JP2950688B2 - 電力用半導体素子 - Google Patents
電力用半導体素子Info
- Publication number
- JP2950688B2 JP2950688B2 JP4231513A JP23151392A JP2950688B2 JP 2950688 B2 JP2950688 B2 JP 2950688B2 JP 4231513 A JP4231513 A JP 4231513A JP 23151392 A JP23151392 A JP 23151392A JP 2950688 B2 JP2950688 B2 JP 2950688B2
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- region
- resistance
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims description 43
- 238000002347 injection Methods 0.000 claims description 53
- 239000007924 injection Substances 0.000 claims description 53
- 239000000969 carrier Substances 0.000 claims description 16
- 238000007599 discharging Methods 0.000 claims description 4
- 108091006146 Channels Proteins 0.000 description 65
- 238000010586 diagram Methods 0.000 description 30
- 238000009792 diffusion process Methods 0.000 description 18
- 239000012535 impurity Substances 0.000 description 16
- 239000000758 substrate Substances 0.000 description 14
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 9
- 230000003071 parasitic effect Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 5
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 5
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D18/00—Thyristors
- H10D18/60—Gate-turn-off devices
- H10D18/65—Gate-turn-off devices with turn-off by field effect
- H10D18/655—Gate-turn-off devices with turn-off by field effect produced by insulated gate structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/421—Insulated-gate bipolar transistors [IGBT] on insulating layers or insulating substrates, e.g. thin-film IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
- H10D12/461—Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions
- H10D12/481—Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions having gate structures on slanted surfaces, on vertical surfaces, or in grooves, e.g. trench gate IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
- H10D12/491—Vertical IGBTs having both emitter contacts and collector contacts in the same substrate side
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/126—Top-view geometrical layouts of the regions or the junctions
- H10D62/127—Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
Landscapes
- Thyristors (AREA)
- Electrodes Of Semiconductors (AREA)
- Thin Film Transistor (AREA)
Description
を有する電力用の半導体素子に関する。
れているようにオン状態でラッチアップするために低い
オン抵抗(したがって小さいオン電圧)が実現できる反
面、最大遮断電流密度は小さい。特に絶縁ゲート構造を
利用してターンオフを行う絶縁ゲート付きサイリスタで
は、通常のGTOサイリスタに比べて電流遮断能力が低
くなる。これと逆にIGBT等は、サイリスタ構造を内
蔵するがこれがラッチアップしない条件で使用するよう
に設計されるため、最大遮断電流密度は比較的大きい
が、ラッチアップしないためにオン抵抗が高い。
力用半導体素子は、低いオン抵抗を得るためにはpnp
nサイリスタをラッチアップさせることが必要であり、
サイリスタをラッチアップさせると電流を遮断しにくく
なる、という問題があった。
分に低いオン抵抗を実現することができ、またラッチア
ップさせないために大きな最大遮断電流密度を持たせる
ことを可能とした埋込み絶縁ゲート型の電力用半導体素
子を提供することを目的とする。
体素子は、第1導電型エミッタ領域と、この第1導電型
エミッタ領域からの第1導電型キャリアの注入が実質的
にチャネルを介して行われ、オン状態で導電変調を起こ
す高抵抗ベース領域と、この高抵抗ベース領域に第2導
電型キャリアを注入する第2導電型エミッタ領域と、前
記高抵抗ベース領域中の第2導電型キャリアを排出する
第2導電型ドレイン領域とを備え、オン状態での前記高
抵抗ベース領域内のキャリア濃度が、この高抵抗ベース
領域の中心部での濃度より前記第1導電型エミッタ領域
側で高濃度となる部分を有することを特徴とする。
抵抗ベース層と、この高抵抗ベース層表面に所定の間隔
をもって埋め込まれた絶縁ゲートと、この絶縁ゲートで
挟まれた領域内に形成された第1導電型エミッタ層と、
前記絶縁ゲートにより誘起され、前記第1導電型エミッ
タ層から高抵抗ベース層に第1導電型キャリアを注入す
るチャネル領域と、前記高抵抗ベース層に第2導電型キ
ャリアを注入する第2導電型エミッタ層と、前記絶縁ゲ
ートにより挟まれた領域に形成され前記高抵抗ベース層
から第2導電型キャリアを排出する第2導電型ドレイン
層とを備え、前記第2導電型ドレイン層間の距離を2
C,前記絶縁ゲートで挟まれた領域の幅を2W,前記第
2導電型ドレインと高抵抗ベース層の界面から絶縁ゲー
ト先端までの距離をDとしたとき、 X={(C−W)+D}/W なる式で表されるパラメータXが、X≧5を満足するこ
とを特徴とする。
エミッタ層と、微細寸法をもって配列形成される埋込み
絶縁ゲート部の溝の深さと幅と間隔を最適設計すること
によって、寄生サイリスタ構造をラッチアップさせるこ
となく、サイリスタ並みの低いオン抵抗が得られる。そ
の理由は、後に詳細に説明するが、本発明の構造では、
埋込みゲート電極部とこれに隣接する第2導電型ドレイ
ン層および第1導電型エミッタ層を含めて広義のエミッ
タ領域と定義した時に、このエミッタ領域内での第2導
電型キャリアの抵抗Rp と、溝側面に形成されるターン
オンチャネルの第1導電型キャリアに対する抵抗Rn の
比Rp /Rn を4以上とすることによって、十分に大き
なエミッタ注入効率が得られることになるからである。
の第2導電型キャリアのバイパスまたはドレイン層が互
いにどれだけ離れているかを表す量であり、第1導電型
エミッタ層側の高抵抗ベース層短絡抵抗が隣り合う埋込
みゲート部を跨ぐ距離2D+2(C−W)に比例し、エ
ミッタ幅2Wに反比例する事から導入されたものであ
る。このパラメータXは、小さければ小さい程、第1導
電型エミッタ層側の第2導電型キャリアの排出抵抗が小
さいことを意味する。そしてX≧5を満たすように各部
の寸法を最適化することによって、サイリスタ動作する
ことなく十分低いオン電圧を得ることができる。
のエミッタ注入効率γは次のように求まる。まず溝間に
流れる電流を、オンMOSチャネルを流れる電子電流I
ch[A]とそれ以外の電流密度JT [A/cm2 ]に分け
て考える。ただし電流密度は、素子断面からの単位奥行
1cmで考える。単位セルに流れる電流密度はJ[A/cm
2 ]であり、溝間隔2W[cm],単位セルサイズ2C
[cm]とし、溝内の仮想的な注入効率をγT とすると、 γ=(Ich+γT ×JT ×W×1)/(Ich+JT ×W×1) … (1) ここで、 C・J=JT ×W×1+Ich … (2) Ich=Δψ/Rch … (3) RchはオンMOSチャネルの抵抗である。ΔψはオンM
OSチャネルの両端のポテンシャル差(深さDの両端の
ポテンシャル差)であり、溝内の電流連続の式 Jp =(1−γT )JT =−kTμp (dn/dx)−qμp ・n(dψ/dx) … (4) Jn =γT JT =kTμn (dn/dx)−qμn ・n(dψ/dx) … (5) から求まり、 Δψ=(kT/q)× {μn (1−γT)+μp γT}/{μn (1−γT)−μp γT} ×[log (n)−log {n−(dn/dx)D}] … (6) dn/dx=−(JT/2kT){(1−γT)/μp −γT/μn} … (7) となる。これら (2)〜(7) 式から、(1) 式の注入効率を
求める求めることができる。そして、W,D,Cを最適
化することにより、カソード側のエミッタ(またはソー
ス)層の注入効率を上げなくても、広義のエミッタ領域
の注入効率を上げることができる。この結果、オン時に
高抵抗ベース層中に蓄積されるキャリアを増大させるこ
とができ、本来サイリスタに比べてオン状態のキャリア
の蓄積の小さな(伝導変調の小さい)バイポーラトラン
ジスタやIGBTに本発明の上述した“キャリア注入コ
ンセプト”を適用することによって、これらの素子のオ
ン電圧をサイリスタ並みに低くすることができる。
説明する。
み絶縁ゲート型電力用半導体素子のレイアウトであり、
図2,図3,図4および図5はそれぞれ、図1のA−
A′,B−B′,C−C′およびD−D′断面図であ
る。
n型ベース層1の一方の面にn型バッファ層2を介して
p型エミッタ層3が形成されている。n型ベース層1の
他方の面にはp型ベース層4が拡散形成されている。
複数本の溝5が微小間隔をもって形成されている。これ
