[go: up one dir, main page]

JP2948405B2 - Quick method for measuring microorganisms - Google Patents

Quick method for measuring microorganisms

Info

Publication number
JP2948405B2
JP2948405B2 JP4524792A JP4524792A JP2948405B2 JP 2948405 B2 JP2948405 B2 JP 2948405B2 JP 4524792 A JP4524792 A JP 4524792A JP 4524792 A JP4524792 A JP 4524792A JP 2948405 B2 JP2948405 B2 JP 2948405B2
Authority
JP
Japan
Prior art keywords
microorganisms
cells
present
sample
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4524792A
Other languages
Japanese (ja)
Other versions
JPH05236994A (en
Inventor
巍 大西
哲郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4524792A priority Critical patent/JP2948405B2/en
Publication of JPH05236994A publication Critical patent/JPH05236994A/en
Application granted granted Critical
Publication of JP2948405B2 publication Critical patent/JP2948405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は食品、排水、工業用純水
などの液中に存在する生体(微生物)の数を迅速に計数
する検査法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection method for quickly counting the number of living organisms (microorganisms) present in a liquid such as food, waste water, industrial pure water and the like.

【0002】[0002]

【従来の技術】微生物の検出法として、従来から寒天培
養による方法が使用されているが、この方法は培養操作
を必要とするため、測定に24時間〜数日の長時間を必
要とする。このため、微生物測定時間の短縮が試みられ
ている。たとえば、5(6)−カルボキシフルオレッセ
ン ジアセテート{ 5(and-6)-CARBOXYFLUORESCEIN DIA
CETATE) }(以下、FDAという)を用いる方法が提案
されている。FDA法はFDAを微生物細胞に作用させ
るとFDAが細胞膜を通過して、その後に反応式1に示
すように細胞内のエステラーゼ(酵素)によって分解さ
れ蛍光物質であるフルオレッセイン( Fluorescein ) に
変化する。細胞内に留まったフルオレッセインに励起光
が照射されると蛍光を発するので、この蛍光を検出する
ことにより微生物を検出する方法である。エステラーゼ
によるFDAの分解は生細胞では起こるが、死んだ細胞
では起きないので検出対象は生細胞のみとなり、死んだ
細胞については検出できない。また、生細胞内で生じた
フルオレッセインの大部分は細胞内に留まるが、細胞外
への漏出があるので生細胞と細胞の周囲の蛍光強度の差
が減少して計測上のS/N比が減少する不具合がある。
2. Description of the Related Art As a method for detecting microorganisms , a method using agar culture has been conventionally used. However, this method requires a culture operation, and thus requires a long time of 24 hours to several days for measurement. For this reason, attempts have been made to shorten the microorganism measurement time. For example, 5 (6) -carboxyfluorescein diacetate {5 (and-6) -CARBOXYFLUORESCEIN DIA
CETATE) 方法 (hereinafter referred to as FDA) has been proposed. In the FDA method, when FDA acts on microbial cells, FDA passes through the cell membrane, and is then decomposed by esterases (enzymes) in the cells and converted into fluorescein, which is a fluorescent substance, as shown in Reaction Formula 1. I do. When excitation light is applied to fluorescein remaining in the cells, it emits fluorescence, and this fluorescence is detected to detect microorganisms . Degradation of FDA by esterase occurs in living cells but does not occur in dead cells, so that only live cells can be detected and dead cells cannot be detected. In addition, most of the fluorescein generated in the living cells remains in the cells. However, since there is leakage to the outside of the cells, the difference in the fluorescence intensity between the living cells and the surrounding cells is reduced, and the S / N on the measurement is reduced. There is a problem that the ratio decreases.

【化1】 Embedded image

【0003】[0003]

【発明が解決しようとする課題】本発明は細胞と作用し
た後に生ずる蛍光物質が細胞の周辺に漏出して測定にお
けるS/N比を低下させることが少なく、また生きた細
胞と死んだ細胞で発光量に明瞭な差が得られる菌の検出
方法を得る方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention rarely reduces the S / N ratio in measurement due to leakage of a fluorescent substance generated after interacting with a cell, and reduces the S / N ratio in the measurement. An object of the present invention is to provide a method for obtaining a method for detecting a bacterium capable of obtaining a clear difference in the amount of luminescence.

