[go: up one dir, main page]

JP2941833B2 - Superconducting current limiting device - Google Patents

Superconducting current limiting device

Info

Publication number
JP2941833B2
JP2941833B2 JP1016176A JP1617689A JP2941833B2 JP 2941833 B2 JP2941833 B2 JP 2941833B2 JP 1016176 A JP1016176 A JP 1016176A JP 1617689 A JP1617689 A JP 1617689A JP 2941833 B2 JP2941833 B2 JP 2941833B2
Authority
JP
Japan
Prior art keywords
superconducting
current
coil
current limiting
trigger coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1016176A
Other languages
Japanese (ja)
Other versions
JPH02202320A (en
Inventor
大佐 伊藤
和行 ▲つる▼永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1016176A priority Critical patent/JP2941833B2/en
Publication of JPH02202320A publication Critical patent/JPH02202320A/en
Application granted granted Critical
Publication of JP2941833B2 publication Critical patent/JP2941833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、交流電路における過電流を電磁的に抑制
する超電導限流装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a superconducting current limiting device that electromagnetically suppresses an overcurrent in an AC circuit.

(従来の技術) この種の従来の装置として、例えば、特開昭60−7493
2号公報に開示されたものがある。第9図はこの限流器
の構成を示す回路図である。同図において、鉄芯33には
起磁力が略等しくなるようにコイル34とコイル35とが巻
装されると共に、磁束の向きが逆になるようにコイル34
およびコイル35の各一端が電源側の電路31に接続されて
おり、コイル34の他端がスイッチ38を介して負荷側の電
路32に接続され、さらに、コイル35の他端が同じく負荷
側の電路32に接続されている。また、コイル34にはサー
ジアブゾーバ36が並列接続され、スイッチ38には電流制
限抵抗37が並列接続されている。一方、電路32に変流器
39が設けられ、過電流を検出したときスイッチ38をトリ
ップさせるようになっている。
(Prior Art) As a conventional apparatus of this kind, for example, Japanese Patent Application Laid-Open No. 60-7493 is disclosed.
There is one disclosed in Japanese Patent Publication No. FIG. 9 is a circuit diagram showing the configuration of this current limiter. In the same figure, a coil 34 and a coil 35 are wound around an iron core 33 so that the magnetomotive force is substantially equal, and the coil 34 is wound so that the direction of the magnetic flux is reversed.
And one end of the coil 35 is connected to the electric circuit 31 on the power supply side, the other end of the coil 34 is connected to the electric circuit 32 on the load side via a switch 38, and the other end of the coil 35 is also connected to the load side. It is connected to the electric circuit 32. A surge absorber 36 is connected to the coil 34 in parallel, and a current limiting resistor 37 is connected to the switch 38 in parallel. On the other hand, current transformer
A switch 39 is provided to trip the switch 38 when an overcurrent is detected.

ここで、スイッチ38を閉成した状態で通常レベルの電
流(以下通常電流という)が電路31および32を通して流
れると、この電流がコイル34と35とに分流するが、これ
らのコイルに発生する磁束が相殺されるため、電流はイ
ンダクタンスL1,L2の影響を受けないことになる。従っ
て、漏れ磁束による僅かの損失を除き、高効率で負荷に
電力を供給することができる。
Here, when a normal level current (hereinafter referred to as a normal current) flows through the electric circuits 31 and 32 with the switch 38 closed, the current is divided into the coils 34 and 35, and the magnetic flux generated in these coils Are canceled out, the current is not affected by the inductances L 1 and L 2 . Therefore, power can be supplied to the load with high efficiency except for a small loss due to leakage magnetic flux.

一方、負荷の短絡等により電路31,32に過大電流が流
れると、変流器39がこれを検出してスイッチ38を開放さ
せ、コイル34の回路に抵抗37を挿入する。これにより、
コイル34の電流が減少すると同時にコイル35の電流が増
大し、鉄芯33の磁束はコイル35によるものが支配的とな
る。従って、コイル35のインダクタンスが作用して、す
なわち、リアクトル作用により事故電流を限流する。
On the other hand, when an excessive current flows in the electric circuits 31 and 32 due to a short circuit of the load or the like, the current transformer 39 detects this and opens the switch 38, and inserts the resistor 37 into the circuit of the coil 34. This allows
At the same time as the current of the coil 34 decreases, the current of the coil 35 increases, and the magnetic flux of the iron core 33 is mainly caused by the coil 35. Therefore, the fault current is limited by the action of the inductance of the coil 35, that is, by the reactor action.

(発明が解決しようとする課題) 上述した限流器には定常時、数百〜数千アンペアの電
流が流れるため、コイル34,35の断面積を大きくしなけ
ればならず、しかも、限流インピーダンスを大きくする
べく巻数を多くしなければならないため、装置が大型化
すると同時に、熱による多量の電力損失も避けられない
という問題点があった。
(Problems to be Solved by the Invention) Since a current of several hundreds to several thousand amps flows in the above-described current limiter in a steady state, the cross-sectional area of the coils 34 and 35 must be increased. Since the number of windings must be increased in order to increase the impedance, there is a problem that the device becomes large and a large amount of power loss due to heat cannot be avoided.

また、上述した限流器にあっては、スイッチ38として
機械的なものが用いられることが多く、過電流を検出し
てからスイッチ38を開放して限流動作を行うまで、1〜
3サイクル分の時間を必要とし、この間、線路の保護が
困難になるという問題点もあった。
In the current limiter described above, a mechanical switch is often used as the switch 38.
Three cycles are required, and during this time, there is a problem that the protection of the track becomes difficult.