らの溝5の内部には、ゲート酸化膜6を介してゲート電
極7が埋込み形成されている。各溝5の間のストライプ
状領域には、一本おきにn型ターンオフチャネル層8が
形成され、このターンオフチャネル層8の表面にはp型
ドレイン層9が形成されている。これにより、n型ター
ンオフチャネル層8の側面が埋込みゲート電極7により
制御される縦型のpチャネルMOSFETが構成されて
いる。残りのストライプ状領域には、表面部にn型ソー
ス層10が拡散形成されている。ここで、n型ソース層
10,p型ベース層4,n型ベース層1およびp型エミ
ッタ層3により構成される寄生サイリスタ構造はラッチ
アップしないように、n型ソース層10は浅く拡散形成
されている。
ート電極7−p型ドレイン層9−埋込みゲート電極7−
n型ソース層10という配列が繰り返されたパターンと
なっている。
n型ソース層10,p型ドレイン層9に同時にコンタク
トして配設されている。p型エミッタ層3には第2の主
電極であるアノード電極12が形成されている。
る。n型ベース層1となる高抵抗はn型ウェハの厚みを
450μm とし、これに両側からn型バッファ層2を1
5μm 、p型ベース層4を2μm の深さで形成する。p
型ベース層4に形成する溝5は、幅,間隔共に1μm 、
深さ5μm とする。ゲート酸化膜6は0.1μm 以下の
熱酸化膜またはONO膜(酸化膜/窒化膜/酸化膜)と
する。n型ターンオフチャネル層8は、表面にp型ドレ
イン層9が形成されて実質0.5μm のチャネル長とな
る。n型ソース層10は1μm 以下、p型エミッタ層3
は、約4μm の深さに拡散形成する。
素子の動作は、次の通りである。ゲート電極7にカソー
ドに対して正の電圧を与えると、p型ベース層4周辺部
のターンオンチャネルが導通してn型ソース層10から
電子がn型ベース層1に注入され、IGBT動作によっ
てターンオンする。ゲート電極7に負の電圧を与える
と、埋込みゲート部のn型ターンオフチャネル層8の溝
側面部が反転して、pチャネルMOSトランジスタ動作
によってp型ベース層4のキャリアがp型ドレイン層9
を介してカソード電極11に吸い出され、ターンオフす
る。
n型ソース層10−p型ベース層4−n型ベース層1−
p型エミッタ層3により構成される寄生サイリスタはラ
ッチアップしないように設計されており、オンチャネル
が閉じれば、n型ソース層10からの電子注入は止ま
る。
m (すなわち、埋込みゲート1μm−p型ドレイン層1
μm −埋込みゲート部1μm −n型ソース層1μm )と
いう微細寸法として、埋込みゲート部の深さと密度を十
分な大きさに設計することにより、サイリスタ動作させ
ないにもかかわらず、十分に小さいオン抵抗が得られ
る。素子のオン状態でターンオフチャネルが閉じている
ことも、小さいオン抵抗が得られる理由になっている。
またオン状態で寄生サイリスタがラッチアップせず、オ
フ時にはターンオフチャネルが開いて正孔のバイパスが
なされるため、一旦ラッチアップさせた後にターンオフ
するGTOサイリスタ等に比べて、最大電流遮断能力は
大きい。
縁ゲート型電力用半導体素子のレイアウトであり、図
7,図8および図9はそれぞれ図6のA−A′,B−
B′およびC−C′断面図である。先の実施例と対応す
る部分には先の実施例と同一符号を付して詳細な説明は
省略する。
溝5がp型ベース層4を深く突き抜ける状態に形成され
ている。たとえば、p型ベース層が3μm として、溝5
は6μm 程度とする。溝5にゲート酸化膜6を介してゲ
ート電極7が埋込み形成される事は先の実施例と同じで
ある。
施例より広く、たとえば2μm としている。そして各溝
5間のストライプ領域のすべてにn型ターンオフチャネ
ル層8とp型ドレイン層9が溝5に接して形成され、溝
5から離れた位置にn型ソース層10が形成されてい
る。ここで、n型ソース層10が、これとp型ベース層
4,n型ベース層1およびp型エミッタ層3との間で構
成される寄生サイリスタがラッチアップしないように形
成されることは、先の実施例と同様である。ただしn型
ソース層10とn型ターンオフチャネル層8とは連続し
ている。
層8の下にあるp型ベース層4の溝5の側面部がターン
オンチャネルとなっている。すなわち溝5に埋込み形成
されたゲート電極7は、ターンオン用とターンオフ用を
兼用しており、ターンオフ用pチャネルMOSFETと
ターンオン用nチャネルMOSFETが縦積みされた状
態に形成されている。
圧を印加して、p型ベース層4の溝5側面にn型チャネ
ルを形成することにより、ターンオンする。このときn
型ソース層10からn型ターンオフチャネル層8を介
し、反転n型チャネルを介してn型ベース層1に電子が
注入される。ゲート電極7に負電圧または零電圧を与え
て、先の実施例と同様にターンオフする。
の効果が得られる。
絶縁ゲート型電力半導体素子のレイアウトであり、図1
1,図12および図13はそれぞれ図10のA−A′,
B−B′およびC−C′断面図である。この実施例は、
第2の実施例の構成を基本として、埋込みゲート電極部
の幅とこれに挟まれる領域の幅の比をより大きくしたも
のである。
る高抵抗はn型ウェハの厚みを450μm とし、これに
両側からn型バッファ層2を15μm 、p型ベース層4
を2μm の深さで形成する。p型ベース層4に形成する
溝5は、幅5μm ,間隔1μm 、深さ5μm とする。ゲ
ート酸化膜6は0.1μm 以下のの熱酸化膜又はONO
膜とする。n型ターンオフチャネル層8は、表面にp型
ドレイン層9が形成されて実質0.5μm のチャネル長
となる。n型ソース層10は1μm 以下、p型エミッタ
層3は、約4μm の深さに拡散形成する。
動作となる。この実施例では、素子内で埋込みゲート電
極部の占める面積を、これに挟まれる領域の面積より十
分大きくしている。この結果、埋込みゲート電極部を含
む広義のエミッタ領域内での正孔に対する抵抗が大きく
なり、その結果としてこの広義のエミッタ領域の電子注
入効率が上がる。つまり、n型ソース層10領域の面積
に比べて埋込みゲート電極領域の面積が大きいにも拘ら
ず、電子電流に対する抵抗と正孔電流に対する抵抗の差
によって等価的に大きな電子注入効率が得られ、低いオ
ン抵抗が実現される。そしてn型ソース層10そのもの
の実際の電子注入効率は低いため、ターンオフ能力はI
GBT並みに高いものとなる。
のレイアウトであり、図15,図16および図17はそ
れぞれ、図14のA−A′,B−B′およびC−C′断
面図である。この実施例では、先の実施例と異なり、溝
5がp型ベース層4内に止まっている。
計することによって、先の実施例と同様に、低いオン抵
抗と高い電流遮断能力の両立を図ることができる。
て、アノード側にも同様の埋込みゲート構造を適用した
実施例の単位セル部の断面構造を示している。すなわち
n型ベース層のカソード側の面に第2の実施例で説明し
たように、埋込みゲート電極7が形成され、その埋込み
溝4に挟まれてp型ベース層,n型ソース層が形成さ
れ、溝4の側面にはn型ターンオフチャネル層およびp
型ドレイン層が形成されている。このカソード側と対照
的に、アノード側にも溝20が形成されてここにゲート
電極21が埋込み形成され、溝20の間には、カソード
側とは各部の導電型が逆になった拡散層が形成されてい
る。
いる。またカソード側のA−A′部分およびB−B′部
分の不純物濃度分布を示すと、それぞれ図19(a) (b)
のようになっている。
ノード側の埋込みゲート電極21にもアノード電極に対
して負の電圧が印加される。ターンオフ時はアノード側
の埋込みゲート電極21にはアノード電極に対して零ま
たは正の電圧が印加される。
と同様の効果が得られる。
が大電流領域でもサイリスタ動作しないpnpn構造を
採用しながら、サイリスタ並みの低いオン抵抗が得られ
る理由について、シミュレーションデータを参照しなが
ら詳細に説明する。
セルの断面図であり、図21はその新型エミッタ構造の
原理説明図である。図20の基本はIGBTであるの
で、通常のサイリスタにおけるn型エミッタは存在しな
い。カソード側の電子注入はMOSチャネルにより行わ
れて、このMOSFETを構成するn型ドレイン層がn
型エミッタとして寄生サイリスタがラッチアップしない
ように、正孔電流のバイパス抵抗を十分小さく設計す
る。しかし正孔電流のバイパス抵抗を小さくすること
は、図20の構造をサイリスタ(またはダイオード)と
比較した場合のn型エミッタの注入効率を低下させるこ
とと等価であり、素子のオン電圧の上昇という結果を招
く。
ある。MOSのソース層と埋込みゲートを微細寸法で配
列した本発明の素子では、MOSのソース層と埋込みゲ
ート部を含めた領域全体をエミッタ領域として考えて、
その注入効率を考える方が分かり易い。即ち、図中の破
線で囲んだ領域を広義のエミッタ領域と定義すると、こ
の広義のエミッタ領域の注入効率γは、正孔電流抵抗R
p と電子電流抵抗Rnによって次のように表すことがで
きる。
いものと仮定している。
0.75であり、Rp /Rn =4とすると、γ=0.8
である。
ッタ注入効率が0.7以上であることを考えると、図2
0の埋込み絶縁ゲート構造のIGBTでも、広義のエミ
ッタの注入効率を0.8以上にすれば、すなわちRp /
Rn >4とすれば、サイリスタ並みのオン電圧が得られ
ることを意味している。
p /Rn がほぼ3程度であり、Rp/Rn >4にすると
ラッチアップ耐量が低下する。その理由は幾つかある
が、例えば、平面ゲート構造のIGBTではその構造
上、横方向の電子電流抵抗と正孔電流抵抗の差をつけに
くいことがある。オン状態での横方向抵抗が低く(10
0A/cm2 の電流密度通電時で、約3×1016/cm3 の
キャリアがあり、p型ベース層による正孔横方向抵抗が
減少している)、この横方向の抵抗で正孔電流抵抗を稼
ごうとしても、単位面積当りのMOSオンチャネル数の
減少を招き、逆に電子電流抵抗を増大させる結果とな
り、したがって広義のエミッタの注入効率が低下してし
まう。ESTなどの場合、正孔電流抵抗を稼ぐためにセ
ルサイズを大きくするが、この方法は単位面積当りのオ
ンチャネル数を減らすことになり、正孔電流抵抗が十分
増える前に電子電流抵抗が増加してしまうので、結局広
義のエミッタ領域の注入効率が上がらず、素子のオン抵
抗を小さくすることが難しい。また単純に正孔電流の短
絡率を下げて正孔電流抵抗を上げようとすると、ラッチ
アップ耐量が下がってしまう。
を増やしながら、正孔電流の短絡抵抗を下げずに、正孔
電流抵抗を電子電流抵抗の4倍以上とする構造が必要に
なる。本発明者等の検討結果によれば、埋込みゲート構
造の幅と深さ,間隔等を最適化することによって、この
様な条件が実現できることが明らかになった。
す。先ず、計算に使用した図20のIGBT構造は、順
阻止耐圧4500Vのものであって、その素子パラメー
タは次の通りである。不純物濃度1×1013/cm3 ,厚
さ450μm のn型高抵抗シリコン基板を用いて、アノ
ード側には、深さ15μm 、表面濃度1×1016/cm3
のn型バッファ層と、深さ4μm ,表面濃度1×1019
/cm3 のp型エミッタ層を形成している。カソード側に
は、深さ2μm ,表面濃度1×1017/cm3 のp型ベー
ス層と、深さ0.2μm ,表面濃度1×1019/cm3 の
p型ソース層を形成している。カソード側の埋込みゲー
ト部のゲート電極は厚さ0.05μm のシリコン酸化膜
またはONO膜等により分離されている。
さはD(p型ベース層からn型ベース層内に突き出た部