【0004】[0004]

【課題を解決するための手段】本発明は検体中の微生物
と直接反応して、非発光物質から蛍光・燐光などの発光
物質に変化する物質に励起光を照射し、これにより発生
する光を検出することによって検体中の微生物の数を計
測する方法において、上記物質がマレイミド官能基を有
するN−(7−ジメチルアミノ−4−メチルクマリニ
ル)マレイミドを用いることを特徴とする微生物の迅速
測定方法である。
SUMMARY OF THE INVENTION The present invention irradiates a substance that directly reacts with a microorganism in a sample and changes from a non-luminescent substance to a luminescent substance such as fluorescence or phosphorescence with excitation light. A method for counting the number of microorganisms in a specimen by detecting light generated, wherein the substance uses N- (7-dimethylamino-4-methylcoumarinyl) maleimide having a maleimide functional group. This is a rapid method for measuring microorganisms .

【0005】本発明では酵素反応という間接的作用を通
して蛍光物質化するのではなく、微生物細胞と直接的に
反応して非蛍光物質を蛍光物質に変換できるマレイミド
誘導体を検体に添加して、微生物からの発光を光電子倍
増管で検出し計数する手段を採用した。発光プローブと
してはマレイミド誘導体の一種であるN−(7−ジメチ
ルアミノ−4−メチルクマリニル)マレイミド〔 N-(7-
Dimethylamino-4-methy lcoumarinyl)maleimide 〕(以
下、DACMという)を用いるものである。
In the present invention, a maleimide derivative capable of directly reacting with microbial cells and converting a non-fluorescent substance into a fluorescent substance is added to a specimen, instead of being converted into a fluorescent substance through the indirect action of an enzymatic reaction. A means for detecting and counting the light emission of the sample with a photomultiplier tube was employed. As the luminescent probe, N- (7-dimethylamino-4-methylcoumarinyl) maleimide [N- (7-
Dimethylamino-4-methy lcoumarinyl) maleimide] (hereinafter referred to as DACM).

【0006】[0006]

【作用】マレイミド誘導体は一般には非発光性であり、
微生物細胞に存在するSH基と反応し結合して蛍光物質
となる。従って、先に述べたFDAの如くに蛍光物質化
した物が生細胞の外に漏出する度合いは少ないのでS/
N比を高く出来るために計測上有利である。
[Action] Maleimide derivatives are generally non-luminescent,
It reacts with and binds to SH groups present in microbial cells to form a fluorescent substance. Therefore, since the degree of leakage of a substance converted into a fluorescent substance like the above-mentioned FDA out of living cells is small,
This is advantageous in measurement because the N ratio can be increased.

【0007】マレイミド誘導体を微生物(生体に作用
させた際に蛍光物質に変換される反応式2を下記に示
す。
The following reaction formula 2 converts a maleimide derivative into a fluorescent substance when it acts on a microorganism ( living body ) .

【化2】 Embedded image

【0008】[0008]

【実施例】本発明の一実施例を図1によって説明する。
反応槽3に被検体である検体溶液を検体溶液流入ライン
1にて流入させて、ここで蛍光薬品注入ライン2を介し
て蛍光プローブ、すわちDACMと混合させる。薬品
量は概略0.01〜1mg/ミリリットルとする。混合
して微生物による発光体を含んだ試料液は一定の滞留時
間を反応槽3内で経た後に、検体液流入ライン4を経て
連続的にフローセル5に達する。ここで、励起光を励起
光源7より光の幅を制限するスリット8、一定波長の光
を得るフィルタ9および集光レンズ10を介してフロー
セル5内の試料に照射すると、微生物による発光体は特
定波長の光を発光する。この光を集光レンズ11と特定
の発光波長を検出するフィルタ12を介して光電子増倍
管13で検出し、この数を光量子カウンタ14でカウン
トすることにより検体液中の微生物個数が計測できる。
FIG. 1 shows an embodiment of the present invention.
To the reaction vessel 3 by flowing the sample solution is a subject in the sample solution inlet line 1, where via the fluorescent chemical injection line 2 fluorescent probes are mixed with to a KazuSatoshi DACM. The amount of the chemical is approximately 0.01 to 1 mg / ml. The sample liquid mixed and containing the luminous substance caused by the microorganisms passes through a certain retention time in the reaction tank 3 and then continuously reaches the flow cell 5 through the sample liquid inflow line 4. Here, when the excitation light is irradiated to the sample in the flow cell 5 through the slit 8 for limiting the width of light from the excitation light source 7, the filter 9 for obtaining light of a certain wavelength, and the condenser lens 10, the luminous body by the microorganism is identified. It emits light of a wavelength. This light is detected by a photomultiplier tube 13 via a condenser lens 11 and a filter 12 for detecting a specific emission wavelength, and the number thereof is counted by a photon counter 14, whereby the number of microorganisms in the sample liquid can be measured.