なお、この対策として、スイッチ38にサイリスタ等の
半導体スイッチを用いることもできるが、この場合には
サイリスタの順方向における電圧降下によって電力損失
を生じ、装置がさらに大型化すると共に、複雑化するた
めその採用は難しかった。
As a countermeasure, a semiconductor switch such as a thyristor may be used as the switch 38.However, in this case, power loss occurs due to a voltage drop in the forward direction of the thyristor, and the device becomes larger and more complicated. Its adoption was difficult.

この発明は上記の問題点を解決するためになされたも
ので、装置の小型化および確実な線路保護を図り得ると
共に、熱に伴う電力損失を極めて低く抑えることのでき
る限流器を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a current limiter which can achieve downsizing of a device and secure line protection, and can suppress power loss due to heat to an extremely low level. Aim.

[発明の構成] (課題を解決するための手段) この目的を達成するために第1の発明は、電路の電流
を制限値以下に抑えるインダクタンスを有し、かつ、前
記制限値以上の臨界電流値を持つ超電導限流コイルと、
前記電路の電流の制限値より小さく、前記電路の通常電
流より大きい臨界電流値を持ち、並列に接続された第1
第2の超電導コイルとが互いに無誘導に巻かれて構成さ
れた超電導トリガコイルと、前記超電導トリガコイルに
直列に接続され該超電導トリガコイルに流れる電流の開
閉を行うための復帰用スイッチとを備え、前記超電導限
流コイルと前記復帰用スイッチが直列に接続された前記
超電導トリガコイルとを並列接続して構成されたことを
特徴とする超電導限流装置にある。
[Constitution of the Invention] (Means for solving the problem) In order to achieve this object, a first invention has an inductance for suppressing a current of an electric circuit to a limit value or less, and has a critical current not less than the limit value. A superconducting current limiting coil having a value,
A first current connected in parallel, having a critical current value smaller than a current limit value of the electric circuit and larger than a normal current of the electric circuit,
A superconducting trigger coil configured by winding a second superconducting coil in a non-inductive manner; and a return switch connected in series with the superconducting trigger coil for opening and closing a current flowing through the superconducting trigger coil. A superconducting current limiting device, wherein the superconducting current limiting coil and the superconducting trigger coil in which the return switch is connected in series are connected in parallel.

また、第2の発明は、電路の電流を制限値以下に抑え
るインダクタンスを有し、かつ、前記制限値以上の臨界
電流値を持つ超電導限流コイルと、この超電導限流コイ
ルと無誘導に形成され、前記電路の電流の制限値より小
さく、前記電路の通常電流より大きい臨界電流値を持つ
超電導トリガコイルと、この超電導トリガコイルと直列
接続され該超電導トリガコイルに流れる電流の開閉を行
うための復帰用スイッチとを備え、前記超電導限流コイ
ルと前記復帰用スイッチが直列に接続された前記超電導
トリガコイルとを並列接続して構成されたことを特徴と
する超電導限流装置にある。
Further, the second invention has a superconducting current limiting coil having an inductance for suppressing a current of an electric circuit to be equal to or less than a limit value and having a critical current value equal to or greater than the limit value, and a non-inductively formed superconducting current limiting coil. A superconducting trigger coil having a critical current value smaller than the current limit value of the electric circuit and larger than the normal current of the electric circuit; and a switch for opening and closing a current flowing in the superconducting trigger coil connected in series with the superconducting trigger coil. A superconducting current limiting device, comprising: a return switch, wherein the superconducting current limiting coil and the superconducting trigger coil in which the return switch is connected in series are connected in parallel.

(作 用) 第1の発明においては、電路に通常電流しか流れてい
なければ、通常電流より大きい臨界電流値を持ち、互い
に並列に接続された第1と第2の超電導コイルには、抵
抗零でしかも無誘導に巻かれて超電導トリガコイルを構
成しているので、実質的に電圧降下なしで大電流を流せ
る。そして、電路の電流が短絡事故等で過大になるとト
リガコイルがクエンチし、超電導トリガコイルの抵抗値
が急増する。このときの超電導トリガコイルの抵抗値を
超電導限流コイルのインピーダンスより十分大きくなる
よう設計しておけば、超電導トリガコイルに流れていた
電流は、超電導限流コイルへと転流し、短絡電流は超電
導限流コイルのインピーダンスによって決まる値に限流
される。限流動作の間、超電導トリガコイルにはその抵
抗値に応じた電流が流れ続けるが、これと直列に接続さ
れた復帰用スイッチを開放することにより、超電導トリ
ガコイルに流れる電流を遮断して、超電導トリガコイル
を超電導に復帰させ、事故から復帰後の動作に備える。
(Operation) In the first invention, if only a normal current flows through the electric circuit, the first and second superconducting coils connected in parallel have a critical current value larger than the normal current, and have zero resistance. In addition, since the superconducting trigger coil is wound in a non-inductive manner, a large current can be supplied substantially without a voltage drop. When the current in the electric circuit becomes excessive due to a short circuit accident or the like, the trigger coil is quenched, and the resistance value of the superconducting trigger coil rapidly increases. If the resistance value of the superconducting trigger coil at this time is designed to be sufficiently larger than the impedance of the superconducting current limiting coil, the current flowing in the superconducting trigger coil will be diverted to the superconducting current limiting coil, and the short-circuit current will be superconducting. The current is limited to a value determined by the impedance of the current limiting coil. During the current limiting operation, the current according to the resistance value continues to flow in the superconducting trigger coil, but by opening the return switch connected in series with this, the current flowing in the superconducting trigger coil is cut off, The superconducting trigger coil is returned to the superconducting state to prepare for the operation after returning from the accident.