分)であり、セルサイズは2C、エミッタ幅は2Wであ
り、したがって埋込みゲート部の幅とエミッタ幅の比率
は、W/(C−W)である。これらの寸法C,W,D
と、正孔ライフタイムτp をパラメータとして、素子の
オン電圧に与える埋込みゲート電極構造の効果を調べ
た。その結果が、図22〜図27である。
ミッタ幅が2W=1μm 、したがって埋込みゲート部の
幅が2(C−W)=5μm 、正孔ライフタイムがτp =
τn=2.0μsec のモデルで、埋込みゲート部の深さ
Dを変化させた時のアノード・カソード間電圧2.6V
での素子電流密度を求めた結果である。ゲート印加電圧
は+15V(すべてのオン電圧の計算で共通)である。
みゲート部の深さD=5μm 、正孔ライフタイムτp =
30μsec のモデルで、埋込みゲート部の幅C−Wを変
化させた時の、アノード・カソード間電圧2.6Vでの
素子電流密度を求めた結果である。
が1μm から5μm 程度までは埋込みゲート部の幅が増
加するにしたがって素子電流は急激に増加するが、10
μm程度で電流は頭打ちとなり、15μm になると素子
電流は逆に減り始める。この現象は、次のように説明で
きる。埋込みゲート部の幅がエミッタ幅に比べて広くな
ると、エミッタ直下の埋込み溝側面近くの正孔電流密度
が高くなり、その結果埋込み溝下部側面で電位が上昇す
る。この結果MOSチャネルが飽和していない状態では
電子電流に対する正孔電流の比率が増加し、結果として
広義のエミッタ領域の注入効率が高くなって、素子電流
密度が増加する。しかし、埋込みゲート部の幅が更に広
くなると、MOSチャネルが飽和すると共に、単位面積
当りのMOSチャネル数が減少することによって、電子
電流のMOSチャネル抵抗が大きくなり、素子に流れる
電子電流が制限されて、エミッタ注入効率が低下し、素
子電流が減少することになる。
ンタクトをカソード短絡と考えると、埋込みゲート部の
幅が広くなるとこのカソード短絡の横方向抵抗を増やす
のと同じ効果(注入効率に関しては、広義のエミッタ領
域内のカソード短絡率を減らしたと等価)があり、この
結果注入効率が増加してオン電圧が下がる。しかし、埋
込みゲート部の幅が広くなり過ぎると、単位面積当りの
オンチャネル数が減少する結果、電子電流抵抗が増加す
るので、注入効率が低下してオン電圧が上がる。
みゲート部の深さD=5μm 、正孔ライフタイムτp =
2.0μsec のモデルで、埋込みゲート部の幅C−Wを
変化させた時のアノード・カソード間電圧2.6Vでの
素子電流密度を求めた結果である。埋込みゲート部の幅
が1μm から5μm 程度までは急激に電流が増えるが、
10μm から15μm で頭打ちとなる。τp =30μse
c の場合に比べて、電流が飽和する埋込みゲート部幅が
広いのは、素子に流れる電流の絶対値が小さい(1/1
0程度)からである。
みゲート部の深さD=5μm 、正孔ライフタイムτp =
2μsec のモデルで、埋込みゲート部の幅2(C−W)
が1μm の場合(A)と15μm の場合(B)の、アノ
ード・カソード間順方向電圧を変化させた時の電流特性
をプロットしたものである。
圧が13Vの点で電流がクロスしている。13V以下で
は、埋込みゲート部の幅15μm のモデルの方が電流値
が大きく、特に2V以下では1桁電流値が大きい。13
V以上では電流値の大きさが逆転する。
を、先の第2の実施例の素子構造に変更した図30の素
子モデルについて、エミッタ幅2W=3μm 、埋込みゲ
ート部の幅2(C−W)=13μm 、埋込みゲート部の
深さD=12.5μm 、p型ベース層深さ2.5μm 、
n型ソース層の深さ1μm 、p型ドレイン層の深さ0.
5μm 、正孔ライフタイムτp =1.85μsec とした
ときの電流−電圧特性である。アノード・カソード間電
圧が2.6Vの時に素子電流が100A/cm2 となるよ
うに、τp が設定されている。
密度Iak=5223[A/cm2 ],Vak=25Vからの
抵抗負荷でのターンオフ波形である。ゲート電圧上昇率
dVG /dt=−30[V/μsec ]で、+15Vから
−15Vまでゲート電圧を変化させてある。
領域直下のキャリア濃度を1×1016/cm3 と仮定する
と、エミッタ幅W=1.5μm 、埋込みゲート部の深さ
D=12.5μm での正孔電流抵抗は、 Rp =0.5×12.5×10-4÷1.5×10-4 =4.2Ω … (9) であり、電子電流抵抗をRn =1Ωとすると、注入効率
はγ=0.81である。
縁ゲート部を含む広義のエミッタ領域の形状寸法を最適
化することによって、サイリスタ動作をさせることな
く、サイリスタと同程度の低いオン抵抗を実現できるこ
とが分かる。
不純物拡散層からなり、このエミッタ拡散層から高抵抗
ベース層にキャリアを注入していた。本発明は、従来の
単一の高濃度不純物拡散層の代わりに高抵抗ベースへの
キャリア注入と排出にMOSチャネルとキャリア排出の
流れをコントロールする構造(即ち、キャリア排出抵抗
又は拡散電流を局所的に変化させる)を使うことによっ
て従来の高濃度不純物拡散層を使わなくとも高い注入効
率を得る構造に関するものである。
絡抵抗は、隣り合う埋込みゲート部を跨ぐ距離2D+2
(C−W)に比例し、エミッタ幅2Wに反比例する傾向
がある。そこで、次のパラメータXを導入する。
ドレイン層が互いにどれだけ離れているかを表す量で、
小さければ小さいほどカソード側の正孔の排出抵抗(短
絡抵抗)が小さいことを意味する。
て、素子のライフタイムτp と前述のD,C,Wを変化
させた時の素子に流れる電流密度を表したものである。
白丸は、τp =30μsec ,W=0.5μm ,D=5μ
m でCを変化させた時のもの、黒丸はτp =2μsec ,
W=0.5μm ,C=1μm でDを変化させた時のも
の、二重丸はτp =2μsec ,W=1.5μm ,C=8
μm ,D=15μm の時のもの、×印はτp =2μsec
,W=0.4μmec ,C=1 μm でDを変化させたもの
である。
cm2 の電流容量を確保するためには例えば、W=0.5
μm 、D=2μm 、C=1μm として、 X≧5 とすることが必要である。さらに図22〜図28のデー
タより、W=0.5μm、D=5μm 、C=1μm のと
き、X=11であり、W=1.5μm 、D=13.5μ
m 、C=8μm のとき、X〜13である。すなわち、X
>8或いはX>10、さらに好ましくは、X>13とす
ることによって、著しく特性が向上することがわかる。
分布を対応する断面と共に示したのが、図29である。
右側のグラフ中、実線は本発明、破線は従来例である。
IGBT構造の場合と比べて、n- 型ベース層のカソー
ド側にキャリア濃度分布のピークを持つことに本発明の
特徴が見られる。オン状態でのn- 型ベース層のキャリ
ア濃度は、1011〜1018/cm3 、より好ましくは1×
1015〜1×1018/cm3 程度となるように設計され
る。
ば小さいほど、Xは大きくなり、実際の素子特性は向上
する。しかし、Dは大きくなると正孔抵抗が増すだけで
なく、オンチャネルを通って高抵抗ベースに注入される
キャリアの抵抗も増大する。例えば、D=500μm に
なると、注入キャリアの抵抗による電圧降下と排出正孔
の抵抗による電圧降下が等しくなり、素子のトータルの
オン電圧が高くなる。
密度が上り、広義のエミッタ注入効率は上るが、Cを大
きくすることは単位面積当りのオンチャネル数を減らす
ことになり、Cを余り大きくすると実質的なオンチャネ
ル抵抗が増大してしまう。図28にも見られるように、
X>30μm 以上でその傾向が現れるから、Cは500
μm 以下に設計するのが好ましい。
縁ゲート型電力半導体素子のレイアウトであり、図32
および図33はそれぞれ図31のA−A′およびB−
B′断面図である。
達する深さをもってp型ベース層4を矩形に取り囲むよ
うに形成され、さらにその中に複数本のストライプ状の
溝5が周辺の溝5と連続して形成されている。溝5内に
はゲート酸化膜6を介して埋込みゲート電極7が形成さ
れている。
層4内には、n型ターンオフチャネル層8が形成されて
いる。そしてこのn型ターンオフチャネル層8に、溝5
の長手方向に沿って交互に、p型ドレイン層9とn型ソ
ース層10が分散配置されて形成されている。p型ドレ
イン層9はn型ターンオフチャネル層8の表面部に形成
され、n型ソース層10とn型ターンオフチャネル層8
は実際には同じ拡散層である。
の下にあるp型ベース層4の溝5の側面部がターンオン
チャネルとなっている。またp型ドレイン層9下のn型
ターンオフチャネル層8の溝5側面部がターンオフチャ
ネルとなる。したがって先の実施例と同様に、溝5に埋
込み形成されたゲート電極7がターンオン用とターンオ
フ用を兼ねている。
に正電圧を印加して、p型ベース層4の溝側面にn型チ
ャネルを形成することにより、ターンオンする。埋込み
ゲート電極7に負電圧を印加すると、n型ターンオフチ
ャネル層8の溝側面部にp型チャネルが形成されて、先
の各実施例と同様にしてターンオフする。
様の効果が得られる。またこの実施例の素子は、先の実
施例と同様に埋込みゲート部で耐圧を担うため、p型ベ
ース層4の不純物濃度を低いものとする事ができる。た
とえば、p型ベース層4のピーク不純物濃度を1×10
16/cm3 程度とすることができ、これに伴ってn型ター
ンオフチャネル層8のピーク不純物濃度を1×1017/
cm3 程度とすることができる。その結果、n型ターンオ
フチャネル層8の溝側面にp型チャネルを形成するに必
要なしきい値はたとえば5V程度の小さいものとするこ
とができ、小さいゲート電圧でオフ制御ができる。
絶縁ゲート型半導体素子のレイアウトであり、図35お
よび図36はそれぞれ、図34のA−A′およびB−
B′断面図である。
施例の素子のp型ベース層4を省略したもので、所謂静
電誘導サイリスタとなっている。n型ベース層1の不純
物濃度と、溝5の幅(図35の断面に示される溝5に挟
まれたn型ベース層1の幅)を適当な値に設定すれば、
溝5に挟まれたn型ベース層1の部分全体の電位を埋込
みゲート電極7により制御する事ができる。
に挟まれたn型ベース層1の電位を上げると、n型ソー
ス層10から電子が注入されて、素子はターンオンす
る。ゲート電極7に負の電圧を印加すると、n型ターン
オフチャネル層8の溝側面にp型チャネルが形成され
て、n型ベース層1のキャリアがp型ドレイン層9を介
してカソード電極13に排出されるようになり、素子は
ターンオフする。
ゲート型半導体素子のレイアウトであり、図38および
図39はそれぞれ図37のA−A′およびB−B′断面
図である。
素子を僅かに変形したものである。複数本のストライプ
状の溝5は、互いに独立しており、これらの周囲は深い
p型ベース層4′により囲まれている。埋込みゲート部
の間のp型ベース層4に形成されるn型ターンオフチャ
ネル層8、p型ドレイン層9、n型ソース層10の分布
や深さ等は先の実施例と同様である。
ゲート型半導体素子のレイアウトであり、図41および
図42はそれぞれ図40のA−A′およびB−B′断面
図である。
素子を、図37〜図39の実施例と同様に変形したもの
である。
と同様の効果が得られる。
例を変形して、p型ベース層4を埋込みゲート部より深
くした実施例である。
の実施例を変形して、n型ターンオフチャネル層8を省
略した実施例である。
の構造においてp型べー層を省略した実施例である。
に各部の形状寸法、特に埋込みゲート部の幅と間隔を最
適設計して、広義のエミッタ領域の注入効率を十分に大
きくして低いオン抵抗を実現することができる。
例と同様の構造をIGBTに適用した実施例であ。溝5
の側面に接してn型ソース層10が形成され、カソード
電極1はこのn型ソース層10とこれらの間に露出する
p型ベース層4に同時にコンタクトする。
の構造をIGBTに適用した実施例である。
タ幅2Wに対して埋込みゲート部の幅2(C−W)が余
り広いと、溝加工の信頼性が低下する。この様な場合に
本来一つでよい溝を複数個に分けて形成することによ
り、歩留まり向上が図られる。幅2(C−W)の中に露
出するn型ベース層部分にはp型ベースやn型ソースは
形成されない。
Tに適用した実施例の単位セル部のレイアウトとそのA
−A′,B−B′断面図である。第1のシリコン基板2
0と第2のシリコン基板22を間に酸化膜21を挟んで
直接接着して得られたウェハの第2のシリコン基板22
側を素子領域として、これを所定厚みに加工してn型ベ
ース層1とする。このn型ベース層1に底部酸化膜21
に達する深さの溝5が形成されここにゲート電極71 が
埋込み形成される。埋込みゲートの間にp型ベース層4
およびn型ソース層10が形成され、これらの上にはゲ
ート酸化膜6を介して埋込みゲート電極7と連続する表
面ゲート電極72 が形成される。埋込みゲート部から所
定処理離れた位置にp型エミッタ層3が形成されてい
る。p型エミッタ層3と埋込みゲート部の間には、p-
型リサーフ層23が形成されている。
アノード側に埋込みゲートを設けた横型のIGBTの実
施例のレイアウトとそのA−A′およびB−B′断面図
である。素子形成側の第2の基板22をp- 型ベース層
24として、上の実施例と同様に溝5が形成され、これ
に埋込みゲート電極71 が形成される。溝の間にn型ベ
ース層1′、その中にp型ドレイン層3′が形成され、
これらの上に上の実施例と同様に表面ゲート電極72 が
形成される。そしてドレイン領域から所定距離離れてn
型ソース層10′が形成される。
同様の素子を横型素子として実現した実施例のレイアウ
トとそのA−A′およびB−B′断面図である。先の実
施例と対応する部分には先の実施例と同一符号を付して
詳細な説明は省略する。
電型を逆にした実施例の素子のレイアウトとそのA−
A′およびB−B′断面図である。
幅dN+とp型ドレイン層の幅dP+が略等しい状態で示さ
れているが、dN+>dP+とすればオン特性が改善され、
dN+<dP+とすればオフ特性が改善される。したがって
これらの幅の関係を最適設計することにより、所望の特
性が得られる。このことは、図34,図37,図40,
図43,図46,図49,図56の素子においても同様
である。
ャリア拡散長程度かそれ以下に形成することが望まし
く、オン電圧を下げたいときには最小の可制御最大電流
を保証できる範囲でこれを大きく形成することが望まし
い。
絶縁ゲート構造と、この埋込み絶縁ゲートに挟まれた幅
の狭い正孔電流通路を広い間隔で形成した構造、および
注入効率を小さく抑えたカソードエミッタ構造の組合わ
せによって、電圧駆動型の素子であってラッチアップさ
せることなくGTOサイリスタ並の特性を実現すること
ができる。
る。
例の素子を変形した実施例である。この実施例では、p
型ドレイン層9が埋込みゲート72 により挟まれた領域
のみならず、埋込みゲート72 のカソード側端部側壁に
まで延在させて設けられている。
を変形した実施例で、n型エミッタ層8を素子底部に達
しない深さに拡散形成している。
として、底部にp+ 型層25を持つp- 型基板を用い
て、その表面にn- 型ベース層1を形成した他、図76
〜図77の実施例と同様である。
例を変形したもので、埋込みゲート電極71 の幅に比べ
て表面ゲート電極72 の幅を大きく選び、埋込みゲート
電極71 により挟まれた領域から所定距離離れたカソー
ド側に、表面ゲート電極72で制御されるターンオンチ
ャネル領域およびターンオフチャネル領域を形成した実
施例である。
2セル断面構造を示している。
れる領域(幅Wで示す)の間の領域(幅Lで示す)に
は、図59のような埋込みゲートを設けないようにした
実施例である。
チャネルが形成されない領域にも埋込み絶縁ゲート構造
を形成した実施例である。ゲート電極7は溝5を完全に
は埋め込まず複数の溝5に沿って連続的に形成されてい
る。そしてゲート電極7が形成された素子表面に溝5を
埋めて表面を平坦化するようにCVD酸化膜31が形成
されている。
ルが形成されない溝間にp型層32を形成した実施例で
ある。このp型層32を設けることによって、チャネル
が形成されない領域でのカソード電極11とn型ベース
層1間の耐圧を十分なものとすることができる。
ート電極7を多結晶シリコン膜により溝5を完全には埋
めないように形成して、チャネルが形成されない領域で
これに重ねてAl ,Ti,Mo等の低抵抗金属ゲート3
3を形成したものである。低抵抗金属ゲート33上はポ
リイミド等の有機絶縁膜34で覆っている。
域全体に溝5を形成して、この溝5に沿って多結晶シリ
コン・ゲート電極7を形成すると共に、溝5の底部に低
抵抗金属ゲート33を埋込み形成した実施例である。
ゲートで挟まれたチャネル領域に、正孔電流バイパス抵
抗を大きくするために、イオン注入等による低キャリア
ライフタイム層、或いはn型ベース層より高濃度のn型
層等を設けることも有効である。
p型ベース層4下にn型ベース層1より高濃度のn型層
35を設けた実施例である。また図90は、p型ベース
層4の下に低キャリアライフタイム層36を形成した実
施例である。
で、p型層32の上部にフローティングのn+ 型エミッ
タ層36を形成したものである。電子注入部はp型ドレ
インがなく、IGBT構造となっており、ゲート電極7
に正電圧を印加した時に溝5の側壁に沿ってn型ソース
層10からn+ 型エミッタ層36の間にチャネルが形成
されて、n+ 型エミッタ層36がカソード電極11に繋
がる。
図91と同様の変形を施した実施例である。
て、電子注入チャネル領域の外側の溝間に、p型ベース
層4と同時に形成されるp型層32を設けた実施例であ
る。更に図94は、図93のp型層32をp型ベース層
4とは別にこれより深く形成して、その上部にフローテ
ィングのn型エミッタ層36を形成した実施例である。
型エミッタ層36をより深く形成して、埋込みゲート2
7により制御されるターンオン・チャネルを短くした実
施例である。
れたトレンチゲート電極構造による正孔バイパス抵抗を
増加させ、以て電子注入効率を改善し半導体デバイスの
オン抵抗を低下させる”という概念に基づいている。こ
こで注目すべき重要な事実は、本発明によれば、低下さ
れたオン抵抗の達成は、本来、“正孔パイパス抵抗の増
加”にこだわらなくてもよいという点である。なぜな
ら、キャリア注入の強化は、“正孔バイパス抵抗の増
加”という思想を包含している“正孔の拡散電流と電子
電流の比率を大きくする”という原理に基づいているか
らである。
GT(injection-Enhanced Gate Bipolar Transistor)
のレイアウトであり、図97,図98,図99および図
100はそれぞれ、図96のA−A′,B−B′,C−
C′およびD−D′断面図である。このトランジスタ構
造において、図6〜図9の実施例と同様な部分には同様
な参照符号が付されている。
構成される。これらのソース領域10は、p型ドレイン
層4の表面部において、図96に示すようにトレンチゲ
ート電極7に直角に伸びている。これらのソース領域1
0のトレンチゲート電極7と関連する断面は図97に示
す。隣合う二個のトレンチゲート電極7の各対の間に位
置するn+ 型層10は、表面絶縁層202 によって第一の
主電極層11から電気的に絶縁されている。
レンチゲート電極7間では、n+ 型層10はp型ドレイ
ンとして機能するp+ 型層9と交互配列されている。図
99に示されている各トレンチゲート電極7の断面図
は、図9のそれと同一である。p+ 型ドレイン領域9の
トレンチゲート電極7に直角な方向での断面図は、図1
00に示されている。ここにおいて、図97の場合と同
様なマナーで、隣合う二個のトレンチゲート電極7の各
対の間に位置するp型ドレイン層9は、上記表面絶縁層
202 によって第一の主電極層11から電気的に絶縁され
ている。このトランジスタ構造の具体的寸法は、図1〜
図5のデバイスでのそれと同様でよい。
りである。ゲート電極7にカソード電極11に対して正
極性の電圧が印加されると、p型ベース層4の周辺部に
位置するターンオンチャネルが導通する。電子は、n型
ソース層10からn型ベース層1に注入され、n型ベー
ス層1に導電変調を起こす。これによりIEGTはIG
BT動作によってターンオンする。
負極性の電圧が印加されると、上記ターンオンチャネル
領域からの電子の注入は止まる。トレンチゲート部のト
レンチ5に面している側面部分(溝側側面部)に、反転
層が形成される。公知のpチャネルMOSトランジスタ
動作によって、p型ベース層4内のキャリアがp型ドレ
イン層9を介して、カソード電極11に排出される。半
導体デバイスはターンオフする。この実施例の場合、こ
のデバイスがターンオン状態でも、n型ソース層10、
p型ベース層4、n型ベース層1及びp型エミッタ層3
によって構成される寄生サイリスタは、ラッチアップし
ないように前述の説明のように特にアレンジされてい
る。オンチャネルが閉じれば、n型ソース層10からの
電子注入は直ちに停止する。
ート7と、該一対のトレンチゲート電極の間に位置し且
つ電極11から絶縁されているP+ 型ドレイン層9と、
この絶縁されたP+ 型ドレイン層と対応するトレンチゲ
ート電極7を挟んで隣合い且つ電極11とコンタクトし
ている他のP+ 型ドレイン層9とによって、“単位セ
ル”が規定される。
との間に、比較的幅の狭いトレンチ溝に囲まれ、電極1
1と絶縁された領域を形成することで、幅の広いトレン
チ溝(2C−2W)を形成するという技術的な困難を回
避し、幅の広いトレンチ溝と同等の効果を上げることが
可能である。
隔,数を適切にアレンジすることにより(具体例は既に
提示した)、デバイスをサイリスタ動作させないように
しつつ充分に低いオン抵抗を得ることができる。IEG
Tの主電極11のp型ドレイン層9への“間引かれた”
コンタクトは、正孔のバイパス電流の減少、即ち減少さ
れたオン抵抗の実現に貢献している。また、この実施例
では、オン状態で寄生サイリスタがラッチアップせず、
ターンオフに際してはターンオフチャネルが開いて正孔
の流れのバイパス路が形成される。従って、一旦ラッチ
アップされた後にターンオフするように構成された現行
のGTOサイリスタ比べて、最大遮断電流能力は強化さ
れている。
率をアレンジすることにより大きな電子注入効率が得ら
れる点について、説明を加える。
線で囲んだ部分に示している)の不純物濃度が比較的低
い場合、例えば広義のエミッタ領域の中でn〜pの伝導
変調を生じる部分がある場合など、正孔の拡散電流I
p、特に縦方向(素子のアノード−カソード方向に平行
に流れる拡散電流)と電子電流In(=I−Ip,I:
全電流)の比を大きくするような構造を広義のエミッタ
領域中に設けることで、広義のエミッタ領域の注入効率
を増加し、素子のオン抵抗を減少させることができる。
(A/cm2 )、n−ベースの広義のエミッタ側キャリ
ア濃度n(cm-3)(図29中のn)とする。
方向(A−K方向)のキャリアの拡散電流のみとする
と、 Jp=2・μp・k・T・W・n/(C・D) …(12) と表わすことができる。ここで、μpはホール易動度、
kはボルツマン係数、Tは温度である。
は γp=Jp/J=Jp/(Jn+Jp) =2μp・k・T・W・n/(C・D・J) …(13) Y=W/(C・D)とすると、 γp=2(μp・k・T・n/J)・Y γpの値は、μp=500,k・T=4.14×10
-21 、J=100A/cm2とすると、 γp=2×(500×4.14×10-21 /100)×1×1016×Y =4.14×10-4・Y …(16) γpは注入効率が十分低い時には γp=Jp/(Jn+Jp)=μp/(μn+μp)=0.3 …(17) 程度であろう。つまり、広義のエミッタ領域の注入効率
が大きいとは、 γp<0.3 …(18) ということであり、この条件を満たすYは、 4.14×10-4・Y<0.3 Y<0.3/4.14×10-4 Y<7.25×102 (cm-1) …(19) 比較的オン電圧の高い場合でn=7×1015の時は、 Y<1.0×103 (cm-1) …(20) である。
することによって、カソード電極にコンタクトしている
不純物拡散層の注入効率が低くても、広義のエミッタ領
域の注入効率を増加できる。即ち、高抵抗ベース層のオ
ン状態におけるキャリアの蓄積を増加させることがで
き、素子のオン抵抗を減少させることが可能である。
効率の低いカソード拡散層は高い電流制御能力、高速の
スイッチングを保証し、かつ本発明の効果である広義の
エミッタ領域の注入効率の増加により、低い素子オン抵
抗をも同時に実現することができる。
ンチ構造の場合、Yの値は前述のように図20のD,
C,Wによって決まる。
度の高いところ(抵抗でJpが流れる)と、不純物濃度
の低いところが共存する場合、広義のエミッタ領域の注
入効率は、前述のパラメータXとYの両方を考慮する必
要がある。
うに変形される。ここで、n+ 型ソース層10は、トレ
ンチゲート電極7が埋め込まれた各トレンチ5の両側端
面に接合するように延びている。
は、基本的に、図96〜図100のデバイスと図6〜図
9のデバイスとの組み合わせである。言い換えれば、こ
のIEGTは、各p+ 型ドレイン層9は“梯子型平面形
状”を持っている点で、図96〜図100とは特徴的に
異なっている。特に、図7で説明されたn型ソース層1
0が、p+ 型ベース層4の表面部に形成されている。n
型ソース層10中において、各トレンチ5の両上方サイ
ド端部に接合するようにp型ドレイン層9はアレンジさ
れている。p型ドレイン層9は、n型ソース層10より
浅い。p型ドレイン層9の底部とp型ドレイン層4とに
よりサンドウィッチされたn型ソース層10の部分は、
図7で説明されたn型ターンオフチャネル層10として
機能する。2つの隣接するトレンチゲート電極7間のn
型ソース層10の中央部分は図2のn型ソース層10に
相当している。基板表面上を見ると、2つの隣接するト
レンチゲート電極7間において、p型ドレイン層9は、
n型ソース層10を平面的に囲み、これにより梯子型の
平面形状を呈する。
ス層10はp+ 型ドレイン層9より深く、従って、ここ
に示された断面構造に付いて見れば、n型ソース層10
はp+ 型ドレイン層9を囲っている。図105に示され
た各トレンチゲート電極7の断面構造は、図99のそれ
と同一である。図106に示されているように、p+型
ドレイン層9は、表面絶縁層202 によって“間引きされ
て”電極11にコンタクトされている。
オフチャネル層の直下に位置するp型ベース層4のトレ
ンチ接合側面部がターンオンチャネルとして機能する。
従って、複数のトレンチゲート電極7の双方が、ターン
オン駆動電極及びターンオフ駆動電極とを兼用している
と言える。即ち、ターンオフ用pチャネルMOSFET
と、ターンオン用nチャネルMOSFETとがデバイス
内部で縦積みされた構造である。トレンチゲート電極7
に正極性電圧が印加されると、p型ベース層4の各トレ
ンチ接合側面部にn型チャネルが形成され、以てデバイ
スをターンオンさせる。このとき、各n型ソース層10
からn型ターンオフチャネル及び反転層形成により現わ
れるn型チャネルを介してn型ベース層1に電子が注入
される。ターンオフ動作は、トレンチゲート電極7に負
極性電圧を与えることにより、図96〜図100の実施
例200 と同様なマナーで行われる。本実施例のIEGT
によっても、図96〜図100の実施例と同様な効果が
得られる。
IGBTの2つの変形例を、図107〜図202に提示
する。図107〜図109の横型IGBT及び図110
〜図112のIGBTの先の例との特徴的違いは、セル
構造パラメータ“C”及び“W”の異なりが基板の厚さ
方向に沿って設定された点にある。
うに、中間絶縁層21上のn- 型上方基板の表面に、全
体的に均一の矩形断面形状をもつトレンチ222 が形成さ
れている。導電層224 はトレンチ222 内に絶縁的に埋め
込まれている。導電層224 の厚さはトレンチ222 の深さ
より大きく、従って、導電層224 の上半分は上方基板の
表面からはみ出ている。導電層224 は、トレンチゲート
電極として機能する。上方基板の厚さはCである。情報
基板のトレンチ部の厚さ、即ちトレンチ222 の底部と中
間絶縁層21とにサンドウイッチされた活性層の厚さ
は、図108に示されているように、Wである。このト
レンチゲート電極224 の底部に接する部分に、電子注入
用またはターンオフ用のチャネル領域が形成される。
制御電極がMOSコントロールサイリスタ(MCT)構
造となっている。図31〜図33の実施例でのように、
p型ドレイン層幅Dp及びn型ソース層幅Dnを、もし
Dp<Dnとすればオン特性が強化され、Dp>Dnと
すればターンオフ特性が強化される。これらの層の幅関
係を最適にアレンジすれば、望まれるIGBTオン/オ
フ特性が容易に実現できる。このIGBTの可能制御最
大電流を増すためには、幅Dnをキャリア拡散長程度も
しくはそれ以下に形成することが望ましい。オン電圧を
下げるには、可能制御最大電流の最小要求レベルを保証
できる範囲で幅Dnを大きくすることが望ましい。
極構造224 と中間絶縁膜21とによって挟まれた幅狭な
(W)正孔電流通路を広げられた間隔で形成された構
造、及び注入効率が低く抑制されたカソードエミッタ構
造の組み合わせによって、抑制されたラッチアップを達
成しつつ現行のGTOサイリスタ並にオン電圧が低めら
れた電圧駆動型パワースイッチデバイスを実現すること
ができる。
型ホールバイパス抵抗層226 が追加されている点を除い
て図107〜図109のそれと似ている。ホールバイパ
ス抵抗層226 は、トレンチゲート電極224 の底部に形成
されており、図112に示されているように、n+ 型層
10と接している。ホールバイパス抵抗層226 の不純物
濃度が(例えば1016〜1021cm-3程度に)高けれ
ば、IGBTのオン特性は改善される。もしホールバイ
パス抵抗層226 の不純物濃度が(例えば1013〜1018
cm-3程度に)低ければ、IGBTのオフ特性を高く維
持しつつオン特性の中程度の改善が期待できる。
囲で種々変形して実施することができる。
み絶縁ゲートを持つ微細セル構造で大きい電流遮断能力
を実現し、しかも埋込み絶縁ゲート部の幅と間隔の設計
によって寄生サイリスタをラッチアップさせることなく
サイリスタ並のオン抵抗を実現した絶縁ゲート型電力用
半導体素子を得ることができる。
レイアウト図。
アウト図。
イアウト図。
イアウト図。
位セル構造を示す断面図。
の不純物濃度分布を示す図。
ト型IBGTの断面図。
の図。
度の関係を示す図。
の関係を示す図。
幅と電流密度の関係を示す図。
示す図。
アライフタイムτpと素子の電流密度の関係を示す図。
す図。
構造を示す図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
イアウト図。
図。
図。
図。
図。
図。
図。
図。
図。
図。
図。
図。
図。
を示す図。
を示す図。
を示す図。
を示す図。
を示す図。
を示す図。
Claims (2)
- 【請求項1】第1導電型エミッタ領域と、オン状態にお
いて第1導電型エミッタ領域からの第1導電型キャリア
の注入がチャネルを介して行われ、オン状態で導電変調
を起こす高抵抗ベース領域と、この高抵抗ベース領域に
第2導電型キャリアを注入する第2導電型エミッタ領域
と、前記高抵抗ベース領域中の第2導電型キャリアを排
出する第2導電型ドレイン領域とを備え、前記高抵抗ベース領域の幅を前記第1導電型エミッタ領
域側で狭く形成することにより、 オン状態の前記高抵抗
ベース領域の前記第1導電型エミッタ側の前記第2導電
型キャリアの排出の流れを部分的に抑制して、前記高抵
抗ベース領域内の前記幅を狭くした部分の境界付近のキ
ャリア濃度を前記高抵抗ベース領域の中心部での濃度よ
りも高くしたことを特徴とする電力用半導体素子。 - 【請求項2】第1導電型エミッタ領域と、オン状態にお
いて第1導電型エミッタ領域からの第1導電型キャリア
の注入がチャネルを介して行われ、オン状態で導電変調
を起こす高抵抗ベース領域と、この高抵抗ベース領域に
第2導電型キャリアを注入する第2導電型エミッタ領域
と、前記高抵抗ベース領域中の第2導電型キャリアを排
出する第2導電型ドレイン領域とを備え、オン状態での
前記高抵抗ベース領域内のキャリア濃度が、この高抵抗
ベース領域の中心部での濃度より前記第1導電型エミッ
タ領域側で高濃度となる部分を有することを特徴とする
電力用半導体素子。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-199343 | 1991-08-08 | ||
JP19934391 | 1991-08-08 | ||
JP35430391 | 1991-12-20 | ||
JP3-354303 | 1991-12-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18417994A Division JP3222692B2 (ja) | 1991-08-08 | 1994-07-14 | 電力用半導体素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05243561A JPH05243561A (ja) | 1993-09-21 |
JP2950688B2 true JP2950688B2 (ja) | 1999-09-20 |
Family
ID=26511478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4231513A Expired - Lifetime JP2950688B2 (ja) | 1991-08-08 | 1992-08-07 | 電力用半導体素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5329142A (ja) |
EP (3) | EP1469524A3 (ja) |
JP (1) | JP2950688B2 (ja) |
DE (1) | DE69233105T2 (ja) |
Families Citing this family (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5448083A (en) * | 1991-08-08 | 1995-09-05 | Kabushiki Kaisha Toshiba | Insulated-gate semiconductor device |
US5554862A (en) * | 1992-03-31 | 1996-09-10 | Kabushiki Kaisha Toshiba | Power semiconductor device |
GB2272572B (en) * | 1992-11-09 | 1996-07-10 | Fuji Electric Co Ltd | Insulated-gate bipolar transistor and process of producing the same |
US5548150A (en) * | 1993-03-10 | 1996-08-20 | Kabushiki Kaisha Toshiba | Field effect transistor |
JP3481287B2 (ja) * | 1994-02-24 | 2003-12-22 | 三菱電機株式会社 | 半導体装置の製造方法 |
US5581100A (en) * | 1994-08-30 | 1996-12-03 | International Rectifier Corporation | Trench depletion MOSFET |
EP0702411B1 (en) * | 1994-09-16 | 2002-11-27 | Kabushiki Kaisha Toshiba | High breakdown voltage semiconductor device with a buried MOS-gate structure |
US5493134A (en) * | 1994-11-14 | 1996-02-20 | North Carolina State University | Bidirectional AC switching device with MOS-gated turn-on and turn-off control |
US5751024A (en) * | 1995-03-14 | 1998-05-12 | Mitsubishi Denki Kabushiki Kaisha | Insulated gate semiconductor device |
US6001678A (en) * | 1995-03-14 | 1999-12-14 | Mitsubishi Denki Kabushiki Kaisha | Insulated gate semiconductor device |
JP3298385B2 (ja) * | 1995-04-05 | 2002-07-02 | 富士電機株式会社 | 絶縁ゲート型サイリスタ |
EP0736909A3 (en) * | 1995-04-05 | 1997-10-08 | Fuji Electric Co Ltd | Insulated gate thyristor |
US5714775A (en) * | 1995-04-20 | 1998-02-03 | Kabushiki Kaisha Toshiba | Power semiconductor device |
US6693310B1 (en) | 1995-07-19 | 2004-02-17 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and manufacturing method thereof |
JP3850054B2 (ja) | 1995-07-19 | 2006-11-29 | 三菱電機株式会社 | 半導体装置 |
KR0159073B1 (ko) * | 1995-10-16 | 1998-12-01 | 김광호 | 트렌치 dmos 트랜지스터와 그의 제조방법 |
US6215633B1 (en) | 1996-02-26 | 2001-04-10 | Marconi Communications, Inc. | Active current limiter |
US5706157A (en) * | 1996-02-26 | 1998-01-06 | Reltec Corporation | Power distribution system with over-current protection |
US6040599A (en) * | 1996-03-12 | 2000-03-21 | Mitsubishi Denki Kabushiki Kaisha | Insulated trench semiconductor device with particular layer structure |
JP3410286B2 (ja) * | 1996-04-01 | 2003-05-26 | 三菱電機株式会社 | 絶縁ゲート型半導体装置 |
DE19640307C2 (de) * | 1996-09-30 | 2000-10-12 | Siemens Ag | Durch Feldeffekt steuerbares Halbleiterbauelement |
DE19705276A1 (de) * | 1996-12-06 | 1998-08-20 | Semikron Elektronik Gmbh | IGBT mit Trench-Gate-Struktur |
DE19650599A1 (de) * | 1996-12-06 | 1998-06-10 | Semikron Elektronik Gmbh | IGBT mit Trench- Gate- Struktur |
JPH10256550A (ja) * | 1997-01-09 | 1998-09-25 | Toshiba Corp | 半導体装置 |
GB2321337B (en) * | 1997-01-21 | 2001-11-07 | Plessey Semiconductors Ltd | Improvements in or relating to semiconductor devices |
JPH10209447A (ja) * | 1997-01-22 | 1998-08-07 | Toshiba Corp | 半導体スイッチ |
JP3545590B2 (ja) * | 1997-03-14 | 2004-07-21 | 株式会社東芝 | 半導体装置 |
DE19727676A1 (de) * | 1997-06-30 | 1999-01-07 | Asea Brown Boveri | MOS gesteuertes Leistungshalbleiterbauelement |
JP3976374B2 (ja) * | 1997-07-11 | 2007-09-19 | 三菱電機株式会社 | トレンチmosゲート構造を有する半導体装置及びその製造方法 |
JP3480811B2 (ja) | 1997-07-15 | 2003-12-22 | 株式会社東芝 | 電圧駆動型電力用半導体装置 |
TW396460B (en) * | 1998-01-09 | 2000-07-01 | United Microelectronics Corp | Metal oxide semiconductor transistor structure and its manufacturing method |
JP3523056B2 (ja) * | 1998-03-23 | 2004-04-26 | 株式会社東芝 | 半導体装置 |
US6225165B1 (en) * | 1998-05-13 | 2001-05-01 | Micron Technology, Inc. | High density SRAM cell with latched vertical transistors |
JPH11345969A (ja) * | 1998-06-01 | 1999-12-14 | Toshiba Corp | 電力用半導体装置 |
US6108183A (en) * | 1998-10-01 | 2000-08-22 | Marconi Communications, Inc. | Current limiter |
US6855983B1 (en) | 1998-11-10 | 2005-02-15 | Toyota Jidosha Kabushiki Kaisha | Semiconductor device having reduced on resistance |
US6177289B1 (en) * | 1998-12-04 | 2001-01-23 | International Business Machines Corporation | Lateral trench optical detectors |
KR100745557B1 (ko) | 1999-02-17 | 2007-08-02 | 가부시키가이샤 히타치세이사쿠쇼 | Igbt 및 전력변환 장치 |
JP4581179B2 (ja) | 2000-04-26 | 2010-11-17 | 富士電機システムズ株式会社 | 絶縁ゲート型半導体装置 |
AU2000274149A1 (en) * | 2000-08-30 | 2002-03-13 | Infineon Technologies, Ag | Trench igbt |
US6399998B1 (en) * | 2000-09-29 | 2002-06-04 | Rockwell Technologies, Llc | High voltage insulated-gate bipolar switch |
DE10123818B4 (de) * | 2001-03-02 | 2006-09-07 | Infineon Technologies Ag | Anordnung mit Schutzfunktion für ein Halbleiterbauelement |
US6777783B2 (en) * | 2001-12-26 | 2004-08-17 | Kabushiki Kaisha Toshiba | Insulated gate bipolar transistor |
DE10203164B4 (de) * | 2002-01-28 | 2005-06-16 | Infineon Technologies Ag | Leistungshalbleiterbauelement und Verfahren zu dessen Herstellung |
JP2004006778A (ja) * | 2002-04-04 | 2004-01-08 | Toshiba Corp | Mosfet、その製造方法及びそれを用いた光半導体リレー装置 |
JP2004022941A (ja) * | 2002-06-19 | 2004-01-22 | Toshiba Corp | 半導体装置 |
US7173290B2 (en) * | 2003-03-07 | 2007-02-06 | Teledyne Licensing, Llc | Thyristor switch with turn-off current shunt, and operating method |
US6965131B2 (en) | 2003-03-07 | 2005-11-15 | Rockwell Scientific Licensing, Llc | Thyristor switch with turn-off current shunt, and operating method |
JP4136778B2 (ja) * | 2003-05-07 | 2008-08-20 | 富士電機デバイステクノロジー株式会社 | 絶縁ゲート型バイポーラトランジスタ |
JP4564362B2 (ja) * | 2004-01-23 | 2010-10-20 | 株式会社東芝 | 半導体装置 |
WO2005109521A1 (ja) * | 2004-05-12 | 2005-11-17 | Kabushiki Kaisha Toyota Chuo Kenkyusho | 半導体装置 |
JP2005340626A (ja) * | 2004-05-28 | 2005-12-08 | Toshiba Corp | 半導体装置 |
TWI231960B (en) * | 2004-05-31 | 2005-05-01 | Mosel Vitelic Inc | Method of forming films in the trench |
US7205629B2 (en) * | 2004-06-03 | 2007-04-17 | Widebandgap Llc | Lateral super junction field effect transistor |
JP4731848B2 (ja) * | 2004-07-16 | 2011-07-27 | 株式会社豊田中央研究所 | 半導体装置 |
JP4212552B2 (ja) * | 2004-12-22 | 2009-01-21 | 株式会社東芝 | 半導体装置 |
JP4857566B2 (ja) | 2005-01-27 | 2012-01-18 | 富士電機株式会社 | 絶縁ゲート型半導体装置とその製造方法 |
DE102005004354A1 (de) * | 2005-01-31 | 2006-08-17 | Infineon Technologies Ag | Mittels Feldeffekt steuerbares Halbleiterbauelement mit verbessertem Überspannungsschutz |
JP2007043123A (ja) * | 2005-07-01 | 2007-02-15 | Toshiba Corp | 半導体装置 |
JP5050329B2 (ja) * | 2005-08-26 | 2012-10-17 | サンケン電気株式会社 | トレンチ構造半導体装置及びその製造方法 |
JP5017850B2 (ja) * | 2005-11-30 | 2012-09-05 | 株式会社日立製作所 | 電力用半導体装置およびそれを用いた電力変換装置 |
JP4609656B2 (ja) * | 2005-12-14 | 2011-01-12 | サンケン電気株式会社 | トレンチ構造半導体装置 |
US7449762B1 (en) | 2006-04-07 | 2008-11-11 | Wide Bandgap Llc | Lateral epitaxial GaN metal insulator semiconductor field effect transistor |
JP4920367B2 (ja) * | 2006-10-20 | 2012-04-18 | 株式会社東芝 | 電力用半導体装置 |
DE102007018367B4 (de) * | 2007-04-18 | 2013-09-05 | Infineon Technologies Austria Ag | Halbleiterbauelement und Verfahren zu dessen Herstellung |
JP5261980B2 (ja) | 2007-05-17 | 2013-08-14 | 富士電機株式会社 | 絶縁ゲート型半導体装置の製造方法 |
JP2008311301A (ja) * | 2007-06-12 | 2008-12-25 | Sanyo Electric Co Ltd | 絶縁ゲートバイポーラトランジスタ |
DE102009005914B4 (de) * | 2008-01-28 | 2014-02-13 | Denso Corporation | Halbleitervorrichtung mit Halbleiterelement mit isoliertem Gate und bipolarer Transistor mit isoliertem Gate |
JP4688901B2 (ja) * | 2008-05-13 | 2011-05-25 | 三菱電機株式会社 | 半導体装置 |
JP5564763B2 (ja) * | 2008-06-05 | 2014-08-06 | 富士電機株式会社 | Mos型半導体装置の製造方法 |
JP5617190B2 (ja) * | 2009-05-22 | 2014-11-05 | 富士電機株式会社 | 半導体装置の製造方法および半導体装置 |
JP5568904B2 (ja) * | 2009-06-26 | 2014-08-13 | 富士電機株式会社 | 半導体装置 |
JP5333342B2 (ja) * | 2009-06-29 | 2013-11-06 | 株式会社デンソー | 半導体装置 |
US8264033B2 (en) * | 2009-07-21 | 2012-09-11 | Infineon Technologies Austria Ag | Semiconductor device having a floating semiconductor zone |
JP5638218B2 (ja) * | 2009-10-15 | 2014-12-10 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
JP5452195B2 (ja) | 2009-12-03 | 2014-03-26 | 株式会社 日立パワーデバイス | 半導体装置及びそれを用いた電力変換装置 |
JP5516600B2 (ja) | 2009-12-18 | 2014-06-11 | 富士電機株式会社 | 半導体装置 |
CN101752375B (zh) * | 2009-12-29 | 2011-06-22 | 无锡新洁能功率半导体有限公司 | 一种具有改进型终端保护结构的沟槽型功率mos器件 |
US9099522B2 (en) | 2010-03-09 | 2015-08-04 | Fuji Electric Co., Ltd. | Semiconductor device |
JP5594276B2 (ja) | 2010-12-08 | 2014-09-24 | 株式会社デンソー | 絶縁ゲート型半導体装置 |
CN103348482B (zh) * | 2011-02-08 | 2015-06-17 | 丰田自动车株式会社 | 横向型半导体装置的制造方法 |
KR101624063B1 (ko) * | 2011-09-29 | 2016-05-24 | 파칼 테크놀로지스 엘엘씨 | 베이스 폭이 결정된 래칭 및 비-래칭 상태를 갖는 mct 소자 |
EP2766933B1 (en) * | 2011-10-14 | 2016-12-14 | Pakal Technologies LLC | Systems, devices, and methods with integrable fet-controlled lateral thyristors |
WO2013080806A1 (ja) | 2011-11-28 | 2013-06-06 | 富士電機株式会社 | 絶縁ゲート型半導体装置およびその製造方法 |
JP5729364B2 (ja) | 2011-12-28 | 2015-06-03 | 株式会社デンソー | 横型の絶縁ゲート型バイポーラトランジスタを備えた半導体装置 |
JP5644793B2 (ja) | 2012-03-02 | 2014-12-24 | 株式会社デンソー | 半導体装置 |
US20150123165A1 (en) * | 2012-05-30 | 2015-05-07 | Kyushu Institute Of Technology | High-voltage insulated gate type power semiconductor device and method of manufacturing the same |
US10411111B2 (en) * | 2012-05-30 | 2019-09-10 | Kyushu Institute Of Technology | Method for fabricating high-voltage insulated gate type bipolar semiconductor device |
US8946002B2 (en) | 2012-07-24 | 2015-02-03 | Semiconductor Components Industries, Llc | Method of forming a semiconductor device having a patterned gate dielectric and structure therefor |
JP6284314B2 (ja) * | 2012-08-21 | 2018-02-28 | ローム株式会社 | 半導体装置 |
US8878238B2 (en) | 2012-10-01 | 2014-11-04 | Pakal Technologies Llc | MCT device with base-width-determined latching and non-latching states |
WO2014061619A1 (ja) | 2012-10-17 | 2014-04-24 | 富士電機株式会社 | 半導体装置 |
CN105027292B (zh) | 2013-04-11 | 2017-10-20 | 富士电机株式会社 | 半导体装置以及半导体装置的制造方法 |
WO2015019862A1 (ja) | 2013-08-06 | 2015-02-12 | 富士電機株式会社 | トレンチゲートmos型半導体装置およびその製造方法 |
JP5987990B2 (ja) | 2013-08-15 | 2016-09-07 | 富士電機株式会社 | 半導体装置 |
JP6173987B2 (ja) * | 2013-09-20 | 2017-08-02 | サンケン電気株式会社 | 半導体装置 |
JP2016040820A (ja) | 2013-09-20 | 2016-03-24 | サンケン電気株式会社 | 半導体装置 |
JP5875026B2 (ja) * | 2013-09-20 | 2016-03-02 | サンケン電気株式会社 | 半導体装置 |
KR101701240B1 (ko) * | 2013-09-20 | 2017-02-01 | 산켄덴키 가부시키가이샤 | 반도체 장치 |
KR101589904B1 (ko) * | 2013-09-20 | 2016-01-29 | 산켄덴키 가부시키가이샤 | 반도체장치 |
DE112014003712T5 (de) | 2013-12-16 | 2016-04-28 | Fuji Electric Co., Ltd. | Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung |
JP6463338B2 (ja) | 2014-03-19 | 2019-01-30 | 富士電機株式会社 | 半導体装置 |
WO2016027721A1 (ja) | 2014-08-20 | 2016-02-25 | 富士電機株式会社 | 半導体装置および半導体装置の製造方法 |
KR101955055B1 (ko) | 2014-11-28 | 2019-03-07 | 매그나칩 반도체 유한회사 | 전력용 반도체 소자 및 그 소자의 제조 방법 |
JP6197966B2 (ja) | 2014-12-19 | 2017-09-20 | 富士電機株式会社 | 半導体装置および半導体装置の製造方法 |
JP6471508B2 (ja) | 2015-01-19 | 2019-02-20 | 富士電機株式会社 | 半導体装置 |
JP6729999B2 (ja) | 2015-02-16 | 2020-07-29 | 富士電機株式会社 | 半導体装置 |
JP2016152261A (ja) * | 2015-02-16 | 2016-08-22 | トヨタ自動車株式会社 | 半導体装置 |
CN107078061B (zh) * | 2015-03-16 | 2020-07-10 | 富士电机株式会社 | 半导体装置的制造方法 |
US9634129B2 (en) | 2015-06-02 | 2017-04-25 | Semiconductor Component Industries, Llc | Insulated gate bipolar transistor (IGBT) and related methods |
CN107210322B (zh) | 2015-07-07 | 2020-11-06 | 富士电机株式会社 | 半导体装置 |
DE112016000210T5 (de) | 2015-07-16 | 2017-09-07 | Fuji Electric Co., Ltd. | Halbleitervorrichtung und Verfahren zum Herstellen der Halbleitervorrichtung |
CN105932055B (zh) * | 2016-06-13 | 2018-08-31 | 电子科技大学 | 一种平面栅igbt及其制作方法 |
JP2018207058A (ja) | 2017-06-09 | 2018-12-27 | ルネサスエレクトロニクス株式会社 | 半導体装置及びその製造方法 |
KR102360094B1 (ko) * | 2017-09-15 | 2022-02-09 | 삼성디스플레이 주식회사 | 표시 장치 |
JP6995722B2 (ja) * | 2018-09-19 | 2022-01-17 | 株式会社東芝 | 半導体装置 |
JP7279356B2 (ja) * | 2018-12-19 | 2023-05-23 | 富士電機株式会社 | 半導体装置 |
JP7305589B2 (ja) | 2020-03-19 | 2023-07-10 | 株式会社東芝 | 半導体装置及び半導体回路 |
CN111933715A (zh) * | 2020-09-25 | 2020-11-13 | 电子科技大学 | 一种碳化硅mosfet器件 |
CN112420815B (zh) * | 2020-11-19 | 2021-09-24 | 电子科技大学 | 一种碳化硅门极可关断晶闸管及其制作方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4364073A (en) * | 1980-03-25 | 1982-12-14 | Rca Corporation | Power MOSFET with an anode region |
JPS5718365A (en) * | 1980-07-08 | 1982-01-30 | Matsushita Electronics Corp | Semiconductor device and manufacture thereof |
EP0159663A3 (en) * | 1984-04-26 | 1987-09-23 | General Electric Company | High-density v-groove mos-controlled thyristors, insulated-gate transistors, and mosfets, and methods for fabrication |
DE3583897D1 (de) * | 1984-06-22 | 1991-10-02 | Hitachi Ltd | Halbleiterschalter. |
JP2590863B2 (ja) * | 1987-03-12 | 1997-03-12 | 日本電装株式会社 | 導電変調型mosfet |
JPH01198076A (ja) * | 1988-02-02 | 1989-08-09 | Mitsubishi Electric Corp | 半導体装置 |
US4963950A (en) * | 1988-05-02 | 1990-10-16 | General Electric Company | Metal oxide semiconductor gated turn-off thyristor having an interleaved structure |
JPH0783118B2 (ja) * | 1988-06-08 | 1995-09-06 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
US4942445A (en) * | 1988-07-05 | 1990-07-17 | General Electric Company | Lateral depletion mode tyristor |
US4994871A (en) * | 1988-12-02 | 1991-02-19 | General Electric Company | Insulated gate bipolar transistor with improved latch-up current level and safe operating area |
JP2501236B2 (ja) * | 1989-07-26 | 1996-05-29 | 日産自動車株式会社 | タ―ンオフゲ―ト付きサイリスタ |
US5202750A (en) * | 1990-04-09 | 1993-04-13 | U.S. Philips Corp. | MOS-gated thyristor |
JPH1125979A (ja) * | 1997-07-08 | 1999-01-29 | Mitsubishi Chem Corp | リチウムイオン二次電池 |
-
1992
- 1992-08-06 EP EP04014331A patent/EP1469524A3/en not_active Withdrawn
- 1992-08-06 EP EP92307216A patent/EP0527600B1/en not_active Expired - Lifetime
- 1992-08-06 DE DE69233105T patent/DE69233105T2/de not_active Expired - Lifetime
- 1992-08-06 EP EP02002322A patent/EP1209751A3/en not_active Withdrawn
- 1992-08-07 JP JP4231513A patent/JP2950688B2/ja not_active Expired - Lifetime
- 1992-08-07 US US07/925,870 patent/US5329142A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0527600A1 (en) | 1993-02-17 |
EP0527600B1 (en) | 2003-06-25 |
DE69233105T2 (de) | 2004-05-06 |
EP1209751A3 (en) | 2002-07-31 |
EP1209751A2 (en) | 2002-05-29 |
DE69233105D1 (de) | 2003-07-31 |
JPH05243561A (ja) | 1993-09-21 |
US5329142A (en) | 1994-07-12 |
EP1469524A2 (en) | 2004-10-20 |
EP1469524A3 (en) | 2005-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2950688B2 (ja) | 電力用半導体素子 | |
US7800168B2 (en) | Power semiconductor device | |
CN101308871B (zh) | 绝缘栅半导体器件及其制造方法 | |
JP5357370B2 (ja) | 半導体デバイス | |
JPH10178176A (ja) | トレンチ・ゲート構造を有するトレンチ・ゲート形絶縁ゲート・バイポーラ・トランジスタ | |
JPH11345969A (ja) | 電力用半導体装置 | |
JPH10284718A (ja) | 絶縁ゲート型サイリスタ | |
US11393901B2 (en) | Cell layouts for MOS-gated devices for improved forward voltage | |
JP2002299635A (ja) | 横型半導体装置及び縦型半導体装置 | |
US8067797B2 (en) | Variable threshold trench IGBT with offset emitter contacts | |
CN105706241B (zh) | Mos双极器件 | |
JP3367747B2 (ja) | 絶縁ゲート型半導体素子 | |
JPH10173170A (ja) | 半導体装置 | |
JP3222692B2 (ja) | 電力用半導体素子 | |
US20220238698A1 (en) | Mos-gated trench device using low mask count and simplified processing | |
JP3617950B2 (ja) | 半導体素子 | |
JP2000183340A (ja) | 半導体装置およびその駆動方法 | |
US20070063269A1 (en) | Trench IGBT with increased short circuit capability | |
JP3617938B2 (ja) | 半導体素子 | |
JP2000311998A (ja) | 絶縁ゲートターンオフサイリスタ | |
JP4130643B2 (ja) | 半導体素子 | |
JP3967646B2 (ja) | 絶縁ゲート型半導体素子 | |
JP3415441B2 (ja) | 半導体装置 | |
JP2004247751A (ja) | 半導体素子 | |
JPH09129863A (ja) | エミッタ・スイッチ・サイリスタ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120709 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 14 |