【0009】この実施例では蛍光プローブとしてDAC
Mを用いた。励起波長として428nmを用い、蛍光波
長470nmを検出すれば高いS/N比で微生物細胞を
識別できる。図2〜図5にDACMを用いた微生物(大
腸菌)の測定例を示す。図2は励起スペクトル、図3は
生きた大腸菌が検体内にある場合の蛍光スペクトル、図
4は死んだ大腸菌が検体内にある場合の蛍光スペクト
ル、図5は検体液中に菌が存在しない場合のスペクトル
を示す。蛍光波長470nmにおける強度を比較する
と、生菌あり(図3):死菌あり(図4):菌なし(図
5)=5.00:2.84:0.62=8.1:4.
6:1.0となっており生菌あり(図3):死菌あり
(図4)=1.8:1.0、死菌あり(図4):菌なし
(図5)=4.6:1.0であり、十分に生きた菌と死
んだ菌を菌が存在する液中においてDACMを発光プロ
ーブとして使用することで識別できる。
In this embodiment, DAC is used as a fluorescent probe.
M was used. Microbial cells can be identified with a high S / N ratio by detecting excitation wavelength of 428 nm and detection of fluorescence wavelength of 470 nm. 2 to 5 show examples of measurement of microorganisms (Escherichia coli) using DACM. Fig. 2 shows the excitation spectrum, Fig. 3 shows the fluorescence spectrum when live E. coli is in the sample, Fig. 4 shows the fluorescence spectrum when dead E. coli is in the sample, and Fig. 5 shows the case where no bacteria are present in the sample solution. The spectrum of is shown. Comparing the intensities at the fluorescence wavelength of 470 nm, the presence of live bacteria (FIG. 3): the presence of dead bacteria (FIG. 4): the absence of bacteria (FIG. 5) = 5.00: 2.84: 0.62 = 8.1: 4.1.
6: 1.0, viable bacteria (FIG. 3): dead bacteria (FIG. 4) = 1.8: 1.0, dead bacteria (FIG. 4): no bacteria (FIG. 5) = 4. 6: 1.0, and sufficiently viable and dead bacteria can be distinguished by using DACM as a luminescent probe in a solution containing the bacteria.

【0010】[0010]

【発明の効果】本発明により、従来24時間〜数日の長
時間を要していた微生物細胞の計数測定が5〜40分
で、連続的に実施可能となり、また生きた細胞と死んだ
細胞を蛍光強度の差から分別して計測ができる。従っ
て、本発明により食品製造に用いる水や溶液さらに半導
体製造時の洗浄用純水などに含まれる微生物の検出と計
数を速やかに行え、かつ生きた微生物と死んだ微生物を
分別して計数できるので殺菌工程の殺菌効率の迅速なチ
ェックに用いることが可能となり、検査の省力化や品質
管理の向上など経済的・技術的効果が得られる。
According to the present invention, microbial cell counting and measurement, which conventionally required a long time of 24 hours to several days, can be performed continuously in 5 to 40 minutes, and live and dead cells can be counted. Can be measured separately from the difference in fluorescence intensity. Therefore, according to the present invention, it is possible to quickly detect and count microorganisms contained in water or a solution used in food production and also in pure water for cleaning in semiconductor production, and to separate and count live microorganisms and dead microorganisms. It can be used for quick check of the sterilization efficiency of the process, and economic and technical effects such as labor saving of inspection and improvement of quality control can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に使用する装置の説明図。FIG. 1 is an explanatory diagram of an apparatus used in one embodiment of the present invention.

【図2】本発明で使用するDACMの励起スペクトルを
示す図表。
FIG. 2 is a table showing an excitation spectrum of DACM used in the present invention.

【図3】DACMを適用した時の生きた大腸菌が検体内
にある場合の蛍光スペクトルを示す図表。
FIG. 3 is a chart showing a fluorescence spectrum when living Escherichia coli is present in a specimen when DACM is applied.

【図4】DACMを適用した時の死んだ大腸菌が検体内
にある場合の蛍光スペクトルを示す図表。
FIG. 4 is a chart showing a fluorescence spectrum when dead E. coli is present in a sample when DACM is applied.

【図5】DACMを適用した時の検体内に菌が存在しな
い場合の蛍光スペクトルを示す図表。
FIG. 5 is a chart showing a fluorescence spectrum when no bacteria are present in a sample when DACM is applied.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C12Q 1/06 G01N 21/78 C12Q 1/44 BIOSIS(DIALOG) WPI(DIALOG)──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) C12Q 1/06 G01N 21/78 C12Q 1/44 BIOSIS (DIALOG) WPI (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 検体中の微生物と直接反応して、非発光
物質から蛍光・燐光などの発光物質に変化する物質に励
起光を照射し、これにより発生する光を検出することに
よって検体中の微生物の数を計測する方法において、上
記物質がマレイミド官能基を有するN−(7−ジメチル
アミノ−4−メチルクマリニル)マレイミドを用いるこ
とを特徴とする微生物の迅速測定方法。
1. A method in which a substance that directly reacts with a microorganism in a sample and changes from a non-luminescent substance to a luminescent substance such as fluorescence or phosphorescence is irradiated with excitation light, and the light generated by the excitation light is detected. a method of measuring the number of microorganisms, rapid method of measuring microorganisms above substances, characterized by using a maleimide functionality comprises a group N-(7- dimethylamino-4-methyl coumarin sulfonyl) maleimide.
JP4524792A 1992-03-03 1992-03-03 Quick method for measuring microorganisms Expired - Fee Related JP2948405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4524792A JP2948405B2 (en) 1992-03-03 1992-03-03 Quick method for measuring microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4524792A JP2948405B2 (en) 1992-03-03 1992-03-03 Quick method for measuring microorganisms

Publications (2)

Publication Number Publication Date
JPH05236994A JPH05236994A (en) 1993-09-17
JP2948405B2 true JP2948405B2 (en) 1999-09-13

Family

ID=12713936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4524792A Expired - Fee Related JP2948405B2 (en) 1992-03-03 1992-03-03 Quick method for measuring microorganisms

Country Status (1)

Country Link
JP (1) JP2948405B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329165B1 (en) * 1999-12-30 2001-12-11 Nalco Chemical Company Measurement and control of sessile and planktonic microbiological activity in industrial water systems
JP5743558B2 (en) * 2011-01-12 2015-07-01 株式会社東芝 Analysis equipment

Also Published As

Publication number Publication date
JPH05236994A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
US5281825A (en) Phase fluorometry using a modulated electroluminescent lamp as a light source
JP4874008B2 (en) Method and apparatus for detecting bacteria
JP4857434B2 (en) Detection of biomolecules by differential distribution of enzyme substrate and enzyme product
JP5747043B2 (en) Method for detecting microorganisms and kit therefor
Wong et al. A luminescence-based scanning respirometer for heavy metal toxicity monitoring
TWI622650B (en) Method of inspecting microorganisms
CN112877396B (en) Method for evaluating migration risk of resistance genes
JPH02503747A (en) Qualitative and/or quantitative testing method for microorganisms and equipment for carrying out the method
Coburn et al. Identification of bacterial pathogens by laser excited fluorescence
JP2948405B2 (en) Quick method for measuring microorganisms
EP1417330B1 (en) Measurement of microbiological activity in an opaque medium
WO1984004544A1 (en) Method for measuring the number or methane-producing activity of methane bacteria
CN111072011A (en) Preparation of mitochondria-nucleolus reversible migration fluorescent carbon dot and application of mitochondria-nucleolus reversible migration fluorescent carbon dot in monitoring cell activity
Hou et al. Determination of ATP as a fluorescence probe with europium (III)-doxycycline
JP2637561B2 (en) Method for measuring live cells of microbial cells
JP2808493B2 (en) How to measure the number of living organisms in a sample
JPH02281131A (en) Apparatus for judging alive or dead state of microorganism cell
US20050124018A1 (en) Method of measuring ATP by radiating ultraviolet light and apparatus using the same
JPH0440654B2 (en)
JP2680713B2 (en) Method for counting live microbial cells
JP2734489B2 (en) Method and apparatus for counting microbial living cells
JP2004053570A (en) Inspection method of microorganism
JPH06319594A (en) Determination of bio-activity
JP2890128B2 (en) Yeast viable cell count method
JP2001286296A (en) Method for measuring microorganism and device for measuring the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608

LAPS Cancellation because of no payment of annual fees