また第2の発明においては、電路に通常電流しか流れ
ていなければ、超電導限流コイルおよび超電導トリガコ
イルが超電導状態に保持され、しかも互いに無誘導に巻
線されているので、限流器全体のインピーダンスはほと
んど零であり、電路には実質的に電圧降下なしで大電流
を流せる。この電流は両コイルが並列に接続されている
ので、それぞれにほぼ等しく分流する。そして、電路の
電流が短絡事故等で過大になると臨界電流値の小さい超
電導トリガコイルがクエンチし、超電導トリガコイルの
抵抗値が急増する。このため無誘導状態がくずれて電路
に超電導限流コイルのインダクタンスが瞬時に現れ、事
故電流を制限値以下に限流する。超電導トリガコイルの
クエンチ時の抵抗値は、超電導トリガコイルの巻線の長
さを任意に決められるので、必要な値に設定できる。限
流動作の巻、超電導トリガコイルにはその抵抗に応じた
電流が流れ続けるが、これと直列に接続された復帰用ス
イッチを開放することにより、超電導トリガコイルに流
れる電流を遮断して、超電導トリガコイルを超電導に復
帰させ、事故から復帰後の動作に備える。
In the second invention, if only a normal current flows in the electric circuit, the superconducting current limiting coil and the superconducting trigger coil are kept in a superconducting state, and are wound in a non-inductive manner with each other. The impedance is almost zero, and a large current can flow in the electric circuit with substantially no voltage drop. Since the two coils are connected in parallel, this current shunts approximately equally to each. When the current in the electric circuit becomes excessive due to a short circuit accident or the like, the superconducting trigger coil having a small critical current value quenches, and the resistance value of the superconducting trigger coil rapidly increases. For this reason, the non-inductive state is lost, and the inductance of the superconducting current limiting coil instantaneously appears on the electric circuit, and the fault current is limited to a value equal to or less than the limit value. The resistance value of the superconducting trigger coil at the time of quench can be set to a required value because the length of the winding of the superconducting trigger coil can be arbitrarily determined. During the current-limiting operation, the current corresponding to the resistance continues to flow through the superconducting trigger coil, but by opening the reset switch connected in series with this, the current flowing through the superconducting trigger coil is cut off, Return the trigger coil to superconductivity and prepare for the operation after returning from the accident.

(実施例) 第1図はこの出願の第1の発明に対応する実施例の構
成を、適用対象と併せて示した回路図である。同図にお
いて、交流電源1と負荷5とを結ぶ電路としての線路の
一方に、遮断器2、限流器3が挿入される。尚、符号4
は、線路インピーダンスを示す。ここで、限流器3は、
線路の電流を制限値以下に抑えるインダクタンスを持つ
ように巻装され、しかも、電流制限値より大きな臨界電
流値を持った超電導限流コイル3aと、電路の通常電流よ
り大きく、電流制限値より小さい臨界電流値を持ち、か
つ並列接続された第1の超電導コイル3b1と第2の超電
導コイル3b2とがインダクタンスが実質的に零になるよ
うに無誘導(AP)巻きされて構成された超伝導トリガコ
イル3bと、これを直列接続された復帰用スイッチ3cとを
備え、超電導限流コイル3aと、復帰用スイッチ3cを直列
に接続した超電導トリガコイル3bとを並列接続した構成
になっている。
(Embodiment) FIG. 1 is a circuit diagram showing a configuration of an embodiment corresponding to the first invention of this application together with an application object. In FIG. 1, a circuit breaker 2 and a current limiter 3 are inserted into one of the lines as an electric circuit connecting the AC power supply 1 and the load 5. Note that reference numeral 4
Indicates a line impedance. Here, the current limiter 3
A superconducting current limiting coil 3a that is wound so as to have an inductance that keeps the current of the line below the limit value and that has a critical current value larger than the current limit value, and that is larger than the normal current of the circuit and smaller than the current limit value has a critical current value, and connected in parallel first superconducting coil 3b 1 and second superconducting coil 3b 2 and the inductance was is constituted by unguided (AP) wound so as to be substantially zero super A conduction trigger coil 3b and a return switch 3c connected in series with the superconducting current limiting coil 3a, and a superconducting trigger coil 3b in which the return switch 3c is connected in series are connected in parallel. .

第2図は超電導限流コイル3aおよび超電導トリガコイ
ル3bとスイッチ3cの具体的な構成を示す図であり、超電
導限流コイル3aはボビン3gに、超電導トリガコイル3bは
ボビン3dにそれぞれ巻装され、しかも、超電導トリガコ
イル3bは超電導コイル3aの内側に同心配置されており、
コイル端が端子3e,スイッチ3cを介して3fに共通接続さ
れている。
FIG. 2 is a diagram showing a specific configuration of the superconducting current limiting coil 3a, the superconducting trigger coil 3b, and the switch 3c. The superconducting current limiting coil 3a is wound around a bobbin 3g, and the superconducting trigger coil 3b is wound around a bobbin 3d. Moreover, the superconducting trigger coil 3b is arranged concentrically inside the superconducting coil 3a,
The coil end is commonly connected to 3f via terminal 3e and switch 3c.

上記のように構成された本実施例の動作を以下に説明
する。
The operation of the present embodiment configured as described above will be described below.

先ず、超電導限流コイル3aおよび超電導トリガコイル
3bがどちらも超電導状態にあるとき、線路を流れる電流
に対して超電導コイル3aは比較的大きなインピーダンス
を示すが、超電導トリガコイル3bは無誘導であることか
らインピーダンスは実質的に零になる。第3図はこのこ
とを説明するための図で、超電導限流コイル3aおよび超
電導トリガコイル3bに矢印方向の電流i0が流れたとする
と、超電導限流コイル3aによって磁束φが発生してイ
ンダクタンスに応じたインピーダンスを持つが、AP巻き
された超電導トリガコイル3bの磁束φ1は相殺され
てインピーダンスは実質的に零となる。
First, the superconducting current limiting coil 3a and the superconducting trigger coil
When both 3b are in the superconducting state, the superconducting coil 3a exhibits a relatively large impedance to the current flowing through the line, but the impedance becomes substantially zero because the superconducting trigger coil 3b is non-inductive. Figure 3 is a diagram for explaining that this, when the current i 0 of the direction of the arrow flows through the superconducting current limiting coil 3a and the superconducting trigger coil 3b, inductance flux phi 0 is generated by the superconducting current limiting coil 3a However, the magnetic fluxes φ 1 and φ 2 of the superconducting trigger coil 3b wound by the AP are canceled out, and the impedance becomes substantially zero.

そして負荷5側に事故がなく、これに通常の大きさの
電流i0が流れたとき、超電導限流コイル3aに流れる電流
をi11、超電導トリガコイル3bに流れる電流をiL2とする
と次式の関係が成立する。
When there is no accident on the load 5 side and a normal current i 0 flows through the load 5, the current flowing in the superconducting current limiting coil 3a is i 11 , and the current flowing in the superconducting trigger coil 3b is i L2. Is established.

i0=iL1+iL2 ……(1) iL1≪iL2 ……(2) したがって、線路の電流i0の殆どが超電導トリガコイ
ル3bに流れ、しかも、これに伴う電圧降下は実質的に零
である。
i 0 = i L1 + i L2 (1) i L1 ≪i L2 (2) Therefore, most of the current i 0 of the line flows through the superconducting trigger coil 3b, and the voltage drop associated therewith is substantially reduced. It is zero.

次に、負荷5の短絡事故等により、線路に過電流が流
れ、その値が超電導トリガコイル3bの臨界電流Jc1を超
えると、超電導トリガコイル3bが瞬時にクエンチし、極
めて大きな抵抗体となる。その結果、超電導トリガコイ
ル3bに流れていた電流の殆どが超電導限流コイル3aに転
流し、両者の電流は下式に示す関係となる。
Next, an overcurrent flows in the line due to a short circuit accident of the load 5 and the like, and when the value exceeds the critical current Jc1 of the superconducting trigger coil 3b, the superconducting trigger coil 3b instantaneously quenches and becomes an extremely large resistor. . As a result, most of the current flowing through the superconducting trigger coil 3b is diverted to the superconducting current limiting coil 3a, and the two currents have a relationship represented by the following equation.

iL1≫iL2 ……(3) 従って、超電導限流コイル3aのインダクタンスにより
線路電流が制限値に制限される。この場合、超電導トリ
ガコイル3bに流れる電流iL2は極めて小さいので熱とし
て消費される電力損失は極めて僅かに抑えられる。
i L1 ≫i L2 (3) Accordingly, the line current is limited to the limit value by the inductance of the superconducting current limiting coil 3a. In this case, since the current i L2 flowing through the superconducting trigger coil 3b is extremely small, the power loss consumed as heat is extremely slightly suppressed.

第4図(a)、(b)は電流iおよび限流装置のイン
ピーダンスZSCが通常動作時と限流動作時とで、どのよ
うに変化するかを示したものである。すなわち、定常動
作時においては、限流装置3のインピーダンスZSCは極
めて小さく、線路の電流i0は主に負荷のインピーダンス
Zlによって正常に保たれている。一方、負荷短絡が発生
すると、線路には推定短絡電流ifが流れようとする。し
かしながら、線路電流が超電導トリガコイル3bの臨界電
流値Jc1を超えた瞬間、上述したように限流装置のイン
ヒーダンスがZSC′に増大し、短絡電流は制限値以下に
限流される。
4 (a), it illustrates how to change (b) in a time of the impedance Z SC normal operation of the current i and the current limiting device and the current limiting operation, so how. That is, during a steady operation, the impedance Z SC of the current limiting device 3 is extremely small, and the line current i 0 is mainly the impedance of the load.
It is maintained properly by Z l. On the other hand, when a load short circuit occurs, the estimated short circuit current if tends to flow in the line. However, the moment the line current exceeds the critical current value J c1 of the superconducting trigger coil 3b, in heating dance current limiting device as described above is increased in Z SC ', the short-circuit current is limited to flow below the limit value.

この場合、超電導限流コイル3aの臨界電流値Jc2は線
路の電流制限値より大きく設定されている。さらに、超
電導トリガコイル3bは、復帰用スイッチ3cでiL1を遮断
することによって冷却され、容易に定常状態に復帰す
る。
In this case, the critical current value Jc2 of the superconducting current limiting coil 3a is set to be larger than the current limit value of the line. Further, the superconducting trigger coil 3b is cooled by shutting off i L1 by the return switch 3c, and easily returns to the steady state.

なお、上記実施例では、超電導コイルを同心配置した
ことにより、著しくコンパクト化されると共に、超電導
状態に保持し易くなっているが、これらの超電導コイル
を離隔配置したとしても上述した限流動作を行なわせる
ことができる。
In the above-described embodiment, the superconducting coils are concentrically arranged, so that the superconducting coils are remarkably downsized and easily maintained in the superconducting state. Can be done.

しかして、この実施例によれば、超電導コイルを採用
したこと、これらの超電導コイルを同心配置したことに
より、構成の簡易化、装置の小型化が実現されると同時
に応答性が速く、しかも確実な線路保護が可能となり、
さらに、復帰用スイッチを設けたことにより限流状態か
ら容易に定常状態に復帰させることが可能となる。
According to this embodiment, the employment of the superconducting coils and the concentric arrangement of these superconducting coils realize the simplification of the configuration and the miniaturization of the device, and at the same time, the responsiveness is high and the reliability is high. Track protection becomes possible,
Further, by providing the return switch, it is possible to easily return from the current limiting state to the steady state.

第5図はこの出願の第2の発明に対応する実施例の構
成を、適用対象と併せて示した回路図である。同図にお
いて、交流電源1と負荷5とを結ぶ線路の一方に、遮断
器2と、超電導リアクトル6および復帰用スイッチ7で
なる限流装置とが挿入される。尚、符号4は線路インピ
ーダンスを示す。ここで、超電導リアクトル6は線路の
電流を制限値以下に抑えるインダクタンスを持つもので
あり、これは、電流制御値より大きな臨界電流値を持っ
た超電導限流コイル6aと、この超電導限流コイルと同一
の巻枠に巻装され、線路に並列に挿入されたとき起磁力
が同じで磁束が相殺される超電導トリガコイル6bとでな
り、それぞれ電流iL1、iL2が流れ込んだとき、インピー
ダンスが実質的に零となる。一方、復帰用スイッチ7は
超電導トリガコイル6bに直列接続されている。
FIG. 5 is a circuit diagram showing a configuration of an embodiment corresponding to the second invention of this application together with an application object. In FIG. 1, a circuit breaker 2 and a current limiting device including a superconducting reactor 6 and a return switch 7 are inserted into one of the lines connecting the AC power supply 1 and the load 5. Reference numeral 4 denotes a line impedance. Here, the superconducting reactor 6 has an inductance that suppresses the current of the line to a value equal to or less than the limit value. The superconducting current limiting coil 6a has a critical current value larger than the current control value and the superconducting current limiting coil. It consists of a superconducting trigger coil 6b that is wound on the same bobbin and has the same magnetomotive force when inserted in parallel to the line and cancels out the magnetic flux.When currents i L1 and i L2 flow in, respectively, the impedance is substantially Becomes zero. On the other hand, the return switch 7 is connected in series to the superconducting trigger coil 6b.

第6図は超電導リアクトル6の具体的な構成を示す図
であり、超電導限流コイル6aはボビン6cに、超電導トリ
ガコイル6bはボビン6dにそれぞれ巻装され、しかも、超
電導トリガコイル6bは超電導限流コイル6aの内側に同心
配置されており、両コイルの各一端が端子6eに共通接続
され、超電導限流コイル6aの他端が端子6fに、超電導ト
リガコイル6bの他端が端子6gにそれぞれ接続されてい
る。なお、hはこれらの超電導コイルの端子6f,6g間の
絶縁を保持するスペーサである。
FIG. 6 is a diagram showing a specific configuration of the superconducting reactor 6. The superconducting current limiting coil 6a is wound around the bobbin 6c, the superconducting trigger coil 6b is wound around the bobbin 6d, and the superconducting trigger coil 6b is The two ends of both coils are commonly connected to a terminal 6e, the other end of the superconducting current limiting coil 6a is connected to a terminal 6f, and the other end of the superconducting trigger coil 6b is connected to a terminal 6g. It is connected. Here, h is a spacer for maintaining insulation between the terminals 6f and 6g of these superconducting coils.

第7図はこの超電導リアクトル6の内部結線と磁束の
様子を表す図であり、超電導コイル6a,6bが線路に並列
接続されたとき、超電導限流コイル6aに発生する磁束φ
と超電導トリガコイル6bに発生する磁束φとが相殺
される構成になっている。
FIG. 7 is a diagram showing the state of the internal connection and the magnetic flux of the superconducting reactor 6, and shows the magnetic flux φ generated in the superconducting current limiting coil 6a when the superconducting coils 6a and 6b are connected in parallel to the line.
1 and a magnetic flux phi 2 that occurs in the superconducting trigger coil 6b is turned configured to be canceled.

なお、超電導リアクトルを構成する超電導限流コイル
6aの臨界電流値は線路の電流制限値より大きくなるよう
に製作されており、超電導トリガコイル6bは線路の過電
流に対応して超電導トリガコイル6bの電流が増大すると
クエンチするように製作されている。
The superconducting current-limiting coil that constitutes the superconducting reactor
The critical current value of 6a is manufactured to be larger than the current limit value of the line, and the superconducting trigger coil 6b is manufactured to quench when the current of the superconducting trigger coil 6b increases in response to the overcurrent of the line. I have.

上記の如く構成された本実施例の動作を以下に説明す
る。
The operation of the present embodiment configured as described above will be described below.

先ず、線路に流れる電流i0が正常であれぱ、超電導リ
アクトル6を構成するコイル6a,6bは双方とも超電導状
態に保持される。これにより、超電導リアクトル6を構
成する超電導限流コイル6a,超電導トリガコイル6bの抵
抗は零で、しかも、無誘導の素子となっている。従っ
て、電流i0が超電導限流コイル6a,超電導トリガコイル6
bに分流し、これらのコイルに流れる電流iL1,iL2によっ
て磁束が相殺され、無誘導状態になっている。
First, path is normal current i 0 which flows in line, coils 6a constituting the superconducting reactor 6, 6b is held both in the superconducting state. As a result, the resistance of the superconducting current limiting coil 6a and the superconducting trigger coil 6b constituting the superconducting reactor 6 is zero, and is a non-inductive element. Therefore, the current i 0 is reduced by the superconducting current limiting coil 6a,
The magnetic flux is offset by the currents i L1 and i L2 shunted to the coil b and these coils are in a non-inductive state.

次に、負荷短絡等の事故が発生したことにより、電源
電圧Eと線路のインピーダンスZ1とで定まる推定短絡電
流ifが流れようとすると、電流の増大に応じて超電導リ
アクトル6の電流も増大する。この超電導リアクトル6
を構成する超電導トリガコイル6bはその増大途中の電流
値に対応する臨界電流値Jc2をもっており、超電導トリ
ガコイル6bを流れる電流iL2がこの電流値Jc2を超えると
同時にクエンチし、超電導トリガコイル6bに流れていた
電流iL2が超電導限流コイル6aに転流する。この結果、
線路を流れる電流の殆どが超電導限流コイル6aに流れ
る。従って、超電導リアクトル6は超電導限流コイル6a
が発生する磁束φによって大きなインダクタンスを持
つことになる。超電導トリガコイル6bは極めて大きな抵
抗値Rを有する素子に変化し、iL2は極めて小さい値と
なる。また線路電流i0は超電導限流コイル6aの自己イン
ダクタンスL1によって限流される。
Then, by accident a load short circuit occurs, when tends to flow estimated short-circuit current i f determined by the impedance Z 1 of the power supply voltage E and the line, also the current of the superconducting reactor 6 in accordance with the increase in current increases I do. This superconducting reactor 6
The superconducting trigger coil 6b has a critical current value Jc2 corresponding to the current value in the middle of the increase, and the current i L2 flowing through the superconducting trigger coil 6b exceeds the current value Jc2 and quenches at the same time, and the superconducting trigger coil Current i L2 flowing through 6b is commutated to superconducting current limiting coil 6a. As a result,
Most of the current flowing through the line flows through the superconducting current limiting coil 6a. Therefore, the superconducting reactor 6 includes the superconducting current limiting coil 6a.
There will have a large inductance by the magnetic flux phi 1 that occurs. The superconducting trigger coil 6b changes to an element having an extremely large resistance value R, and i L2 becomes an extremely small value. The line current i 0 is limited by the self-inductance L 1 of the superconducting current limiting coil 6a.

しかして、この実施例によれば、通常の線路電流に対
しては実質的なインピーダンスが零となり、過電流に対
しては瞬時にリアクトルとなって線路電流を限流させ
る。
Thus, according to this embodiment, the substantial impedance becomes zero for a normal line current, and instantaneously becomes a reactor for an overcurrent to limit the line current.

第8図(a)、(b)は電流i0および限流装置のイン
ピーダンスZSCが通常動作時と限流動作時とで、どのよ
うに変化するかを示したものである。すなわち、定常動
作時においては、限流装置インピーダンスZSCは極めて
小さく、線路の電流i0は主に負荷のインピーダンスZl
よって正常に保たれている。一方、負荷短絡が発生する
と、線路には推定短絡電流ifが流れようとする。しかし
ながら、線路電流がJgまで増大したとき、超電導トリガ
コイル6bの電流が臨界電流値Jc2を超え、その瞬間超電
導リアクトル6のインピーダンスがZSC′に増大し、短
絡電流は制限値以下に限流される。
FIGS. 8 (a) and 8 (b) show how the current i 0 and the impedance Z SC of the current limiting device change between the normal operation and the current limiting operation. That is, in a steady state operation, current limiter impedance Z SC is very small, the current i 0 of the line is maintained normally primarily by the load impedance Z l. On the other hand, when a load short circuit occurs, the estimated short circuit current if tends to flow in the line. However, when the line current is increased to J g, currents of the superconducting trigger coil 6b exceeds the critical current value J c2, increases in the moment the impedance of the superconducting reactor 6 Z SC ', the short-circuit current is limited to the limit value or less Swept away.

さらに、限流装置を構成する超電導トリガコイル6b
は、復帰用スイッチ7でiL2を遮断することによって冷
却され、容易に定常状態に復帰する。
Furthermore, the superconducting trigger coil 6b constituting the current limiting device
Is cooled by shutting off i L2 by the return switch 7 and easily returns to the steady state.

かくして、この実施例によっても、超電導コイルを採
用したこと、これらの超電導コイルを同心配置したこと
により、構成の簡易化、装置の小型化が実現されると同
時に応答性が速く、しかも確実な線路保護が可能とな
り、さらに、復帰用スイッチを設けているので限流状態
から容易に定常状態に復帰させることが可能となる。
Thus, also in this embodiment, the employment of the superconducting coils and the concentric arrangement of these superconducting coils realize the simplification of the configuration and the miniaturization of the device, and at the same time the quick response and the reliable line. Protection is possible, and a return switch is provided so that the current limit state can be easily returned to the steady state.

[発明の効果] 以上の説明によって明らかなように、本発明によれ
ば、装置の小型化および確実な線路保護を図り得ると共
に、熱に伴う定常電力損失を著しく低く抑え、しかも任
意のインピーダンスを得ることができるという効果があ
る。更に、限流状態から容易に定常状態に復帰させるこ
とが可能となる等の優れた効果を奏する。
[Effects of the Invention] As is clear from the above description, according to the present invention, it is possible to reduce the size of the device and secure the line protection, to suppress the steady-state power loss due to heat to a remarkably low level, and to reduce any impedance. There is an effect that it can be obtained. Further, the present invention has an excellent effect that it is possible to easily return to the steady state from the current limiting state.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの出願の第1の発明に対応する実施例の構成
を、適用対象と併せて示した回路図、第2図は同実施例
の具体的な構成を、部分的に断面で示した図、第3図は
同実施例の動作を説明するための磁束発生状態図、第4
図(a),(b)は同実施例の動作を説明するために電
流およびインピーダンスの時間的な変化を示した図、第
5図はこの出願の第2の発明に対応する実施例の構成
を、適用対象と併せて示した回路図、第6図はそれぞれ
同実施例の主要素の具体的な構成を、部分的に断面で示
した図、第7図はこれらの主要素磁束発生状態図、第8
図(a),(b)は同実施例の動作を説明するために電
流およびインピーダンスの時間的な変化を示した図、第
9図は従来の限流装置の構成を示す回路図である。 3……限流器、 3a,6a……超電導限流コイル、 3b,6b……超電導トリガコイル、 3b1……第1の超電導コイル、 3b2……第2の超電導コイル、 6……超電導リアクトル、 7……復帰用スイッチ
FIG. 1 is a circuit diagram showing a configuration of an embodiment corresponding to the first invention of this application together with an application object, and FIG. 2 is a partial cross-sectional view showing a specific configuration of the embodiment. FIG. 3 is a magnetic flux generation state diagram for explaining the operation of the embodiment, and FIG.
5A and 5B are diagrams showing changes over time in current and impedance for explaining the operation of the embodiment, and FIG. 5 is a configuration of an embodiment corresponding to the second invention of this application. FIG. 6 is a circuit diagram showing the configuration of the main elements of the embodiment, and FIG. 6 is a partial cross-sectional view showing the specific configuration of the main elements of the embodiment. FIG. Fig. 8
FIGS. 9A and 9B are diagrams showing the temporal changes of current and impedance for explaining the operation of the embodiment, and FIG. 9 is a circuit diagram showing the configuration of a conventional current limiting device. 3 ...... FCL, 3a, 6a ...... superconducting current limiting coil, 3b, 6b ...... superconducting trigger coil, 3b 1 ...... first superconducting coil, 3b 2 ...... second superconducting coils, 6 ...... superconducting Reactor, 7 ... Return switch

フロントページの続き (56)参考文献 特開 平1−185127(JP,A) 特開 昭60−74932(JP,A) 特開 昭51−35045(JP,A) 特開 昭63−239876(JP,A) 特開 平2−101926(JP,A) 実開 昭51−39734(JP,U) 実開 昭55−94071(JP,U) 特公 昭48−2038(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H02H 9/02 H01F 36/00 Continuation of the front page (56) References JP-A-1-185127 (JP, A) JP-A-60-74932 (JP, A) JP-A-51-35045 (JP, A) JP-A-63-239876 (JP) JP-A-2-101926 (JP, A) JP-A-51-39734 (JP, U) JP-A-55-94071 (JP, U) JP-B-48-2038 (JP, B1) (58) Surveyed field (Int.Cl. 6 , DB name) H02H 9/02 H01F 36/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電路の電流を制限値以下に抑えるインダク
タンスを有し、かつ前記制限値以上の臨界電流値を持つ
超電導限流コイルと、 前記電路の電流の制限値より小さく、前記電路の通常電
流より大きい臨界電流値を持ち、並列に接続された第1
と第2の超電導コイルとが互いに無誘導に巻かれて構成
された超導電トリガコイルと、 この超導電トリガコイルに直列に接続され該超電導トリ
ガコイルに流れる電流の開閉を行うための復帰用スイッ
チと を備え、 前記超電導限流コイルと前記復帰用スイッチが直列に接
続された前記超電導トリガコイルとを並列接続して構成
されたことを特徴とする超電導限流装置。
1. A superconducting current limiting coil having an inductance for suppressing a current in a circuit below a limit value and having a critical current value not less than the limit value; The first current having a critical current value greater than the current and connected in parallel
And a second superconducting coil wound in a non-inductive manner with each other, and a return switch connected in series with the superconducting trigger coil for opening and closing a current flowing through the superconducting trigger coil And a superconducting current limiting device, wherein the superconducting current limiting coil is connected in parallel with the superconducting trigger coil in which the return switch is connected in series.
【請求項2】電路の電流を制限値以下に抑えるインダク
タンスを有し、かつ前記制限値以上の臨界電流値を持つ
超電導限流コイルと、 この超電導限流コイルと無誘導に形成され、前記電路の
電流の制限値より小さく、前記電路の通常電流より大き
い臨界電流値を持つ超電導トリガコイルと、 この超電導トリガコイルに直列に接続され該超電導トリ
ガコイルに流れる電流の開閉を行うための復帰用スイッ
チと を備え、 前記超電導限流コイルと前記復帰用スイッチが直列に接
続された前記超電導トリガコイルとを並列接続して構成
されたことを特徴とする超電導限流装置。
2. A superconducting current limiting coil having an inductance for suppressing a current of a circuit below a limit value and having a critical current value not less than the limit value, and a superconducting current limiting coil formed non-inductively with the superconducting current limiting coil. A superconducting trigger coil having a critical current value smaller than the current limit value and larger than the normal current of the electric circuit; and a return switch connected in series with the superconducting trigger coil for opening and closing the current flowing through the superconducting trigger coil. And a superconducting current limiting device, wherein the superconducting current limiting coil is connected in parallel with the superconducting trigger coil in which the return switch is connected in series.
【請求項3】前記超電導トリガコイルは、前記超電導限
流コイルの内側に同心状に配置されていることを特徴と
する請求項1または2に記載の超電導限流装置。
3. The superconducting current limiting device according to claim 1, wherein the superconducting trigger coil is disposed concentrically inside the superconducting current limiting coil.
JP1016176A 1989-01-27 1989-01-27 Superconducting current limiting device Expired - Fee Related JP2941833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016176A JP2941833B2 (en) 1989-01-27 1989-01-27 Superconducting current limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016176A JP2941833B2 (en) 1989-01-27 1989-01-27 Superconducting current limiting device

Publications (2)

Publication Number Publication Date
JPH02202320A JPH02202320A (en) 1990-08-10
JP2941833B2 true JP2941833B2 (en) 1999-08-30

Family

ID=11909200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016176A Expired - Fee Related JP2941833B2 (en) 1989-01-27 1989-01-27 Superconducting current limiting device

Country Status (1)

Country Link
JP (1) JP2941833B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395643B1 (en) 2012-12-27 2014-05-16 엘에스산전 주식회사 Current limiter equipped with protection switch
CN106921150A (en) * 2017-04-11 2017-07-04 华中科技大学 A kind of hybrid DC superconducting current limiter based on energy fast transfer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260649A (en) * 1992-03-06 1993-10-08 Takaoka Electric Mfg Co Ltd Superconducting current limiter
JP6069073B2 (en) 2013-04-01 2017-01-25 住友電気工業株式会社 Current limiting device
JP2014204460A (en) 2013-04-01 2014-10-27 住友電気工業株式会社 Current-limiting/current flow controller
US10270241B2 (en) * 2016-05-16 2019-04-23 Varian Semiconductor Equipment Associates, Inc. Fault current limiter having fault checking system for power electronics and bypass circuit
KR101981056B1 (en) * 2018-11-14 2019-08-28 한국기초과학지원연구원 superconductor magnet apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066130U (en) * 1973-10-17 1975-06-14
JPS5594071U (en) * 1978-12-22 1980-06-30
JPS5843125U (en) * 1981-09-18 1983-03-23 株式会社日立製作所 current limiting circuit
JPS63239876A (en) * 1987-03-27 1988-10-05 Toshiba Corp Thermal persistent current switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395643B1 (en) 2012-12-27 2014-05-16 엘에스산전 주식회사 Current limiter equipped with protection switch
CN106921150A (en) * 2017-04-11 2017-07-04 华中科技大学 A kind of hybrid DC superconducting current limiter based on energy fast transfer
CN106921150B (en) * 2017-04-11 2018-12-28 华中科技大学 A kind of hybrid DC superconducting current limiter based on energy fast transfer

Also Published As

Publication number Publication date
JPH02202320A (en) 1990-08-10

Similar Documents

Publication Publication Date Title
US5021914A (en) Superconducting switch and current limiter using such a switch
JP6412198B2 (en) Solid fault current limiter
US5930095A (en) Superconducting current limiting device by introducing the air gap in the magnetic core
US4700257A (en) Superconductive AC current limiter
JP2774672B2 (en) Superconducting current limiter
JPH04359626A (en) Current limiter
KR20120093186A (en) Fault current limiters(fcl) with the cores saturated by non-superconducting coils
Chen et al. Current limiting characteristics of a novel flux-coupling type superconducting fault current limiter
JP2941833B2 (en) Superconducting current limiting device
EP0567293A1 (en) Superconducting current limiting device
JP2901068B2 (en) Current limiting device
JP2000132247A (en) Superconduction current controller
AU2007358210B2 (en) Power dampener for a fault current limiter
JPH099499A (en) Current limiter
KR102289336B1 (en) Transformer type superconducting fault current limiter using double iron core
JP3231837B2 (en) Superconducting current limiting device
JP3399905B2 (en) Three-phase current limiter
KR101402746B1 (en) Superconducting fault current limiter having contact switch and using magnetic coupling
JP2792182B2 (en) Overcurrent limiting device
JP2716789B2 (en) Current limiting device
JP3280609B2 (en) Current limiting device to limit fault current
JPH02237428A (en) Current limiting device
KR102264598B1 (en) Flux-Coupling type superconducting fault current limiter with two triggered current limiting levels
JPH09233691A (en) Overcurrent protector
JPH03245725A (en) Overcurrent limiter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees