、上記SiC単結晶ウエハとベース基板部とを上記酸
化層を介して室温で接合一体化し、その後、上記SiC
単結晶ウエハおよびベース基板部を所定温度に加熱処理
することにより上記SiC単結晶ウエハの平均水素イオ
ン注入深さで該SiC単結晶ウエハを2分割して、厚さ
の薄いSiC単結晶ウエハ部分をベース基板部側に残存
させることを特徴とするものである。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a substrate for a semiconductor electronic device, comprising: forming an oxide layer on at least one surface of a SiC single crystal wafer and a base substrate portion; After implanting hydrogen ions therein, the SiC single crystal wafer and the base substrate are bonded and integrated at room temperature via the oxide layer, and then the SiC
By heating the single crystal wafer and the base substrate to a predetermined temperature, the SiC single crystal wafer is divided into two at the average hydrogen ion implantation depth of the SiC single crystal wafer, and the thin SiC single crystal wafer portion is separated. It is characterized by being left on the base substrate part side.

【0009】上記のような構成要件を有する請求項1お
よび請求項4に記載の発明によれば、ボンドウエハとし
て、従来のSiなどの既存の半導体材料に比べて高温特
性、高周波特性、高集積化による大電力消費素子への適
用性などといった多くの優位性を有するSiC単結晶ウ
エハを使用しつつ、そのSiC単結晶ウエハを、水素イ
オンの注入および加熱処理といった極く少ない工程によ
り容易に、かつ均一な厚みに超薄膜化することが可能で
ある。また、従来のSiウエハなどを薄膜化するために
採用されていた機械的カッティング手段および研削、研
磨が一切不要であるから、SiCウエハの材料ロスもな
く、工程数の削減と相俟って製造コストの著しい低減が
図れ、さらに原子変位も最小で非常に高結晶品質のSC
OI構造として電気的特性に優れた基板を得ることが可
能である。
According to the first and fourth aspects of the present invention having the above constitutional requirements, as a bond wafer, high-temperature characteristics, high-frequency characteristics, and high integration can be achieved as compared with existing semiconductor materials such as conventional Si. While using a SiC single crystal wafer having many advantages such as applicability to a large power consumption element by the above, the SiC single crystal wafer can be easily and easily performed with extremely few steps such as hydrogen ion implantation and heat treatment. It is possible to make an ultrathin film with a uniform thickness. Further, since there is no need for mechanical cutting means and grinding and polishing, which have been employed for thinning a conventional Si wafer or the like, there is no material loss of the SiC wafer and the number of steps is reduced. Extremely high crystal quality SC with extremely low cost and minimal atomic displacement
It is possible to obtain a substrate having excellent electrical characteristics as an OI structure.

【0010】上記請求項1に記載の発明に係る半導体電
子素子用基板および請求項4に記載の発明に係る半導体
電子素子用基板の製造方法において使用するベース基板
部としては、請求項2および請求項5に記載のように、
Si単結晶基板部、Si多結晶基板部または高純度石英
基板部の中から選択されたいずれの一つであってもよい
が、特に、基板の放熱性を向上させたい場合のベース基
板部としては、請求項3および請求項6に記載のよう
に、SiC多結晶基板部の使用が好ましい。
The base substrate used in the method for manufacturing a substrate for a semiconductor electronic device according to the first aspect of the present invention and the method for manufacturing a substrate for a semiconductor electronic element according to the fourth aspect of the present invention are the second and the third aspects. As described in item 5,
Any one selected from a Si single crystal substrate portion, a Si polycrystal substrate portion or a high-purity quartz substrate portion may be used, but in particular, as a base substrate portion when it is desired to improve the heat dissipation of the substrate. It is preferable to use a SiC polycrystalline substrate portion as described in claims 3 and 6.

【0011】また、上記請求項4に記載の発明に係る半
導体電子素子用基板の製造方法において、上記SiC単
結晶ウエハおよびベース基板部の加熱処理としては、請
求項7に記載のように、SiC単結晶ウエハを平均水素
イオン注入深さで2分割させるための500℃以上の第
1段加熱処理と、分割された薄いSiC単結晶ウエハ部
分とベース基板部との化学結合の強化のための1000
℃以上の第2段加熱処理との2段階処理とすることが望
ましい。このような2段階の加熱処理の採用によって、
SiC単結晶ウエハの超薄膜化のために分割された薄い
SiC単結晶ウエハ部分とベース基板部との結合強度を
高めることが可能である。
In the method of manufacturing a substrate for a semiconductor electronic device according to the invention described in claim 4, the heat treatment of the SiC single crystal wafer and the base substrate portion includes the step of heating the SiC single crystal wafer and the base substrate. First-stage heat treatment at 500 ° C. or higher for dividing the single crystal wafer into two at the average hydrogen ion implantation depth, and 1000 for strengthening the chemical bond between the divided thin SiC single crystal wafer portion and the base substrate portion
It is desirable to use a two-stage treatment including a second-stage heat treatment at a temperature of not less than ° C. By adopting such a two-stage heat treatment,
It is possible to increase the bonding strength between the thin SiC single crystal wafer portion and the base substrate portion divided for making the SiC single crystal wafer ultra-thin.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
にもとづいて説明する。図1〜図4は本発明に係る半導
体電子素子用基板の製造方法を工程順に説明する概略図
であり、まず図1に示すように、1〜2mmの厚みtを
有するSiC単結晶ウエハ1およびベース基板部の一例
であるSi単結晶基板部2の表面それぞれを1000℃
以上に加熱することにより、SiC単結晶ウエハ1およ
びSi単結晶基板部2の表面にそれぞれ1μm程度の酸
化層(SiO2 )1a,2aを形成する。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 are schematic diagrams for explaining a method of manufacturing a substrate for a semiconductor electronic element according to the present invention in the order of steps. First, as shown in FIG. 1, a SiC single crystal wafer 1 having a thickness t of 1 to 2 mm and The surface of each of the Si single crystal substrate portions 2 as an example of the base substrate portion is set at 1000 ° C.
By heating as described above, oxide layers (SiO 2 ) 1 a and 2 a of about 1 μm are formed on the surfaces of the SiC single crystal wafer 1 and the Si single crystal substrate 2, respectively.

【0013】次に、上記SiC単結晶ウエハ1中に水素
イオンH+ を注入する。この水素イオンの注入はドーズ
量2×1016〜1×1017/cm2 の範囲で、注入加速
電圧を調整することにより、水素原子の濃度分布のピー
クを例えば図2の破線で示すように、SiC単結晶ウエ
ハ1の厚さt1=0.2μmの域などに任意かつ正確に
コントロールすることが可能である。
Next, hydrogen ions H + are implanted into the SiC single crystal wafer 1. In this implantation of hydrogen ions, the peak of the concentration distribution of hydrogen atoms is adjusted by adjusting the implantation acceleration voltage within a dose range of 2 × 10 16 to 1 × 10 17 / cm 2 , for example, as shown by a broken line in FIG. , And the thickness t1 of the SiC single crystal wafer 1 can be arbitrarily and accurately controlled to a range of 0.2 μm.

【0014】しかる後、上記SiC単結晶ウエハ1およ
び上記Si単結晶基板部2をRCA洗浄などの方法によ
りそれぞれの表面の酸化層(SiO2 )1a,2aをO
H基や水分子が高密度に存在する親水性とした上で、図
3に示すように、上記SiC単結晶ウエハ1と上記Si
単結晶基板部2とを室温で重ね合わせることにより、両
者1,2を上記酸化層1a,2aを介して接合一体化す
る。詳しくは、室温における貼り合わせ界面のOH基や
水分子が上記SiC単結晶ウエハ1と上記Si単結晶基
板部2を相互に引き付ける接着剤としての役割を果たす
だけでなく、有害不純物の侵入を防止する役目をもって
おり、したがって、上記SiC単結晶ウエハ1と上記S
i単結晶基板部2とが室温で安定よく接合一体化され
る。
Thereafter, the oxidized layers (SiO 2 ) 1a and 2a on the respective surfaces of the SiC single crystal wafer 1 and the Si single crystal substrate portion 2 are removed by RCA cleaning or the like.
After making the group H and the water molecules hydrophilic so as to exist at a high density, as shown in FIG.
By overlapping the single crystal substrate portion 2 at room temperature, the two 1 and 2 are joined and integrated via the oxide layers 1a and 2a. Specifically, OH groups and water molecules at the bonding interface at room temperature not only serve as an adhesive for attracting the SiC single crystal wafer 1 and the Si single crystal substrate portion 2 to each other, but also prevent intrusion of harmful impurities. Therefore, the SiC single crystal wafer 1 and the S
The i-single-crystal substrate portion 2 is bonded and integrated stably at room temperature.

【0015】その後、接合一体化された上記SiC単結
晶ウエハ1および上記Si単結晶基板部2を500℃以
上に第1段加熱処理することにより、上記SiC単結晶
ウエハ1を上記水素イオンの注入時にコントロールされ
た厚さt1が0.2μmの水素原子の濃度分布のピーク
域、すなわち、平均水素イオン注入深さで2分割させ
て、図4に示すように、厚さの薄い(0.2μm)Si
C単結晶ウエハ部分1Aを補強材としての役割を持つベ
ース基板部2側に接着残存させたままのSCOI構造の
半導体電子素子用基板3が製造される一方、他の厚さの
厚いSiC単結晶ウエハ部分1Bは次の半導体電子素子
用基板の製造時におけるSiC単結晶ウエハ1としてリ
サイクルし再利用される。
Thereafter, the SiC single-crystal wafer 1 and the Si single-crystal substrate portion 2 that have been joined and integrated are subjected to a first-stage heat treatment at 500 ° C. or higher, so that the SiC single-crystal wafer 1 is implanted with the hydrogen ions. The thickness t1 is sometimes controlled to be 0.2 μm in the peak region of the concentration distribution of hydrogen atoms having a thickness of 0.2 μm, that is, divided into two by the average hydrogen ion implantation depth, and as shown in FIG. ) Si
The SCOI-structured semiconductor electronic device substrate 3 is manufactured while the C single crystal wafer portion 1A is left adhered to the base substrate portion 2 having a role as a reinforcing material, while another thick SiC single crystal is formed. The wafer portion 1B is recycled and reused as the SiC single crystal wafer 1 at the time of manufacturing the next semiconductor electronic element substrate.

【0016】続いて、上記SCOI構造の半導体電子素
子用基板3を1000℃以上に第2段加熱処理すること
により、SiC単結晶ウエハ部分1Aとベース基板部2
との化学結合を強化する。そして、製造後のSCOI構
造の半導体電子素子用基板3を用いて、バルク型あるい
は完全空乏型のC−MOS構造の半導体電子素子が製作
される。
Subsequently, the substrate 3 for a semiconductor electronic device having the SCOI structure is subjected to a second-stage heat treatment at a temperature of 1000 ° C. or more, so that the SiC single crystal wafer portion 1A and the base substrate portion 2 are formed.
And strengthen the chemical bond. Then, using the manufactured SCOI-structured semiconductor electronic device substrate 3, a semiconductor electronic device having a bulk or fully depleted C-MOS structure is manufactured.

【0017】なお、上記水素イオンの注入時における水
素原子の濃度分布は例えば図2の破線で示す位置にピー
クが存在するように拡散しているが、上記の500℃以
上の第1段加熱処理に伴い拡散している水素原子がピー
ク域に集中して熱膨張することになり、これによって、
分割後の層厚さのばらつきは4nm以下と非常に小さ
く、分割後におけるばらつき修正のためのポリシングは
特に必要としない。
The concentration distribution of the hydrogen atoms during the implantation of the hydrogen ions is diffused such that a peak is present at, for example, the position shown by the broken line in FIG. As a result, the diffusing hydrogen atoms are concentrated in the peak region and thermally expanded.
Variations in the layer thickness after division are extremely small at 4 nm or less, and polishing for variation correction after division is not particularly required.

【0018】また、上記実施の形態では、補強材として
の役割を持つベース基板部2としてSi単結晶を用いた
が、これ以外に、Si多結晶や高純度石英等を使用して
もよく、特に、放熱性を向上させたい場合は、SiC多
結晶基板部を用いることが望ましい。さらに、上記実施
の形態では、SiC単結晶ウエハ1および上記Si単結
晶基板部2の両表面に酸化層1a,2aを形成したが、
いずれか一方の表面にのみ酸化層を形成しただけでもよ
い。
Further, in the above embodiment, a single crystal of Si is used as the base substrate portion 2 serving as a reinforcing material, but other than this, a polycrystal of Si, high-purity quartz, or the like may be used. In particular, when it is desired to improve heat dissipation, it is desirable to use a SiC polycrystalline substrate. Further, in the above-described embodiment, the oxide layers 1a and 2a are formed on both surfaces of the SiC single crystal wafer 1 and the Si single crystal substrate 2, respectively.
The oxide layer may be formed only on one of the surfaces.

【0019】[0019]

【発明の効果】以上のように、請求項1および請求項4
に記載の発明によれば、Siなどの既存の半導体材料に
比べて高温特性、高周波特性、高集積化による大電力消
費素子への適用性などといった多くの優位性を有するS
iC単結晶をボンドウエハとして使用しつつ、そのSi
C単結晶ウエハを、従来のSiウエハなどの薄膜化のた
めに採用されていた機械的カッティング手段および研
削、研磨といった繁雑面倒な工程を要することなく、水
素イオンの注入と加熱処理といった極く少ない工程をも
って容易に、かつ均一な厚みに超薄膜化することができ
る。また、一つの厚さの大きいSiC単結晶ウエハから
多数の超薄膜のSiC単結晶ウエハを作製することが可
能で、SiC単結晶ウエハの材料ロスもほとんど生じさ
せないので、工程数の削減と相俟って所定の半導体電子
素子用基板の製造コストを著しく低減することができ
る。しかも、研削、研磨による原子変位もなく、非常に
高結晶品質で電気的特性に優れたSCOI構造の基板が
得られ、Siなど既存の半導体材料に比べて高温特性、
高周波特性、大電力消費の適用性に優れたパワーデバイ
ス用基板の実用化を可能にできるという効果を奏する。
As described above, claims 1 and 4 are as described above.
According to the invention described in (1), S has many advantages over existing semiconductor materials such as Si, such as high-temperature characteristics, high-frequency characteristics, and applicability to large power consumption elements due to high integration.
While using an iC single crystal as a bond wafer,
Minimizing the need for mechanical cutting means and complicated complicated steps such as grinding and polishing that have been employed for thinning C single crystal wafers such as conventional Si wafers, etc. An ultrathin film having a uniform thickness can be easily formed by a process. Further, it is possible to produce a large number of ultra-thin SiC single crystal wafers from a single thick SiC single crystal wafer, and the material loss of the SiC single crystal wafer hardly occurs. Accordingly, the manufacturing cost of a predetermined semiconductor electronic element substrate can be significantly reduced. Moreover, there is no atomic displacement due to grinding and polishing, and a substrate having an SCOI structure with very high crystal quality and excellent electrical characteristics can be obtained.
This has the effect of enabling the practical use of a power device substrate having excellent high-frequency characteristics and high power consumption applicability.

【0020】特に、請求項3および請求項6に記載の発
明によれば、上記請求項1および請求項4に記載の発明
で得られる半導体電子素子用基板の放熱性の向上を図る
ことができるという効果も奏する。
In particular, according to the third and sixth aspects of the present invention, it is possible to improve the heat dissipation of the semiconductor electronic element substrate obtained by the first and fourth aspects of the present invention. Also has the effect.

【0021】さらに、請求項7に記載の発明によれば、
分割された薄いSiC単結晶ウエハ部分とベース基板部
との結合強度を高めることができるという効果も奏す
る。
Further, according to the invention described in claim 7,
This also has the effect of increasing the bonding strength between the divided thin SiC single crystal wafer portion and the base substrate portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体電子素子用基板の製造方法
における第1工程を説明する概略断面図である。
FIG. 1 is a schematic cross-sectional view illustrating a first step in a method for manufacturing a semiconductor electronic device substrate according to the present invention.

【図2】同上製造方法における第2工程を説明する概略
断面図である。
FIG. 2 is a schematic sectional view illustrating a second step in the manufacturing method.

【図3】同上製造方法における第3工程を説明する概略
断面図である。
FIG. 3 is a schematic sectional view illustrating a third step in the manufacturing method.

【図4】同上製造方法における第4工程および製造され
た半導体電子素子用基板を説明する概略断面図である。
FIG. 4 is a schematic sectional view illustrating a fourth step in the manufacturing method and a manufactured semiconductor electronic element substrate.

【符号の説明】[Explanation of symbols]

1 SiC単結晶ウエハ 1a 酸化層 1A 超薄膜のSiC単結晶ウエハ部分 1B リサイクルされるSiC単結晶ウエハ部分 2 Si単結晶基板部(ベース基板部) 2a 酸化層 3 半導体電子素子用基板 DESCRIPTION OF SYMBOLS 1 SiC single crystal wafer 1a Oxide layer 1A Ultra-thin SiC single crystal wafer part 1B Recycled SiC single crystal wafer part 2 Si single crystal substrate part (base substrate part) 2a Oxide layer 3 Substrate for semiconductor electronic element

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 厚みの薄いSiC単結晶ウエハとベース
基板部とが酸化層により接合一体化されてなり、上記薄
いSiC単結晶ウエハは厚みの大きいSiC単結晶ウエ
ハ中への水素イオンの注入と加熱処理とにより平均水素
イオン注入深さで分割される2つの部分のうち上記ベー
ス基板部側に残存する部分から構成されていることを特
徴とする半導体電子素子用基板。
1. A thin SiC single crystal wafer and a base substrate portion are joined and integrated by an oxide layer. The thin SiC single crystal wafer is formed by implanting hydrogen ions into a thick SiC single crystal wafer. A substrate for a semiconductor electronic device, comprising a part remaining on the base substrate part side among two parts divided by an average hydrogen ion implantation depth by heat treatment.
【請求項2】 上記ベース基板部として、Si単結晶基
板部、Si多結晶基板部または高純度石英基板部の中か
ら選択された一つを使用している請求項1に記載の半導
体電子素子用基板。
2. The semiconductor electronic device according to claim 1, wherein one selected from the group consisting of a Si single crystal substrate, a Si polycrystal substrate, and a high-purity quartz substrate is used as the base substrate. Substrate.
【請求項3】 上記ベース基板部として、SiC多結晶
基板部を使用している請求項1に記載の半導体電子素子
用基板。
3. The substrate for a semiconductor electronic device according to claim 1, wherein an SiC polycrystalline substrate is used as said base substrate.
【請求項4】 SiC単結晶ウエハとベース基板部のう
ち少なくとも一方の表面に酸化層を形成し、 上記SiC単結晶ウエハ中に水素イオンを注入した後、 上記SiC単結晶ウエハとベース基板部とを上記酸化層
を介して室温で接合一体化し、 その後、上記SiC単結晶ウエハおよびベース基板部を
所定温度に加熱処理することにより上記SiC単結晶ウ
エハの平均水素イオン注入深さで該SiC単結晶ウエハ
を2分割して、厚さの薄いSiC単結晶ウエハ部分をベ
ース基板部側に残存させることを特徴とする半導体電子
素子用基板の製造方法。
4. An oxide layer is formed on at least one surface of the SiC single crystal wafer and the base substrate, and hydrogen ions are implanted into the SiC single crystal wafer. Are bonded and integrated at room temperature via the oxide layer, and thereafter, the SiC single crystal wafer and the base substrate are heated to a predetermined temperature, so that the SiC single crystal wafer has an average hydrogen ion implantation depth of the SiC single crystal wafer. A method of manufacturing a substrate for a semiconductor electronic device, comprising dividing a wafer into two parts and leaving a thin SiC single crystal wafer part on a base substrate part side.
【請求項5】 上記ベース基板部として、Si単結晶基
板部、Si多結晶基板部または高純度石英基板部の中か
ら選択された一つを使用している請求項4に記載の半導
体電子素子用基板の製造方法。
5. The semiconductor electronic device according to claim 4, wherein one selected from a Si single crystal substrate, a Si polycrystal substrate, and a high-purity quartz substrate is used as the base substrate. Method of manufacturing substrates.
【請求項6】 上記ベース基板部として、SiC多結晶
基板部を使用している請求項1に記載の半導体電子素子
用基板の製造方法。
6. The method according to claim 1, wherein a SiC polycrystalline substrate is used as the base substrate.
【請求項7】 上記SiC単結晶ウエハおよびベース基
板部の加熱処理は、 上記SiC単結晶ウエハを平均水素イオン注入深さで2
分割させるための500℃以上の第1段加熱処理と、分
割された薄いSiC単結晶ウエハ部分とベース基板部と
の化学結合の強化のための1000℃以上の第2段加熱
処理との2段階処理である請求項4ないし6のいずれか
に記載の半導体電子素子用基板の製造方法。
7. The heat treatment of the SiC single crystal wafer and the base substrate portion may be performed by setting the SiC single crystal wafer to an average hydrogen ion implantation depth of 2 μm.
Two-stage heat treatment at 500 ° C. or higher for splitting, and second heat treatment at 1000 ° C. or higher for strengthening the chemical bond between the divided thin SiC single crystal wafer portion and the base substrate portion The method for producing a substrate for a semiconductor electronic device according to claim 4, wherein the method is a treatment.
JP9153420A 1997-06-11 1997-06-11 Substrate for semiconductor electronic device and method of manufacturing the same Expired - Fee Related JP2961522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9153420A JP2961522B2 (en) 1997-06-11 1997-06-11 Substrate for semiconductor electronic device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9153420A JP2961522B2 (en) 1997-06-11 1997-06-11 Substrate for semiconductor electronic device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH113842A JPH113842A (en) 1999-01-06
JP2961522B2 true JP2961522B2 (en) 1999-10-12

Family

ID=15562122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9153420A Expired - Fee Related JP2961522B2 (en) 1997-06-11 1997-06-11 Substrate for semiconductor electronic device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2961522B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344037B2 (en) * 2009-05-11 2013-11-20 住友電気工業株式会社 Silicon carbide substrate and semiconductor device
US12183792B2 (en) 2019-03-27 2024-12-31 Ngk Insulators, Ltd. SiC composite substrate and composite substrate for semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028415A (en) * 1999-10-14 2008-02-07 Shin Etsu Handotai Co Ltd Method for manufacturing soi wafer, and soi wafer
FR2810448B1 (en) * 2000-06-16 2003-09-19 Soitec Silicon On Insulator PROCESS FOR PRODUCING SUBSTRATES AND SUBSTRATES OBTAINED BY THIS PROCESS
FR2871172B1 (en) * 2004-06-03 2006-09-22 Soitec Silicon On Insulator HYBRID EPITAXIS SUPPORT AND METHOD OF MANUFACTURING THE SAME
EP1901345A1 (en) 2006-08-30 2008-03-19 Siltronic AG Multilayered semiconductor wafer and process for manufacturing the same
EP2432004A1 (en) * 2009-05-11 2012-03-21 Sumitomo Electric Industries, Ltd. Semiconductor device
JP5840366B2 (en) * 2011-01-06 2016-01-06 株式会社デンソー Method for manufacturing silicon carbide semiconductor substrate and method for manufacturing silicon carbide semiconductor device
JP2014007325A (en) * 2012-06-26 2014-01-16 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344037B2 (en) * 2009-05-11 2013-11-20 住友電気工業株式会社 Silicon carbide substrate and semiconductor device
US12183792B2 (en) 2019-03-27 2024-12-31 Ngk Insulators, Ltd. SiC composite substrate and composite substrate for semiconductor device

Also Published As

Publication number Publication date
JPH113842A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US7691730B2 (en) Large area semiconductor on glass insulator
JP3395661B2 (en) Method for manufacturing SOI wafer
US20010019153A1 (en) Method For Producing A Semiconductor Film
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JPH11145438A (en) Method of manufacturing soi wafer and soi wafer manufactured by the method
JPH0719738B2 (en) Bonded wafer and manufacturing method thereof
JP2000331899A (en) Method for forming soi wafer and soi wafer
WO2005024925A1 (en) Method for producing soi wafer
JP2961522B2 (en) Substrate for semiconductor electronic device and method of manufacturing the same
EP0955670A3 (en) Method of forming oxide film on an SOI layer and method of fabricating a bonded wafer
JP2003282845A (en) Fabricating method of silicon carbide substrate, schottky barrier diode and silicon carbide film and silicon carbide substrate fabricated with this method
JP2003224247A (en) Soi wafer and its manufacturing method
JPH10242154A (en) Method of treating surface of thin film semiconductor substrate
JPH1174209A (en) Manufacture of semiconductor substrate
JPH10321548A (en) Manufacture of semiconductor substrate
US5374582A (en) Laminated substrate for semiconductor device and manufacturing method thereof
JP2699359B2 (en) Semiconductor substrate manufacturing method
US7695564B1 (en) Thermal management substrate
WO2007072624A1 (en) Method for manufacturing soi substrate, and soi substrate
JPH11330438A (en) Manufacture of soi wafer and soi wafer
JPH08316443A (en) Soi substrate and its manufacture
JP2022167477A (en) Method for manufacturing soi wafer and soi wafer
JP3160966B2 (en) Method for manufacturing SOI substrate
JP2004342858A (en) SOI wafer and method for manufacturing the same
JP3864886B2 (en) SOI wafer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees